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ABSTRACT

Energy-efficient Online Arithmetic in
Domain-Specific Accelerators for Deep Learning Applications

Muhammad Usman

Advisor: Prof. Lee, Jeong A

Department of Computer Engineering

Graduate School of Chosun University

In deep learning architectures, convolution, which is essentially sum-of-

products, is a dominant operation and accounts for majority of computation. It is

of great interest to minimize the resource consumption of convolution operation

and reduce its latency to have a short response time of the network during

inference.

This thesis is focused on the utilization of online arithmetic for the

computation of inner products in the deep learning architectures. Online or left to

right (LR) arithmetic executes in digit-serial manner in which inputs are provided

and output is produced from most to least significant digit. It allows digit-

level pipelining and early execution of successive operation regardless of data

dependency which increases the overall throughput and decreases the latency.

It has an inherent property to execute as a variable precision arithmetic where

the execution can be stopped upon reaching the desired precision. Furthermore,

for a given precision, the total number of digit slices required by the online

algorithms are less than that required by the parallel implementations. Therefore,

the working precision can be reduced to obtain a full precision result, thus

minimizing the area occupancy, interconnects and signal activities.

ix



These properties of online arithmetic are explored to present a low-power

pipelined online multiplier which along with the pipelined online adder is utilized

to perform sum-of-products hardware unit. The cycle time of the pipelined online

units is independent of data precision and is smaller compared to the conventional

SoP designs.

The implementation of various precision multipliers and adders has been

done using Verilog descriptions and functionally verified using ModelSim. The

synthesis have been performed Synopsys Design Compiler on 45nm technology.

Furthermore, the designs have been implemented on FPGA to observe the

sequential and combinational logic utilization which show significant amount of

savings in both area and power.

x



한글요약

딥러닝가속기를위한에너지효율적인온라인연산기구조설계

우스만무하마드

지도교수:이정아

컴퓨터공학과

조선대학교대학원

딥 러닝 아키텍처의 대부분의 계산처리는 컨볼루션 연산으로, 궁극적으로

대량의곱의합연산을수행한다.딥러닝추론가속기에서대량의곱의합연산

을 수행하면서, 짧은 응답시간을 달성하기 위하여 초고속처리에 필요한 하드

웨어자원을효율적으로사용하는문제는중요한문제이다.

본논문은딥러닝가속기를위한에너지효율적인온라인연산기구조설계

를제시한다.온라인연산으로알려진 LR (Left왼쪽에서 Right오른쪽으로)연

산기법은기존의연산처리와달리,입력데이터가 LR디지트직렬(Digit-Serial)

방식으로, 즉 왼쪽(최상위 숫자)부터 오른쪽 (최하위 숫자)으로 제공되고, 출

력도디지트직렬방식으로최상위숫자에서최하위숫자로생성된다.온라인

연산은 최상위 숫자부터 출력하기 때문에, 현재 연산이 완료되지 않아도, 연

속된다음연산을시작할수있다.즉,연산데이터종속성에관계없이,연속된

다음연산을시작할수있어서, Digit-level파이프라이닝이가능하다.연속작

업의조기실행이가능하여,작업처리량도늘어나고, latency (처리지연시간)

을줄일수있어, response time (응답시간)이빨라진다.온라인연산은,원하는

정밀도에도달하면실행을중지할수있어서,필요한만큼의연산을수행할수

있는고유한속성이있다.온라인연산알고리즘은입력데이터를디지트직렬

방식으로 받아서 출력 디지트를 결정하는데, 주어진 정밀도에 따라 결정되지

xi



만,온라인연산알고리즘은기존의연산알고리즘과달리,출력디지트를결정

하기위하여,전체디지트를다필요로하지않는다.연산결과값의 precision(정

밀도)보다 작은 작업 정밀도(working precision)만으로 동일한 결과 값을 얻을

수 있으므로, 회로의 크기를 줄일 수 있고, 모듈의 신호 활동을 최소화하여 에

너지효율을높일수있다.

본논문에서는온라인연산기의특성을살려,에너지효율적인파이프라인

온라인 곱셈기, 파 이프라인 온라인 가산기 구조 그리고 온라인 곱의합 연산

기구조를제안하고구현하였다.파이프라인온라인곱의합연산기의사이클

처리시간은 입력 데이터의 정밀도 (operand width) 에 따라 변화되지 않고, 동

일하며,기존의곱의합연산기처리시간에비하여빠르기때문에,딥러닝가속

기에적용할경우의그효용성이기대된다.다양한정밀도의온라인곱셈기와

가산기를 Verilog로구현하고, ModelSim을사용하여기능적으로검증한후에,

Synopsys Design Compiler를사용하여 45nm기술로합성하였다. FPGA로구

현한결과에서도면적과전력모두에서상당한양의절감이가능함을보였다.
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1 Introduction

1.1 Motivation

The development of sophisticated signal processing applications is growing with

the passage of time and the scale of integration is increasing. The complex

signal processing and machine learning applications demand high computational

capacity and the power consumption and area utilization has become one of the

major concerns for VLSI system design [1, 27]. There is an urgent need for the

development of low power design because (i) the operating frequency is growing

with a steady rate that increases the heat dissipation which must be lowered using

effective cooling techniques, (ii) modern electronic devices are constrained by

the limited power supply and are mostly battery operated. The low power design

leads to longer life expectancy of these portable devices.

One of the fundamental operation used in the signal processing and deep

learning algorithm is the computation of sum-of-products (SOPs) [25, 31].

It requires larger area, has longer latency and consumes significant power.

Considerable amount of work has been done at the technological and circuit

level towards development of low power multipliers [4, 23, 38, 39]. However,

these generic techniques are not specifically opted for the multiplier design and

can be utilizes in any other module. Machine learning algorithms specially the

deep neural networks (DNNs) such as convolutional neural network (CNNs)

employ massive inner product arrays and the consumption is directly related to

the switching activities. It is therefore desirable to utilize the characteristics of

arithmetic computations for designing low power operators for computing SOPs.

This dissertation provides the design and evaluation of online arithmetic

based operators that are optimized in terms of interconnect and signal activities.

1



Online arithmetic algorithms introduces parallelism with in the sequential

operations because pipelining is possible regardless of data dependency. This

greatly reduces the computation time and latency of lengthy sequences which

is highly desirable in DNN applications. The model of LR arithmetic based

multiplier and adder is presented alongwith the derivation of online algorithms,

high level optimization have been carried out in the architecture and algorithm

of conventional online operators to explore the opportunities of reducing power

and area consumption. Moreover, low level optimization in the digit slices of the

multiplier have been performed to minimize the interconnect and further reduce

the power utilization.

1.2 Literature Review

The online arithmetic algorithm due to their unique properties have been widely

adopted in a number of applications [7, 15, 22, 24]. Early research on the

development of online algorithms for division and multiplication was carried out

by Ercegovac [32]. The proof for the correctness of online division algorithm

was presented in [33] along with two radix-4 online division algorithms. Later a

simulator tool was developed for online arithmetic algorithms and presented in

[28]. Ercegovac presented numerous online arithmetic based operations including

square root, multiplicative vector normalization, computation of rotation factors,

evaluation of polynomials etc. [13, 16, 34]. A method for computing fast

multiplication without carry propagation array that suits well for the VLSI was

presented in [11],

Methods to reduce the online delay have been proposed in [26] in which the

algorithms are developed with two rather than one recurrence equation. One of

2



the recurrence is for approximate computation to the additive or multiplicative

inverse of the input variables and the other utilizes the approximation for

generating the output. These algorithm have smaller online delay however, suffers

from a longer step time for each digit.

Recent advancement in utilizing the online arithmetic were focused on

the efficient implementation on reconfigurable devices such as FPGA. To

this end a scheme for 3D vector normalization was proposed with its FPGA

implementation in [18], which showed significant improvement in throughput

when compared with the existing approaches. Galli and Alexandre proposed

a design methodology for developing networks of online modules which

highlighted the advantages of online arithmetic in designing complex signal

processing algorithms and an efficient FPGA implementation was also shown

[14]. In [30], the effect of overclocking the radix-2 online arithmetic algorithms

was analyzed and the errors due to the timing violations were quantified. In [41], a

method for achieving variable precision was presented which used on-chip block

RAMs for the storage of intermediate values. The most recent work to utilize the

online arithmetic is named as ARCHITECT by [20], which propose the method

of computing arbitrary precision result in arbitrary iterations and showed 16x

performance speedup and 1.9x savings in memory.

The use of online arithmetic for computing the inner products of the

convolutional neural networks has not studied well. The proposed work could

serve as an initiation towards exploration of online arithmetic based algorithms

in the machine learning applications.
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1.3 Research Approach

The algorithms developed using online or left to right (LR) arithmetic execute

serially taking most significant digit first (MSDF). The precision of inputs

increases one digit in each iteration/cycle. Therefore, it is possible to gradually

increase the digit slices in accordingly. This approach allows to reduce the

signal activities consequently reduction in both dynamic and static power can

be observed. Online arithmetic allows to reduce the maximum working precision

and therefore, the area utilization of the algorithm which is often increased due

the use of redundant number system is circumvented. Using these properties,

we propose a low power pipelined online multiplier. The unused modules in a

particular pipeline stage are not implemented, which minimizes the slice and

switching activities leading to savings in both area and power. The low power

pipelined online multiplier is utilized with a pipeliend online adder to form a

pipelined sum-of-product unit to have an increased throughput which is desired

in the computation of massive inner products in CNN applications.

1.4 Contributions

The efficacy of online arithmetic algorithms have been well debated and

theoretical estimation of possible savings have been derived. However, none of

the work has truly utilized the power reduction properties of online arithmetic to

implement on a hardware and observe the actual savings. In this work we present:

• The conventional algorithm of online multiplier and adder has been

modified with respect to the input and output generation.

• A 2D array implementation has been proposed in which the algorithm’s
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steps are pipelined for increased throughput.

• A digit-level pipelined sum-of-product unit is proposed for the computation

of inner products and their summation using an adder tree.

• Maximum working precision has been reduced in the online multiplier such

that only required number of modules are instantiated in each step.

• Hardware implementation of low power online multiplier and adder with

details of internal circuitry of each module involved in the algorithm has

been presented.

• The proposed and conventional designs have been developed using

technology-independent Verilog descriptions.

• The Verilog designs are subjected to area and power estimation using

Synopsys Design Compiler on 45nm technology.

• The designs are implemented on Xilinx FGPA to compare the

combinational and logical area utilization.

1.5 Organization of Thesis

The research work presented in the thesis is organized and structured in the form

of five chapters, which are briefly described as follows:

i) Chapter 2 provides a formal introduction of online arithmetic. The

differences between online and conventional algorithms in terms of timing

and structures are highlighted. The basic components and method for

developing online algorithm is presented. The method to develop online

multiplier and online adder is also discussed.
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ii) Chapter 3 presents the pipelined implementation of online multiplier and

online adder and their combination to develop a digi-level pipelined online

sum-of-product unit.

iii) Chapter 4 presents a review of the contemporary hardware accelerators

for CNN applications and compares the performance of online SoP in one

of these accelerators.

iv) Chapter 5 highlights the summary and conclusions of thesis.
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2 Overview of Online Arithmetic

2.1 Introduction

Online arithmetic or left-to-right algorithms execute serially where the input

operands arrive and output is produced digit by digit (serially) most significant

digit first (MSDF). Unlike conventional arithmetic computing right to left and

requiring full precision input, the first output digit of the online algorithm is

generated after a fixed and small initial delay known as the online delay δ .

The online delay can be defined as the minimum number of input digits that

must be accumulated in order to generate the first digit of output. To be able to

generate output on the basis of partial input information, the online algorithms

employ redundant number systems to have flexibility and opportunity to correct

the upcoming output digit if the preceding output is making the overall result

incorrect.

cycle:

input

compute

output

- - -

 = 

Figure 2.1: Timing depiction of online arithmetic based algorithms with online delay

δ = 3.

The working principle of online algorithm is shown in Fig. 2.1. To calculate

jth output digit, j+δ +1 digits of the input operands are required.
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2.2 General Properties

Some of the properties of using online arithmetic are listed below:

• The digit level pipelining is possible when employing online arithmetic

which helps in execution of parallel execution of arithmetic operation.

The execution of successive operation can be started after an online delay

suggesting that the online algorithms do not have to wait for the full

precision input unlike conventional arithmetic which has to wait for full

precision input to start computation as shown in Fig. 2.2.

op 1

op 2

op 3

op 4

op 1

Conventional arithmetic

Online arithmetic

op 3

op 4

op 2

op 2

op 3

op 4

op 1

Figure 2.2: Timing comparison of conventional and online arithmetic for sequence of

operations assuming δi = 3 and a compute cycle c = 1 for each operation. Conventional

arithmetic has to wait for the completion of previous computation. Using online

arithmetic, the successive operation can be started regardless of the data dependency

as soon as δi digits result of the previous operation have been produced.

• Online arithmetic uses digits in serial manner which reduces the

communication lines to give the inputs and the interconnections between
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the modules are also reduced as the same set of lines are used to transfer

the data. This property leads to the reduction in the area occupied by the

interconnecting wires in the parallel arithmetic as well eases the process of

routing.

• The output is computed while communication i.e., the output digits are

produced while the input digits are still arriving. The generation of the

output on the basis of low precision input requires the use of flexibility

in the number system which is achieved by employing redundant number

systems.

• The full precision output can be obtained by employing fewer digit slices

than the conventional parallel arithmetic. The effect of reduction of total

number of digit slices reflects in the reduction of switching activity and

number of active digit slices. Thus providing the room for savings in both

area and power.

2.3 Number System

Usually the online arithmetic operators use fractional numbers to make them

compatible with other operations and simplify the alignment. Therefore, the

weight of the first digit of the operand is r−1, where r is the radix. The output is

computed on the basis of partial information about the inputs, therefore, in case

of incorrect digit selection in the most significant part of the result, correction

can be applied in the lower significant digit. This is achieved with the use of

redundant number systems which allows to represent a number in more than one

way. The use of redundant number system results in an increase of cost per bit,
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however, the need of carry propagation is eliminated which results in an overall

advantage. Commonly used redundant number system are the signed digits (SD).

The number is represented in the form of radix where each digit belongs to a set

{−a, ...,−1,0,1, ...,a} and r
2 ≤ a < r. The amount of redundancy is denoted by

ρ (ρ = a
r−1 ). In this work we employ radix-2 SD numbers to represent the input

and output digits belonging to a symmetric digit set {−1,0,1}.

The representation of digit x j in a given iteration j uses two bits x+j and x−j ,

and the subtraction of these two bits represents the value of the given digit as

shown in relation (2.1).

x j = SUB(x+j ,x
−
j ) (2.1)

2.4 Implementation Model

All the online algorithms are composed of similar computation modules

and can be designed using a generic model, making their development and

implementation a lot easier than the contemporary algorithms. Some of the basic

components for the implementation are listed below:

1. Registers are required to store the values of incoming input, residual and

the output.

2. The precision of the input is increased gradually in each step, accordingly

appending units are required to append the incoming input with the already

stored input vector.

3. Multiplication of a vector by a digit, which is often carried out using a

multiplexer.
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4. Multi-operand adders are required which can be either signed digit or carry

save type depending on the number system representation.

5. Converters to convert the redundant numbers such as signed digit or carry

save form to conventional representation. This conversion is carried out

using on-the-fly converters (OTFC) which are based on simple logical

functions and shift registers, therefore, do not add any delay.

6. Output is generated by a selection function for which digit selection units

are required.

7. The digit selection function uses an estimate of the residual which is

computed using carry-propagate adders of limited precision (3 to 6 bits).

The digit slice organization of an online unit is shown in Fig. 2.3.

SEL RD -1

Figure 2.3: Digit slice organization of online arithmetic unit ([10]) SEL refers to the

selector unit, RD being the repeated digit slices.

The cycles or steps are labeled from −δ , . . .0,1, . . . ,n−1 where at step j, the
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input digits x j+1+δ and y j+1+δ are received from the most significant side, an

output digit z j+1 is computed and z j is delivered as shown in Fig. 2.1.

The algorithms requires the conversion of input digits to the conventional

two’s complement (TC) number to have their numerical values to update the

recurrence and compute the internal state of the algorithm termed as residual

(ω). The numerical values of a digits at iteration j is denoted as x[ j], y[ j] and z[ j]

and its corresponding online form are given as follows:

x[ j] =
j+δ

∑
i=1

xir−i

x[ j+1] = x[ j]+ x( j+1+δ )r
−( j+1+δ )

y[ j] =
j+δ

∑
i=1

yir−i

y[ j+1] = y[ j]+ y( j+1+δ )r
−( j+1+δ )

z[ j] =
j

∑
i=1

zir−i

z j+1 = F(w[ j],x[ j],x j+δ+1,y[ j],y j+δ+1,z[ j])

z[ j+1] = (z[ j],z j+1)

w[ j+1] = G(w[ j],x[ j],x j+δ+1,y[ j],y j+δ+1,z[ j],z j+1)

(2.2)

2.5 Method for Developing Online Algorithms

The development of online algorithms are composed of two fundamental parts.

First is the definition of residual and its recurrence, while the second part is the

definition of digit selection function that determines the output digit.
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2.5.1 Residual and its Recurrence

The online arithmetic algorithms rely on the recursive computation of residual (w)

at each step; generating an output is by a digit selection function which selects an

output on the basis of current value of residual. Since the output generation uses

partial information of the inputs, it is required to define an error bound. For an

operation f, the bound is shown in (2.3) on the recurrence which is maintained at

each step when the residual is updated.

| f (x[ j],y[ j])− z[ j]|< r− j (2.3)

Transformation is applied on (2.3), such that the recurrence contains the

primitive operations only. The scaled residual for the multiplier can be defined

as:

w[ j] = r j(G( f (x[ j],y[ j])− z[ j])) (2.4)

with |w[ j]| being bounded by ω = ρ(1− 2r−δ ). The residual, w[ j], in the

redundant carry-save form actually has a two’s complement representation and

is represented by the vectors ws[ j] and wc[ j]. The residual can be deduced to

obtain the recurrence w[ j+1] having bounds ω and ω:

w[ j+1] = rw[ j]+ r j+1(G( f (x[ j+1],y[ j+1])− z j+1)

−G( f (x[ j],y[ j])− z[ j]))
(2.5)

The recurrence is decomposed into:

v[ j] = rw[ j]+H1 (2.6)

w[ j+1] = v[ j]+H2(z j+1) (2.7)

such that (2.6) is independent of z j+1.
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2.5.2 Selection Function with Selection Constants

The output digit is selected using a selection function such that the residual

w[ j + 1] remains bounded between ω and ω . The selection of the output digit

q j+1 = k where k = −a,−a+ 1, . . . ,a depends upon the selection intervals of

v[ j]. However, in actual implementation, only t bits of v[ j] are truncated to give

its estimate, v̂[ j]. The corresponding selection intervals Ûk ≤ v̂[ j]≤ L̂k are given

by:

Ûk =
⌊

ρ(1−2−δ )+ k−2−t
⌋

t

L̂k =
⌈
−ρ(1−2−δ )+ k

⌉
t

(2.8)

The simplified range of the estimate v̂[ j] is shown in relation (3.4):⌊
−ρ(r−2−δ )−2−t+1

⌋
t
≤ v̂[ j]≤

⌊
ρ(r−2−δ )

⌋
t

(2.9)

2.6 Online Multiplier

Now we present the design methodology of an online arithmetic based multiplier

and in particular the derivations of the recurrence and selection function will

be presented for the radix-2 online multiplier. The input operands x and y in

the signed digit redundant representation are computed to produce the product

digit z ranging from (−1,1) from the symmetric signed digit set {−a, ...,a}. The

operands and the resulting product digit at iteration j are given as:

x[ j] =
j+δ

∑
i=1

xir−i, y[ j] =
j+δ

∑
i=1

yir−i, z[ j] =
j

∑
i=1

zir−i, (2.10)

At each iteration j, a SD input is received, which is converted to

two’s complement representation in digit serial manner using on-the-fly
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conversion/append (CA) function as: x[ j] = CA(x[ j − 1],x j+4) and y[ j] =

CA(y[ j−1],y j+4). An output is produced on the basis of only partial information

of the inputs, therefore, an error bound must be defined as follows:

|x[ j] · y[ j]− z[ j]|< r− j (2.11)

The above relation is subjected to a transformation function to develop the

recurrence having primitive functions only, which is then scaled by a factor to

have a bound on the error after the computation of j digits. The corresponding

scaled residual is given by:

w[ j] = r j(x[ j] · y[ j]− z[ j]) (2.12)

The residual can be deduced to obtain the recurrence w[ j+1]:

w[ j+1] = rw[ j]+ (x[ j]y j+1+δ + y[ j+1]x j+1+δ )r
−δ

− z j+1

(2.13)

The recurrence is decomposed into:

v[ j] = rw[ j]+ (x[ j]y j+1+δ + y[ j+1]x j+1+δ )r
−δ

w[ j+1] = v[ j]− z j+1

(2.14)

resulting in

H1 = (x[ j]y j+1+δ + y[ j+1]x j+1+δ )r
−δ H2 =−z j +1 (2.15)

The simplified range of the estimate v̂[ j] is shown in relation (2.16):⌊
−ρ(r−2−δ )−2−t+1

⌋
t
≤ v̂[ j]≤

⌊
ρ(r−2−δ )

⌋
t

(2.16)
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2.7 Radix-2 Online Multiplier

The multiplication algorithm for radix-2 online multiplier is now presented. The

online delay for this multiplier is δ = 3 and the number of most significant

fractional bits required in the selection function to select the output are t = 2.

The recurrence and the selection function for this multiplier is shown now.

2.7.1 Recurrence

The derivation of the recurrence is similar to what presented in section 2.6. For

r = 2 and δ = 3, v[ j] in (2.14) can be rewritten as:

v[ j] = 2w[ j]+ (x[ j]y j+4 + y[ j+1]x j+4)2−3 (2.17)

2.7.2 Selection Function

The output digit is selected using a selection function such that the residual

w[ j + 1] remains bounded. The selection of the output digit z j+1 = q where

qi = −a,−a+ 1, . . . ,a depends upon the selection intervals of v[ j]. Only t most

significant fractional bits along with integer bits (ibs) of v[ j] are used from the

result generated by the [4 : 2] adder in carry-sum pair (WS and WC) to give its

estimate, v̂[ j], the range of which is defined as:

−2≤ v̂[ j]≤ 7
4

(2.18)

In case of radix-2 online multiplier, the least significant estimate bit v2 is not

used and the three 3 MSBs i.e., two ibs (v−1 and v0) and one fractional bit (v1) are

sufficient to select the output z j+1. The corresponding selection function (SELM)

for δ = 3, r = 2 and t = 2 is given as:
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Table 2.1: Selection function for radix-2 multiplier.

v̂ v−1v0.v1 z j+1

3/2 00.1 1
1 01.0 1

1/2 00.1 1
0 00.0 0

-1/2 11.1 0
-1 11.0 -1

-3/2 10.1 -1
-2 10.0 -1

z j+1 = SELM(v̂[ j]) =


1 if 1/2≤ v̂[ j]≤ 7/4

0 if −1/2≤ v̂[ j]≤ 1/4

−1 if −2≤ v̂[ j]≤−3/4

(2.19)

The product digit z j+1 uses similar coding as (2.1) and corresponding

selection function is shown in Table. 2.1.

2.7.3 Algorithm

The algorithm of a conventional radix-2 online multiplier has been shown in

Algorithm. 2.1. During initialization, δ input digits are received from most

significant side and the residual is updated. The output generated during this

phase are discarded. During recurrence, the remaining n− δ input digits are

received and an output is generated in each cycle. For the last δ cycles the inputs

are set to be zero. The multiplication of terms with 2−3 in (2.17) is carried out by

arithmetic right shift by 3.
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Algorithm 2.1 Online Multiplication
1: Initialize:

x[−3] = y[−3] = w[−3] = 0

2: for j=−3,−2,−1 do

3: x[ j+1]←CA
(
x[ j],x j+4

)
; y[ j+1]←CA(y[ j],y j+4);

4: v[ j] = 2w[ j]+
(
x[ j]y j+4 + y[ j+1]x j+4

)
2−3

5: w[ j+1]← v[ j]

6: end for

7: Recurrence:

8: for j = 0 . . .n−1 do

9: x[ j+1]←CA
(
x[ j],x j+4

)
; y[ j+1]←CA(y[ j],y j+4);

10: v[ j] = 2w[ j]+
(
x[ j]y j+4 + y[ j+1]x j+4

)
2−3

11: z j+1 = SELM(v̂[ j])

12: w[ j+1]← v[ j]− z j+1

13: Zout← z j+1

14: end for
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2.7.4 Block Diagram

The block diagram of radix-2 online multiplier has been shown in 2.4. The

received inputs are converted to conventional form using OTFC and stored in

registers which are shown as carry/append (CA) registers . The residual, w[ j], in

the redundant carry-save form actually has a two’s complement representation

and is represented by the vectors WS[ j] and WC[ j]. The estimate of the residual

is calculated in the V block and the calculation of the updated residual w[ j+ 1]

which requires subtraction of z j+1 from v[ j] is carried out by the M block.

The subtraction is performed using a Boolean expression rather than explicit

subtraction [8].

CA-REG XLX

[4:2] 
ADDER

V

M

SELM

Zout
REG WS REG WC

SELECTOR

CA-REG Y LY

SELECTOR

Figure 2.4: Implementation level diagram for radix-2 online multiplier ([10])
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2.8 Radix-2 Online Adder

The online adder is obtained from the serialization of a redundant adder. A radix-

2 online adder shown in Fig. 2.5 is composed of two full adders and 5 flip-flops.

The cycle time corresponds to the delay of one digit radix-2 signed digit adder

plus the loading of registers. The online delay of radix-2 online adder is δ = 2.

FA

FA

Latch

Output Latches

Figure 2.5: Radix-2 online adder

2.9 Chapter Summary

This chapter developed the understanding of online arithmetic and online

algorithms. The difference of execution and output generation between online and

conventional arithmetic was shown. Basic components of online algorithms were

described and methods of developing a typical online algorithms with derivation

was described. In particular, the derivation of recurrence and selection function

of a radix-2 online multiplier and adder has been presented. The algorithm and

block diagram of the radix-2 online multiplier and adder was also presented.
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3 Online Sum-of-Product

3.1 Introduction

In recent years convolutional neural network (CNN) which is a type of deep

learning have been widely used in variety of fields including image recognition

and natural language processing. The CNN is greatly influenced by the number

of convolution layers which essentially perform dot products and summation

i.e., sum-of-products. Many methods have been proposed to accelerate the

computation of convolution as they constitute 90% of computation time [6]. One

way to accelerate the CNN computation is to use approximation; which however,

results in accuracy degradation. In this work, we propose to use pipelined online

sum-of-product (SoP) to perform the convolution operation to take advantage of

online arithmetic discussed in Chapter. 2. The pipelined online SoP has been

developed by realizing digit-level pipelining in the low-power online multiplier

and online adder, the architectures of which are discussed in the forthcoming

sections.

3.2 Pipelined Online Multiplier

It is established that the precision of the inputs to the multiplier increases

gradually. Consequently the slice activities also increases one digit in each

iteration. However, the conventional online multiplier has constant slice activity,

i.e., all the n bit slices are activated during all iterations. This corresponds

to an unnecessary power supply to the slices which do not contribute to the

computation in a certain iteration. It has proposed to use power gating in which

the unused slices are remained off until they are required for computation. To

21



Figure 3.1: Profile of slice activity [9].

which end, extra control circuitry has to be employed which results in an increase

in area as well as the dynamic power remains.

Another method is to implement the design as a 2D array and modules that

are not required in a certain iteration are not implemented and neither dynamic

nor static power is consumed. Furthermore, the n precision result can be obtained

by using p < n digit slices [10]. In [9], a depiction of such scheme has been

presented which is shown in Fig. 3.1. After p cycles, truncation is applied that

introduces an error which propagates in the residual for next cycle. Therefore,

the erroneous digit slices can be turned off in the linear implementation or in the

2D implementation they can be entirely removed leading to significant savings in

area and power.
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Table 3.1: Depiction of the input and output dataflow in the digit-level pipelined online

multiplier processing streams of input.

Execution Cycle Input Output

1 x1
n y1

n - - - -

2 x1
n−1 y1

n−1 x2
n y2

n - -

3 x1
n−2 y1

n−2 x2
n−1 y2

n−1 - -

4 x1
n−3 y1

n−3 x2
n−2 y2

n−2 z1
n -

5 x1
n−4 y1

n−4 x2
n−3 y2

n−3 z1
n−1 z2

n

6 x1
n−5 y1

n−5 x2
n−4 y2

n−4 z1
n−2 z2

n−1

. . . x2
n−5 y2

n−5 . z2
n−3

. . . . . . .

n x1
0 y1

0 . . .

n+1 0 0 x2
0 y2

0 z1
3

n+2 0 0 0 0 z1
2 z2

3

n+δ 0 0 0 0 z1
1 z2

2

n+δ+1 0 0 0 0 z1
0 z2

1

n+δ+2 0 0 0 0 - z2
0

3.2.1 Working Principle of Pipelined Multiplier

As an example two streams on inputs X1,Y 1 and X2,Y 2 of n-bits are multiplied

using pipelined online multiplier to generate the products Z1 and Z2. The inputs

X1,Y 1 are fed to the multiplier and after one cycle, the inputs X2,Y2 are supplied.

Likewise the MSD of Z1 is received after the online delay and the MSD of Z2 is

obtained one cycle later. It takes n+δ cycles to fill the pipeline, after which a

complete output vector can be obtained in each cycle resulting in an increased

throughput. The dataflow for the digit-level pipelined multiplier is depicted in

Table. 3.1.
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3.2.2 Maximum Working Precision Reduction

In the conventional design, the working precision of n bits is constant and all digit

slices have similar circuit in each iteration. However, in the proposed design, we

explore the sources of reducing the active modules which includes gradual use of

the input digits and reduction of working precision to p < n; defining a dynamic

working precision in stage k, as 1≤ k ≤ p as the iterations are performed.

3.2.3 Working Precision Reduction Strategy

The output digit of the online algorithm is based on a selection function which

utilizes a few most significant bits of the residual comprised of integer and t

fractional bits as discussed in section 2.7.2, to obtain the residual’s estimate

denoted by v̂. Therefore, it is possible to achieve n bits accuracy by implementing

only p (p < n) bit slices and ignoring a few least significant h bit slices.

For j ≤ p iterations, j modules are active in jth recurrence step; whereas, for

j > p, the availability of only p modules introduces an error due to truncation.

The algorithm’s convergence can be assured if the t bits in the selection function

are not affected due to the truncation error. The optimum number of p varies

according the type of adder used in the recurrence equation, the number of

ignored bit slices h and the initial delay δ . For a valid selection in an online

multiplier with [4 : 2] adder, relation (3.1) has been suggested in [10]:

p =

⌈
2n+δ + t

3

⌉
(3.1)

Due to the gradual increase in the precision of the incoming digits, the signal

activity is not constant and increases gradually in each iteration. Furthermore, if

p < n slices are implemented for the given multiplier, the signal activity begins to
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decrease after p iteration due the truncation error which affects ( j−2)th result bit

and is shifted one bit towards left due to the left shift operation in the recurrence.

Overall, the error propagates to 3 bit slices, therefore, the 3 least significant bit

slices can be turned off in the subsequent stage of the pipeline.

Based on these properties, 8,16,24 and 32 bit designs of the full precision

online multiplier have been compared with the respective low-powered designs.

According to relation (3.1), the n precision result can be obtained by employing

7,12,18 and 23 modules for 8,16,24 and 32 bit designs respectively. In

this correspondence, the conventional online multiplier algorithm shown in

Fig. 2.4, and the proposed low power designs have been implemented as a two-

dimensional pipeline array, where the bit widths of the registers (CA-Reg, Reg

WS, Reg WC), adder and selector are increased till p iteration and then decreased

till n+δ iteration.

3.2.4 Pipelining

The conventional implementation has its throughput limited by its latency and

produces one vector in n cycles. In the deep learning applications where large

number of multiplications have to be performed, this limitation on the throughput

may not be acceptable. Therefore, to process large number of convolution

operations in the deep learning applications, it is suitable to unfold and pipeline

the multiplier. For n-bit precision, n stages of the multiplier are unfolded and

pipelined. The pipeline not only allows the computation of n different vectors

in the same hardware, but also the subsequent operations including addition and

activation function can be started immediately upon receiving the first MSD of

result. This can drastically improve the throughput of the network and decrease
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Selection module during recurrence Selection module last  cycles

Repeated digit slices (RDs)  digit slice  digit slice  digit slice

Inactive digit slice in an iteration Truncated digit slices Register

Figure 3.2: Signal activity of radix-2 online multiplication algorithm with maximum

truncated precision of p with δ = 3, 2 integer bits (ib) and t = 2. Different colors of

the digit slice refer to their distinct structure. SEL block evaluates three bits to compute

the output and is therefore larger than the rest of digit slices.
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Figure 3.3: Stair-case input shifter array [18].

its latency. As discussed in section 3.2.3, the input bit precision is increased

gradually and p < n modules are sufficient to produce n-bit precision result,

only the required number of modules can be activated upto pth iteration and

after truncation in (p+ 1)th iteration, the modules can be turned off according

to the error profile. In a pipelined scheme however, the inactive modules are not

implemented, hence no dynamic/static power is consumed.

A 16-bit piplelined scheme which is a two-dimensional array structure with

16 stages has been depicted in Fig. 3.2. The output digit selection module in

the most significant place is instantiated after initialization steps to generate an

output digit and the residual signals are transferred vertically to the subsequent

linear array instead of left shifting as in the conventional implementation. The

input vectors are arranged in a stair-case manner to match the pipeline online

flow using a stair-case shifter array shown in Fig. 3.3, which simply adds a delay

in the ith digit of a vector using a i-bit shift register [18].

The details of each digit slice has been presented in the forthcoming section.
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3.2.5 Algorithm

The conventional algorithm has two steps, however, in the proposed design the

algorithm has been divided into three steps [35], including, (1) initialization:

having execution length equal to δ , during which the input digits are collected

and no output is generated, (2) recurrence: which executes for n− δ iterations,

producing one output digit in each iteration. (3) last δ cycles: having execution

length equal to δ , during which the input digits are zero and output is generated

in each iteration. The pseudocode of the conventional radix-2 online multiplier

presented in [10] with initialization and recurrence loops shown in 2.1, has been

modified to have three phases as shown in Algorithm 3.1.

3.2.6 Block Diagram

The block diagram of radix-2 online multiplier has been shown in 3.4. Since

the implementation is done in 2D array form, the length of each module is

increased one digit in each step. During initialization, no output digit is produced

consequently, the modules responsible for producing output are not instantiated.

The corresponding block diagram for this phase is shown in Fig. 3.4(a). After

obtaining sufficient input digits, the algorithm proceeds to the recurrence phase,

where the output generation modules are instantiated to produce the output.

The block diagram for this phase is shown in Fig. 3.4(b). Finally in the last δ

iterations, all the input digits are utilized an no new input is fed to the algorithm,

accordingly the modules for taking and converting inputs are removed in this

phase as seen in Fig. 3.4(c).
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Algorithm 3.1 Online Multiplication
1: Initialize:

x[−3] = y[−3] = w[−3] = 0

2: for j=−3,−2,−1 do

3: x[ j+1]←CA
(
x[ j],x j+4

)
;

y[ j+1]←CA(y[ j],y j+4);

4: v[ j] = 2w[ j]+
(
x[ j]y j+4 + y[ j+1]x j+4

)
2−3

5: w[ j+1]← v[ j]

6: end for

7: Recurrence:

8: for j = 0 . . .n−δ −1 do

9: x[ j+1]←CA
(
x[ j],x j+4

)
;

y[ j+1]←CA(y[ j],y j+4);

10: v[ j] = 2w[ j]+
(
x[ j]y j+4 + y[ j+1]x j+4

)
2−3

11: z j+1 = SELM(v̂[ j])

12: w[ j+1]← v[ j]− z j+1

13: Zout← z j+1

14: end for

15: Last δ cycles:

16: for j = n−δ . . .n−1 do

17: x[n−δ . . .n−1] = y[n−δ . . .n−1] = 0

18: v[ j] = 2w[ j]

19: z j+1 = SELM(v̂[ j])

20: w[ j+1]← v[ j]− z j+1

21: Zout← z j+1

22: end for
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Figure 3.4: Implementation level diagram for the proposed low power radix-2 online

multiplier
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3.2.7 Implementation Details

In the proposed design, each digit slices have been carefully fine tuned in order

to reduce signal activities and save power. Accordingly only useful modules are

instantiated in each step of the three sub-loops. We present the details of each

module and the corresponding digit slice structure in the following.

3.2.7.1 Initialization

During initialization, the algorithm executes for δ cycles to accumulate sufficient

input digits to produce the first output. Since no output digit is produced during

initialization, the modules to generate the output digit are not implemented. The

digit slices in the initialization consists of OTFC units and selectors. While the

presence of adders either half, full or their combination depends on the position

of the digit slice. The detail of each unit in the initialization stage is as follows:

3.2.7.2 On-the-Fly Conversion

The redundant SD inputs are required in the conventional form during the

recurrence step j, which are obtained without any additional delay using the

OTFC module; proposed in [12]. Two OTFC units are instantiated for the two

operands during initialization and recurrence, each composed of two 2− to− 1

multiplexers, 2-input OR and AND gates and two registers to store Q and QM =

Q− 1 as shown in Fig. 3.5. In each iteration, a new incoming digit is appended

in the least-significant digit of either Q and QM registers depending on the

value of q j+1, increasing its width by one bit upto n+ib. Two integer bits are

initialized as ‘00’ or ‘11’ representing ‘0’ and ‘−1’ for the first positive or

negative fractional bit respectively. The conversion/append (CA-Reg) registers

shown in Fig. 2.4 correspond to the Q[j+1] register of the OTFC unit. According
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the online multiplier’s algorithm, the computation requires advance availability

of one of the operands (in this case operand y), therefore, the bit width for ‘y’

OTFC unit is one bit longer than ‘x’ in all iterations.

 CA-Reg 

01 01

LSDLSD

Figure 3.5: Digit slice of on-the-fly converter.

3.2.7.3 Selector

The multiplication is performed by selector, which is a four input multiplexer

as shown in Fig. 3.6. Since it receives the inputs from the CA-Reg registers, the

width of its inputs also increases upto pth iteration, and then begins to decrease.

As there are no inputs in the last δ cycles, the selector module is instantiated

during initialization and recurrence stages only. At each iteration, the signed digit

selector can take values from 1,−1 or 0, encoded as ‘10’,‘01’ and ‘00’, for which

the selector outputs x.y, x.y or 0 respectively.

3.2.7.4 Adder

A [4 : 2] carry-save adder (CSA) is employed to perform the addition of the input

operands and the residual. The functionality of this adder is obtained by utilizing

two full adders. The final output vectors of sum and carry are denoted as vs and

vc respectively.
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Figure 3.6: Digit slice of selector unit.

At any given iteration j, the number of bits in x and y are k+ib+δ and

k+ib+δ+1 respectively, where k are the number of fractional bits in a given

iteration. The length of residual registers WS and WC is k+ib+δ -1 during

initialization.

For the low power implementation, a distinct structure of adder is specified

according to the bit position, as shown in different colors in Fig. 3.2. For the

two’s complement representation, multiplication with ‘−1’ can be performed

by negating the input bits and adding a logical 1 to the unit in the last place

(ulp), therefore, the least significant bit vck of the vc[ j] vector is designated for

cx (cx = x+j+4 · x
−
j+4), the corresponding digit slice to obtain the least significant

bits of vc and vs is the red colored slice k from the Fig. 3.2 and its internal circuit

is depicted in Fig. 3.7 (d). It has no adders because the length of vector y[ j] is

largest and there are no digits to be added, therefore, yk and cx are simply copied

to vsk and vck respectively.

For the same reason of achieving correct result of multiplication of a vector

by ‘−1’ in the two’s complement, the least significant bit VCk of the VC[ j] is

accounted for cy (cy = y+j+4 · y
−
j+4). Since the length of vector x[ j] is one digit

smaller than y[ j], cy is present in the (k−1)th digit slice. This is the purple colored
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slice in Fig. 3.2 and its internal circuit is depicted in Fig. 3.7 (c). The length of

the recurrence registers is one bit smaller than x[ j], therefore a single full adder is

employed to add the three input digits x[ j]m, y[ j]m and cy. Furthermore, absence

of adder in the kth place accounts for no output carry, therefore, a permanent ‘0’

is placed at the vck−1 position. Due to a single full adder in (k− 1)th position,

there are no intermediate sum or carry digits, instead a final sum vsk−1 and a

carry vck−2 is produced. This implies that in the (k−2)th digit slice, a full adder

in the first stage and a half adder in the second stage is sufficient to produce the

outputs. This slice is shown in yellow color in Fig. 3.2 while its logic is shown

in Fig. 3.7 (b). The (k−2)th digit slice however, generates both intermediate and

final carry digits to the higher digit slice, therefore, the (k− 3)th digit slice is

composed of two full adders. First full adder evaluates the sum of x[ j], WS[ j] and

WC[ j] and produces an intermediate carry and sum vector named as VC[ j] and

V S[ j] respectively. The second full adder evaluates the sum of V S[ j], VC[ j] and

y[ j+1] to produce final sum and carry, expressed as, vs[ j] and vc[ j] respectively

and are collectively represented as v[ j] shown in Eq. 3.3. This grey shaded digit

slice from Fig. 3.2 is implemented using the logic shown in Fig. 3.7 (a). It is

named as repeated digit slice (RD) as the same digit slice is repeated k+ ib during

initialization.

3.2.7.5 Residual Calculation

In the initialization phase, the residual for the next iteration (2w[ j + 1])

corresponds to the left shifting of vs and vc vectors. The most significant ibs

of both vectors (i.e., vs−1 and vc−1) are discarded and the vectors are left shifted

by a simple re-wiring. The updated residual (2w[ j+1]) is shown in relation (3.2).
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FA

FA

(a) (b) (c) (d)

Figure 3.7: Internal structure for the least significant and repeated digit slices.

2w[ j+1]
∣∣∣ vs0 vs1 · vs2 vs3 vs4 vs5 . . .

vc0 vc1 · vc2 vc3 vc4 vc5 . . .
(3.2)

3.2.7.6 Recurrence

After accumulating sufficient number of input digits to generate the output, the

algorithm advances to the recurrence stage. SEL digit slice is instantiated to

generate the output. The computation of next residual (2w[ j + 1]) involves M

block which subtracts the output digit z[ j+1] from v̂[ j]. Similar structures of the

OTFC and the selector modules shown in Fig. 3.5 and Fig. 3.6 respectively are

utilized for the entire recurrence stage with bit widths corresponding to the signal

activity pattern. The blue colored SEL digit slice from Fig. 3.2 uses the logic

depicted in Fig. 3.8.

Residual’s estimate calculation, selection of the output digit and subtraction

of the output digit from residual are performed by distinct modules present in the
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SEL digit slice, details of each of these modules are briefed below:

FA

FA

FA

FA

HA

FA

HA

FA

HA

FA

V (CPA)

SELM M

*

Figure 3.8: Logic for the SEL digit slice during recurrence. The three MSBs are

composed of a combination of half and full adders in contrast to two full adders in the

repeated digit slices.

3.2.7.7 V Block

The output is based on the estimate (v̂[ j]) of the residual (v[j]), is evaluated in

the V block. It is a carry propagation adder that performs the addition of t most

significant fractional bits and the integer bits of v[ j] (represented by vs[ j] and

vc[ j] vectors shown in Eq.(3.3)) to generate the estimate of the residual (v̂) as

shown in Eq. (3.4).

v[ j]
∣∣∣ vs−1 vs0 · vs1 vs2 vs3 vs4 . . .

vc−1 vc0 · vc1 vc2 vc3 vc4 . . .
(3.3)

v̂
∣∣∣ v−1 v0 · v1 v2 . . . (3.4)

36



3.2.7.8 SELM Block

The result of the V block is subjected to the SELM module for selecting the

corresponding output from a look-up table shown in Table. 2.1.

3.2.7.9 M Block

It performs the subtraction of z j+1 from the residual’s estimate (v̂) to produce

2w[ j+1]. The subtraction to obtain v∗0 is performed using the following Boolean

expression [8]:

v∗0 = v0 XOR |p j+1|. (3.5)

3.2.7.10 Adder

The RDs and the least significant digit slices for adder are similar to the

initialization stage, and for k bit precision, k + ib − 3 number of RDs are

instantiated in a certain iteration. The length of the vector vc after being subjected

to V block is reduced by 3 bits (refer to Eq. (3.6)). Therefore, in the 3 most

significant bit slices, which accounts for the SEL block, instead of two stages of

full adders, a half adder is employed in the first stage and a full adder is employed

in the second stage. The multiplication of the terms x[ j] · y j+4 and y[ j+1] · x j+4

in the recurrence equation with 2−3 in both initialization and recurrence stages,

corresponds to the sign extension of the MSBs, which is done by performing 3

bit arithmetic right shift operation without additional cost.

3.2.7.11 Residual Calculation

The MSB of v̂[ j] i.e., v̂−1 is discarded and the remaining 3 bits are vertically

transferred to vs vector consequently resulting in an updated residual as shown

in relation (3.6). In this manner the left shifting of the residual (2w[ j]) is carried
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out.

2w[ j+1]
∣∣∣ v0 v1 · v2 v3 v4 v5 . . .

v3 v4 v5 . . .
(3.6)

3.2.7.12 Last δ cycles

The remaining output digits are obtained in the last δ iterations which produces

V (CPA)

SELM M

*

Figure 3.9: Logic for the MSB in last δ cycles. The SEL digit slice is simplified to a

carry propagation adder, SELM and M block; taking the shifted residuals as input and

producing an output in each cycle.

one output digit in each cycle. All the inputs are utilized in the prior stages and in

the conventional online multiplier, three 0s are applied in the LSB of the inputs.

However, in the proposed low-power design, all unused modules are eliminated

and therefore, the OTFC, selector and [4 : 2] adders are not implemented. The

residual containing two vectors WS and WC are subjected to the V, M and SELM

modules to perform their respective tasks and generate the output digit. The digit

slice used during the last δ iterations has been depicted in Fig. 3.9.
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3.2.8 Synthesis Results and Comparison

The Verilog code has been developed for n = 8,16,24 and 32 bit precision

multipliers and simulated on Modelsim. A case study has been presented for 16-

bit precision multiplier with operands

x = 00.1101011011101100

y = 00.1111001101111101

The numerical value of x and y is 0.66644287109375 and −0.31562805175781

respectively. The actual product in conventional form is −0.2103480650112033

and the calculated product from online multiplier is−0.2103424072265625. The

difference between the actual and calculated product is 5.657784640789032×

10−6 which is well under the error bound of the last iteration which is 2−16 =

1.52587890625× 10−5. Not only the final result, but the result of the online

multiplier in each cycle is with in the respective error bound according to relation

(2.3). In the event of variable precision requirement, the computation can be

stopped upon reaching the desired precision, resulting in an accurate result upto

that precision; unlike approximate circuits in which result is not accurate.

For reduced working precision for n = 16, p = 13 was evaluated from

relation (3.1). The digit slices are gradually increased according to the increasing

precision of the inputs until p − δ cycles, in contrast to the conventional

implementation which has increment in the input’s precision till n−δ cycles and

has constant slice activity, i.e., all n bits remain active in all cycles. Truncation is

applied in p−δ +1 cycle that introduces an error in positions p, p−1 and p−2

which propagates to the left for residual calculation (2w[ j]). Consequently, the 3

least significant digit slices affected by the truncation error are not implemented

in the forthcoming cycles. For the last δ iterations, the modules for input and
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carry-save adder are not present and one bit reduction in the digit slice is due

to the left shift operation of the residual. The input digits used in the proposed

design are shown in clear fonts in Table. 3.2, whereas the conventional design

uses both clear and shaded digits. The [4 : 2] adder takes two inputs from Selector

units and residuals WS and WC, generating redundant vectors V S and VC the sum

of which is shown as v[ j] in Table. 3.2.

Table 3.2: Example of radix-2 online multiplication for n = 16 with reduced working

precision p = 13.

j x j+4 y j+4 x[ j] y[ j+1] v[ j]
p j+1

Error bound
SD Conventional

-3 1 1 0.0000000000000000 1.10000000000000000 11.1111 - - -

-2 1 1 0.1000000000000000 1.1100000000000000 11.11101 - - -

-1 0 1 0.1100000000000000 1.1010000000000000 11.101110 - - -

0 1 1 0.1100000000000000 1.1011000000000000 11.1001001 0 0.0 2−1

1 0 0 0.1011000000000000 1.1011000000000000 11.00100100 1 -0.25 2−2

2 1 0 0.1011000000000000 1.1011000000000000 00.010100100 0 -0.25 2−3

3 1 1 0.1010110000000000 1.1010111000000000 00.1001100011 1 -0.1875 2−4

4 0 1 0.1010101000000000 1.1010111100000000 11.01000110110 1 -0.21875 2−5

5 1 0 0.1010101000000000 1.1010111100000000 00.100000110110 0 -0.21875 2−6

6 1 1 0.1010101010000000 1.1010111101000000 01.0001000111111 1 -0.2109375 2−7

7 1 1 0.1010101011000000 1.1010111100100000 00.00011000101101 0 -0.2109375 2−8

8 0 1 0.1010101010100000 1.1010111100110000 00.010001101011110 0 -0.2109375 2−9

9 1 1 0.1010101010100000 1.1010111100111000 00.1010110011100101 1 -0.2099609375 2−10

10 1 1 0.1010101010011000 1.1010111100110100 11.0011101001011100 1 -0.21044921875 2−11

11 0 0 0.1010101010011100 1.1010111100110100 00.0111010010100 0 -0.21044921875 2−12

12 0 1 0.1010101010011100 1.1010111100110011 00.1101010000 1 -0.2103271484375 2−13

13 - - - - 11.101001100 0 -0.2103271484375 2−14

14 - - - - 11.01010000 1 -0.210357666015625 2−15

15 - - - - 00.1010000 1 -0.2103424072265625 2−16

For comparative analysis, both conventional and proposed designs have been

implemented on FPGA and their synthesis is performed to obtain the power

consumption and area utilization.
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3.2.8.1 FPGA Implementation

We present the pipelined implementation of both conventional and proposed

designs on FPGA. implementation of both conventional and proposed designs

have been done on Xilinx Virtex-7 VC707 FPGA evaluation platform with

XC7VX485T processor. The utilization of slice registers, slice look up tables

(LUTs) and flip flop pairs have been compared. Reduction of working precision

and gradual increase and decrease of the slice activity results in the savings of

40% configurable logic blocks (CLBs) decreasing from 715 in conventional to

425 in the proposed design for the 32-bit precision. Further results are presented

in It can be observed from Table. 3.3.

Table 3.3: Comparison of FPGA resource utilization of the proposed and conventional

design for the pipelined radix-2 online multiplier.

Precision 8 16 24 32 Resources
Conventional 164 1299 2642 4366

Occupied SlicesProposed 103 800 1529 2446
Reduction (%) 37.19 38.41 42.12 43.98
Conventional 270 1030 2123 3225

Slice RegistersProposed 238 738 1434 2146
Reduction (%) 11.85 28.34 32.45 33.45
Conventional 445 1874 3836 5713

Slice LUTsProposed 369 1202 2351 3393
Reduction (%) 17.07 35.85 38.71 40.60
Conventional 453 1877 3837 5751

LUT - Flip Flop PairsProposed 381 1211 2357 3439
Reduction (%) 15.89 35.48 38.64 40.20

3.2.8.2 Synthesis using Yosys, ABC and SIS

We present the results of synthesis to obtain the power and area estimate in

terms of digital logic gates. For area estimation, we use relative area of gates
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from the dictionary calculated by [36] for MCNC library, Vdd = 5V and clocking

frequency of 20 MHz relative to single NAND gate. The total area therefore, will

be the sum of relative areas of the gates. The synthesis to obtain the equivalent

logic gates of the multiplier has been performed using Yosys synthesis suite [37].

The area estimation is performed using Berkely ABC tool [3] for the MCNC

library, and for power consumption estimation SIS software has been utilized for

the MCNC library at Vdd = 5V and 20 MHz clock.

Table 3.4: Comparison of area and power estimates of n bit pipelined designs for the

radix-2 online multiplier with full and reduced working precision.

Working Precision
n

Resources8 16 24 32
Full 432 1734 2906 4844

LatchesReduced 315 976 1906 3162
Savings % 27.08 31.93 31.41 34.72
Full 2385 1903 18402 30869

NodesReduced 1786 5898 18455 17801
Savings % 25.11 34.21 37.87 40.21
Full 4474 16851 34617 58204

EdgesReduced 3395 11363 22112 35759
Savings % 24.11 23.56 36.12 38.56
Full 2629.39 1059.32 21556.31 36217.59

AreaReduced 1947.91 6432.94 12461.77 20133.69
Savings % 25.91 38.9 42.18 44.4
Full 25812.8 95179.7 194340.5 325646.8

PowerReduced 18695.5 62720.4 122039 199687.7
Savings % 27.57 34.1 37.2 38.68

It can be observed that the proposed design consumes less number of latches,

has fewer nodes and edges due to reduced signal activity and therefore results in

significant area and power savings. The pipelined architecture allows to remove

the unused circuitry which is useful for saving the static power. The reduction
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follow an increasing trend with the increase in the precision suggesting increased

savings for longer word lengths.

3.2.8.3 Synthesis using Design Compiler

For better analysis, the designs have been synthesized using the Synopsys Design

Compiler. All design have been synthesized using 45nm TSMC technology file

and a constrain have been applied on the critical path. Table. 3.5 presents the

synthesis results of a non-pipelined radix-2 multiplier of various bit precision.

Table. 3.6 and Table. 3.7 presents the synthesis results of a pipelined radix-2

multiplier with full and reduced working precision respectively.

Table 3.5: Area, power utilization and cycle time of non-pipelined n bit radix-2 online

multiplier.

Operand Width Area(µm2)
Power(mW)

Timing (ns)
n Comb Non-Comb Total Required Critical Path
8 1024.01 590.37 1614.39 1.71 0.90 0.75

16 1221.59 1180.75 2458.66 2.40 0.90 0.75
32 2237.63 2329.60 4567.22 4.41 0.90 0.75

Table 3.6: Area, power utilization and cycle time of pipelined n bit radix-2 online

multiplier with full working precision.

Operand Width Area(µm2)
Power(mW)

Timing (ns)
n Comb Non-Comb Total Required Critical Path
8 4726.39 2273.74 7000.07 7.18 0.90 0.75

16 15830.84 7738.71 23570.01 2.40 0.90 0.75
32 54399.06 26041.40 80397.65 4.41 0.90 0.75

Conventional multipliers of different types including serial-parallel, array

and tree have also been developed and synthesized to observe and compare
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Table 3.7: Area, power utilization and cycle time of pipelined n bit radix-2 online

multiplier with reduced working precision.

Operand Width Area(µm2)
Power(mW)

Timing (ns)
n Comb Non-Comb Total Required Critical Path
8 3475.16 1699.335 5174.50 5.38 0.90 0.75

16 10998.88 5409.12 16408.13 16.88 0.90 0.75
32 31708.58 16562.92 48269.85 49.41 0.90 0.75

the resource utilization and cycle time. The synthesis results for serial-parallel,

array and tree type multipliers have been shown in Tables. 3.8, 3.9 and 3.10

respectively. Since the shown multipliers are not pipelined, their resource

utilization is less than pipelined online multiplier. However, the cycle time for

the aforementioned multipliers is larger than the online multipliers (pipelined or

non-pipelined) as well as dependent on the bit precision.

Table 3.8: Area, power utilization and cycle time of a serial-parallel multiplier.

Operand Width Area(µm2)
Power(mW)

Timing (ns)
n Comb Non-Comb Total Required Critical Path
8 810.94 366.99 1177.94 0.91 0.90 0.84

16 1910.06 694.09 2604.15 1.79 0.90 0.90
32 3467.23 1340.32 4807.50 2.12 0.90 1.44

Table 3.9: Area, power utilization and cycle time of an array type multiplier.

Operand Width Area(µm2)
Power(mW)

Timing (ns)
n Comb Non-Comb Total Required Critical Path
8 656.08 0 656.08 2.83E-02 0.90 0.90

16 4149.59 0 4149.5 0.20 1.10 1.10
32 10542.82 0 10542.82 0.58 6.00 5.68
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Table 3.10: Area, power utilization and cycle time of a tree type multiplier.

Operand Width Area(µm2)
Power(mW)

Timing (ns)
n Comb Non-Comb Total Required Critical Path
8 1414.47 0 1414.47 8.10E-02 0.90 0.88

16 7375.69 0 7375.69 0.49 1.10 1.10
32 30551.45 0 30551.45 2.31 2.00 1.60

3.3 Pipelined Online Adder

The online delay affects the throughput for streams of input because zero padding

has to be performed between two consecutive streams. A method to pipeline the

online adder for streaming inner products has been proposed in [2]. To achieve

digit-level pipelining, the adder in Fig. 2.5 has been divided into two modules,

each having a full adder, the upper one called as module 1 and the lower one

named as 2 as shown in Fig. 3.10.

FA

FA

Latch
1 2

Figure 3.10: Modules in radix-2 onilne adder

The pipelining is done by rearranging the online adders in a 2-D array of

modules 1 and 2, such that the module 1 produces the intermediate values and

module 2 generates the final sum as shown in Fig. 3.11. The full adder in module 1

generates the carry and sum depicted in red and black connection respectively, out

of which the sum is connected to the full adder of module 2 of the same column
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along with the latched input shown in blue color, while the carry of module 1 is

connected to adjacent module 2 in the higher column position.

1

2

1 1 1

2 2 2

1

2Latch

Latch

Figure 3.11: Pipelined radix-2 online adder [2]

The proposed pipelined online adder can be supplied with streams of input for

addition without any separation cycle. For multiple streams of input, the output

of the first stream of the input is received in n+δ +1 cycles and after one more

cycle, the output of the second stream is obtained. Therefore, for k input streams

the output is obtained in n+ δ + k cycles. It takes n cycles to fill the pipeline

after which the output of the stream is obtained in one cycle. For large number of

streams when k >> n, the initial delay can be ignored.

3.3.1 Adder Tree

Using the pipelined online adders, an adder tree can be developed to compute

the partial sums. The resource consumption of the pipelined online adder tree is

higher than that of a parallel adder tree, however, the pipelined online adder tree

produces result from left-to-right due to which the operation in succession can be

started without waiting for the completion of current operation.
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3.3.2 Synthesis Results

This section provides the synthesis results of a conventional, pipelined and

parallel adder and adder trees. Verilog code have been devloped for all types of

adder discussed in this section and the functional verification has been done using

ModelSim. Table. 3.11 shows the synthesis results of non-pipelined, pipelined

and parallel adder with 8-bits precision.

Table 3.11: Area, power utilization and cycle time of a non-pipelined, pipelined online

and parallel adder for n=8.

Adder Type
Area(µm2)

Power(mW)
Timing (ns)

Comb Non-Comb Total Required Critical Path
Online (Non-piplined) 52.09 39.89 91.98 0.31 0.25 0.25
Online (Pipelined) 397.96 335.08 733.04 2.58 0.25 0.25
Parallel 317.24 0 317.24 0.016 0.25 0.25

As an example, a n=8-bit adder tree to add k=8 partial sums using pipelined

online and parallel adders have been developed and its synthesis results are shown

in Table. 3.12.

Table 3.12: Area, power utilization and cycle time of a pipelined online and parallel adder

tree for n=8 and k=8.

Adder Type
Area(µm2)

Power(mW)
Timing (ns)

Comb Non-Comb Total Required Critical Path
Online (Pipelined) 6393.85 5329.34 11723.39 42.50 0.25 0.25
Parallel 2537.97 0 2537.97 0.129 0.25 0.25
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3.4 Pipelined Online Sum-of-Product

In order to add multi-operand inputs, the pipelined online adder is configured to

form an adder tree. This adder tree together with the pipelined online multiplier

will form a pipelined online Sum-of-Product (SoP) module as shown in Fig. 3.12.

For each stage in the adder tree, the online delay is summed up. And again, for

large number of inner products this initial delay is negligible. An adder tree to add

P input operands will have an initial delay of log2(P)∗δadd +1. This is the time

required to produce first MSD of the output, whereas the complete n-bit output is

obtained in log2(P)∗ δadd +n+1. For k streams of input, the output is obtained

in log2(P)∗δadd +n+ k cycles.

+

X X

+

X X

+

+

X X

+

X X

+

+ +

+

Figure 3.12: Pipelined online SOP

3.4.1 Synthesis Results

In this section, we provide the synthesis results for the sum-of-product units

developed using pipelined online multiplier with reduced working precision and

pipelined online adder as shown in Fig. 3.12. SoP units are developed for k
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multiplications k=16,32 and 128, each of which has the precision of n=8 bits.

Table. 3.13 shows the resource utilization and critical path of different SoP units

with n=8 bits precision. It depicts the benefit of pipelined online SoP unit in

Table 3.13: Area, power utilization and cycle time of pipelined online SoP.

No. of multipliers Area(µm2)
Power(mW)

Timing (ns)
n Comb Non-Comb Total Required Critical Path

16 63223.19 32519.95 95735.67 99.21 0.90 0.84
32 127241.80 65503.09 192791.75 200.44 0.90 0.84

128 464128.18 262117.98 72664.25 778.48 0.90 0.84

terms of its constant critical path delay. The number of multiplications to be

summed determines the depth of adder tree. In conventional arithmetic based

SoP is dependent both upon the number of products to be summed as well as the

precision of the operands. With pipelined online units, the critical path delay is

no more than the individual stage time of pipelined units.

3.5 Chapter Summary

This chapter provided the details of the proposed algorithm for multiplication.

The pipelined architecture has been depicted and the internal structures of each

module has been shown and discussed in detail. Furthermore, the architecture

of a conventional online adder is shown. The online adder has been rearranged

to support digit-level pipelining which results in an increased throughput.

The pipelined online adder has been utilized to develop a pipelined online

adder tree that can be utilized to generate the sum of inner products with

an increased throughput. The synthesis results of various implementations

multipliers including online multiplier, pipelined online multiplier with full and
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reduced working precision and conventional multipliers. The synthesis results

are shown for the non-pipelined and pipeline online adder, parallel adder and

respective adder trees. Finally the results are presented for the pipelined SoP to

be utilized for computing inner products in deep learning applications.
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4 Convolutional Neural Network Acceleration

Convolutional neural networks (CNN) is one of the most popular deep learning

architecture which has been widely adopted in a variety of applications ranging

from image recognition, mobile vision, object detection, surveillance etc. It is

inspired by the optic nerves in the living creatures and processes the data by

employing a large number of neuron connections to achieve high accuracy.

These networks require high computation and massive data storage which pose

challenge for both computational performance and energy efficiency. The CNN

follow a specific computation pattern, which general computation processors do

not perform efficiently. In this regard, several CNN accelerators based on various

hardware platforms have been propose in the recent years [5, 17, 21, 29, 40].

Typically, a CNN is composed of two components: feature extraction and

classification. The features of the input can include edges, lines, corners etc.,

which are not affected by the position and distortions. The feature extractor

takes the input and extracts these features to map them onto an output feature

map which is a low dimensional vector. Generally there are series of such

computational layers along with optional sub-sampling layers that feeds the

extracted features to the classifier. The classifier is a traditional fully connected

neural network which decides the class/category of the input.

The computation in the convolutional layer has been illustrated in Fig. 4.1.

The input layer receives N feature maps of size RxC. Each input feature map is

convolved with a sliding kernel window of size KxK to produce a output feature

map. The sliding of the kernel on input feature map is determined by stride S.

A set of M kernels are applied on to the input feature map to obtain M output
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Figure 4.1: Graph of a convolutional layer [40].

feature maps that will form input to the next layer.

The convolution operation occupy over 90% of the computation time [6],

therefore, the acceleration of this operation is of paramount importance.

In works [40] and [17], CNN accelerators have been proposed and as a case

study the convolution layers of AlexNet [19] have been considered for computing

performance improvements. The AlexNet shown in Fig. 4.2, is composed of 8

layers, of which the first 5 layers are convolutional layers and the last two layers

are fully connected.

Figure 4.2: Structure of AlexNet [19].

The input layer receives an image having resolution of RixCi (227x227) and

3 channels or input feature maps (N = 3). Convolution is performed in Layer1
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with a kernel of size KxK (11x11) and stride S of 4 to produce 96 output feature

maps/channels (M = 96). Both works ([40, 17]) use 2 sets of hardware, each

producing 48 maps of resolution RoxCo (55x55). The resolution of the output

feature map is calculated using the relation Ro = Ri−K
S + 1 and Co = Ci−K

S + 1.

The configurations of rest of the layers have been shown in Table. 4.1.

Table 4.1: CNN configurations in [40, 17].

Layer 1 2 3 4 5

Input channels (N) 3 48 256 192 192

Output channels (M) 48 128 192 192 128

Output Rows (Ro) 55 27 13 13 13

Output Columns (Co) 55 27 13 13 13

Input Rows (Ri) 227 55 27 13 13

Input Columns (Ci) 227 55 27 13 13

Kernel (K) 11 5 3 3 3

Stride (S) 4 1 1 1 1

Sets 2 2 2 2 2

4.1 Design Overview of [40]

The accelerator has been designed to target FPGA and is composed of several

components as shown in Fig. 4.3, of which we are interested in what computes

the convolution. The convolution is performed by a unit called the processing

engine (PE). PE are typically multipliers to compute the inner products followed

by an adder tree to obtain the SoPs. The pseudocode for CNN is shown in Fig.

4.4.

In order to efficiently utilize the available hardware resources, it is

advantageous to perform loop unrolling by considering the data dependencies.
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Figure 4.3: Design overview of [40]

Figure 4.4: Pseudocode of CNN

Thus, loop unrolling along different dimensions have been performed as shown

in Fig. 4.5 to generate various implementations as shown in Fig. 4.6.

The legal tile sizes for implementation with unrolled loops are shown in (4.1):
0 < T m×T n≤ (# of PEs)
0 < T m≤M
0 < T n≤ N
0 < Tr ≤ R
0 < T c≤C

(4.1)

where Tm and Tn are the tile size for output and input channels.
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Figure 4.5: Pseudocode of tiled convolution layer

Figure 4.6: Computation Engine [40]

4.2 Attainable Performance [40]

Based on (4.1) the attainable performance can be computed as follows:

Attainable Per f ormance = total number o f operations
number o f execution cycles

≈ 2∗Ro∗Co∗M∗N∗K∗K
d M

Tm e∗d N
Tn e∗Ro∗Co∗K∗K

(4.2)

The number of operations are equal to the total number of multiplications and

additions to compute the output feature map. The number of multiplications and

additions are approximately equal, therefore, the term is multiplied by 2. A set
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of M KxK kernels slide on to the input feature map of RxC with N channels.

Considering the CNN configuration in Table. 4.1, the number of operations are

given as in Table. 4.2. The number of execution cycles depend on the tile sizes

Table 4.2: Number of operations in AlexNet.

Layer No. of operations

1 105415200

2 223948800

3 149520384

4 112140288

5 74760192

Tm and Tn. The execution cycles required in each layer for Alexnet according to

the parameters shown in Table. 4.1 with optimal unroll factors of Tm and Tn are

shown in Table. 4.3.

Table 4.3: Number of cycles required to compute convolution in different layers of

AlexNet using certain tile sizes in [40].

Layer 〈Tm, Tn〉 Execution Cycles

1 〈48, 3〉 366025

2 〈20, 24〉 237185

3 〈96, 5〉 160264

4 〈95, 5〉 120198

5 〈32, 15〉 80132

4.3 Design Overview of ESSA [17]

The CNN accelerator named as ESSA is a bit-serial streaming convolutional

neural network accelerator that uses several techniques to obtain an energy

56



efficient design. The bit reduction technique has been applied to reduce the

number of operations and loop tiling approach as in [40] has been adopted for

better computational performance. The basic computational units in ESSA are the

TmxTn processing element array (PEA). Each PEA is composed of 9 processing

elements (PE) as shown in Fig. 4.7

Figure 4.7: Architecture of PE Array in ESSA [17]

The PE are bit-serial and would require more cycles to compute the

multiplication result. Therefore, the multiple bit-serial PEs are employed to

compute the multiplication in parallel. Each PE in Fig. 4.7 is composed of 8

sub-PEs and each sub-PE is connected to an adder tree to get the sum-of-product.

For final result, the output of each PE is summed up using an adder tree. The

proposed architecture with sub-PE is shown in Fig. 4.8.

To avoid unnecessary computations, the non-unit stride kernels are mapped

to the decomposed unit stride convolution kernels as proposed in [21]. The size

of the decomposed kernel (K′) is given as K′ =
⌈K

S

⌉
. Moreover, the kernel size in

ESSA has been fixed to 3x3 which is mostly used in new CNN architectures,

and therefore, to handle the kernel sizes larger than 3, it is decomposed into

(
⌈

K′
3

⌉
)2 sub-kernels. Bit reduction technique has been used and the weight pixels

which are fixed in PEs are represented using fewer bits, consequently reducing
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Figure 4.8: Architecture of sub-PE in ESSA [17].

the number of active sub-PEs to perform multiplication between weight and input

pixel.

Loop tiling technique has been employed and two tiling factors Tm and Tn are

considered. Where Tm is number of processed weights for each occurrence and Tn

is the number of processed channels for input feature maps and weights at each

occurrence. The number of bits to represent weight pixel are represented by B

and the number of sub-PEs to process different bits of the same weight pixel are

represented by U .

4.4 Attainable Performance ESSA [17]

Using above notations, the maximum attainable performance of ESSA can be

formulated as (4.3).

Attainable Per f ormance = total number o f operations
number o f execution cycles

= 2∗Ro∗Co∗M∗N∗K∗K
(R∗C+2)∗S2∗

⌈
K′
3

⌉
∗
⌈

K′
3

⌉
∗d M

Tm e∗d N
Tn e∗d B

U e
(4.3)

The accelerator uses the AlexNet to show the performance, therefore, the

number of operations are same as computed in Table. 4.2. The number of
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execution cycles to compute the convolutions in AlexNet by ESSA are shown

in Table. 4.4.

Table 4.4: Number of cycles required to compute convolution in AlexNet for ESSA [17].

Layer Tm,Tn Ro Co M N K S B U Execution Cycles

1 48,1 55 55 48 3 11 4 7 7 145296

2 12,7 27 9 128 48 5 1 9 9 225148

3 21,12 13 13 192 256 3 1 7 2 150480

4 47,9 13 13 192 192 3 1 6 1 112860

5 42,9 13 13 128 192 3 1 6 1 75240

4.5 Attainable Performance using Pipelined Online SoP

The dataflow with the pipelined implementation of online modules has been

shown earlier in Table. 3.1. If multiple streams of the inputs are supplied to the

online module, the MSD of the first input stream is obtained in δ +1 cycles, and

the MSD of second input stream is obtained in δ +2 cycles, i.e., one cycle later.

For the convolutional neural networks, the successive layer operations can be

overlapped utilizing the digit-level pipelining as shown in Fig. 4.9 if we consider

layer-by-layer operations, as shown by [17] and [40], the performance of online

pipelined SoP will be similar. However, upon exploiting the advantages of online

arithmetic and starting the computation of the next layer just after receiving the

first MSD, the number of cycles to compute the successive layers will be much

fewer compared to other works.

Table. 4.5 shows the required number of execution cycles in individual layers

using pipelined online SoP assuming we have no limitations on the hardware
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Figure 4.9: Possibility to pipeline successive layers of Alexnet using pipelined online

SoP.

resources and can have all hardware to exploit data parallelism available in

SoP. To count the maximum number of multipliers needed, we realize the CNN

operation in AlexNet in terms of matrix multiplication. For the first layer, the

input is 227x227x3 which is to be convolved with 11x11x3 filters at stride 4, then

we would take 11x11x3 blocks of pixels in the input and stretch each block into

a vector of size 11∗11∗3 = 363. Iterating this process in the input at stride of 4

gives (227−11
4 +1= 55) locations along both width and height, leading to a matrix

of size 363x3025 where every column is a stretched out receptive field and there

are 55 ∗ 55 = 3025 of them in total. Note that since the receptive fields overlap,

every number in the input volume may be duplicated in multiple distinct columns.

The weights of the CONV layer are similarly stretched out into rows. For

example, if there are 48 filters of size 11x11x3, this would give a weight matrix

of size 48x363. The result of a convolution is now equivalent to performing one

large matrix multiply and would give a matrix 48x3025 which evaluates the dot

product between every filter and every receptive field location. The result must

finally be reshaped back to its proper output dimension 55x55x48. Using the

same number of Tm and Tn as in [40], the number of multipliers to execute parallel

60



multiplications would be Tm ∗TN ∗K ∗K. The number of execution cycles can be

computed using relation (4.4).

=

⌈
M
Tm

⌉
∗
⌈

N
Tn

⌉
∗R∗C+ dlog2(P)e∗δadd +δmul +n, (4.4)

where P = K ∗K ∗Tn.

Table 4.5: Number of execution cycles to compute convolution in AlexNet using the

proposed pipelined online SoP for certain tile size.

Layer Tm,Tn K No. of operations Execution Cycles

1 48,3 11 105415200 3054

2 20,24 5 223948800 774

3 96,5 3 149520384 296

4 95,5 3 112140288 309

5 32,15 3 74760192 248

It is noteworthy that unlike conventional multipliers used in other works,

the cycle time of pipelined online multiplier and adder is independent of bit

precision. The cycle time or the critical path for different bit precision of online

and conventional multipliers are shown in Table. 4.6.

Table 4.6: The critical path delay of various multipliers for different precision in

nanoseconds (ns) computed using Synopsys Design Compiler on 45nm technology.

Precision Non-Pipelined Online Pipelined Online Serial Parallel Array Tree

8 0.75 0.75 0.84 0.90 0.88
16 0.75 0.75 0.90 1.10 1.10
32 0.75 0.75 1.44 2.0 1.60
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If the online SoP design uses similar hardware configurations as in the works

[17] and [40] which uses serial-parallel and array type multiplier respectively, the

online SoP will have faster response time.

Moreover, the proposed reduced working precision pipelined online

multiplier occupies less area and consumes less power compared to the pipelined

online multiplier with full working precision. Here, we compare the resource

utilization of full and reduced working precision multiplier when employed in

CNN accelerator. Table. 4.7 shows the comparison of area utilization and power

consumption between the pipelined online multipliers with full and reduced

working precision considering the configurations of output and input tiles (Tm,Tn)

provided in [40].

Table 4.7: Comparison of resource utilization for 8-bits full and reduced working

precision pipelined online multipliers to perform convolution in AlexNet. Synthesis

carried on Synopsys Design Compiler using 45nm TSMC technology.

Layer Tm,Tn No. of multipliers
Area(µm2) Power(mW)

Full working precision Reduced working precision Full working precision Reduced working precision

1 48,3 17424 121969370.70 90160488.00 125243.71 93810.81
2 20,24 12000 8400943.99 62094000.00 86256.00 64608.00
3 96,5 4320 30240339.84 22353840.00 31052.16 23258.88
4 95,5 4275 29925336.3 22120987.50 30728.70 23016.60
5 32,15 4320 30240339.84 22353840.00 31052.16 23258.88

Reduction % 26.07 25.09

4.6 Chapter Summary

This chapter presented the discussion of utilizing pipelined online SoP

in convolutional neural network accelerators. The benefits of the proposed

architecture has been shown in terms of latency. The comparison of the proposed
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reduced working precision multiplier has been compared with full working

precision multiplier which show significant savings when utilized in a CNN

accelerator.
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5 Summary and Conclusion

Online arithmetic provides opportunities to pipeline the data at digit level.

The serial computation of digits from most significant to least significant side

make them suitable for use in area constraint devices. They require fewer

modules for the generation of result as compared to the conventional arithmetic

algorithms. Online arithmetic algorithms have been utilized for many signal

processing applications and can be revisited for their adoption in the deep

learning algorithms.

This dissertation presents the design and evaluation of online arithmetic based

low power pipelined multiplier in which the switching activity has been reduced

by instantiating only the required number of modules in a given step. The scheme

of reducing the maximum working precision has also been employed due to

which the total number of digit slices are reduced.

To compute the sum of products generated by the multiplier, online adder

has been employed which is also pipelined. The fine grained optimization has

been applied in which each individual module has been carefully observed

for the possible reduction in the switching activity. A complete design for the

computation of SoP has been discussed which can be utilized for the computation

of convolution in the CNNs.

The results for synthesis and FPGA implementation of the proposed low

power design have been presented which show significant reduction of area and

power utilization when compared to the pipelined multiplier with full working

precision. Furthermore, the cycle time of online modules have been reported

and compared with the conventional arithmetic based modules which show

that the proposed methodology has a constant cycle time i.e., independent of
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precision. This makes the proposed design a favorable candidate to be employed

in computation of massive inner product arrays in convolutional neural networks

with reduced response time.
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