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Abstract

Al-Applied UWB Positioning System
with Mitigated NLOS Effects

Dae-Ho Kim
Advisor : Prof. Jae-Young Pyun, Ph.D.
Dept. Info. and Comm. Eng.,

Graduate School of Chosun University

The ultra-wideband-based (UWB) indoor positioning system (IPS) has high
positioning precision and accuracy and can meet the requirements of location-based
services (LBSs) for Internet of Things (IoT) applications. However, there are
usually a limited number of line-of-sight (LOS) channels in indoor environments.
This thesis introduces the artificial intelligence (Al) applied UWB positioning
system that can enhance the positioning performance of an IPS in a common
indoor environment by classifying channel conditions based on ranging errors using
the long short-term memory (LSTM) based deep learning (DL) model. The
proposed system mitigates the positioning degradation caused by the NLOS effects
by performing extended Kalman filter (EKF) localization based on the detected
channel conditions. This study provides a detailed experimental setup and rigorous
performance evaluation of the proposed system. The AI model is trained by the
dataset collected from the testbed. Then, the testbed of the proposed positioning

system is evaluated by conducting experiments consisting of a known scenario and

- viii -
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an unknown scenario. The evaluation results showed that the AI-EKF localization
method of the proposed system significantly improved the positioning performance

compared with the three existing positioning methods.
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I. Introduction

A. Research Background

Internet of Things (IoT) technologies have been incorporated in various ways in
location-based applications depending on their applicability [1]. Specifically,
ultra-wideband-based (UWB) indoor positioning systems (IPS) provide various
indoor location-based services (LBSs), such as augmented reality (AR) [2], indoor
unmanned aerial vehicles (UAV) [3], sports [4], automated guided vehicle (AVG)

[5], and industrial tracking [6], requiring precise and stable positioning performance.

The UWB positioning system specified in [7][8] meets these requirements with
its unique high-resolution timestamping, i.e., impulse radio (IR) signals emitted by
UWB devices have nanoscale time resolution [9][10]. The time of arrival (TOA) or
time difference of arrival (TDOA) between devices can be obtained from
timestamps captured during the time of sending and receiving messages [11]. Then,
the target position can be estimated using TOA or TDOA [12]. System designs
based on TOA are more simple and common than TDOA-based positioning systems
[13]; this provides flexibility for infrastructure construction. In addition, the TOA
method primarily uses a two-way message exchange called two-way ranging
(TWR). Therefore, it can estimate the distance without a time synchronization
process by using round trip times between the tag and anchor [14][15]. Moreover,
an enhanced message exchange method, such as double-sided-TWR (DS-TWR), can

achieve cm-level distance measurement performance [16][17].
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Distances measured with TWR are used in positioning systems using trilateration
[18]. The tag position in trilateration is estimated using the intersection of the
circles created by the distance between the tag and anchors. The least-squares (LS)
method is used to derive the tag position from equation [15]. Furthermore,
weighted LS (WLS) can be useful for improving the positioning performance by
utilizing distance [19], residual variance [20], and estimated error [21] as the
weight factor. A more advanced method involves applying a Kalman filter (KF) to
position measurement [22]. In particular, extended KF (EKF) with linear
approximation using the Taylor series is a well-known algorithm for linearizing and
optimizing positioning systems with nonlinear designs such as tracking and
navigation [20]. In practice, EKF has been used in various positioning systems such
as autopilot of unmanned aerial vehicle (UAV) [23], inertial navigation [24],
vehicle navigation [25], vehicle tracking using radar [26], etc. However, although
the positioning algorithm has been advanced from the LS method to EKF
localization, the UWB signals propagated in a complex indoor environment
deteriorate the distance measurement performance owing to multipath. In other
words, the channel condition between the tag and anchor is the most important
factor for UWB positioning systems that rely on distance measurement between

them.

Recently, more practical techniques for optimizing the UWB system by
identifying the NLOS channel have been proposed [27]-[30]. These techniques
estimate channel conditions by using radio parameters calculated from the channel
impulse response (CIR) [31]. These radio parameters in NLOS identification
methods are combined with machine learning (ML), such as support vector machine

(SVM) [32][33], decision tree [34], random forest [35], expectation maximization
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(EM) for Gaussian mixture model (GMM) [36], and multi-layer perceptron [37].
Recently, deep learning (DL) approaches have been considered owing to advances
in hardware for parallel computing. DL extracts features by itself during the
learning process. DL-based methods such as convolutional neural networks (CNNs)
and long short-term memory (LSTM) use the raw CIR sequence directly instead of
the radio parameters calculated from the UWB device to enhance the accuracy of
the channel classification [21], [38]-[41]. Artificial intelligence (AI) approaches for
ML and DL have achieved LOS/NLOS classification accuracy of above 80 %.

B. Research Objective

This thesis introduces the Al-applied UWB positioning system that classifies
channel conditions into 10-levels based on a ranging error distribution and mitigates

the NLOS-induced error of TWR with the proposed AI-EKF localization.

C. Thesis Organization

The remainder of this thesis is organized as follows. In Section II, the relevant
techniques for the proposed UWB system are described. Section III presents the
proposed UWB positioning system and its AI-EKF localization method. Sections IV
and V provide the experimental setup for performance evaluation and results.

Finally, Section VI concludes the paper.
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II. Background

A. NLOS Effects of UWB Ranging

1) Emror Model of UWB Ranging

When the first signal arrives at the UWB receiver, UWB signals propagated at
the channel are captured, and their timestamps are recorded for the distance
measurement. In a clean LOS channel, the first arrived signal is assumed to be the
signal that traversed the shortest path, i.e., the ranging result obtained from TWR
is close to the actual distance between the tag and anchor. On the other hand, in
the NLOS channel, the first path signal is generated by multipath interference and
obstacle penetration waves [42]-[44]. In this situation, UWB timestamps vary and
can be presented with a positive bias in the multipath propagation environment [12]
[45][46]. Therefore, the UWB ranging performance based on timestamps is affected
by the channel conditions. In this paper, the ranging result d is assumed as

follows:

g Tt eeas for LOS channel W
dact + Cmeas +bnlos for NLOS channel’
where d,, is the actual distance between the tag and anchor, e, . ~ N(0,0>)

denotes the measurement error defined as additive white Gaussian noise (AWGN)

and b

nlos

with zero mean and variance o” represents a positive NLOS-biased error

m?2

defined as an exponential random variable [47]-[49].
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Figure 1. Received UWB signals indicated as CIR:
(top) LOS channel (bottom) NLOS channel.
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The deciding factor for the channel condition is required to approximate the error

parameters of e and b

meas nlos*

Fig. 1 shows the real and imaginary components of

the received UWB signals in LOS and NLOS channels indicated as CIR [50]. In
this figure, the first path signal measurements of both LOS and NLOS channels are
shown. In the LOS channel, CIR had a strongly concentrated energy distribution at
the arrival time of the first path signal, which was observed at a sampling time of
750 ns. In contrast, in the NLOS channel, the overall power of the UWB signal
was weakened by obstacle penetration and multipath interference and was observed
at a sampling time of 747 ns. In this example, the signal measured at 758 ns was
stronger than the first path signal; this UWB signal interfered constructively and

destructively in a cluttered environment.

2) Classification of Channel Conditions

In this thesis, DL was used on the CIR to determine the channel condition. The
recurrent neural network (RNN) model was selected because CIR is a time-series
data-type. RNN adopts a recurrent operation, such that the output (hidden state)
generated from the previous time step is provided in the current time step. This
recurrent operation process enables the optimal display of the time-series data
pattern. In addition, RNN can be designed with different dimension sizes at the
input and output. In this research, the many-to-one model, an RNN input/output
model, is considered for classifying channel conditions using a sequence of inputs.
However, a simple RNN has a long-term dependency problem, as past information
cannot propagate sufficiently to the current one owing to a gradient vanishing in

the backpropagation process [51]-[53].
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The LSTM network was proposed in [54] to avoid the long-term dependency
problem [55] of a simple RNN. It improves the inference and learning performance
of a complex sequence by recalling the past state. Fig. 2 illustrates the LSTM cell
and its components, where f, ¢, o, and g represent the forget gate, input gate,
output gate, and cell candidate, respectively. The formula for the components at

time step t is expressed as:

[, = sigmoid(W{ X, + Wb, | +b,)
i, = sigmoid( W, X, + Wyh, _, +0,)
o, = sigmoid(Wy X, + Wyh,_, +b,)
g, =tanh (W} X, + Wih,_, +b,)

¢ =fi* -1 14,0g

h, = 0,®tanh(c,)

2

where ¢, and h, denote the cell and hidden states, respectively. In addition, W,
Wy, and b represent the input weight, recurrent weight, and bias, respectively. X,

is the input sequence, which is represented as CIR.

BT

Forget  Update Output

Figure 2. Components of the LSTM cell.
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B. Ranging Protocols

The TWR is a message-exchange procedure for estimating the distance between
UWB radios. It has the advantage of observing the distance on both tag and
anchor sides owing to the message exchange of the TWR. Therefore, the position
of the tag can be observed at either tag or anchor side (connected to a server) by
employing trilateration with the estimated distances between the tag and the
surrounding anchors. Furthermore, when the tag calculated its position, anchors
could be configured as lightweight devices without additional communication
infrastructure such as ethernet and WiFi to connect with the positioning server [56].
In this work, the proposed UWB positioning system adopts TWR because of its

flexible operating conditions.

1) Two-Way Ranging (TWR)

Fig. 3 presents the TWR introduced in IEEE 802.15.4-2011 std. [7] and IEEE
802.15.8 std. [8]. In this figure, a tag device and an anchor are illustrated as Tag
and Anchor boxes, respectively. First, the tag sends a ranging request message to

the anchor and stores 7, at the tag device as a TX timestamp. The anchor
receives a request message from the tag and stores 79, as an RX timestamp.
Next, the anchor sends a response message to the tag after a reply time (Z,,,,)
and stores 75; at the anchor device as a TX timestamp. Finally, the tag stores

7S, after obtaining the response message as an RX timestamp. In this

message-exchange procedure, timestamps are obtained by capturing the ranging

marker designated in the UWB system. The ranging marker specified in [7] is
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located at the start of the first symbol of the physical layer (PHY) header of the

frame.

Tag | Anchor I

] TX ¢
LT\ I e ] TS
A 2
T || ranging T RX
round marker ¢TP [ | Tew
IXI Yy
| —~ TS;
TS, Y. %
RX T
L T

Figure 3. Two-way ranging (TWR).

After the message-exchange is complete, the round trip time (7,,,,,) and 7.,
of the ranging messages are measured using stored timestamps 775;, 715,, 7.5, and

TS, observed in the tag and anchor as follows:

ﬂound = T‘Sll - T‘Syl’ (3)
];“eply = T‘SYB - TSZ’ (4)

Then, the propagation time 7, that is, TOA of the UWB ranging message, can be

estimated as follows:

1 =T
round reply (5)

»tglﬂ
Il

Therefore, the distance d between the tag and anchor is:
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d=1T Xc, (6)
where c is the speed of light (299,792,458 m/s).

As shown in Fig. 3, the TWR based TOA estimation does not demand time

synchronization between tag and anchor because 7., and 7] are observed

T reply
independently at each device. This advantage makes it easier to build positioning
systems. However, a single-sided TWR has a weakness in that the TOA estimation

error can be increased by the longer TWR message processing time (7;,,,)

because of the hardware clock skew between the tag and anchor [57]. Thus, the
double-sided TWR (DS-TWR) was devised to solve the clock skew problem by

measuring the TOA at each side of the tag and anchor.
2) Double-Sided TWR (DS-TWR)

The DS-TWR procedure is illustrated in Fig. 4.

Tag | Anchor I

0 TX ¢
A e —
\ RX A
[ | ranging T,
Tround 1 marker ¢ || Ty 1
TX[lY
v[ ] < A
A
N
Tepy 4 [} Tround 4
v [1TX ¢
T mh4
RX
I

Figure 4. Double-sided TWR (DS-TWR).
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In DS-TWR, the tag and anchor initiate a TWR message exchange, which is the
same as typical TWR obtaining TOA on the tag side. After obtaining the first
TOA, the tag sends a second ranging message to the anchor for the second TOA.
Finally, the response of the anchor and second ranging messages of the tag are

used to obtain the second TOA on the anchor-side during this process. Thus, 7, of

the DS-TWR is measured by

_— ];’oundTX T;oundA - T;"eplyTX ];’eplyA

T .
];’oundT_l_ T;oundA + T;"eplyT_‘_ ];’eplyA

(7

3) DS-TWR with Multiple Acknowledgment (DS-TWR-MA)

In general, the TWR-based UWB positioning system inevitably requires three or
more anchors for the estimation of the tag location. Indeed, to provide the
navigation services based on DS-TWR, each tag needs at least nine transfers
because DS-TWR performs three message exchanges with three anchors. This
operation requires a large on-air time and battery power to obtain the position of
each tag. One of the commercial UWB manufacturers, Decawave, introduced a
practical DS-TWR, DS-TWR with multiple acknowledgment (DS-TWR-MA), for its
real-time location system (RTLS) service [50], which improved the power
consumption and on-air time in TWR message exchanges. It is based on the

symmetric DS-TWR with multiple acknowledgment (SDS-TWR-MA) [58].

Fig. 5 shows the distance measurement operation of the DS-TWR-MA procedure.

In this example, the tag initiates the broadcasting of a poll message to anchors (AO

_11_
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~ A2). The anchors receiving a poll message from the tag then send response
messages sequentially after a predefined reply time (7..,,70, Zrepyn> a0d 770, 1)
Next, the tag receiving response messages from the anchors sends a final message
to the anchors. Finally, the anchor receiving the final message completes the

ranging message exchange. As a result, the propagation time 7, for anchor

number 7 is calculated by the stored timestamps as follows:

— ];“czundTn X ];oundAn - ];cplyTn X ];eplyAn (8)
pn ’
];“czundTn + ];oundAn + ];cplyTn + ];eplyAn

where n is 0, 1, and 2 in the example shown in Fig. 5.

tag [a0| [a1] [az]
X vy Poll
A KK ,( — |
~| =] o e ol
151 5] B ranging T RX RX £ ﬁ‘ A
Bl | B NRE
HEE marker TPOTP1T - | NE &
(& (& P2 TX [ e AR
v [ < A&
A RX Resp_AO
. X[ v
v | [ < 0
A RX Resp. Al
X[ Y
|| I J A
v — /—4’
A2
i RX Resp
<| <] <
= & & L] S| =<
Ll R R
=== gl g B
Y.Y.Y X ¢ ¢ ¢ Final | S 5 E
R ——— S 19 $ = — v
L T T T RXFRX]
TPOTPlT — ||

Figure 5. DS-TWR with multiple acknowledgment (DS-TWR-MA).
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C. Localization Methods for UWB Positioning

1) Trilateration with Least-Square Solution

Trilateration is the process of determining an unknown position with a
mathematical calculation for estimating the relative position by applying a geometry
of circles and spheres. Fig. 6 shows anchors A0 ~ A2 located in their known

positions (z,, ¥,) ~ (%, ¥,), whereas the distances d, ~ d, between a tag and

anchors are obtained using the TWR.

---------------
,,,,,,,,,,,
- o ~
- .~
.,

! ; "‘. 5\
dy A0 / YAl 4}
K——+ : : A T w—
H (>0, ¥0) H (e, 3m) H

. 5 L ! tag ",'
‘\\ T : R . (x ) y ) . L, ’
........ 7‘:_'".____.—" ~"‘:‘-.......--"-
A2 d, }
l (%2, ¥2) i

9

. o
,,,,,
_______

Figure 6. TWR-based UWB positioning in 2D (trilateration).

Fig. 6 shows TWR-based positioning in two-dimensional space; the tag position
becomes the intersection of the created circles and is expressed by the formula as

follows:

_13_
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(g =) +(yy—y) =d5> ©)

where d, is the distance between the tag located at (x, y) coordinates and the

pre-deployed nth anchor located at (x,, y,) coordinates.

no

In practical applications, the LS method can be used for the approximation of
the tag position because ranging errors do not create a single intersection [15]. The
LS solution for the tag position (z, y) is listed as follows:

Firstly, (9) is expanded to get

—23:01:—2y0y+:62+y2 :dg—xg—yg
—23:11:—2y1y+:62+y2 :df—x%—yf

—2x2x—2y2y+$2+y2:dg—q:g—yg ) (10)

—2x,x— 2yny+x2 +9f = dg —$Z —yi
then applied secondly with I'e= (3 form

—2x, — 2y,
—2x, =2y

I'=|—2z,—2y, 1|, (11)

P SO Wy

- 2x7L - 2y” 1

; (12)
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Now, a vector € for tag location can be approximated as

2 92 9
di —z{ —yi

L™ n

e=T'D)'r's.

T2 2 9]
dy — x5 — Yy

2_ 2 2|
dy =5y — Y,

& —a? =y

(13)

(14)

TWR tends to increase errors due to clock skew and multipath as the distance

between the devices increases. Hence, the LS solution has a limitation in multipath

environments because it uses the same weight for the distance measurement of each

anchor. WLS can improve the positioning performance by applying a weight factor

for the distance measurement [20][21]. The distance-weighted WLS solution x and

its weight matrix @ are expressed as follows:

x=(r'er) 'r'eg,

1 ]
jo()--()
1
Od—l...()'
)

1
OOOd—77

(15)

(16)

WLS can enhance the estimation performance of the tag location but is not

adaptive to unstable measurement noise.
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2) Extended-Kalman Filter (EKF) Localization

In this thesis, the proposed UWB system includes the EKF localization
introduced in [20][22]. It was assumed that the target pedestrian moves the tag in
a straight path with uniform velocity and acceleration in the 2D plane. Hence, a

state vector X, at the time step k is expressed as follows:

1 .
T T 2 S T
xk*l_‘_kal];ﬁ-iakfl];_'_?wkfl
m Yy 1 Yy 2 S Y
Yy yk71+vk71];+§akflfz;+ 6 k-1
vy, 7t
J— — xr x © xr
X, = ! - vy ta T, 9 W1 ) (17
T 2
U v gl T 1, Y
y R R e e D B
ay |
x xr
ap_q + Towp_y
y y
ap_q + Towp_y

where x;, and y, are the coordinates of the tag, v, and v] are the velocities, and

a, and aj are the accelerations. Hence, the state equation of UWB localization is

expressed as

X, =AX, ,+GW, |, (18)

where W, _, = [wﬁ,lwz,l] is the process noise vector expressed as the covariance
matrix Q;_, Zdiag(ail,aiy) and zero mean, and A and G expressed in (19) and

(20) denote the state transition matrix and the noise driving matrix, respectively.

_16_
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, I
107, 0 = 0

T2
0107;O 5
A= 2, (19)
001 0 7, 0
0001 0 1,
000 0 1 0
000 0 0 1
| 77
0
6
3
0 S
6
2
G=|2 o |, (20)
2
];2
0
2
T 0
| 0 7|

where 7, is the sample time.

Let Z, denote the measurement vector for each TWR between the tag and
anchor n, including the actual distance d,; with the measurement noise v, at the

time step k. Hence, the measurement equation of UWB ranging is expressed as

follows:

doy g,
dyy oy
Z, = |dy, +vy.|=mX,)+v,, (21)

dnk‘ + Unk

_17_
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e
M) = | =, P+ (=) | (22)

where v, represents the measurement noise vector denoted as the covariance matrix

R, =diag(c®0% ---,0% ), and zero mean. Because (22) is a nonlinear function, the
k 04, d,

Jacobian matrix of (22), H, is required as follows:

[ 0d, Jd, ]
0k 0k 0000
dx, Juy,
od,, od
1k 1k 0000
dx, Jy,
H.=| odd, dd , 23
K 2% % 0000 (23)
dxy, dy
od. 9d
| dx, dy ]
where
8d’nk xk _IE”
ox _ 2 B 2
8d'n,k Ye = Yn ‘

W o=, + ey, )

The procedure for EKF localization algorithm in the 2D plane is shown in Fig.
7. The prediction and correction phases were performed at time step k& with

positioning interval time 7.

_18_
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Algorithm 1: EKF localization for UWB system
Input: Z;
Output: X;‘.
1 Initialize:Initial state XU = X, €Iror covariance
matrix Py = var [XU]
2 for k=0:00 do

3 // EKF time update

4 Phase Prediction (XA._l,PA,_l):

5 /I Predict the state ahead

6 X; = AXk¢_1

7 /I Predict the error covariance ahead
8 = AP, AT+ GQ,_,G"

9 /l Return a priori estimates

10 return X;_, P,

11

12 // EKF measurement update

13 Phase Correction(Xi,P;,Zk):

14 /I Compute the Kalman gain

15 K, =P, H,/' (HP_ H, +R;)"
16 /I Correct estimate with measurement
17 X;‘x = X}_ + Kg(Zk — I]](XL_,))

18 /I Correct the error covariance

19 Pk = P; — K,L\tHkP;

20 /I Return a posteriori estimates

21 return Xk,. P

Figure 7. Algorithm of EKF localization for UWB positioning system.
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III. Al-Applied UWB Positioning System

The EKF can be used to estimate the UWB tag in an LOS environment.
However, in an NLOS environment with dynamic indoor conditions, the location
estimation performance is degraded owing to the variation in the measurement
model, which is influenced by NLOS conditions. Therefore, a positioning method
that identifies the NLOS channel conditions and updates the measurement model is
required. In this study, a UWB positioning system is proposed to improve the
NLOS identification of EKF localization. Fig. 8 illustrates the experimental
environment of the proposed system comprising pre-deployed anchors, tag, and host
computer. First, the UWB tag of this system performs DS-TWR+ with anchors to
capture the distance and its CIR. Then, it transfers the anchor ID (number),
distance, CIR stream, additional link diagnostic data, and its cyclic redundancy
check (CRC) to the host computer, which estimates the tag position using AI-EKF
localization. Depending on the application, the UWB tag and host computer can be

integrated or separated from each other.

Anchor Host computer
= Tag ;
- Alinference
Anchor 7] D&TWR UWB radio EKF localization
Q DS.TWR+ i [SPI Enhanced position
u MCU
L = [UART
e usp/ A
] N Data transfer |
] /\

Anchor Results of DS-TWR+

Figure 8. Experimental environment of the Al-applied UWB positioning system.
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Fig. 9 presents a flowchart for the AI-EKF localization of the proposed UWB
positioning system. First, DS-TWR+ obtains the distance and CIR between the tag
and anchors. Then, the CIR is provided as input to the AI inference step, which
includes a trained LSTM classification network for channel conditions. Next, the
NLOS mitigation block reduces the NLOS error of the obtained distance using the
channel condition determined at the AI inference step. Subsequently, it generates

the NLOS mitigated measurement vector containing the distance and its noise
parameter required for EKF localization, which is expressed as Z ; and Rk Finally,

the EKF localization adopts the NLOS mitigated measurement at its correction
phase and provides the current position. The remainder of this section

comprehensively describes the Al inference and NLOS mitigation block.

+~ - = e

k’“"‘ = 2 = 3 =8 s

i R e e e A e i

] = & Z &1 1FE |3

] 151

CIR Channel condition

- Pre-trained LSTM classification network

CIR
> Alinference EKF prediction
NLOS mitigated
DS-TWR+ — ¢ Channel condition ¢ Xi, Pp position
(Xi)
» NLOS mitigation »  EKF correction ,
Distance

NLOS mitigated measurement
(Zk' Rk)

Figure 9. AI-EKF localization of the proposed positioning system.
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A. DS-TWR with a Report Message (DS-TWR+)

In this study, the observed distance is reported to the tag via a message Report
and is used to estimate the tag position. In addition, the message Report signal is
employed to measure the CIR and determine the channel condition. Distance
observation and CIR measurement are conducted after the TWR message exchange
because these operations may interrupt the transmission times of TWR messages.
Actually, the TWR approach is expected to operate during a limited short
processing time owing to the clock skew problem. However, when CIR is
measured and used for the channel classification, the tag consumes a relatively
longer processing time because CIR is a data stream with a size of several Kbytes

and is recorded to the memory of the UWB device.

Tag | Anchor I

o TS,
I— (3 >
A
T ranging Poll TS, T
round T marker - ey T
TS, \4
v[ 1 < h
A TS, Response
Te v A [ Tround 4
...... v. [l TS5
\4

Request TSe

distance calculation -----

Report

€= CIR observation

Figure 10. Double-sided TWR with report message (DS-TWR+).
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The tag of the proposed system has to access the CIR stored at the memory and
transfer it to the host computer without interrupting other process works. The
processing time for the CIR management should be guaranteed for beneficial
CIR-based positioning performance. Therefore, DS-TWR-MA is unsuitable for the
proposed system because of its streamlined message-exchange procedure. Hence, a
better TWR is introduced in this thesis. Fig. 10 presents a DS-TWR with a report
message named DS-TWR+. As illustrated in this figure, the message exchange of

the DS-TWR producing timestamps from 75, to 75 is adopted to DS-TWR+. The
tag sends captured timestamps 75, 75,, and 7, within the message Request to

the anchor, as all timestamps are required for distance calculation. Subsequently, the

anchor handles the received message Request and its stored timestamps 755,, 7.5,

and 7S to obtain 7;,,., and 7). , of both tag and anchor sides as follows:

reply
Tag side:
];"OundT = T*SZL - TSI’ (25)
]:'eplyT: TSE% - TSQ (26)
Anchor side:
T;"oundA = T'SG - T%, (27)
'T;'eplyA = TSS o T*SZL (28)

Hence, these timing factors apply to (7).
The DS-TWR+ presented in Fig. 10 comprises four ranging messages. Among

these messages, Poll, Response, and Request generate timestamps that are adopted

for distance calculation. Message Report conveys the obtained distance from the

_23_
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anchor to the tag and is itself used for the CIR observation. In this DS-TWR+,
each message is also encoded based on the IEEE 802.15.4 std. [7] medium access
control (MAC) data frame comprising a MAC header (MHR), MAC payload, and

MAC footer (MFR), as illustrated in Fig. 11.

802.15.4 MHR [octets]

fCtl sNum PAN ID Dest. Addr. Sour. Addr.
(2] [1] (2] 2] (2]
\4

MHR MAC payload MFR
[9] [Variable number of octets] [2]

Figure 11. DS-TWR+ frame format.

Specifically, the MHR includes fields for the message identification as follows:
frame control (fCtl), sequence number (sNum), destination PAN identifier (PAN
ID), destination address, and source address. The fCtl of two-octets expresses the
frame type, PAN ID compression, destination addressing mode, and source
addressing mode as presented in Table 1. In this configuration, ranging messages of
DS-TWR+ adopt the PAN ID compression and the short addressing mode, because

DS-TWR+ has been designed to minimize its frame length for the fast ranging

process.
Table 1. Frame control field of the MHR used in DS-TWR+.
Sub-field Bits Value Description
Frame type 0-2 001 Data frame
PAN ID compression 6 1y Enabled

Destination addressing mode | 10 - 11 01 Short address mode (16 bits)
Source addressing mode 14-15| O0lp | Short address mode (16 bits)

The MAC payload with the variable number of octets contains the ranging

_24_

Collection @ chosun



message type (mType) of a single octet and the attached data, such as timestamps
and calculated distance. Table 2 presents the MAC payload defined for each
ranging message, where the messages Poll and Response have no attached data and

the message Request delivers timestamps 79, 75, and 75, to the anchor. In

addition, message Report contains a calculated distance of four octets. In this
ranging approach, the timestamp unit of approximately 15.65 ps and a

single-precision floating-point format are employed for the distance estimation.

Table 2. MAC payload definition for each ranging message.

Message mType Attached data [octets]
Poll AAge -

Response BBi¢ -

Request CCas) Timestamps of the tag [15]
Report DDyis) Distance [4]

The MFR field of two-octets has the frame checking sequence (FCS) used for
the cyclic redundancy check (CRC) conducting error detection on the transmitted
frame. Fig. 12 presents the DS-TWR+ frame structure for each ranging message
comprising the MHR of 9 octets, MAC payload of 1-16 octets, and FCS of 2
octets. As illustrated in Fig. 12 (a), messages Poll and Response have the same
size of 12 octets. Furthermore, the message Request of Fig. 12 (b) containing
timestamps uses a frame length of 27 octets, while the message Report of Fig. 12

(c) with a distance estimation result has 16 octets.
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Collection @ chosun



MHR mType FCS
@1 [1] 2]
) MHR mType TS, TS, TS5 FCS
9] (1] [5] [5] [5] (2]
© MHR mType Distance FCS
] [1] [4] 2]

Figure 12. DS-TWR+ frames for each message: (a) Poll and Response (b)
Request (c) Report.

In addition, Fig. 13 presents the packet format of the Result used for the

delivery of the estimated distances to the host computer performing EKF
localization to identify the tag location in our study. It comprises fCnt of 2 bytes,
UWB-operating mode of a single byte, aID of a single byte, sNum of a single
byte, calculated distance from Report, UWB RX diagnostic data of 16 bytes, CIR

signal captured from Report of 1984 bytes, and FCS generated by 32-bit CRC.

fCnt Mode alD sNum Distance RX diagnostic data
(2] (1] (1] [1] [4] [16] —‘
L CIR CRC
[1984] [4]

Figure 13. Packet format of Result transmitted from the tag.

In the Result format, fCnt is increased whenever the tag completes DS-TWR+
with each anchor. In addition, it is adopted as the time step (k) of EKF
localization. Mode expresses the configuration of the UWB system such as channel,
preamble length, etc. alD indicates an anchor identifier that represents a destination

address of messages Poll and Request. sNum and distance represent the sequence
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number and estimated distance obtained from MHR and MAC payload of message
Report, respectively. The RX diagnostic data for message Report provides the status
of received signals such as received signal power level (RSL), signal power in the
first path (FSL), first path index of CIR, etc [59]. The CIR field presents the
received UWB signal comprising real and imaginary parts of 2 bytes each, where
the CIR length is 496, as illustrated in Fig. 1. CRC for data integrity has an
output of CRC-32 [60] computed for the Result packet. Finally, the host computer
performing localization confirms the CRC field and operates AI-EKF using the data

obtained from the received Result packet.

The testbed devices, DS-TWR+ tag and anchors, are developed based on the
Decawave driver API [59], TWR implementation guide [61], and Mbed OS [62].
The driver API controls the UWB transceiver that generates interrupt requests
(IRQ) to receive and transmit frames. Furthermore, Mbed OS, a real-time operating
system (RTOS), is adopted as the task scheduler for a finite-state machine (FSM)

at DS-TWR+ devices.

Init. done

Response
from
anchor

TX done

Report
from
anchor

IRQ Frame dropping

Figure 14. Tag operation of DS-TWR+ represented with FSM state diagram.
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Fig. 14 presents the tag operation of DS-TWR+ with the FSM state diagram.
First, the tag starts the DS-TWR+ operation by initializing its UWB PHY and
MAC configurations. Then, it prepares for the frame of message Poll including a
target anchor number as the destination address and transfers it to the UWB
channel. Next, the state of the FSM shifts to Idle and waits for RX IRQ.
Subsequently, the tag decodes the received frame when RX IRQ occurs. The MHR
and mType of the received frame are interpreted at this state. When the received
frame is the message Response as an acknowledgment to the message Poll, the
Request state is invoked, which transmits message Request with recorded time
stamps 75, and 75,, and 7,. Then, DS-TWR+ returns to the Idle state again.
After obtaining RX IRQ for the message Report reception, the tag obtains the
estimated distance from the received message Report and captures its CIR signal at
the frame decoding state. Finally, the state becomes Result, which transfers the

estimated distance and its CIR observation of DS-TWR+ to the host computer for

Response

Poll
from tag

the localization in this study.

Init. done

Request
from tag
No Frame
IRQ dropping

Figure 15. Anchor operation of DS-TWR+ represented with FSM state diagram.
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Fig. 15 presents the anchor operation of DS-TWR+ with the FSM state diagram.
First, the anchor initializes its configuration as a tag does. After the initialization is
complete, the anchor enters the Idle state and waits for the RX IRQ generated by
the Poll or Request reception from the tag. If RX IRQ occurs and a received
frame is valid and not dropped, the anchor state becomes the frame decoding state.
In this state, the next state transition is decided based on the mType in the
decoded frame. When the message Poll from the tag arrives, i.e., mType is AAge),
the anchor immediately sends the message Response to the tag. However, when the
message Request is received, i.e., mType is CCge), the anchor estimates the
distance between devices by using timestamps obtained from the tag, anchors both
sides, and sends the message Report with the estimated distance. Subsequently, the
anchor goes back to the Idle state and waits for the following message from the

tag to be received.

For channel decoding, the UWB transceiver checks the error condition with the
FCS delivered in every received frame and then generates RX IRQ. When the
invalid FCS is detected, the device drops the received frame. In addition, when the
frame belonging to another PAN arrives (invalid PAN ID) or the device address
differs from the destination address of the received frame, the received frame is

dropped.

It is expected that the message-exchange procedure of DS-TWR+ has to perform
without the message frame loss, while the proposed UWB positioning system
requires a tag and multiple anchors implemented with DS-TWR+. In this study, the
anchors run without a specific transmission schedule because it passively operates

according to the message from the tag. However, the tag requires the transmission
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schedule to lead the message exchange. Fig. 16 presents the positioning schedule of
the proposed UWB positioning system. In the active period during the total
positioning time, the tag performs DS-TWR+ n times by updating the destination
address according to the number of anchors (n) required for the tag localization
observation. Hence, the active period is 7, = TpypXn, where 77, denotes the
time duration required for the DS-TWR+ operation. After performing DS-TWR+
with the surrounding anchors, the tag is set to be inactive. In addition, the inactive
period can be managed by increasing or decreasing the positioning interval time

(7)) defined as

where, 7. and 7; represent the active and inactive periods, respectively. Finally,

m

the tag repeats the active and inactive periods every 7. and increases fCnt. In this
study, the host computer operates this timing schedule for EKF localization. For the
multi-tag service, it can be beneficial to design time division multiple access or

duty cycle limitation.

Anchor Res. Rep.
Tag | Poll Result

DSTWR+ | DS-TWR+ | DS-TWR+ eee | DSTWRE

yvith anchor 0 | with anchor 1 | with anchor 2 with anchor n
......................... : --“--“----__'______..---""'

............................... TTW R ------"-________...----""""
Active . Active .
(fCnt=0) Inactive (fCnt = 1) Inactive (N N ]
Ty Tin Positioning interval (Ty)

Figure 16. Positioning schedule of the proposed UWB positioning system.
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B. AI Training and Inference

The Al inference phase in Fig. 9 performs channel classification based on the
pre-trained LSTM network. In this thesis, the NLOS channel conditions were
classified using an extensive dataset of TWRs. This dataset comprised TWR error
and CIR data collected in various indoor environments with LOS and NLOS
channel conditions. The UWB channels are divided into 10 levels based on deciles
of TWR errors without any information on propagation conditions such as clutter,

reflection, and through-the-wall.

Frequency

Label 1
Label 2
Label 3

i

|
|
|
|
|
|
|
|
Label 10 :
|
|
|
|
|
|
|

' |

T —

8 Dy Dl()

0

Deciles[ DD,D;3

Figure 17. Labeling method for classification of NLOS channel conditions.

Fig. 17 presents the labeling of NLOS channel conditions denoted as deciles for
TWR errors with the overall dataset as a population. The labels of channel

conditions are determined by the deciles (D, D,, ---, D)) of the overall dataset.
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The distribution information of TWR estimation errors from /), to ), is presented

in Table 3. Each labeled sample has the same data size equal to 10 % of the
population set. In addition, the range of each label is increased exponentially
because the TWR error is modeled by an exponential random variable. For
example, the channel condition for Label 1 (top 10 % TWR accuracy) exhibits
high precision in the narrow error range. Hence, it could belong to a clean LOS
environment with the shortest direct path. However, Label 10 (bottom 10 % TWR
accuracy) exhibits a low precision in the broad error range and is close to the
extreme NLOS environment with severe biased error. In our training data set, Label
1 has an average error and error variance of 40 cm and 5.4le-4, respectively.
However, an average error and error variance of Label 10 are 6.16 m and 0.58,

respectively.

Table 3. Labeled dataset used for Al training, validation, and test.

Label Deciles Average error Emror variance

) (D) [m] (D—S}) [m] (5}12) Number of data
1 0.078 0.0409 5.4144¢-4 16,659
2 0.1503 0.1132 4.5576e-4 16,566
3 0.226 0.1851 4.5895¢e-4 16,787
4 0.315 0.2735 6.328¢-4 16,618
5 0.4075 0.3598 7.0324¢-4 16,624
6 0.576 0.4756 0.0023 16,683
7 1.3925 0.8949 0.0536 16,635
8 3.0809 2.2323 0.2634 16,678
9 5.1861 4.0329 0.3677 16,670
10 10.0107 6.1466 0.5819 16,662

Total 1.4755 3.9818 166,582
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Before the LSTM training for the UWB channel classification operates, the
labeled dataset was divided, as illustrated in Fig. 18, into training, validation, and
test sets with 80 %, 10 %, and 10 % ratios, respectively. At each processing step,
they were shuffled by normally distributed random numbers. The LSTM
classification network was fit by a training dataset and evaluated by a validation
set. In this work, the unbiased evaluation results obtained with the validation set

were adopted to select the most suitable LSTM conditions and model

hyperparameters.
Overall dataset
Consisting of TWR error and CIR
Labeling denoted as deciles for TWR error
10 % 10 % 10 % 10 %
v A 4 v v
80 %
Training Training Training ® 0 0 Training
e e e~ e~ o
10 %
Label 1 Label 2 Label 3 Label 10

Figure 18. Split method in the labeled dataset.

_33_

Collection @ chosun



Table 4 presents the designed models and their validation accuracies. For the
model validation, the LSTM, bidirectional LSTM (Bi-LSTM) [63], and GRU [64]
were compared. The input layer adopted a half-size CIR stream for Al training and
inference, where the CIR samples were selected in Fig. 1 from 496 - 992 ns.
Therefore, the length of the input sequence was 496 in the form of either the

absolute of the CIR (CIR

abs

) or raw CIR (CIR.,, ) comprising the real and
imaginary. Each RNN layer (LSTM, Bi-LSTM, and GRU) has hidden states of
496, same as the input sequence, and is connected to a dropout layer of 20 % to
prevent the model from overfitting [65][66]. After the fully connected layer, it
contains the softmax output layer for the channel condition classification. In our
study, various models with a deeper network and half-reduced hidden units were
evaluated, and the training time required to evaluate model complexity was
measured for the epoch of 200 using the MATLAB deep learning training progress
monitor [67]. Each model was evaluated with each learning process condition as
follows: Adam optimizer, learning rate of 0.001 (constant), gradient threshold of 1,
loss function of cross-entropy, iteration per epoch of 1041, and validation frequency

of 8320 iterations.
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Table 4. Validation accuracy for each RNN model.

Model Input RNN Hidden | Training Overall
shape layers units time [min] | accuracy [%]
1 CIR,, Single LSTM 248 130 53.79
1 LSTM 248
CIR
2 abs L STM 124 211 79.85
3 CIR.,, Single LSTM 248 129 63.65
1" LSTM 248
CIR,
4 B0 > STM 4 210 82.15
1" LSTM 248
5 CIR,,, 2nd LSTM 124 270 82.02
3rd LSTM 62
Ist LSTM 248
2nd LSTM 124
CIR ., .
6 e 3rd LSTM 62 322 82.01
4th LSTM 31
7 CIR..., Single Bi-LSTM 248 223 62.61
Ist Bi-LSTM 248
CIR
8 e 2nd Bi-LSTM 124 393 81.05
9 CIR,,, Single GRU 248 124 65.86
Ist GRU 248
CIR ., .
10 " 2nd GRU 124 202 79.68

As presented in the validation result, Models 1 and 2 using the input shape of

CIR,, defined as CIR magnitude exhibited partially divergent accuracy and loss in

the training progress. They had validation accuracy lower than Models 3 and 4
using the same LSTM model because they excluded phase information of CIR
signal at the model training. Hence, Models 1 and 2 were unsuitable for the
proposed system. Models 3, 7, and 9 designed by a single RNN layer did not
achieve validation accuracy above 80 %. This implies that the proposed method
requires deeper neural networks for channel condition classification. In contrast, the
models stacked with two or more RNN layers achieved an 80 % level of

validation accuracy. However, Models 5, 6, and 8 spent more training time than
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Model 4. Among these models, although Model 8 using the Bi-LSTM spent the
longest training time of 593 min at the AI server used for the AI training in this
study. It exhibited a similar performance of the accuracy of 80 % level. It could
mean that there is no beneficial information in the backward sequence of the CIR.
However, Model 10 using double GRU layers exhibited a validation accuracy close
to 80 % and required a short training time of 202 min because of its lightweight
design. However, it still exhibited lower performance than Model 4 using double
LSTM layers that required an additional time of 8 min. Model 4 achieved an
overall accuracy of 82.15 % with a training time of 210 min. Moreover, it
exhibited a fast model convergence than more complex Models 5, 6, and 8.
Finally, Model 4 was selected for the proposed system because of its superior
classification performance and efficient training time. Subsequently, the Model 4
trained labels for channel classification was pre-deployed for the NLOS mitigation

phase in the host computer.
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C. NLOS Mitigation

In the AI inference phase, the pre-trained model (stacked-LSTM classification
network) predicts channel condition with a label number for each DS-TWR+ result.
Subsequently, the NLOS mitigation phase adopts these classified labels for
generating NLOS mitigated measurements. In this thesis, the statistics of the dataset
were used to approximate NLOS errors [44]. It was assumed that there was an

NLOS-biased error b

nlos

in the labeled dataset, and it could be modeled by the

average error of its dataset [68]. In this step, the measurement noise covariance
matrix R was updated using the variance of the labeled dataset because the

performance of TWR varies with the change in the NLOS channel [69]. Hence, the
NLOS mitigated measurement Z, and its noise covariance matrix R, at the time

step k, classified label [, and anchor number n are expressed as:

dor — DSyt vy,
dyy, — DS+ vy,

Zk'= Aoy, — DSy vy | (30)
,dnk —D nl+vnk,
~ L A2 A2 A2 ~2
Ry, = diag (o, 01 0+ 07); G

where DS, and o

nl

denote the average error and error variance of the labeled

dataset, respectively. Finally, the determined Zk and ﬁk were used as Z, and R,

of the correction phase of Fig. 7.
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IV. Experimental Setup

This section introduces the testbed of the proposed UWB positioning system in a

typical indoor environment and describes the dataset and its collection method.

A. Testbed Setup

The tag device of the proposed system comprises three modules, as illustrated in
Fig. 19. In this study, the UWB, microcontroller unit, and data transfer modules
used were DWM1000, LPC1768, and FT232H, respectively. LPC1768 and FT232H
can transfer ranging results and its CIR stream of 1984 bytes to the host computer

using 6 Mbps serial communication.

DWMIOQO LPC1768 FT232H
(UWB radio) (MCU) (Data transfer)

Figure 19. Main modules of tag device.

The anchors used in this study were DWMI1001-DEV devices manufactured by
Decawave. These devices were reprogrammed to work as DS-TWR+ anchors. In
addition, the parameters of UWB positioning were configured as denoted in Table

5.
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Table 5. Parameter configuration of the UWB system.

Parameter Value Parameter Value
Channel 3 Bandwidth 499.2 [MHz]
Pulse repetition
Data rate 110 [Kbps] 16 [MHz]
frequency (PRF)
Preamble length 1024 Preamble code 5
Operation time of Positioning interval
25 [ms] 200 [ms]
DS-TWR+ (77yy) (1)

The Al server performed Al training, validation, and test using MATLAB 2021a
of Mathworks [67]. Its specifications are presented in Table 6. In addition, the host
computer illustrated in Fig. 8 performed AI-EKF localization. Its specifications are

as follows: CPU of Intel i7 10875H, GPU of Nvidia RTX 2060, and RAM of

32GB.
Table 6. Al server configuration and its framework.
Category Tool
CPU AMD Ryzen 7 5800X @ 3.8 GHz
GPU Nvidia GeForce GTX 3080 10 GB @ 8704 CUDAs
RAM DDR4 32 GB @ 3600 MHz
Operating system Windows 10 Education
Deep learning toolbox, parallel computing toolbox,
Al framework statistics and machine learning toolbox of MATLAB
2021a
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B. Dataset Setup

The experimental area for data collection was a typical indoor environment on
the 8th floor, college of IT convergence, Chosun University, in KOREA, as

illustrated in Fig. 20. Data collection was performed at four sub-areas from (a) to

(d).

8" floor, college of IT convergence

(a) Laboratory

L7

v
(b) Corridor ”_h o ) Hall

[

/Host computer for
data collection

Corridor

Figure 20. Experimental area for the data collection.

Sub-area (a) was a laboratory with tables and experimental devices such as a
multimeter, oscilloscope, power supply, and function generator. Sub-area (b) was a
corridor without obstacles. The picture in Fig. 20 expresses data collection in this
sub-area. Fig. 21 presents the DS-TWR+ testbed tag and anchor positions for the
data collection in sub-areas (a) and (b). In sub-area (a), the tag was located at TO
and T1, and the anchor was installed on black dots. The distance between positions

for each device to be located was 2 m in width and 2.925 m in height. In
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sub-area (b), the tag positions were MO and M1, and the locations of the anchor
were on each black dot in the corridor. The distance intervals of each device were
2 m in width and 0.67 m in height. The tag in sub-area (a) could measure the
through-the-wall propagation effect of the UWB signal transferred from sub-area
(b). In this collection, the tag obtained DS-TWR+ data at TO and T2 when the

anchor was placed on one of MO, M1, and black dots in sub-area (b).

W eT6'C

Laboratory
[ ] [ ]

WweT6C

W o6y

(b) Corridor

w
SCI'l
Z
3
<)
o
3
B

B Tag positions
® Anchor positions
@ Tag or anchor positions

Figure 21. Sub-areas (a) and (b) with tag and anchor positions for the data collection.

Sub-area (c) was a hall with a corner, as illustrated in Fig. 22. Anchor positions
were between the stair and elevator, while tag positions were in front of the office.

This placement of the testbed tag and anchor generated the NLOS channel.
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Significantly, the space of the intermediate distribution frame (IDF) adopted for
cross-connecting ethernet cables was located in this corner, which created an
extreme NLOS path. In sub-area (c), the distance interval of the tag was 1.8 m in
width, while the distance intervals of the anchor were 0.9 m in width and 1.8 m

in height.

Hall

7.2m

M Tag positions
® Anchor positions

Figure 22. Sub-area (c¢) with tag and anchor positions for the data collection.

Sub-area (d) shown in Fig. 23 was a common office area with partitions, PCs,
monitors, and office furniture. This sub-area contained a higher density of obstacles

than other sub-areas. Thus, the occurrence of LOS channels was limited, and
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multipath propagation was primarily observed. In this sub-area, anchor positions
were also on the black dots. The distance interval of the tag was 1.8 m in width,
while the distance intervals of the anchor were 5.4 m in width and 2.25 m and

5.4 m in height.

1.8m | W Tag positions
K——— @® Anchor positions

w s

[ S A A R R A
.

Figure 23. Sub-area (d) with tag and anchor

positions for the data collection.

For the data collection at each sub-area, the tag and anchors moved with a
uniform distance interval, and the tag at each measurement point stored the
measured 500 DS-TWR+ distance estimation results without human interference and
another 500 results with human interference. Hence, this collecting method could
enable the application of the human body impact to the Al model [70]. Finally,
outlier removal was performed from the collected TWR error based on a standard
deviation of 3 [71]. Table 3 presents the labeled dataset measured in the

experimental area for UWB channel classification.
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C. Scenario Setup

Two types of experimental scenarios were set up to evaluate the performance of
the proposed UWB positioning system, as illustrated in Fig. 24. The first scenario,
KNOWN, which employs the same places from the training set, was obtained for
the AI-EKF performance test. It was performed in a laboratory and corridor
separated by the wall on the 8th floor used in the data collection area. The other
scenario, UNKNOWN, which adopts different locations from the training set, was
obtained for the AI-EKF performance evaluation at another office and corridor
separated by tempered glass on the 2nd floor of the same building. At this
location, the corridor had an open space expanded on the 2nd floor. The 2nd
scenario, UNKNOWN, was designed for a fair evaluation of the AI approach

because AI-EKF was one of supervised learning.
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(b)

Figure 24. Location of experimental scenarios for the performance

evaluation of the proposed UWB positioning system: (a) scenario
KNOWN on the 8th floor (b) scenario UNKNOWN on the 2nd

floor.

For the performance evaluation, as illustrated in Fig. 25 and 26, indoor maps of
the experimental scenarios and their reference points were created, with which the
tag positions were estimated. Tables 7, 8, 9, and 10 present the coordinates of the
reference points. In addition, the tags and anchors were placed at a height of 1.5

m.
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Laboratory

(wgy ) A

P7 I Anchors in laboratory P
) Corridor ) A Anchors in corridor ()
@ Waypoints
A8

X

X (13.95m)

Figure 25. Indoor map with reference points and anchors in scenario KNOWN.

Table 7. Coordinates of anchors in scenario KNOWN.

Coordinates Coordinates Coordinates
Anchor Anchors Anchors
(%, y) [m] (X, y) [m] (x, y) [m]
A0 0.45, 0 Al 0.67, 3.62 A2 0.67, 9.47
A3 6.97, 3.62 A4 6.97, 9.47 A5 72, 0
A6 12.82, 3.62 A7 12.82, 9.47 A8 13.95, 0
— 46 —_
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Table 8. Coordinates of reference points in scenario KNOWN.

B Coordinates S Coordinates S Coordinates
(x, y) [m] (x, y) [m] (x, y) [m]

PO 0, 0 P1 0.52, 1.125 P2 0.52, 2.4

P3 1.79, 3.62 P4 1.79, 6.545 P5 1.79, 9.47
P6 6.6, 0 P7 6.6, 1.125 P8 8.32, 3.62
P9 8.32, 6.545 P10 8.32, 9.47 P11 12.595, 3.62
P12 12.595, 4.52 P13 12.595, 6.545 P14 12.595, 9.47
P15 13.045, 1.125 P16 13.045, 3.17 - -

(wepy'6) A

1

’E

|

i B
| — a

\
{
\
L
|
L
|
L

P1 B Anchors in office
() A Anchors in corridor
@ Waypoints

Corridor

A3 P6

A8
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Figure 26. Indoor map with reference points and anchors in

scenario UNKNOWN.




Table 9. Coordinates of anchors in scenario UNKNOWN.

Coordinates Coordinates Coordinates
Anchor Anchors Anchors
(x, y) [m] (x, y) [m] (x, y) [m]
A0 0,0 Al 0.49, 3.58 A2 0.49, 9.43
A3 5.175, 0 A4 5.215, 3.58 A5 5.215, 9.43
A6 9.94, 3.58 A7 9.94, 943 A8 10.35, 0

Table 10. Coordinates of reference points in scenario UNKNOWN.

Coordinates Coordinates Coordinates
Ref. Ref. Ref.

(x, y) [m] (x, y) [m] (x, y) [m]
PO 0,0 P1 0, 1.125 P2 1.39, 4.48
P3 1.39, 6.73 P4 3.19, 6.73 P5 3.19, 8.98
P6 6.75, 0 P7 6.79, 6.73 P8 6.79, 8.98
P9 9.49, 1.125 P10 9.49, 4.48 P11 9.49, 6.73

In addition, three different routes and two anchor deployments were generated for
each scenario, as presented in Tables 11 and 12, and the AI-EKF method was
compared with the proposed UWB positioning system and existing positioning
methods such as LS, WLS, and EKF without AI approaches. For the comparison,
the Q values of EKF and AI-EKF were set as diag(0.01,0.01), and R of EKF

was configured with diag(0.01, ---,0.01) for four and five anchors, respectively.
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Table 11. Waypoints of each trajectory used in the scenario.

Map Route Waypoints
Laboratory P5=P4=P9=P8=P11=P14
Scenario KNOWN Corridor P1=P6=P15
(8th floor) P1=P15=P16=P11=P14=P10=P9=P4
Both
=P3=P2=P1
. Office P2=P3=P4—=P5=P8=P7=P11=P10
Scenario UNKNOWN
Corridor P1=P6=P9
(2nd floor)
Both P1=P9=P10=P2=P7

Table 12. Anchor deployment used in the scenario.

Map Number of anchors Anchor deployment
Scenario KNOWN 4 Al, A4, A5, A6
(8th floor) 5 A0, A2, A3, A7, A8
Scenario UNKNOWN 4 Al, A3, A5, A6
(2nd floor) 5 A0, A2, A4, A7, A8
— 49 -

Collection @ chosun



V. Performance Evaluation

A. NLOS C(lassification Performance

Fig. 27 presents a confusion matrix evaluated with the test set to provide the
classification performance of the proposed LSTM model shown in Fig. 9. In this
figure, the target class is the actual label of the test dataset, while the output label
is the predicted label of the proposed model. For each label, the column on the far
right expresses precision and false discovery rate (FDR), while the row at the
bottom denotes recall and false-negative rate (FNR). In this evaluation, an overall
accuracy of 81.7 % was achieved, and the FDR and FNR for each label mainly
occurred for adjacent labels. It is clear that the selected model can be beneficial to
the UWB channel classification for the proposed UWB positioning system. For
example, when the actual channel condition is a clear LOS indicated as Label 1 or
2, but the proposed LSTM model infers channel condition as Label 9 or 10, the
proposed UWB positioning system excludes this distance measurement because of
its significant variance. Hence, it triggers the performance degradation of
positioning. In another case, the selected model predicts channel class as Label 1
or 2, but the actual channel is the NLOS indicated as Label 9 or 10. The
proposed UWB positioning system primarily adopts this measurement because of its
slight wvariance. Therefore, its positioning performance deteriorates. Unlike the
example, the selected LSTM model mainly inferred correct channel conditions and
selected the adjacent labels even in the worse cases. In other words, even though
there is an incorrect inference, the selected model can be beneficial in improving

positioning performance.
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Figure 27. Classification performance of the proposed LSTM network.

B. Positioning Performance

This section provides the positioning performance of the proposed system for
each scenario with a 2D trajectory in terms of the cumulative distribution function

(CDF) of positioning errors, root mean square error (RMSE), and standard deviation

(STD) of the positioning errors.
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1) Scenario KNOWN Using Four Anchors

Fig. 28, 29, and 30 present trajectories and CDFs of positioning errors for each
method in the scenario KNOWN using four anchors. Furthermore, Tables 13 and
14 express RMSE and STD of positioning errors measured for each method under
the same condition. In this scenario, three anchors (Al, A4, and A6) were installed
in the laboratory, and an anchor A5 was installed the corridor. Therefore, channel
conditions in the laboratory (sub-area (a)) generated by anchors Al, A4, and A6
were better than those generated by A5 located in the corridor. However, in the
corridor route, anchors located in the corridor provided more favorable channel
conditions than others. Among the existing positioning approaches, WLS achieved
8.5 % RMSE improvement on average for each trajectory over LS because its
adaptive weight based on distance proximity exerted a higher impact on the
anchors within the same area in each experimental path. In addition, WLS achieved
an average precision improvement of 70.5 % over LS. In contrast, EKF generated
biased trajectories because of NLOS error. It performed similar to WLS, with an
8.4 % RMSE improvement on average compared to LS. However, it achieved an
average precision enhancement of 158.1 % over LS because of its noise reduction
ability. In contrast, AI-EKF obtained precise trajectories at every route without
biased error. Moreover, it corrected the trajectory fluctuation around P2 and P16. In
this zone, several anchors were located behind the pedestrian's handheld tag, and
steel doors, walls, and furniture were located near the tags. Therefore, the
furnishing in this zone exhibited an adverse effect on the positioning performance.
Although LS, WLS, and EKF generated unstable and biased trajectories, AI-EKF
improved the positioning accuracy and precision by an average RMSE of 66.4 %

and an average STD of 199.1 % compared to LS.
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Figure 28. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in the laboratory on the 8th floor using four anchors.
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Figure 29. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in the corridor on the 8th floor using four anchors.
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Figure 30. Trajectories (top) and positioning error CDFs (bottom) measured by
each method in both the laboratory and corridor on the 8th floor using four

anchors.
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Table 13. RMSE of positioning results at each method

in scenario KNOWN using four anchors.

Laboratory Corridor Both
Methods
[m] [m] [m]
LS 0.8782 1.0519 1.1309
WLS 0.8609 0.9708 0.9903
EKF 0.8656 1.0248 0.9341
AI-EKF 0.6719 0.5712 0.5968

Table 14. STD of positioning errors at each method

in scenario KNOWN using four anchors.

Collection @ chosun

Methods Laboratory Corridor Both
LS 0.0968 0.2589 0.4142
WLS 0.0938 0.1427 0.2151
EKF 0.102 0.083 0.1133
AI-EKF 0.0707 0.0953 0.0914
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2) Scenario KNOWN Using Five Anchors

Fig. 31, 32, and 33 present trajectories and CDFs of positioning errors for each
method in the scenario KNOWN using five anchors. Furthermore, Tables 15 and
16 present the RMSE and STD of positioning errors measured for each method
under the same condition. Fig. 34 presents the average RMSE and STD for routes
of each method. In this scenario, three anchors (A2, A3, and A7) were installed in
the laboratory, while two anchors (A0 and AS8) were installed in the corridor.
Therefore, channel conditions in the laboratory (sub-area (a)) generated by anchors
A2, A3, and A7 were better than those generated by A0 and A8 in the corridor.
However, in the corridor route, anchors located in the corridor provided more
favorable channel conditions than others. Similar to the results of the scenario using
four anchors, WLS achieved an average 16.8 % RMSE improvement for each
trajectory over LS. In addition, WLS achieved an average precision improvement of
55.2 % over LS. In contrast, EKF generated biased trajectories because of the
NLOS error. It performed worse than WLS, with an average 10 % RMSE
improvement compared to LS. However, it achieved an average precision
enhancement of 166.8 % over LS. Although LS, WLS, and EKF generated unstable
and biased trajectories, AI-EKF improved the positioning accuracy and precision by

an average RMSE of 112.7 % and an average STD of 368 % compared to LS.

In this scenario, the additional anchor deployed at the corridor enhanced the
positioning performance. As illustrated in Fig. 34, LS, WLS, EKF, and AI-EKF
achieved average RMSEs of 41.6 %, 52.5 %, 43.7 %, and 81.1 % improvements,
respectively; also, each method enhanced average STD of 105.4 %, 86.9 %, 112.3

%, and 221.3 %, respectively, compared with the case of the four anchors.
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Figure 31. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in the laboratory on the 8th floor using five anchors.
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Figure 32. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in the corridor on the 8th floor using five anchors.
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Figure 33. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in both the laboratory and corridor on the 8th floor using five
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Table 15. RMSE of positioning results at each method

in scenario KNOWN using five anchors.

Laboratory Corridor Both
Methods
[m] [m] [m]
LS 0.7266 0.653 0.7822
WLS 0.582 0.6058 0.6627
EKF 0.607 0.6431 0.7149
AI-EKF 0.297 0.3241 0.3951

Table 16. STD of positioning errors at each method

in scenario KNOWN using five anchors.
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Methods Laboratory Corridor Both
LS 0.1561 0.0787 0.1401
WLS 0.0896 0.0628 0.0892
EKF 0.0665 0.0296 0.0444
AI-EKF 0.0228 0.0199 0.0374
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Figure 34. Average RMSE (top) and STD (bottom) for each route of each

method for anchor deployments in scenario KNOWN.
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3) Scenario UNKNOWN Using Four Anchors

Fig. 35, 36, and 37 present trajectories and CDFs of positioning errors for each
method in scenario UNKNOWN using four anchors. Tables 17 and 18 also present
the RMSE and STD values for each method. Furthermore, Fig. 41 shows the
average RMSE and STD for routes of each method. The deployment of anchors
was divided into office groups (Al, A5, and A6) and one corridor (A3), similar to
the scenario KNOWN. However, this scenario had different UWB channel
conditions from scenario KNOWN. The worst zone was generated around P6 and
P9 because of reasons such as concrete pillars, tempered glasses, stainless steel
frames, and human bodies. Therefore, WLS and EKF exhibited similar performance
improvements as on the 8th floor. WLS achieved an average RMSE of 4.5 % and
an average STD of 40 % compared to LS, while EKF improved the average STD
of 172.8 % compared to LS. However, it reduced the performance of the average
RMSE of -2.7 % because the insufficient number of anchors triggers the majority
ratio of NLOS channels. The average RMSE and STD of the AI-EKF were
enhanced by 95.6 % and 309.9 % compared to LS. Note that the trained model of
AI-EKF did not learn CIRs in this environment. However, it successfully mitigated
NLOS effects because the LSTM network optimally classified the channel status,
irrespective of the environmental conditions. In other words, the proposed labeling
of the channels provides flexibility to the design and can employ the proposed Al

model for positioning services.
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Figure 35. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in the office on the 2nd floor using four anchors.
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Figure 36. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in the corridor on the 2nd floor using four anchors.
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Figure 37. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in both the office and corridor on the 2nd floor using four
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Table 17. RMSE of positioning results at each method
in scenario UNKNOWN using four anchors.

Laboratory Corridor Both
Methods
[m] [m] [m]
LS 0.3998 0.5583 0.6519
WLS 0.4159 0.5204 0.604
EKF 0.5042 0.5388 0.6121
AI-EKF 0.2189 0.281 0.323

Table 18. STD of positioning errors at each method
in scenario UNKNOWN using four anchors.

Collection @ chosun

Methods Laboratory Corridor Both
LS 0.0317 0.0991 0.1537
WLS 0.0314 0.0623 0.1095
EKF 0.0258 0.0218 0.0567
AI-EKF 0.0173 0.0273 0.0248
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4) Scenario UNKNOWN Using Five Anchors

Fig. 38, 39, and 40 present trajectories and CDFs of positioning errors for each
method in scenario UNKNOWN. Tables 19 and 20 also present RMSE and STD
values for each method. The deployment of anchors was divided into office (A2,
A4, and A7) and corridor (A0 and AS8) groups, similar to the scenario KNOWN.
WLS achieved average RMSE and STD values of 17.6 % and 68.6 % compared to
LS, while EKF achieved average RMSE and STD values of 7.4 % and 100.1 %
compared to LS. The average RMSE and STD values of AI-EKF were enhanced

by 114.7 % and 454.5 %, respectively, compared to LS.

The additional anchor deployed at the corridor enhanced the positioning
performance more than that of the case with four anchors. In this scenario, as
illustrated Fig. 41, LS maintained its positioning performance of an average RMSE
and improved average STD of 35 %. WLS achieved the improvement of an
average RMSE of 12.8 % and average STD of 62.6 %. EKF improved an average
RMSE of 10.6 % and maintained its average STD similarly. In addition, the
average RMSE and STD of AI-EKF were enhanced by 9.9 % and 82.6 %.

The CDFs of the positioning errors in both scenarios also indicate that the
AI-EKF in the proposed system exhibited a better positioning performance than the

other existing methods. Hence, it can be inferred that the proposed system mitigates

the NLOS effects of the UWB system.
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Figure 38. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in the office on the 2nd floor using five anchors.
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Figure 39. Trajectories (top) and positioning error CDFs (bottom) measured by

each method in the corridor on the 2nd floor using five anchors.
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Table 19. RMSE of positioning results at each method
in scenario UNKNOWN using five anchors.

Laboratory Corridor Both
Methods
[m] [m] [m]
LS 0.3799 0.6551 0.5718
WLS 0.3184 0.5489 0.4986
EKF 0.4122 0.5565 0.528
AI-EKF 0.2239 0.2254 0.2992

Table 20. STD of positioning errors at each method
in scenario UNKNOWN using five anchors.

Collection @ chosun

Methods Laboratory Corridor Both
LS 0.0392 0.0942 0.0773
WLS 0.0231 0.0464 0.0555
EKF 0.026 0.0234 0.0559
AI-EKF 0.0115 0.0105 0.016
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Figure 41. Average RMSE (top) and STD (bottom) for each route of each
method for anchor deployments in scenario UNKNOWN.
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V1. Conclusion

This thesis proposed the Al-applied UWB positioning system with an AI-EKF
localization based on LSTM and EKF localization. In the proposed method, the
system determines the channel conditions for NLOS error mitigation. Then, the
statistics of the channel are used to mitigate the NLOS effects from the TWR
measurement. Finally, the user obtains an enhanced position using EKF localization
with an NLOS-mitigated measurement. The proposed method was compared with
existing localization methods in two experimental scenarios. In both scenarios, the
proposed method mitigated the NLOS-biased error and enhanced the positioning
accuracy. Moreover, it exhibited a superior positioning precision owing to the
attached EKF algorithm. Additionally, even in scenario UNKNOWN using five
anchors, the proposed AI-EKF method showed an average improvement of RMSE
of 82.5 % and 100 % in terms of positioning error compared to existing methods
WLS and EKF, respectively. Furthermore, it exhibited improved precision on
trajectories with an average STD of 228.9 % and 177.1 % compared to WLS and
EKF, respectively. In conclusion, the proposed UWB positioning system using
UWB channel classification with LSTM network and NLOS effect mitigation with
EKF can provide more accurate positioning solutions as compared to existing
methods even in the case of no training on the channel conditions at the current

tag position.
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