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ABSTRACT

Comparative Study of Brain Networks Based on Graph 

Embedding Technique 

Ji-In Kim

Advisor : Prof. Goo-Rak Kwon, Ph.D.

Dept. Info. and Comm. Eng.,

Graduate School of Chosun University

Recent studies suggest the brain functional connectivity impairment is the early event 

occurred in case of Alzheimer’s disease (AD) and its prodromal stage mild cognitive 

impairment (MCI). This study aims to use functional magnetic resonance (fMR) images 

in order to classify patients having brain diseases that causes such brain dysfunction. 

The proposed method detects areas that interact in specific situations and configures 

them into brain networks with three different functional connectivity.  Three different 

networks, "Large scale brain network", "Whole brain network", and "Combined brain 

network" are used. The Node2vec graph embedding algorithm transforms these brain 

networks having graph-based features into feature vector values   compatible with 

general classifiers. Feature selection techniques are used so that a large number of 

features can be found to accommodate a small data set. Four different feature 

selection methods namely, LASSO, FSASL, LLCFS, and CFS are used. The selected 

feature vector values   are fed into a single and multiple layer regularized extreme 

learning machine (RELM), respectively. This study shows that the graph-based function 

fMR images can be used for classification of brain diseases such as Alzheimer's 

disease and mild cognitive impairment. It is found that the classification performance 

changes depending on the size of the brain network. Additionally, experimental results 

show that even a small network contains information needed to classify patients.



초  록

그래프 임베딩 기술 기반 뇌 네트워크의 비교 연구

김지인

지도 교수: 권구락, 교수, Ph.D.

조선대학교 대학원 정보통신공학과

최근 연구에 따르면 경도인지장애뿐만이 아니라 알츠하이머병도 뇌에 연결 장애를 

발생시켜 기능적, 구조적 연결성에 영향을 미친다고 보고되고 있다. 따라서 본 연구에

서는 이러한 뇌 기능 연결 장애를 발생시키는 뇌질환의 분류를 위해 fMR 영상을 이용

하여 환자의 분류를 하는데 그 목적을 두고 있다. 

이를 통해 특정 상황에서 상호작용하는 영역을 검출하여, 이를 3가지의 다른 기능적 

연결성을 가진 뇌 네트워크로 구성한다. 각각의 뇌 네트워크는 ‘Large scale brain 

network’와 ‘Whole brain network’, 이를 결합한 ‘Combined brain network’로 구성된

다. 구성된 3가지의 다른 뇌 네트워크를 Node2vec 그래프 임베딩 알고리즘을 통해 그

래프 기반의 특징을 일반 분류기와 호환되는 특징 벡터 값으로 변환한다. 변환된 특징 

벡터는 적은 데이터셋에 대응하기 위해 많은 수의 특징을 찾을 수 있도록 다중 특징 

선택기술을 사용한다. 각각의 특징 선택방법은 LASSO, FSASL, LLCFS, CFS이다. 선

택되어진 특징 벡터 값은 RELM을 통해 단일 계층과 다중 계층에서 각각 분류되어 진

다. 

이 연구는 fMR 영상의 그래프 기반 기능이 알츠하이머병과 경도인지장애와 같은 뇌 

질환을 분류에 사용할 수 있다는 것을 보여주며, 뇌 네트워크의 크기에 따라서 분류 

성능이 변함을 알 수 있다. 또한 네트워크의 크기가 작아도 환자를 분류할 수 있는 필

요한 정보를 가지고 있음을 알 수 있다.
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I. Introduction

A. Thesis motivation

Alzheimer’s disease (AD) which commonly appears in elderly people is a 

progressive neurodegenerative disease [1]-[4]. The neural dysfunction begins far 

earlier the visible clinical symptoms such as, progressive cognitive impairment are 

manifested. These symptoms are usually noticed after the age of 65. With the 

increasing number of population of elderly people, the number of AD patients is 

increasing requiring more care taker thus, increasing medical expenses [5]. In such 

scenario, the accurate diagnosis of disease at its early stage can to slow down the 

effect of disease thus reducing the significant amount of economic burden to the 

society created by this disease.

In recent years, several computer aided diagnosis (CAD) based studies have been 

conducted to classify AD and mild cognitive impairment (MCI) from healthy 

controls. With the availability of recent neuroimaging technology, promising result 

is obtained in the early and accurate detection of AD [6]-[8]. The study of 

progression of disease and early detection is carried out by using different imaging 

models. Structural magnetic resonance imaging (sMRI) [6] is the most commonly 

used imaging system for study of AD. Similarly, functional magnetic resonance 

imaging (fMRI) [7] and positron emission tomography (PET) [8] are also used for 

the study of disease progression and its effect.

Due to broader area of coverage of this　technique, several research organizations 

and researchers are working on CAD based AD/MCI diagnosis. The development 

of CAD based classification of AD/MCI from HC together the neuroimaging 

biomarkers will provide the concerned investigator and scientists to focus on 

treatments on preclinical stage, thus assisting diagnose the disease in its early stage 

before symptoms appears.



- 2 -

B. Research objectives

 Formation of two abnormal proteins plagues and tangles in the prefrontal and 

medial-temporal lobes are the pathological hallmarks of AD. Structural changes, 

such as neuronal death and WM degeneration characterized by cortical atrophy take 

place primarily in medial temporal region and gradually spread over the entorhinal 

cortex, the limbic system and eventually affecting the neocortical regions through 

synapses and neural connections. In recent years with the development of advanced 

neuroimaging technology detailed study of neurological diseases has come under the 

reach of researchers resulting early and accurate detection of AD. 

Conventional diagnosis is carried out based on the neuro physiological 

examinations using different imaging technology such as MRI, fMRI, PET and 

SPECT images and series of test on memory impairment, thinking skills and other 

clinical symptoms [6]-[8]. Studies suggest that memory impairment is most 

prominent symptoms due degeneration in medial temporal cortex [9]. With the 

progression, the disease affects gradually in entorhinal cortex, the hippocampus and 

limbic system and finally at neocortical areas [10]. This results in severe 

impairment in logical reasoning, planning and cognitive tasks. 

Study of medial temporal atrophy usually provides the evidence of progression of 

AD. Thus the studies are carried out by measuring the atrophy in terms of voxel 

based, vertex based and region of interest (ROI) based approaches. In AD and 

MCI subjects, atrophy of medial temporal lobe structures has been discovered in 

studies carried out based on ROI based MRI volumetric methods [11], [12]. This 

atrophy in crucial areas of brain such as hippocampus, parahippocampal gyrus and 

the amygdala contributes to differentiate the MCI and AD subjects from controlled 

subjects [13], [14]. The voxel based morphometry (VBM) is alternative method to 

ROI based method to assess patterns of cortical atrophy. VBM based method is 

less laborious compared to ROI based method thus used as almost universal global 

volumetric method to measure variances in the regional concentration of grey 
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matter [15]. Studies based on this method have revealed reduced grey matter 

volume in different regions of brain in AD and MCI subjects compared to HC. 

These areas include medial temporal lobe, frontal lobe, and posterior cingulate 

gyrus [16]. Above mentioned studies are carried out using structural MR images. 

On the other hand, fMRI detects the changes in blood oxygenation and flow of 

brain [17], [18]. Brain activity is mapped in terms of blood-oxygen-level dependent 

(BOLD) contrast. Blood flow to any particular region of the brain increases with 

the increase in activity in that region. The fMRI provides measurement on 

involvement of  different brain regions in particular brain activities [19]. Structural 

MRI primarily focuses to reveal the anatomical information of brain tissues, while 

the fMRI shows the functional brain activities. Thus, more insight on the 

abnormalities of functional brain connectivity caused by the progression of MCI 

and AD [20], [21] can be obtained. Chen et al. [18] performed linear regression 

analysis to analyze the relationship between changes in network connectivity. The 

Pearson product moment correlation coefficients of pairwise of 116 ROIs were used 

as feature. Similarly, Wang et al in [19] used fMRI based feature to classify the 

AD from HC and MCI. The correlation/anti-correlation coefficients of two 

intrinsically anti-correlated networks were used as feature with Pseudo-Fisher Linear 

Discriminative Analysis (pFLDA) classifier. The outcome of all above mentioned 

studies supports the hypothesis that the cognitive deficiency and decline in AD and 

its prodromal stage are caused by the connectivity disruptions of the brain 

networks.

Additionally, various studies show that the connectivity of networks which are 

active during passive or resting state of the brain  are disrupted due to AD [22]. 

This network includes default mode network (DMN), central executive network 

(CEN), and salience networks (SN) [23], [24]. Although, changes are often seen in 

DMN, SN and CEN across the spectrum of AD and MCI Rs-fMRI results have 

shown that people who have aging or MCI also exhibit the functional connectivity 

alterations in these large scale network. Similarly, current studies demonstrate that 



- 4 -

functional connectivity alterations are visible not only in DMN, but also in SN and 

motor networks [25]. Thus, other networks including DMN, SN, sensory motor 

network (SMN), dorsal attention network (DAN), and auditory network and visual 

network to classify AD from HC and MCI are included in the proposed study. 

Collection of this widespread brain network is known as core large-scale brain 

network. 

Thus, the primary objective of this study is to extract the features from fMR 

images in terms of correlation matrix between different ROIs which represents the 

brain network. The brain network includes whole brain network, core large-scale 

brain network and combined network. Features of brain network is in the form 

graph where vertices are brain regions and edges are correlation between these 

vertices. Since the graph has non-euclidean characteristics. Conventional machine 

learning algorithms works only on data having Euclidean or grid-like structure. In 

order to remove the invariances of these structures  graph embedding is used. The 

graph embedding transforms graph data to a vector or set of vectors to overcome. 

The relevant graph information together with the graph topology, vertex-vertex 

relationship, is captured by embedding. In this study, node2vec method is used. 

Next, only the relevant features are selected and finally the multi-layer-regularized 

extreme learning machine (ML-RELM) classifier is used to classify the AD subjects 

from NC and MCI.

C. Thesis contribution

Previous studies have revealed the alterations of white matter (WM) and gray 

matter (GM) microstructure in AD and its prodromal state amnestic MCI. In 

general, these alterations can be studied comprehensively by modeling the brain as 

complex network. In this study, a new approach is developed that uses graph based 

features of brain network using functional magnetic resonance (fMR) images for 

classification of AD and MCI from HC.  For the better understanding of 
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progression of disease, three different brain network models namely large scale 

brain network of size 32 × 32, whole brain network of size 132 × 132 and 

combined brain network of size 164 × 164 are utilized for the study. Additionally, 

multiple feature selection techniques is used to cope with the smaller number of 

subjects with larger number of feature representations. In this study, classification 

test is performed with two variants of regularized extreme learning machine(RELM), 

which are single hidden layer RELM and multiple hidden layer RELM. 

D. Thesis organization

Thesis is structured as follows. Chapter II presents overview of the AD, 

Socio-economic impact of AD. Different imaging models such as sMR and fMR 

image processing and graph feature extraction techniques, feature selection and 

reduction techniques and theoretical formulation of extreme learning machine 

classifier will be discussed in chapter III. Experimental results will be discussed in 

chapter IV. Similarly, limitation of this work is presented in chapter V. Finally the 

conclusion of the thesis will be presented in chapter VI. 



- 6 -

II. Background

A. Alzheimer’s disease

Alzheimer's disease (AD) which causes the dementia accounts for 60-80% of 

dementia [1]. Dementia is mainly responsible for the memory loss and decline 

other cognitive abilities thus interfering the daily life. Common symptoms of AD 

appears as difficulty to form memory of newly learned information.

The brain, like the rest of the body, changes as person grows older. Some 

people notice some slowness in thinking and occasional difficulties with memory. 

However, significant memory loss, confusion and other severe changes in the way 

the brain works could be the signs of dementia. AD symptoms usually begin in the 

brain area that controls learning. As it advances through the brain, AD can lead to 

increasingly severe signs, including disorientation, mood shifts, and behavioral 

changes; confusion about events, places, and time; and false suspicions about other 

people and things. 

AD changes typically begin in the part of the brain that affects learning. With 

the advance of AD through the brain, it results in increasingly severe symptoms 

including disorientation, mood changes, and behavioral changes; confusion about 

time, place, and events; suspicions about care-givers; and more severe memory loss 

and behavior changes; and difficulty in communication, swallowing and other 

activities including walking. People who have memory loss or other possible 

symptoms of AD may not recognize they have a problem. Family or friends might 

be able to spot the signs. 

Earlier identification and interventions are improving dramatically, plus treatment 

options and sources of information are becoming available. In AD, the disease 

progression is characterized mainly by three stages. Each stage reveals unique 

symptoms varying in severity. After identifying the current stage, the doctor can 

predict the next stage and follow up on the symptoms, and recommends a 
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treatment plan accordingly. The symptoms of the disease worsen over time, and the 

rate at which it advances varies. Once a person is diagnosed as AD, he or she can 

live from four to eight years. However, depending on other factors, the person can 

live up-to 20 years.

In AD, the changes in the brain begin years before any symptoms appear. This 

period can last for many years and can be divided into three stages: mild AD, 

moderate AD, and severe AD.

B. Early-stage Alzheimer’s (mild) disease

During the early stages of AD, a person can still function independently. He or 

she may drive, work, and participate in social activities, and yet the person may 

suffer from memory lapses, such as forgetting familiar words or where everyday 

objects are.

Symptoms may not be widely evident at this stage, but family members and 

friends may notice, and a doctor can spot certain symptoms using certain diagnostic 

tools.

- Common difficulties include :

Ÿ Having difficulty to come up with the proper word or name.

Ÿ Having difficulty to remember newly introduced people’s name.

Ÿ Having difficulty to remember the material that was recently read.

Ÿ Having difficulty to place valuable object properly.

Ÿ Having difficulty to adequate plan or organize.

C. Middle-stage Alzheimer’s (moderate) disease

Middle-stage Alzheimer's may continue for several years. As the disease 

progresses, the person will require more care. A person with mid-stage dementia is 

likely to confuse words, become frustrated or angry, and behave in unexpected 
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ways, such as refusing to bathe.  The person may also have difficulty expressing 

thoughts or performing routine tasks without assistance as a result of nerve damage 

in the brain.

- Symptoms, include :

Ÿ Having difficulty to remember events or their personal history. 

Ÿ Feeling moody or withdrawn, especially when socially or mentally challenged.

Ÿ Remembering little about themselves, like their address or telephone number.

Ÿ Having doubt on their current location or the current day. 

Ÿ Needing help choosing clothes appropriate for the season or the occasion. 

Ÿ Having difficulty controlling their bladder and bowels.

Change in sleeping pattern, having sleeping pattern just opposite to normal 

people. Wandering and getting lost more frequently. Persons suffering from AD 

will exhibit signs of personality and behavioral changes, such as suspiciousness, 

delusions, or compulsive, repetitive behaviors, such as hand-wringing and tissue 

shredding. During the middle stage, the person with AD can still participate in 

daily activities, if necessary.

D. Late-stage Alzheimer’s (severe) disease

At the final stages of the disease, dementia symptoms become severe. Patients 

are unable to react to their surrounding, to continue the chat, and, at last, to 

manage the movements. They may still be able to speak, but communicating pain 

becomes increasingly difficult.

- At this stage, individuals may :

Personal care is needed round-the-clock. 

The individual loses awareness of the recent past and of their surroundings. 
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Physical abilities change, including walking, sitting, and eventually swallowing.

Ÿ Having more complication in communication.

Ÿ Become more prone to infections, particularly pneumonia.

Ÿ The individual with AD cannot start the engagement as much during the 

late stages, however they can still benefit from interaction in a way that is 

appropriate for him or her, whether it be relaxing music or gentle touch.  

E. Economic impact of dementia

Dementia affects someone worldwide every 3 seconds. By 2020, there will be 

over 55 million people living with dementia worldwide [44]. In 2030, there will be 

78 million and by 2050, there will be 139 million [45]. The majority of the 

increase will be in developing nations, where 60% of people with dementia already 

live; by 2050, this number will rise to 71%. China, India, and their neighbors in 

the south Asian and western Pacific region have the fastest-growing elderly 

populations. Demographic aging manifests itself as a global trend that is a hallmark 

of improved health care in the past century. Dementia principally affects older 

people, but there is a growing awareness that cases begin even before the age of 

65. As more and more people live longer and healthier lives, the world population 

is becoming more and more elderly. There are over 10 million new cases of 

dementia diagnosed each year, which means one new case appears every 3.2 

seconds. 

In 2020, the WHO published a global status report on the public health response 

to dementia, which updated these figures. In 2015, the total estimated global cost 

of dementia was $818billion, representing 1.09% of global GDP [46].

Globally, dementia costs are now over US$1.3 trillion, and they are expected to 

rise to US $2.8 trillion by 2050, including costs associated with informal care, 

direct costs of social care, and direct costs of medical care [47]-[49].

In terms of global dementia costs, direct medical care costs make up roughly 
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20%, while social sector costs account 40% and informal care costs make up for 

roughly 40%. Informal care contributes most to dementia costs in the African 

region and least to those in North America and Western Europe. Costs in the 

social sector are the opposite [50].

Figure 2.1. Economic burden of Alzheimer’s disease.

F. Diagnosis of Alzheimer’s disease

Studies have shown that majority of people with dementia do not have a formal 

diagnosis. It has been estimated that only 20-50% of dementia cases are recognized 

and documented in primary care in high income countries. This 'treatment gap' 

appears to be significantly higher in countries with low and middle income 

economy.  A report suggests in India, 90% of cases remain undiagnosed.

Extrapolating these statistics to other countries, it will be found that roughly three 

quarters of people with dementia do not have a formal diagnosis, and are therefore 

unable to get treatment, care, and organized support that getting a formal diagnosis 

can offer. Early diagnosis and early intervention are key to closing the treatment 
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gap, according to the World Alzheimer Report 2011. As part of the diagnosis of 

Alzheimer's dementia, doctors conduct tests to assess memory impairment and other 

thinking skills, evaluate functional abilities, and identify behavioral changes. A 

series of tests is also carried out to rule out any other causes of impairment.

As part of the diagnosis, a doctor who specializes in brain conditions (a 

neurosurgeon) or a doctor who treats the elderly (a geriatrician) will review the 

patient's medical history, medication history, and symptoms, as well as perform 

various tests.

- Doctor will evaluate :

Ÿ Whether there is an impairment of memory or thinking skills 

Ÿ Whether there is a change in personality or behavior 

Ÿ The degree of memory or thinking impairment or change

Ÿ How thinking problems interfere with a person's daily functioning 

Ÿ The causes of the symptoms

Doctors may go for additional laboratory tests, brain imaging tests and memory 

tests. These tests can provide doctors with valuable information about a patient's 

illness, including ruling out a wide range of other conditions.

1. Ruling out other conditions

Doctors perform a physical examination and check for other medical conditions 

that may be causing or contributing to symptoms, such as strokes, Parkinson's 

disease, depression, or other illnesses.

2. Assessing memory problems and other symptoms

To assess symptoms, doctor may ask the patient to answer questions or perform 

tasks related to their cognitive abilities, such as memory, abstract thinking, 



- 12 -

problem-solving, language usage and related skills.

(a) Mental status testing :

Doctors may administer mental status tests to assess thinking (cognitive) and 

memory skills. These tests are used to evaluate cognitive impairment. 

(b) Neuropsychological tests : 

A neuropsychologist will evaluate the patient for brain conditions and mental 

health conditions, including extensive tests to test the patient's memory and 

thinking skills. These tests allow doctors to determine if the patient has dementia 

and if they can safely perform daily tasks such as driving and managing money. 

They give a wide range of information on what the patient is still able to do 

and what he/she may have lost. 

(c) Interviews with friends and family : 

A doctor may ask a family member or friend about the patient and their 

behavior. Doctors seek out details that don't correspond with the patient's previous 

level of ability.

It is easy to explain how thinking (cognitive) skills, functional abilities, and 

behaviors have changed over time by talking to a family member or friend. 

Doctors can diagnose Alzheimer's disease based on a combination of clinical 

assessment, physical examination, and setting (age and duration of progressive 

symptoms). It may, however, be necessary to order other tests when the diagnosis 

is unclear. 

3. Laboratory tests

A patient may undergo laboratory tests to rule out conditions, such as a thyroid 

disorder or a vitamin B-12 deficiency, that cause symptoms similar to those of 

Alzheimer's dementia. 
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4. Brain-imaging tests

The cause of Alzheimer's dementia is degeneration of brain cells. This 

degeneration may be detected in various ways in brain scans, but is not sufficient 

for diagnosis.  Doctors are unable to diagnose the disease with scans since 

normal age-related changes in the brain overlap with abnormal changes. 

(a) Brain imaging tests helps :

To ensure the diagnosis is not caused by other conditions, such as 

hemorrhages, brain tumors, or strokes.

To differentiate between different types of degenerative brain disease. 

To determine the degree of degeneration to apply the brain-imaging 

technologies most often used to diagnose the condition:

(b) MRI :

MRI is a noninvasive diagnostic test that provides a detailed image of your 

skull and brain soft tissues by using powerful radio waves and magnets to create 

a detailed view of  brain.

(c) Computerized tomography (CT) :

A CT scan uses X-rays to obtain cross-sectional images of the brain. 

(d) PET :

PET scans utilize radioactive tracers to detect various substances in the body. 

The most commonly used PET scan is the fluorodeoxyglucose(FDG) PET scan, 

which can identify areas of the brain with decreased glucose metabolism. 

Metabolic changes can be used to distinguish between different kinds of 

degenerative brain diseases. PET scans are now available to detect clusters of 

amyloid protein (plaques), which can cause Alzheimer's disease; however, they are 
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quite expensive. 

G. Computer aided diagnosis

Computer-aided diagnosis(CAD) is the use of a computer-generated output to 

assist clinicians in making a diagnosis. In general, CAD is used to detect diseases 

automatically using multiple forms of medical imaging. With CAD output, 

radiologists can improve the accuracy and consistency of their diagnosis by 

improving image interpretation. 

(a) Computer-aided diagnosis systems typically employ four general 

schemes :

i. Preprocessing : This step involves processing the data to a sufficient quality 

so that it can be recognized by the computer. Filters are applied, as well as 

window-level adjustment techniques, for image contrast. The aim is to reduce 

noise and artifacts.

ii. Segmentation : In this step, the body is divided into segments using 

information from an anatomical database. The program uses data from this 

database to identify whether the areas of interest on the image are masses, 

microcalcifications, or tissues.

iii. Feature extraction : The region of interest is examined for features such as 

morphological features, gray levels, and textures.

iv. Feature classification : An algorithm is applied to determine: (a) whether an 

identified structure is benign or malignant and (b) the difference between 

true lesions and normal anatomical structures.

(b) The effects of CAD on quality and efficiency of services are as 

follows [4] :

i. CAD system can increase the efficiency of the time process in certain cases 
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as it provides the ability to reduce the time that is required for image 

diagnosis. Signal processing is used to remove noise or extract parameters 

using complex mathematical formulas that no human can understand.

ii. Due to fatigue, boredom, and environmental factors, human observers are 

prone to making errors when monitoring the status of a patient for extended 

periods. A computer can, however, be designed to record all episodes and 

transients in the signal mathematically and consistently.

iii. CAD can enhance accuracy in image diagnosis by detecting diseases that 

cannot be seen by human eyes, especially those that are too small or early 

in their development. Early diagnosis can result in a better patient outcome.

iv. By using CAD, a highly experienced radiologist can reduce his/her 

workload, as the system can improve the accuracy and speed of 

interpretation. Thus, less stress and more time will be available for highly 

experienced radiologists, resulting in higher productivity.

To summarize, CAD is a quantitative method that is consistently applied to repetitive 

tasks. Signal analysis alone cannot be used to make a diagnosis and must be 

complemented by other information that a physician can obtain, such as a patient's 

general physical appearance, mental state, and family history. Computer-aided diagnosis 

is, therefore, considered a secondary source of diagnosis. The physician is still the 

primary source of diagnosis. A second opinion is provided by the CAD system. 

H. Machine learning in computer-aided diagnosis

The classification phase in the CAD system is concerned with making inferences 

from extracted features in order to produce a diagnosis about the input image. This 

is a kind of supervised learning technique in which the computer makes decisions 

about the input image based upon what it observes in the input. Various machine 

learning algorithms are now used to develop high-performance CAD. Similarly, 
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several CAD systems based on medical imaging are developed to allow detection 

of the AD at early stages by comparing normal and diseased participants using the 

analysis of certain features in brain images. The analysis of images can be done 

using several methods. One of the important method is the statistical parametric 

mapping (SPM) software that models data of individual voxel. Other method for 

the analysis of structural MRI images is executed by VBM. Different machine 

learning algorithms have been introduced to classify AD patients and elderly control 

individuals. Support vector machines (SVM), artificial neural network (ANN), 

logistic regression (LR) and other ensemble classifiers are the commonly used 

classifiers [50]. Among them, SVM and its variants become popular due to its 

relatively good classification accuracy and ability to combine many features in 

higher dimensional space [51]. 

Klöppel et al. [52] applied linear support vector machines to distinguish 

pathologically proven AD subjects from cognitively normal elderly subjects. They 

used the grey matter segment of T1-weighted MR scans as a biomarker. This 

literature is focused on binary classification of individuals (i. e. confirmed AD vs 

controlled, mild AD vs controlled and AD versus frontotemporal lobar degeneration 

(FTLD). The classification results demonstrate that their proposed model could 

classify confirmed AD from controlled with good accuracy compared to FTLD 

from controlled subjects. Diagnosis approaches described above are based on single 

feature modality. However, for better analysis different biomarkers can be used 

which may carry more complementary information. Therefore instead of depending 

on one feature, one can combine multiple features to improve the classifier 

performance [53]. The general framework for data fusion can be developed by 

using the multiple kernels which come from different sources of feature spaces. Fan 

et al [54] combined structural and functional images in high dimensional pattern 

classification framework using SVM. MR and PET images were used to identify 

the complex spatial patterns of brain atrophy and blood flow for 30 individuals. 

Their combined feature model could obtain better accuracy in contrast to the 
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maximum classification rate achieved from MRI alone. Multiple kernel SVM 

simultaneously learns the kernel and related predictor parameters [55, 56]. Hinrichs 

et al. [57] showed promising evaluations on ADNI data set in terms of goodness 

of approach with respect to outlier detection. They assigned each feature as one or 

more kernels. This algorithm utilized alternative minimization to identify outliers 

and discount their effect on the classifier. Zhang et al. [8] proposed a multimodal 

classification approach based on multiple-kernel SVM based on the biomarkers 

including sMRI, PET and CSF to discriminate AD (or MCI) and normal controls 

(HC) subjects. From the binary classification (i.e., AD vs HC and MCI vs HC) 

results, their model obtained a good results in terms of accuracy for AD 

classification and  promising accuracy for MCI classification. Liu et al [9] proposed 

a fourier transform (FT) based multiple kernel learning framework to combine 

multi-modal features in the primal space. Instead of solving the problem in the 

dual space, this approach conducts FT on the Gaussian kernel, and then computes 

the mapping function. More multiple kernel based SVM approaches can be found 

in [58], [59]. 

Recent studies [60], [61] indicate that machine learning algorithm such as 

AdaBoost may be used for automatic feature selection for several imaging 

applications. Thus it is likely to offer advantage in automatically finding good 

features for classification as they can select informative features from a potentially 

very large feature pool [62]. There is no need for experts to choose informative 

features based on knowledge of every classification problem. AdaBoosts have been 

used not only as feature selection tool but also as classifier which performs 

classification in combination with other machine learning algorithms [63], [64]. It 

iteratively constructs a set of component classifiers. In each iteration, an importance 

weight is assigned to training samples and misclassified training sample’s weight 

will be increased. At the same time the correctly classified sample gets the 

decreased weight value. The final result of AdaBoost is obtained according to the 

voting by all the component classifiers. AdaBoost is very successful because of its 
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good generalization performance as reported in many studies. Savio et al [65] 

proposed AdaBoost based approach for the detection of AD using MR images. 

Authors used the VBM based approach to for the feature extraction processes. 

Adaptive boosting was performed in conjunction with SVM for each VBM detected 

cluster. AdaBoostSVM methods improved remarkably the results, mainly the 

sensitivity of the classification models. Farhan et al. [66] proposed ensemble based 

AD diagnosis using structural features of brain images. They selected volume of 

GM, WM, and CSF and size of hippocampus as features. Boosting was performed 

in conjuction with three different classifiers SVM, Multi-layer Perceptron (MLP), 

and Decision Tree. Morra et al. [67] presented a comparative analysis between 

hierarchical AdaBoost, SVM with manual feature selection hierarchical SVM with 

automated feature selection (Ada-SVM), and a publicly available brain segmentation 

package (FreeSurfer). 

In recent years, there have been developments in hierarchical or deeplearning as 

a modern branch of machine learning. This technique has led to improvement in 

performance on variety of problems, such as object recognition, speech recognition 

and natural language processing. Among various type of deep learning techniques, 

convolutional neural network (CNN) has been extensively used. This approach of 

learning is inspired by the human visual perception mechanism however follows 

same principal of learning principal of classical neural network.

Payan et al. [68] used 3D CNN architecture to distinguish AD and MCI from 

healthy control subjects which uses 3D MR images as input. The whole process 

was implemented in two stages.  In first stage sparse auto-encoders were used to 

learn convolution filters. Discriminative features of MR images capturing anatomical 

variations due to AD are extracted automatically in this stage. Next, the pre-trained 

3D convolution auto encoder (CAE) encoding layers are stacked with the fine 

tuned fully-connected layers. Accuracy rate of 95.39% in distinguishing AD from 

NC subjects was achieved. 

Similarly, Hosseini-Asl,et al [69] proposed AD diagnostic framework using deeply 
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supervised adaptive (DSA) 3D CNN. Source-domain trained 3D-CAE is used to 

extract features of brain MRI and deeply supervised target-domain-adaptable 

3D-CNN performs task-specific classification. Using a stack of unsupervised CAE 

with local nodes and shared convolutional weights, they extract local features from 

3D images with possibly long voxel-wise signal vectors. Each input image is 

reduced hierarchically based on the hidden features (activation) of each CAE for 

training the subsequent layer.

With the advent of artificial intelligence (AI) based methodologies such as 

convolutional neural networks and simultaneously-acquired multimodal  MRI and 

PET scanning, several recent works have shown their ability to distinguish AD 

subjects from normal healthy control data for the same age groups. Using 

state-of-the-art deep learning-based pipelines, which are executed on a GPU-based 

high performance-computing platform, the data are strictly and carefully 

preprocessed. Scale and shift invariant low- to high-level features are obtained from 

a high volume of training images using CNN architecture. However, majority of 

current CNN based studies are focused only on grey matter volume features of 

hippocampus and other regions of brain. Although GM volume of the hippocampus 

has been an important biomarker of medial temporal lobe neurodegeneration, 

alterations of hippocampal WM  pathways is often observed in AD. Several studies 

also reveal the alterations in widely distributed functional and structural connectivity 

pairs are prevalent in AD and MCI. Thus, the study of functional connectivity can 

therefore help researchers and neurologists understand the progression of disease.

I. Human brain network and graph theory

Human brain contains over nearly 86 billion neurons that communicate with each 

other by way of around 150 trillion synaptic connections. The study of the human 

brain as a complex system has grown remarkably as neuroscientists strive to 

understand the information underneath cognition, behavior, and perception. The 
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human connectome, which is mapping patterns of the connectivity in the human 

brain has gained increased attention in the field of human neuroscience. As 

connectome provides comprehensive description of the networks of elements and 

connections forming the brain network. A brain can be modeled as a graph of 

nodes connected by edges. Mathematically, a graph G can be well described by the 

set of vertices   and edges  . 

   (2.1)

In brain network, brain regions are usually represented by nodes and links. Links 

are represented by edge. Links represents anatomical, functional and effective 

connections. Anatomical links correspond to WM that connects between pair of 

brain regions. functional connections correspond to magnitude of temporal 

correlational in activity and may occur between anatomically unconnected regions. 

Effective connections represent direct or indirect causal influences of one region on 

another and may be estimated observed perturbations. 

The functional and effective connectivity networks are constructed from the series 

of brain dynamics simulated on the anatomical network. The functional network 

represents the patterns of cross correlation between BOLD signals estimated from 

these dynamics. All networks are represented by connectivity or adjacency matrix. 

Rows and columns in these matrices denote nodes, while matrix entries denote the 

links.

The nature of nodes and links in individual brain network is determined by 

combinations of brain mapping methods, anatomical parcellation schemes and 

measures of connectivity.

Nodes should ideally represent brain regions with coherent patterns of extrinsic 

anatomical or functional connections. Type of connectivity, anatomical, functional or 

effective and measure specific features of connectivity links are also differentiated 

on the basis of their weight and directionality.
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Binary denotes the presence or absence of connections, weighted links also 

contains the information about the connection strength. Weights in anatomical 

networks represent the link density while weights in functional and effective 

networks represent magnitude of correlational or causal inferences.

 

J. Functional connectivity of brain

A functional network is a measure of how brain regions interact with each other. 

Non-invasive brain activation can be identified with fMRI, and functional networks 

refer to the temporal correlation between BOLD signals from spatially distant 

regions. The map of this connectivities with respect to each ROI is shown in 

Figure 2.2. In fMRI studies, functional connectivity methods are broadly divided 

into two groups: model-based  and model-free.

Figure 2.2 Brain Connectivity Map, figure obtained from CONN tool [78].
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1. Model-based methods

According to model-based methods, brain connectivity networks are identified 

by selecting one or more "seed" regions and determining whether they are 

connected by a linear path using predefined criteria. Although these methods have 

common use and simple explanation in detecting the functional connectivity, the 

need for prior knowledge, reliance on seed selection, and inability to detect 

non-linear interactions limit the discovery of all plausible functional architectures.

2. Cross-correlation and coherence

Functional connectivity is most commonly evaluated by cross-correlation 

analysis, which measures the correlation between BOLD signals in two brain 

regions. Using this method to calculate the correlation between two series at any 

lag involves a high degree of computational complexity. In many fMRI studies, 

this drawback has been overcome by computing only the correlation with zero 

lag since the hemodynamic response of blood is short lived. Correlations are also 

affected by the shape of the hemodynamic response function (HRF), which can 

vary across individuals and brain regions. In addition, a high correlation can be 

observed in regions with practically no fluctuations in blood flow. Uncontrolled 

physiological noise in the brain can also result in high correlations between brain 

regions.

3. Statistical parametric mapping (SPM)

The SPM is one of the model-based approaches used to identify regional 

effects in neuroimaging data, including fMRI and PET, by combining the general 

linear model (GLM) and a Gaussian random field (GRF). By applying GRF 

theory to the problem of multiple comparisons, statistical inferences can be 

addressed over a volume of brain data, a similar approach to the Bonferroni 

correction for discrete data. 
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4. Model-free methods

Unlike seeds-based methods, model-free methods do not need seeds selection. 

Moreover, model-free methods may be useful in studies with no temporal or 

spatial patterns, and to quantify non-linear neuronal interactions. 

K. Construction of functional brain network

Figure 2.3, shows the major steps to construct a complex network from fMRI. 

The acquired fMRI data is initially subjected to a number of pre-processing steps, 

such as slice timing correction, realignment, image co-registration, and normalization 

based on segmentation. Depending on the order and choice of preprocessing steps, 

the complexity of the final graph is affected. In the next step, the entire brain is 

divided into several cortical and subcortical anatomical units using a parcellation 

scheme such as anatomical automatic labeling atlas to explore the large-scale brain 

network.

Afterward, each parcel's time series is extracted by averaging the time series of 

all voxels within that given area. The cross-correlation is used to determine the 

pair-wise relations between the time series of brain regions. This cross-correlation 

represents the functional connectivity network. In the following step, a binary 

connectivity matrix is computed by thresholding the values of the correlation 

matrix. Once the connectivity matrix has been computed, it is used as a graph.

Graph theory is a mathematical approach to study complex networks. Network is 

constructed of vertices which are interconnected by edges. Vertices in our case are 

brain regions. Graph theory is widely used as tool for identifying anatomically 

localized sub-networks [26]. These networks are associated with neuronal alterations 

in different neurodegenerative diseases. In fMRI images, graph represents causal 

relations or correlations of different nodes in constructed networks. However, the 

brain network built by graph has non-Euclidean characteristics. Thus, applying 

machine learning techniques to analyze the brain networks is challenging. Graph 



- 24 -

embedding is used to transform graphs to a vector or set of vectors to overcome 

this problem. Embedding captures the graph topology, vertex-vertex relationship, and 

other relevant graph information. In the current study, node2vec graph embedding 

technique is used to transform vertex and edge of brain network graph to feature 

vector. With the help of this model the networks of brain have been analyzed and 

classified from fMRI data into AD, MCI and HC.

Figure 2.3 Schematic representation of brain network construction fMRI data. (a) 

fMRI data (b) processing (c) division of the brain into different parcels (d), several 

time courses are extracted from each region (e) can create the correlation matrix 

(f). and the corresponding functional brain network are constructed. 
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III. Connectivity based diagnosis of Alzheimer’s disease 

A. Method and approach

1. fMRI Dataset

In this study, dataset from Alzheimer’s disease neuroimaging initiative database 

(ADNI, www.loni.ucla.edu/ADNI) [27] is used. The ADNI database was launched 

in 2004. The database consists of subjects of age ranging from 55-90 years. The 

goal of ADNI is to study the progression of the disease using different 

biomarkers. This includes clinical measures and assesses of the structures and 

functions of brain for the course of different disease states. 

All participants were scanned using 3.0-Tesla Philips Achieva scanners at differ

ent centers. Same scanning protocol were followed for all participants and the set 

parameters were ratio of Repetition Time (TR) to Echo Time (TE) i.e.,TR/TE = 

3000/30 ms, 140 volumes, also voxel thickness as 3.3 mm, acquisition matrix siz

e = 64 × 64, 48 slices, flip angle = 80˚. 

Similarly, 3D T1-weighted images were collected using MPRAGE sense2 seque

nces with acquisition type 3D, field strength = 3 Tesla, flip angle 9.0 degree, pix

el spacing X = 1.0547000169754028 mm; Pixel Spacing Y = 1.054700016975402

8 mm, slice thickness = 1.2000000476837158 mm; TE = 2.859 ms, inversion tim

e (TI) = 0.0 ms, TR = 6.6764 ms and weighting T1. Subjects are selected as sp

ecified in Table 3.1

2. Subjects

Total 95 subjects were selected from ADNI2 cohort. The purpose of ADNI2 is 

to examine how brain imaging and other biomarkers can be used to measure the 

development of MCI and AD at its early stage. In addition to its predecessors 

ADNI1 and ADNI-GO, ADNI2 examines the correlations between brain imaging 
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results, biomarkers, and clinical, cognitive, and genetic features spanning the entire 

spectrum of AD as it progresses from normal aging through dementia. A major 

aim of ADNI2 is to gain a deeper understanding of the sequence of events 

leading to MCI and Alzheimer's disease, develop new methods for early detection. 

The ADNI2 selects and categorizes participants in specific group based on certain 

inclusion criteria. The criteria are well defined in [27]. In this study, subjects 

were selected according to availability of both MRI and fMRI data. Thus, the 

subjects with following demographic status out of all available data in ADNI2 

cohort were selected in our study.

Table 3.1 Summary of subject’s demographic status.

Number of Subjects
HC (n=31) MCI(n=31) AD(n=33)

Mean(SD) Mean(SD) Mean(SD)

Age(years) 73.9 ±5.4 74.5±5.0 72.7 ±7.0

Global CDR 0.04±0.13 0.5±0.18 0.95±0.30

MMSE 28.9±1.65 27.5±2.02 20.87±3.6

Ÿ 31 HC subjects: 14 males, 17 females; age ± SD = 73.9 ± 5.4 years with 

the mini-mental state estimation (MMSE) score of 28.9 ± 1.65 and the range 

was 24–30. 

Ÿ 31 MCI subjects: 17 males, 14 females; age ± SD = 74.5 ± 5.0 with the 

MMSE score of 27.5 ± 2.02, and range was 22–30. 

Ÿ 33 AD subjects: 13 males, 18 females; age ± SD = 72.7 ± 7.0 with 

MMSE = 20.87 ± 3.6, and the range was 14–26.

3. Data preprocessing

Data processing subordinate for the resting state fMRI were done via CONN 

toolbox.  CONN is a MATLAB-based software for the calculation, demonstration, 
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and investigation of brain network connectivity using fMRI. Connectivity 

assessment technique includes seed-to-voxel network maps, ROI-to-ROI 

connectivity matrix, graph characteristics of network systems, brain 

interconnection, inherent connectivity, generalized psychophysiological interaction 

models and other voxel-to-voxel measures. It is available for rs-fMRI and 

task-related plans. It covers the whole pipeline starting from basic fMRI 

information to proposition testing, including spatial coregistration, scrubbing, 

aCompCor technique for management of physiological and movement discomfit, 

first-level connectivity assessment, and second level arbitrary effect examinations. 

So, to do connectivity analyses utilizing CONN you will require the following 

functional and structural data. 

Functional data is either a resting state or a task plan that can be examined. 

Whereas, structural data is defined as at least one anatomical volume for each 

patient(this is utilized generally for plotting graphs in addition to determining the 

white/CSF/gray masks utilized in the aCompCor confound elimination technique).

4. Data processing

The functional and structural data of AD, MCI and HC patients were 

preprocessed and examined utilizing the CONN tool to produce a connectivity 

matrix that  gives data about the association between ROIs present in a specific 

region of the brain. The preprocessing and examination of AD, MCI and HC 

patients were done independently. 

The process for computing fMRI measures involves five steps namely setup, 

preprocessing, denoising, analysis, and results exploration. The steps associated 

with the calculation of fMRI measures.

(a) Setup

In this step, the essential experiment data, ROIs (seeds), second-level models, 

and temporal covariates are characterized. Provides anatomical and functional 
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preprocessing steps, such as trimming, realignment, anomaly identification, 

co-registration. Upon determining the number of subjects, designating the 

structural and functional fMRI data to the appropriate subjects is included in this 

progression. Figure 3.1 shows the Conn GUI for setup.

(b) Pre-processing

The fMRI preprocessing pipeline portrays standard and progressed preprocessing 

steps in fMRI. These measures are intended to reduce the impact of components 

that are notable in affecting the nature of functional and anatomical MRI data. 

Figure 3.1 CONN setup, figure obtained from CONN tool [78].

MRI data includes the effects of patient movement in the scanner, transient and 

spatial image distortions due to the sequential nature of the imaging protocol, and 

anatomical contrasts between patients. A preprocessing pipeline designed 

specifically for volume-based examinations is used in this study. It involves the 

following steps: unwrapping and functional realignment; slice timing rectification; 

anomaly detection; and functional smoothing. CONN toolbox was used to process 

the fMRI and sMRI images [27]. The default preprocessing pipe line was used to 

process the images. This pipeline starts with realignment and unwrapping of 
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functional data, slice timing correction followed by outlier identification, direct 

segmentation and normalization and finally the functional smoothing. In functional 

realignment and unwrap step, CONN toolbox uses SPM12 realign [28] and 

unwrap procedure [29] to realign the functional data. B-spline interpolation was 

used to co-register and re-sample all scans to a reference image. In the slice 

timing correction SPM slice timing correction (STC) procedure corrects the 

temporal misalignment between different slices of functional data [30]. 

Similarly, CONN uses Artefact Detection Tools (ART) toolbox(https://www.nitrc.

org/projects/artifact_detect/) to identify the outlier scans. 

ART tool box identifies the outlier scans from the observed global bold signals 

together with the amount of subject motion in the scanner. Global bold signals 

that exceeding 5 standard deviation from global mean and from wise displacement 

above 0.9mm are identified as outlier scans. 

Next, functional and anatomical data are normalized into standard MCI space. 

The functional and anatomical data then segmented into GM, WM, CFS classes 

using SPM12 unified segmentation [31]. Outlier detection step is followed by 

normalization and segmentation step while SPM12 is used to normalize the 

functional and anatomical data to normalize in MNI space and segment into GM, 

WM and CSF. For the functional data, mean BOLD signal is taken as difference 

image and for structural data, T1 weighted volume is taken as reference image 

[30], [33]. Fourth-order spline interpolation was used to resample both functional 

and anatomical data. A default 180 × 216 × 180 mm bounding box was set. 

similarly, 2 mm isotropic voxels was set for functional data and 1 mm for 

anatomical data. 

Spatial convolution operation with Gaussian kernel was performed to smooth 

the functional data to increase the BOLD signal-to-noise ratio. The size of 

Gaussian was taken as 8mm full width at half maximum (FWHM). Additional 

purpose of use the smoothing filter was to reduce the effect of residual 

irregularity in functional and gray anatomy across subjects
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(c) Denoising

It is likely that the BOLD sign will still contain some noise or non-neural 

inconstancy after the functional information has been processed due to a mixture 

of physiological, aberration, and residual patient-movement effects. As a result of 

these residual variables, fcMRI investigations present extremely solid and 

perceptible inclinations in all measures of functional connectivity. As a result, 

conventional preprocessing procedures have supported more conservative 

approaches than those normally seen with activation-based fMRI examinations.

In this study, CONN's default denoising pipeline is utilized. It is composed of 

two stages: band-pass temporal filtering and linear regression of potential 

perplexing impact on the BOLD image. In order to address potential perplexing 

effects, an anatomically-based noise rectification strategy is applied and evaluated 

subject-movement parameters are used, as well as outliers or scanning parameters 

detected from cerebral WM and cerebrospinal regions. Figure 3.2 shows CONN’s 

denoising GUI.

Figure 3.2 Denoising GUI of CONN, figure obtained from CONN tool [78].

(d) Analyses (Level 1)

Based on the regressors specified during the denoising step and the condition 
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regressors specified in the Setup tab, a model is constructed to fit the data 

observed in each voxel.

 Correlation analysis is then performed by averaging across all ROIs, comparing 

those to other ROIs in the brain, and evaluating correlation maps using each 

voxel as a seed. In the setup process, several ROIs were generated: GM, WM, 

atlases, and networks. ROIS on atlases and networks provide a blueprint of the 

brain by parcelling it into different portions, sometimes referred to as seeds.

Figure 3.3 CONN analyses (level 1) GUI, figure obtained from CONN tool [78].

(e) Analyses (Level 2)

In CONN, a general linear model (GLM) is used for all second-level 

examinations, which allow analysts to make inferences about the population by 

examining a subset of patients. A GLM model description, parameter estimation, 

and inference testing framework are integrated into the package to help scientists 

examine and visualize the properties of seed-based maps over multiple patients, or 

ROI-to-ROI networks over a large number of patients. Figure 3.4 shows the 

CONN results (level 2) GUI.
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Figure 3.4 CONN results (level 2) GUI, figure obtained from CONN tool [78].

B. Whole-brain connectivity matrix

In this study, the whole brain was parcelated into 132 structurally homogeneous 

ROIs, per the FSL Harvard-Oxford atlas for the GM and subcortical regions. 

ROI-to-ROI connectivity(RRC) matrix was constructed by computing the Fisher- 

transformed bivariate correlation coefficients between the time-series of each pair of 

ROIs. Connectivity metrics between ROIs describe the connectivity between all 

pairs of ROIs within a pre-defined region. 

Connectivity metrics between ROIs describe the connectivity between all pairs of 

ROIs within a pre-defined region. RRC matrix elements represent the relationship 

between two ROIs. They are defined as bivariate Fisher-transformed correlation 

coefficients between the BOLD time series of the ROIs.  Which is expressed as, 
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Figure 3.5 Whole brain network.

 








, (3.1)

 tanh  , (3.2)

where R is the BOLD time series within each ROI (for simplicity all time series 

here are considered centered to zero mean),  is a matrix of correlation 

coefficients, and   is the RRC symmetric matrix of Fisher-transformed correlation 

coefficients.

C. Core large-scale network construction

In total, 32 ROI seeds, whose shapes and locations are defined in HCP Atlas, 

were used for assessment of eight RSNs. The network consists of DMN, SAL, 

frontoparietal network (FPN), DAN, SMN, language network (LAN), VIS, and 

cerebellar network (CER).

In order to identify ROI-to-ROI connectivity patterns, a pair of extracted mean 

BOLD signal time courses of each ROI was used to compute bivariate Pearson's 
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correlation coefficients between the previously predefined seed regions of 

rs-networks. Finally, Fisher’s transformation was used transform the obtained 

correlation coefficients to normally distributed scores.

D. Proposed framework

This proposed method consists of the following four major functional steps as 

shown in Figure 3.6.

i. Construct the brain networks including whole-brain network and large-scale 

brain network interms of graph.

ii. Convert graph to feature vector using node2vec graph embedding.

iii. Perform the feature selection task.

iv. Perform the classification using regularized extreme learning machine (RELM).

Figure 3.6 Classification of Alzheimer's disease using brain network.
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1. Construction of brain networks

For the construction of network from fMR images, all the steps were followed to 

process the fMR images and structural MR data and examined utilizing the CONN 

tool. All the processes were described in detail for construction of whole- brain 

network and large-scale brain networks in sub sections Ⅱ.J, Ⅲ.B-D.

2. Graph-embedding

Graphs are complex data structures, consisting a finite set of vertices and set of 

edges which connect a pair of nodes. One of the possible solutions to manipulate 

prevalent pattern recognition algorithms on graphs is embedding the graph into 

vector space. Indeed, graph embedding is a bridge between statistical pattern 

recognition and graph mining. The node2vec [34] algorithm was employed as 

graph embedding tool in this study. The node2vec algorithm aims to learn a 

vectorial representation of nodes in a graph by optimizing a neighborhood 

preserving objective. It extends the previous node embedding algorithm Deepwalk 

and it is inspired from the state of art word embedding algorithm word2vec. 

In word2vec, given a set of sentences also known as corpus, the model learns 

word embedding by analyzing the context of each word in the body. The 

word2vec uses the neural network with one hidden layer to transform words into 

embedding vectors. This neural network is known as Skip-gram. This network is 

trained to predict the neighboring word in the sentence. It accepts the word at 

the input and is optimized such that it predicts the neighboring words in a 

sentence with high probability. node2vec applies the same embedding approach to 

train and predict the neighborhood of a node in graph. However, word is 

replaced by the node and the bag of nodes is used instead of corpus. The 

sampling is used to generate this bag of nodes from a graph. 

- Generally, the graph embedding consists of three steps : 

Ÿ Sampling : Samples are taken from a graph using random walks. This 
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random walk results in bag of nodes of neighborhood from sampling. The bag 

of nodes acts as a collection of contexts for each node in the network. The 

innovation of node2vec with respect to Deepwalk is the use of flexible biased 

random walks on the network. In Deepwalk, random walk is obtained by a 

uniform random sampling over the linked nodes, while node2vec combine two 

different strategies for the network exploration: depth-first search (DFS) and 

breadth-first-search (BFS). For current random walk position at node   and 

traversed position at previous step at node  and neighboring nodes  ,   

and  , the sampling of next node   is determined by evaluating the 

unnormalized transition probabilities   on edge  with the static edge 

weight   as shown in Figure 3.7. 

Figure 3.7 Illustration of random walk in node2vec algorithm.

This unnormalized transition probability is estimated based on search bias   

defined by two parameters  and  such that     where,
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  




   

. (3.3)
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Here   denotes the shortest path distance between nodes  and . The 

parameter  determines the likelihood of sampling the node  again during 

random walk. When the value of  is high revisit of the node possibility is 

low.  Similarly the parameter  allows to different between local and global 

nodes. If    , the random walk has the likelihood of sampling the nodes 

around the node   is high.

Ÿ Training skip-gram :  The bag of nodes generated from the random walk is 

fed into the skip-gram network. Each node is represented by a one-hot vector 

and maximizes the probability for predicting neighbor nodes. The one-hot 

vector has size same as the size of the set of unique words used in the text 

corpus. For each node only one dimension is equal to one and remaining are 

zeros. The position of dimension having one in vector defines the individual 

node.

Ÿ Computing embedding : The output of the hidden layer of the network is 

taken as the embedding of the graph.

E. Feature selection techniques

1. Least absolute shrinkage and selection operator (LASSO)

LASSO [35] is a powerful method which is used to remove insignificant 

features. Two major tasks of this method are regularization and feature selection. 

This method minimizes residual sum of squares of the model using ordinary least 

square regression (OLS) by placing a constraint on the sum of the absolute 

values of the model parameters. LASSO computes model coefficients   by 

minimizing the following function:

  
arg






 






  







 , (3.4)
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where  is the graph embedded feature input data, a vector of  values at  

observation   and  is the number of observations.  is the response at 

observation  .   is a non-negative user defined regularization parameter. This 

parameter controls the strength of penalty. When   is sufficiently large then 

coefficients are forced to be zero which leads to produce few relevant features. If 

  approaches 0 the model becomes OLS with more relevant features.

2. Features selection with adaptive structure learning (FSASL)

FSASL is an unsupervised method which performs data manifold learning and 

feature selection [36]. This method first utilizes the adaptive structure of the data 

to construct the global learning and the local learning. Next, the significant 

features are selected by integrating both of them with  -normregularizer. This 

method utilizes the sparse reconstruction coefficients to extract the global structure 

of data for global learning. In sparse representation, each data sample  can be 

approximated as a linear combination of all the other samples, and the optimal 

sparse combination weight matrix.

For local learning, this method directly learns a Euclidean distance induced 

probabilistic neighborhood matrix.

min


∥∥

∥∥






∥
∥




∥∥

    ≥  

(3.5)

where   is used to balancing the sparsity and the reconstruction error,   and  

are regularization parameters for global and local structure learning in first and 

second group and the sparsity of feature selection matrix in the third group. 

Similarly,   is used to guide the search of relevant global feature and   defines 

the local neighborhood of data sample .
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3. Local learning and clustering based feature selection (LLCFS)

LLCFS is clustering based feature selection method [37]. This method learns 

the adaptive data structure with selected features by constructing the k-nearest 

neighbor graph in the weighted feature space. The joint clustering and feature 

weight learning is performed by solving the following problem.

min

    
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  (3.6)

where   the feature weight vector and � 
 is the k-nearest neighbor of   

based on   weighted features.

4. Pairwise correlation based feature selection (CFS)

CFS selects features based on the ranks attributes according to an empirical 

evaluation function based on correlations. Subsets made of attribute vectors are 

evaluated by evaluation function, which are associated with the labels of class, 

however autonomous among each another [38]. CFS accepts that unrelated 

structures express a low correspondence with the class and hence they are ought 

to be overlooked by the procedure. Alternatively, additional features must be 

studied, as they are typically hugely correlated with one or additional amount of 

other features.

F. Extreme learning machine

ELM is single layer feedforward neural networks [39]-[43] as shown in Figure 

3.8. This neural network is implemented using Moore-Penrose generalized inverse to 

set its weights [39]. This learning algorithm doesn’t require iterative gradient-based 
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back-propagation to tune the hidden nodes [40]. Thus this method is considered as 

effective solution with extremely reduced complexity.

Figure 3.8 Single hidden layer ELM.

ELM with L number of hidden nodes and  as activation function is 

expressed as,


  



   (3.7)

Here   is input feature vector.  is the input to output node from hidden 

layer node output.   ⋯ 
  is the weight matrix of   node. The input 

weight  and the hidden layer biases  are generated randomly before the training 

samples are fed to input layer. For   training samples     
 . The loss 

function of ELM is expressed as,
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min


∥∥   (3.8)
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with,
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Here,   represents the hidden layer output matrix and   represents output label 

of training data matrix. The matrix   is estimated as,

  (3.10)

Here,    represents the Moore-Penrose generalized inverse of the matrix  . 

Since ELM learning approach requires no back-propagation, this method is best 

suited for the binary and multiclass classification of big data and neuroimaging 

features. However the decrease in computation time comes with the expense of 

increase in the error in the output, which ultimately decreases the accuracy. Thus, 

the regularization is performed by adding a constant such that generalization 

performance is improved with more robust constraint. The output weight of the 

regularized ELM can be expressed as,

 



 

   (3.11)

The output weights   is calculated by using ridge regression based 

approximation. Where   is a non-negative user defined regularization parameter.  

is the identity matrix. In this work, the RELM is constructed in multi-layer 

manner. Each layer is connected to subsequent layer in feedforward fashion as 
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shown in Figure 3.9. The overall training procedure is described in Algorithm 1.

Figure 3.9 Multiple hidden layer extreme learning machine.

Algorithm 1. Multi layer extreme learning machine.

Input : feature matrix  , Output matrix  , regularization   for all layers, 

input weights  , biases and activation   and the number of layers 

Output : hidden layer feature representation    and output weight 

Step1 : Let    , calculate   ←    

Step2 :      

       For      

Step3 : calculate  ←  

Step4 :      

Step5 : Let   , calculate   and 

        ←    

         

    

 

 
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               Predicted Class
Accurate class

C1 C2

C1 TP FN
C2 FP TN

IV. Performance evaluation

Performance of the classifier is tested using RELM classifiers for each specific 
test including the binary test. Confusion matrix is constructed to visualize the 
performance of the binary classifier in a form of a as shown in Table 4.1. Correct 
numbers of prediction of classifier are placed on the diagonal of the matrix. These 
components are further divided into true positive (TP), true negative (TN), which 
represent correctly identified controls. Similarly, the false positive (FP) and false 
negative (FN) represent the number of wrongly classified subjects. 

Table 4.1 Confusion matrix.

The proportion of subjects which are correctly classified by the classifier is 
expressed as the accuracy,

 


    (4.1) 

However, for dataset with unbalanced class distribution accuracy may be a good 
performance metric. Thus two more performance are used. These metrics are known 
as sensitivity and specificity are used.

 


 (4.2)

 


 (4.3)

The sensitivity (SEN) measures the rate of true positives (TP) while the 
specificity (SPE) measures rate of true negatives (TN).
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A. Demographic and clinical findings

A significant group difference in age in AD versus, AD versus MCI and MCI 

versus HC was not found. However significant group difference was found in 

MMSE (P<0.01) and CDR (P<0.01) in all group combinations. The gender 

proportion on both AD and HC is male dominant. AD has 54.83% and HC has 

45.16% male dominance.  In addition, all three subject groups are married 

dominant, HC (80.9%), MCI (72.1%) and AD (95.1%). Table 3.1 shows the 

detailed descriptions and analysis of these variables.

B. Classification results

In this section, the performance is evaluated using the SL-RELM and ML-RELM 

classifiers for each specific test. It is observed that the performance of the 

proposed algorithm with by comparing the test result of three different models 

namely Large scale brain network, whole brain network and combined network. 

The size of large scale brain is of 32 × 32, whole brain network is 132 × 132 

and combined network is of 164 × 164. ML-RELM classifier is used for respective 

test comprising the binary classification and four different feature selection methods. 

The performance of the binary classifier is presented in terms of accuracy, 

sensitivity and specificity. Accuracy measures the proportion of correctly classified 

subjects by the classifier. While the sensitivity measures the rate of TP and the 

specificity measures rate of TN thus signifying appropriately recognized controls. 

Correspondingly, all the erroneously classified matters can be symbolized by false 

positive and false negative. Feature selection and classification algorithms are 

evaluated on data set using a 10-flold cross validation (CV). First, the subjects 

were divided into 10 equally sized subsets: each of these subsets (folds), containing 

10% of the subjects as test set and remaining 90% for training set. Then feature 

ranking was performed on the training sets. Different feature selection algorithms 

were used to rank the features. The ML-RELM classifier was trained using these 
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top-ranked features. Separate feature selection was performed for each training and 

test to avoid the feature selection bias during 10-fold cross validation. Cross 

validated average classification accuracy and standard deviation was calculated for 

specific feature using -top most ranked features, where  ranges from 1 to 100. 

Finally, calculated the mean accuracy and standard deviation of highest ranked 

features for different feature selection was calculated as depicted in Table 4.4- 

Table 4.12. Additionally, mean sensitivity and specificity together with 

corresponding standard deviation were calculated amongst corresponding values 

estimated for highest ranked features. Bold values in each table indicate the 

maximum value of accuracy, sensitivity and specificity. Tables 4.4-4.6 show the 

binary classification results using SL-RELM classifier with four different feature 

selections for whole brain network. Tables 4.7-4.9 show the classification results 

using same classifier feature selections for large scale brain network. Similarly, 

Tables 4.10-4.12 show the classification results for combined brain network. Results 

obtained through the feature selection methods are compared in regards to the 

performance metrics such as accuracy, sensitivity specificity and f-measure. Table 

4.4 summarizes the AD against HC classification on whole brain network. The 

FSASL feature selection method outperforms all other methods in terms of accuracy 

and sensitivity with the highest mean accuracy of 86.51%, mean sensitivity 85.25% 

and mean specificity of 88.08%. Similarly, the classification results of HC versus 

MCI and AD versus MCI using SL-RELM are shown in Tables 4.5 and 4.6. As 

shown in Table 4.5, the highest mean accuracy is 96.14 (±1.71) for HC against 

MCI classification and 95.19 (±2.63) for MCI against AD classification. 

Additionally the F-score is high in all three classifications (0.92) for HC against 

AD, 0.99 for HC against MCI, 1 for AD against MCI using FSASL and LASSO 

feature section method. Similarly, the comparison of classification of HC, MCI and 

AD with Large scale brain network classifier with different feature selection 

methods are shown in Tables 4.7, 4.8 and 4.9. Similar to previous network, better 

results in terms of accuracy, sensitivity and specificity was obtained using the 
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FSASL feature selection technique. As shown in Table 4.7, the accuracy of 95.42% 

specificity of 94.5% and sensitivity of 96.41% and F-score of 0.97 was obtained 

for AD against HC. In Table 4.8 the highest mean accuracy, specificity, sensitivity 

and F-score are obtained as 96.47%, 95.33%, 97.66% and 0.97 for HC against 

MCI classification. Similarly, Table 4.9 shows the classification performance of AD 

against MCI. The highest mean accuracy, sensitivity, specificity and F-score are 

98.38%, 97.16%, 99.66% and 1. Tables 4.10, 4.11 and 4.12 show the results and 

comparison of HC, MCI and AD with combined brain network. As shown in Table 

4.10, the accuracy of highest 85.82% sensitivity of 85.0% and specificity of 88.0% 

and F-score of 0.93 were obtained for AD against HC using the FSASL feature 

selection method. In Table 4.11 the highest mean accuracy, sensitivity, specificity 

and F-score are obtained as 96.75%, 97.75%, 95.83% and 0.94 for HC against 

MCI classification using LASSO feature selection. Similarly, Table 4.12 shows the 

classification performance of AD against MCI. The highest mean accuracy, 

sensitivity, specificity and F-score are 86.35%, 85.08%, 87.5% and 0.86. From all 

these results, it is clearly evident that the use of FSASL feature selection method 

is the ideal choice for the classification using ML-RELM classifier for the graph 

embedded data when the network is big. Three sizes 32 × 32 for large scale brain 

network, 132 × 132 for whole brain network and 164 × 164 for combined brain 

network were used for experiments. FSASL generates better results for two small 

sized brain networks combined brain network and whole brain network. While for 

large sized brain network LASSO generates better results in terms of accuracy, 

sensitivity and specificity.
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Table 4.2 Comparison of performance of binary classification AD against HC 

with state of the art methods using rs-fMRI.

Dataset Feature measures Classifier Accuracy (%) Reference

AD:77, HC :173

Combination of FC 

matrices, FC 

dynamics, ALFF 

AUC 85

de Vos et 

al., 2018 

[71]

AD: 12, HC: 12
Difference between 

DMN and SN map
LDA 92

Zhou et al., 

2010 [72]

AD: 34, HC: 45 Graph measures Naïve Bayes 93.3

Khazaee et 

al.,2017 

[22]

AD: 15, HC: 16 

Averaged voxel 

intensities of core 

regions in resting 

state networks: DMN, 

DAN, VAN.

Multivariate 

ROC
95

Wu et al., 

2013 [73]
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Table 4.3 Comparison of performance of binary classification MCI against HC 

with state of the art methods using rs-fMRI.

Dataset Feature measures Classifier Accuracy (%) Reference

MCI: 31, HC: 31
functional activity 

co-variations of ROIs
SVM 62.90

Eavani et 

al., 2013 

[74]

MCI: 31, HC: 31
group sparse 

representation
SVM 66.13

Wee et al., 

2014 [75]

MCI: 31, HC: 31 SDFN SVM 70.97

Leonardi et 

al.,2013 

[76]

MCI: 31, HC: 31 
Deep auto encoder 

and HMM
SVM 72.58

Suk et al., 

2016 [77]

MCI: 89, HC: 45 Graph measures
Naïve 

Bayes
93.3

Khazaee et 

al.,2017 

[22]

Abbreviation: FC, functional connectivity; AUC, area under the curve; DMN, default 

mode network; SN, salience network; LDA, linear discriminant analysis; ROC, receiver 

operating characteristic; ROI, region of interest; AAL, automated anatomical labeling; 

SDFN, sliding window-based dynamic functional network; HMM, hidden markov model.
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Table 4.4 10-fold cross-validation binary mean classification performance for AD 

against HC using SL-RELM classifier on whole brain network using different 

feature selection methods (132 × 132).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 82.06 78.58 85.58

0.86
Standard deviation 2.67 2.751 4.25

FSASL
Mean (%) 86.51 85.25 88.00

0.92
Standard deviation 3.670 6.18 4.75

LLCFS
Mean (%) 85.24 78.66 91.91

0.85
Standard deviation 4.06 7.59 5.65

CFS
Mean (%) 86.28 82.33 90.08

0.86
Standard deviation 3.27 6.51 4.88

Table 4.5 10-fold cross-validation binary mean classification performance for HC 

against MCI using SL-RELM classifier on whole brain network using different 

feature selection methods (132 × 132).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 90.64 83.33 98.08

0.995
Standard deviation 2.05 4.27 3.19

FSASL
Mean (%) 96.14 95.16 97.08

0.97
Standard deviation 1.71 2.74 1.89

LLCFS
Mean (%) 85.40 81.0 89.83

0.95
Standard deviation 4.03 4.33 6.67

CFS
Mean (%) 89.09 86.33 92.00

0.89
Standard deviation 4.10 6.54 4.12
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Table 4.6 10-fold cross-validation binary mean classification performance for MCI 

against AD using SL-RELM classifier on whole brain network using different 

feature selection methods (132 × 132).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 90.05 93.33 86.67

0.96
Standard deviation 2.50 3.19 3.98

FSASL
Mean (%) 95.19 94.16 96.16

1
Standard deviation 2.63 3.62 2.81

LLCFS
Mean (%) 86.86 87.16 86.5

0.79
Standard deviation 5.51 6.67 6.66

CFS
Mean (%) 87.91 88.41 87.58

0.93
Standard deviation 2.87 6.81 6.16

Table 4.7 10-fold cross-validation binary mean classification performance for AD 

against HC using SL-RELM classifier on large scale brain network using different 

feature selection methods (32 × 32).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 84.06 81.58 86.75

0.81
Standard deviation 3.48 4.48 5.32

FSASL
Mean (%) 95.42 94.5 96.41

0.97
Standard deviation 2.14 2.58 2.48

LLCFS
Mean (%) 85.01 81.66 88.41

0.93
Standard deviation 3.86 5.37 5.29

CFS
Mean (%) 88.38 84.25 92.41

0.91
Standard deviation 2.36 4.25 2.55



- 51 -

Table 4.8 10-fold cross-validation binary mean classification performance for HC 

against MCI using SL-RELM classifier on large scale brain network using different 

feature selection methods (32 × 32).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 90.12 83.0 97.16

0.97
Standard deviation 1.89 3.89 2.69

FSASL
Mean (%) 96.47 95.33 97.66

0.97
Standard deviation 1.46 2.122 1.61

LLCFS
Mean (%) 87.02 82.25 91.75

0.82
Standard deviation 4.37 4.02 6.55

CFS
Mean (%) 88.38 84.25 92.42

0.91
Standard deviation 2.36 4.25 2.56

Table 4.9 10-fold cross-validation binary mean classification performance for MCI 

against AD using SL-RELM classifier on large scale brain network using different 

feature selection methods (32 × 32).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 84.95 86.75 83.08

0.84
Standard deviation 4.81 5.188 5.18

FSASL
Mean (%) 98.38 97.16 99.66

1
Standard deviation 1.51 2.69 1.05

LLCFS
Mean (%) 88.83 90.91 87.0

0.91
Standard deviation 4.60 3.89 8.30

CFS
Mean (%) 88.07 87.66 88.5

0.97
Standard deviation 4.18 7.70 6.22
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Table 4.10 10-fold cross-validation binary mean classification performance for AD 

against HC using SL-RELM classifier on Combined brain network using different 

feature selection methods (164 × 164).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 84.88 81.83 88.0

0.93
Standard deviation 1.76 3.68 4.12

FSASL
Mean (%) 85.82 85.0 86.91

0.86
Standard deviation 2.88 5.29 4.332

LLCFS
Mean (%) 82.58 82.41 82.91

0.88
Standard deviation 2.83 3.75 5.43

CFS
Mean (%) 70.15 70.66 69.33

0.73
Standard deviation 7.37 6.28 11.26

Table 4.11 10-fold cross-validation binary mean classification performance for HC 

against MCI using SL-RELM classifier Combined brain network using different 

feature selection methods (164 × 164).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 86.35 85.08 87.5

0.86
Standard deviation 3.00 5.037 4.79

FSASL
Mean (%) 88.19 91.58 84.91

0.93
Standard deviation 3.10 4.77 3.35

LLCFS
Mean (%) 82.5 81.66 83.16

0.86
Standard deviation 4.02 6.56 5.14

CFS
Mean (%) 70.55 65.83 75.25

0.96
Standard deviation 6.01 5.77 7.61
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Table 4.12 10-fold cross-validation binary mean classification performance for 

MCI against AD using SL-RELM classifier on Combined brain network using 

different feature selection methods (164 × 164).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 96.75 97.75 95.83

0.94
Standard deviation 1.52 2.22 3.04

FSASL
Mean (%) 90.12 91.16 89.25

0.94
Standard deviation 3.64 5.58 4.39

LLCFS
Mean (%) 78.57 81.0 76.0

0.78
Standard deviation 3.06 5.93 3.98

CFS
Mean (%) 74.03 73.58 74.5

0.73
Standard deviation 5.13 9.77 9.74

Similarly, Tables 4.13-4.21 show the binary classification results using ML-RELM 

classifier. Similar to the SL-RELM, the mean accuracy and the standard deviation 

of highest ranked features are calculated for different feature selection methods. 

Table 4.13-4.15 show the classification results for whole brain network. As shown 

in Table 4.13 highest accuracy of 85.42% was obtained using FSASL for whole 

brain network while the highest sensitivity and specificity of 87.16% and 83.58% 

was also obtained by FSASL. For HC against MCI LASSO generated highest 

accuracy of 82.5% with sensitivity and specificity of 82.08% and 83.06% as shown 

in Table 4.14. Similarly, for AD against MCI, as shown in Table 4.15 LASSO 

generated highest accuracy of 88.66% with mean sensitivity of 90.66% and 

specificity of 86.75%. 

Tables 4.16-4.18 show the classification result of large scale brain network. For 

large scale brain network FSASL generates highest accuracy for all three 

classification schemes. Table 4.16 show the classification of AD against HC, where 
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highest accuracy, sensitivity and specificity was 96.59%, 97.0% and 96.08%. Table 

4.17 shows classification of HC against MCI. Here, the FSASL generates highest 

accuracy of 96.69%, sensitivity of 95.91% and specificity of 97.5%. Similarly, 

Table 4.18 show the classification results of AD against MCI. Here the highest 

accuracy is 96.09%, sensitivity of 95.33% and specificity of 96.75%. 

Tables 4.19 to 4.21 show the classification results of ML-RELM of combined 

brain network. Table 4.19 show the classification results of AD against HC. Here, 

the highest accuracy was obtained using FSAL feature selection method. As shown 

in Table, the highest accuracy is 89.65%, sensitivity is 91.54% and specificity is 

86.9%. Classification of HC against MCI is shown in Table 4.20. The highest 

accuracy of 88.76% was generated by FSASL together with sensitivity and 

specificity of 92.5% and 84.86% accordingly. Finally, Table 4.21 show the 

classification result of AD against MCI. Here LASSO generates highest accuracy of 

96.14% with sensitivity and specificity of 94.91% and 97.5%. 

Table 4.13 10-fold cross-validation binary mean classification performance for AD 

against HC using ML-RELM classifier on whole brain network using different 

feature selection methods (132 × 132).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 81.41 81.08 82.0

0.80
Standard deviation 3.01 5.76 5.34

FSASL
Mean (%) 85.42 87.16 83.58

0.79
Standard deviation 4.67 4.89 5.77

LLCFS
Mean (%) 81.631 84.66 78.58

0.83
Standard deviation 3.29 6.56 3.40

CFS
Mean (%) 69.90 71.92 67.66

0.61
Standard deviation 5.37 9.96 9.410
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Table 4.14 10-fold cross-validation binary mean classification performance for HC 

against MCI using ML-RELM classifier on whole brain network using different 

feature selection methods (132 × 132).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 82.5 82.08 83.16

0.83
Standard deviation 3.85 7.88 4.40

FSASL
Mean (%) 78.0 76.0 80.41

0.87
Standard deviation 4.34 5.66 5.40

LLCFS
Mean (%) 69.95 71.0 68.75

0.69
Standard deviation 4.65 8.44 7.77

CFS
Mean (%) 65.14 60.83 69.5

0.79
Standard deviation 6.41 7.22 9.31

Table 4.15 10-fold cross-validation binary mean classification performance for 

MCI against AD using ML-RELM classifier on whole brain network using different 

feature selection methods (132 × 132).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 88.66 90.66 86.75

0.90
Standard deviation 2.29 3.11 3.65

FSASL
Mean (%) 80.92 78.5 83.33

0.80
Standard deviation 4.21 5.19 5.86

LLCFS
Mean (%) 87.07 90.08 84.25

0.85
Standard deviation 3.47 5.85 4.58

CFS
Mean (%) 70.71 0.73.5 67.91

0.53
Standard deviation 9.51 9.67 12.85
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Table 4.16 10-fold cross-validation binary mean classification performance for AD 

against HC using ML-RELM classifier on large scale brain network using different 

feature selection methods (32 × 32).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 82.21 80.42 84.41

0.77
Standard deviation 5.31 5.79 6.11

FSASL
Mean (%) 96.59 97.0 96.083

0.97
Standard deviation 1.82 2.46 2.54

LLCFS
Mean (%) 84.36 84.41 84.16

0.88
Standard deviation 2.60 5.528 5.32

CFS
Mean (%) 87.14 84.91 89.25

0.97
Standard deviation 3.39 6.66 4.25

Table 4.17 10-fold cross-validation binary mean classification performance for HC 

against MCI using ML-RELM classifier on large scale brain network using different 

feature selection methods (32 × 32).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 90.90 88.58 93.5

0.96
Standard deviation 2.74 3.81 3.53

FSASL
Mean (%) 96.69 95.91 97.5

1
Standard deviation 1.75 2.404 2.078

LLCFS
Mean (%) 86.66 83.08 90.25

0.91
Standard deviation 4.096 6.56 3.95

CFS
Mean (%) 87.35 86.08 88.58

0.97
Standard deviation 3.343 5.21 4.28
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Table 4.18 10-fold cross-validation binary mean classification performance for 

MCI against AD using ML-RELM classifier on large scale brain network using 

different feature selection methods (32 × 32).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 89.28 93.17 85.25

0.91
Standard deviation 4.06 5.56 6.17

FSASL
Mean (%) 96.09 95.33 96.75

0.97
Standard deviation 1.08 2.33 1.59

LLCFS
Mean (%) 86.92 87.16 86.66

0.90
Standard deviation 5.07 9.08 4.63

CFS
Mean (%) 86.98 89.58 84.41

0.82
Standard deviation 4.03 5.72 4.95

Table 4.19 10-fold cross-validation binary mean classification performance for AD 

against HC using ML-RELM classifier on Combined brain network using different 

feature selection methods (164 × 164).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 82.11 86.5 77.83

0.65
Standard deviation 7.16 6.71 9.56

FSASL
Mean (%) 89.35 91.54 86.90

0.92
Standard deviation 3.14 6.24 1.96

LLCFS
Mean (%) 87.23 86.83 87.66

0.93
Standard deviation 2.66 4.64 3.215

CFS
Mean (%) 68.17 64.16 72.0

0.76
Standard deviation 6.019 6.03 9.64
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Table 4.20 10-fold cross-validation binary mean classification performance for HC 

against MCI using ML-RELM classifier Combined brain network using different 

feature selection methods (164 × 164).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 85.42 91.75 79.08

0.82
Standard deviation 2.98 4.62 6.61

FSASL
Mean (%) 88.76 92.5 84.86

0.86
Standard deviation 3.10 4.77 3.35

LLCFS
Mean (%) 82.46 83.66 81.25

0.82
Standard deviation 3.62 5.34 5.11

CFS
Mean (%) 73.76 74.33 73.166

0.66
Standard deviation 6.88 10.58 5.39

Table 4.21 10-fold cross-validation binary mean classification performance for 

MCI against AD using ML-RELM classifier on Combined brain network using 

different feature selection methods (164 × 164).

Feature selection 

method
Performance metrics Accuracy Sensitivity Specificity F-measure

LASSO
Mean (%) 96.14 94.91 97.5

1
Standard deviation 2.975 4.63 3.33

FSASL
Mean (%) 93.01 92.26 93.92

0.97
Standard deviation 3.22 3.74 4.37

LLCFS
Mean (%) 80.74 84.88 76.78

0.77
Standard deviation 5.412 7.92 4.82

CFS
Mean (%) 69.75 69.04 70.59

0.74
Standard deviation 3.370 4.23 5.26



- 59 -

The number of hidden layer nodes influences the performance of the ML-RELM 

classifier. In experiments performed, it is found that 1000 number of hidden layer 

generated the best performance in terms of accuracy. Similarly, the parameters  

and  were set to correspond localized random walks. With the smaller value of  

 and larger value of , the random walk is easy to sample to the high-order 

-order proximity. Thus,  and  were selected randomly and performed graph 

embedding with.     and    .

C. Discussion

Several studies based on rs-fMRI have been carried out for the classification of 

AD and MCI from HC subjects. Binary classification in combination of different 

classifier with different feature measure reported the accuracy ranging from 85% to 

95% for AD against HC and 62.90% to 72.58% to and MCI against HC as shown 

in Tables 4.2 and 4.3. These studies used the same MCI and HC subjects from the 

ADNI2 cohort. One can clearly notice that the number of subjects directly 

influences the accuracy. As the number of subjects increase the accuracy is 

decreased. As reported in previous section the highest accuracy for the classification 

of AD from is obtained in proposed work is 93.957% using the combination of 

FSASL and RELM in large scale network. If the results are compared for MCI 

against HC, the results obtained in current study outperform all the state of art 

methods. However, it is not fair to compare performance with other studies directly 

because each work employ different datasets, preprocessing pipelines, feature 

measures, and classifiers. Majority of works including [70]-[77] have used subjects 

less than or nearly equal to 30 in each subject class. The main reason behind 

small number of dataset is the availability of fMRI data in ADNI2 cohort. All of 

these studies performed classification and made conclusion. Likewise, the study was 

conducted using ADNI2 cohort with nearly equal number of subjects with previous 

studies and the cross validation was also done using these dataset.
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V. Limitations

While this study is focused on the stage diagnosis of AD progression using 

fMRI alone using ADNI2 cohort, the major limitation of this study is the limited 

sample size of ADNI2(AD=33, MCI=31, and HC=31). In this context, the entire 

population is not represented adequately with the dataset used in this study. Thus, 

the generalization of our results to other groups cannot be guaranteed.
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VI. Conclusion

  It is widely accepted that the early diagnosis of AD and MCI plays an import 

role to take preventive action and to delay the future progression of AD. Thus the 

accurate classification task of different stages of AD progression is essential. In this 

study, it is demonstrated graph based features from fMR images can be used for 

the classification of AD and MCI from HC. The proposed approach was tested on 

three different network modes ranging  from large scale network, whole brain 

network and combined network. Better classification accuracy was obtained on large 

scale network and on combined network. This result suggest the large scale 

network is composed of low number of nodes and edges however, these nodes and 

edges carries distinct feature required  to classify the AD from healthy and MCI 

subjects. Additionally, multiple feature selection techniques were used to cope with 

the smaller number of subjects with larger number of feature representations. The 

appropriate amount of features is extracted from standard ADNI cohort that lead to 

maximal classification accuracies as compared to all other recent researches. Among 

different feature section methods FSASL worked better for big network size as well 

as small network excluding few exceptions.
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