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Abstract

AI-Applied UWB Positioning System
with Mitigated NLOS Effects

Dae-Ho Kim

Advisor : Prof. Jae-Young Pyun, Ph.D.

Dept. Info. and Comm. Eng.,

Graduate School of Chosun University

  The ultra-wideband-based (UWB) indoor positioning system (IPS) has high 

positioning precision and accuracy and can meet the requirements of location-based 

services (LBSs) for Internet of Things (IoT) applications. However, there are 

usually a limited number of line-of-sight (LOS) channels in indoor environments. 

This thesis introduces the artificial intelligence (AI) applied UWB positioning 

system that can enhance the positioning performance of an IPS in a common 

indoor environment by classifying channel conditions based on ranging errors using 

the long short-term memory (LSTM) based deep learning (DL) model. The 

proposed system mitigates the positioning degradation caused by the NLOS effects 

by performing extended Kalman filter (EKF) localization based on the detected 

channel conditions. This study provides a detailed experimental setup and rigorous 

performance evaluation of the proposed system. The AI model is trained by the 

dataset collected from the testbed. Then, the testbed of the proposed positioning 

system is evaluated by conducting experiments consisting of a known scenario and 
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an unknown scenario. The evaluation results showed that the AI-EKF localization 

method of the proposed system significantly improved the positioning performance 

compared with the three existing positioning methods.



- x -

요 약

NLOS 효과가 완화된

AI 적용 UWB 측위 시스템

김 대 호

지도교수: 변 재 영

조선대학교 대학원 정보통신공학과

초광대역(UWB) 기반의 실내 측위 시스템은 사물 인터넷 응용기술로서 위치

기반 서비스의 요구 사항을 충족할 수 있는 높은 측위 정밀도와 정확도를 갖고

있다. 그러나, 일반적으로 실내 환경에서 UWB 기기간의 깨끗한 가시선 채널

조건을 찾는 것은 어렵다. 본 논문에서는 장단기 기억 셀(LSTM) 신경망 기반

심층 학습을 이용하여 UWB 거리 측정의 오차를 기반으로 채널 조건을 분류하

고, 일반적인 실내 환경에서 측위 성능을 향상하기 위한 인공지능이 적용된

UWB 측위 시스템을 제안한다. 그리고, 감지된 채널 조건을 통해 확장 칼만 필

터 측위 알고리즘을 수행하여 비 가시선 효과로 인한 측위 성능 저하를 완화한

다. 또한, 이 논문은 제안된 시스템에 대해 상세한 실험 설정과 엄격한 성능 평

가를 제공한다. 실험과 성능 평가를 위한 테스트베드 장치로부터 수집된 데이

터 세트를 이용하여 LSTM 기반의 인공지능 모델을 훈련한 후, 인공지능 모델

이 아는 시나리오와 알지 못한 시나리오로 구성된 실험에서 제안한 인공지능이

적용된 UWB 측위 시스템을 평가하였다. 평가 결과, 제안한 시스템의 인공지능

이 적용된 확장 칼만 필터 측위 방법은 기존 3가지 측위 방식과 비교해 그 성
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능이 크게 향상되는 것으로 나타났다.
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I. Introduction

A. Research Background

  Internet of Things (IoT) technologies have been incorporated in various ways in 

location-based applications depending on their applicability [1]. Specifically, 

ultra-wideband-based (UWB) indoor positioning systems (IPS) provide various 

indoor location-based services (LBSs), such as augmented reality (AR) [2], indoor 

unmanned aerial vehicles (UAV) [3], sports [4], automated guided vehicle (AVG) 

[5], and industrial tracking [6], requiring precise and stable positioning performance.

  The UWB positioning system specified in [7][8] meets these requirements with 

its unique high-resolution timestamping, i.e., impulse radio (IR) signals emitted by 

UWB devices have nanoscale time resolution [9][10]. The time of arrival (TOA) or 

time difference of arrival (TDOA) between devices can be obtained from 

timestamps captured during the time of sending and receiving messages [11]. Then, 

the target position can be estimated using TOA or TDOA [12]. System designs 

based on TOA are more simple and common than TDOA-based positioning systems 

[13]; this provides flexibility for infrastructure construction. In addition, the TOA 

method primarily uses a two-way message exchange called two-way ranging 

(TWR). Therefore, it can estimate the distance without a time synchronization 

process by using round trip times between the tag and anchor [14][15]. Moreover, 

an enhanced message exchange method, such as double-sided-TWR (DS-TWR), can 

achieve cm-level distance measurement performance [16][17].
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  Distances measured with TWR are used in positioning systems using trilateration

[18]. The tag position in trilateration is estimated using the intersection of the 

circles created by the distance between the tag and anchors. The least-squares (LS) 

method is used to derive the tag position from equation [15]. Furthermore, 

weighted LS (WLS) can be useful for improving the positioning performance by 

utilizing distance [19], residual variance [20], and estimated error [21] as the 

weight factor. A more advanced method involves applying a Kalman filter (KF) to 

position measurement [22]. In particular, extended KF (EKF) with linear 

approximation using the Taylor series is a well-known algorithm for linearizing and 

optimizing positioning systems with nonlinear designs such as tracking and 

navigation [20]. In practice, EKF has been used in various positioning systems such 

as autopilot of unmanned aerial vehicle (UAV) [23], inertial navigation [24], 

vehicle navigation [25], vehicle tracking using radar [26], etc. However, although 

the positioning algorithm has been advanced from the LS method to EKF 

localization, the UWB signals propagated in a complex indoor environment 

deteriorate the distance measurement performance owing to multipath. In other 

words, the channel condition between the tag and anchor is the most important 

factor for UWB positioning systems that rely on distance measurement between 

them.

  Recently, more practical techniques for optimizing the UWB system by 

identifying the NLOS channel have been proposed [27]-[30]. These techniques 

estimate channel conditions by using radio parameters calculated from the channel 

impulse response (CIR) [31]. These radio parameters in NLOS identification 

methods are combined with machine learning (ML), such as support vector machine 

(SVM) [32][33], decision tree [34], random forest [35], expectation maximization 
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(EM) for Gaussian mixture model (GMM) [36], and multi-layer perceptron [37]. 

Recently, deep learning (DL) approaches have been considered owing to advances 

in hardware for parallel computing. DL extracts features by itself during the 

learning process. DL-based methods such as convolutional neural networks (CNNs) 

and long short-term memory (LSTM) use the raw CIR sequence directly instead of 

the radio parameters calculated from the UWB device to enhance the accuracy of 

the channel classification [21], [38]-[41]. Artificial intelligence (AI) approaches for 

ML and DL have achieved LOS/NLOS classification accuracy of above 80 %.

B. Research Objective

  This thesis introduces the AI-applied UWB positioning system that classifies 

channel conditions into 10-levels based on a ranging error distribution and mitigates 

the NLOS-induced error of TWR with the proposed AI-EKF localization.

C. Thesis Organization

  The remainder of this thesis is organized as follows. In Section II, the relevant 

techniques for the proposed UWB system are described. Section III presents the 

proposed UWB positioning system and its AI-EKF localization method. Sections IV 

and V provide the experimental setup for performance evaluation and results. 

Finally, Section VI concludes the paper.
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II. Background

A. NLOS Effects of UWB Ranging

1) Error Model of UWB Ranging

  When the first signal arrives at the UWB receiver, UWB signals propagated at 

the channel are captured, and their timestamps are recorded for the distance 

measurement. In a clean LOS channel, the first arrived signal is assumed to be the 

signal that traversed the shortest path, i.e., the ranging result obtained from TWR 

is close to the actual distance between the tag and anchor. On the other hand, in 

the NLOS channel, the first path signal is generated by multipath interference and 

obstacle penetration waves [42]-[44]. In this situation, UWB timestamps vary and 

can be presented with a positive bias in the multipath propagation environment [12]

[45][46]. Therefore, the UWB ranging performance based on timestamps is affected 

by the channel conditions. In this paper, the ranging result  is assumed as 

follows:

    for LOS channel

  for NLOS channel
 (1)

where   is the actual distance between the tag and anchor, ∼ 
  

denotes the measurement error defined as additive white Gaussian noise (AWGN) 

with zero mean and variance 
 , and  represents a positive NLOS-biased error 

defined as an exponential random variable [47]-[49].
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Figure 1. Received UWB signals indicated as CIR:

 (top) LOS channel (bottom) NLOS channel.
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  The deciding factor for the channel condition is required to approximate the error 

parameters of   and  . Fig. 1 shows the real and imaginary components of 

the received UWB signals in LOS and NLOS channels indicated as CIR [50]. In 

this figure, the first path signal measurements of both LOS and NLOS channels are 

shown. In the LOS channel, CIR had a strongly concentrated energy distribution at 

the arrival time of the first path signal, which was observed at a sampling time of 

750 ns. In contrast, in the NLOS channel, the overall power of the UWB signal 

was weakened by obstacle penetration and multipath interference and was observed 

at a sampling time of 747 ns. In this example, the signal measured at 758 ns was 

stronger than the first path signal; this UWB signal interfered constructively and 

destructively in a cluttered environment.

2) Classification of Channel Conditions

  In this thesis, DL was used on the CIR to determine the channel condition. The 

recurrent neural network (RNN) model was selected because CIR is a time-series 

data-type. RNN adopts a recurrent operation, such that the output (hidden state) 

generated from the previous time step is provided in the current time step. This 

recurrent operation process enables the optimal display of the time-series data 

pattern. In addition, RNN can be designed with different dimension sizes at the 

input and output. In this research, the many-to-one model, an RNN input/output 

model, is considered for classifying channel conditions using a sequence of inputs. 

However, a simple RNN has a long-term dependency problem, as past information 

cannot propagate sufficiently to the current one owing to a gradient vanishing in 

the backpropagation process [51]-[53].
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  The LSTM network was proposed in [54] to avoid the long-term dependency 

problem [55] of a simple RNN. It improves the inference and learning performance 

of a complex sequence by recalling the past state. Fig. 2 illustrates the LSTM cell 

and its components, where , , , and  represent the forget gate, input gate, 

output gate, and cell candidate, respectively. The formula for the components at 

time step  is expressed as:









 

 
  

 
 

   

 
 

   

  tanh
 

   

 ∙  ⊙
 ⊙tanh 

 (2)

where   and   denote the cell and hidden states, respectively. In addition,  , 

, and  represent the input weight, recurrent weight, and bias, respectively.   

is the input sequence, which is represented as CIR.

Figure 2. Components of the LSTM cell.
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B. Ranging Protocols

  The TWR is a message-exchange procedure for estimating the distance between 

UWB radios. It has the advantage of observing the distance on both tag and 

anchor sides owing to the message exchange of the TWR. Therefore, the position 

of the tag can be observed at either tag or anchor side (connected to a server) by 

employing trilateration with the estimated distances between the tag and the 

surrounding anchors. Furthermore, when the tag calculated its position, anchors 

could be configured as lightweight devices without additional communication 

infrastructure such as ethernet and WiFi to connect with the positioning server [56]. 

In this work, the proposed UWB positioning system adopts TWR because of its 

flexible operating conditions.

1) Two-Way Ranging (TWR)

  Fig. 3 presents the TWR introduced in IEEE 802.15.4-2011 std. [7] and IEEE 

802.15.8 std. [8]. In this figure, a tag device and an anchor are illustrated as Tag 

and Anchor boxes, respectively. First, the tag sends a ranging request message to 

the anchor and stores  at the tag device as a TX timestamp. The anchor 

receives a request message from the tag and stores  as an RX timestamp. 

Next, the anchor sends a response message to the tag after a reply time () 

and stores  at the anchor device as a TX timestamp. Finally, the tag stores 

 after obtaining the response message as an RX timestamp. In this 

message-exchange procedure, timestamps are obtained by capturing the ranging 

marker designated in the UWB system. The ranging marker specified in [7] is 
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located at the start of the first symbol of the physical layer (PHY) header of the 

frame.

TX

RX

TX

RX




  ranging
marker

Tag Anchor

TS1

TS4

TS2

TS3

Figure 3. Two-way ranging (TWR).

  After the message-exchange is complete, the round trip time () and  

of the ranging messages are measured using stored timestamps , , , and 

 observed in the tag and anchor as follows:

  (3)

  (4)

Then, the propagation time , that is, TOA of the UWB ranging message, can be 

estimated as follows:

 


 (5)

Therefore, the distance  between the tag and anchor is:
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× (6)

where  is the speed of light (299,792,458 m/s).

  As shown in Fig. 3, the TWR based TOA estimation does not demand time 

synchronization between tag and anchor because  and  are observed 

independently at each device. This advantage makes it easier to build positioning 

systems. However, a single-sided TWR has a weakness in that the TOA estimation 

error can be increased by the longer TWR message processing time () 

because of the hardware clock skew between the tag and anchor [57]. Thus, the 

double-sided TWR (DS-TWR) was devised to solve the clock skew problem by 

measuring the TOA at each side of the tag and anchor.

2) Double-Sided TWR (DS-TWR)

The DS-TWR procedure is illustrated in Fig. 4.

TX

RX

TX

RX





TX

RX

 

    

  ranging
marker

Tag Anchor

Figure 4. Double-sided TWR (DS-TWR).
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  In DS-TWR, the tag and anchor initiate a TWR message exchange, which is the 

same as typical TWR obtaining TOA on the tag side. After obtaining the first 

TOA, the tag sends a second ranging message to the anchor for the second TOA. 

Finally, the response of the anchor and second ranging messages of the tag are 

used to obtain the second TOA on the anchor-side during this process. Thus,  of 

the DS-TWR is measured by

  

× ×
 (7)

3) DS-TWR with Multiple Acknowledgment (DS-TWR-MA)

  In general, the TWR-based UWB positioning system inevitably requires three or 

more anchors for the estimation of the tag location. Indeed, to provide the 

navigation services based on DS-TWR, each tag needs at least nine transfers 

because DS-TWR performs three message exchanges with three anchors. This 

operation requires a large on-air time and battery power to obtain the position of 

each tag. One of the commercial UWB manufacturers, Decawave, introduced a 

practical DS-TWR, DS-TWR with multiple acknowledgment (DS-TWR-MA), for its 

real-time location system (RTLS) service [50], which improved the power 

consumption and on-air time in TWR message exchanges. It is based on the 

symmetric DS-TWR with multiple acknowledgment (SDS-TWR-MA) [58].

  Fig. 5 shows the distance measurement operation of the DS-TWR-MA procedure. 

In this example, the tag initiates the broadcasting of a poll message to anchors (A0 
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~ A2). The anchors receiving a poll message from the tag then send response 

messages sequentially after a predefined reply time (, , and ). 

Next, the tag receiving response messages from the anchors sends a final message 

to the anchors. Finally, the anchor receiving the final message completes the 

ranging message exchange. As a result, the propagation time   for anchor 

number  is calculated by the stored timestamps as follows:

 

××
 (8)

where  is 0, 1, and 2 in the example shown in Fig. 5.

TX
RX

TX

RX

RX

RX

TX

TX
RX

RX

TX
RX

RX RX

ranging
marker 012

012

 
0 

0

 
1 

1

 
2 

2
 

0
 

1

 
1 

2

 
2 

0
A0tag A1 A2

Figure 5. DS-TWR with multiple acknowledgment (DS-TWR-MA).
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C. Localization Methods for UWB Positioning

1) Trilateration with Least-Square Solution

  Trilateration is the process of determining an unknown position with a 

mathematical calculation for estimating the relative position by applying a geometry 

of circles and spheres. Fig. 6 shows anchors A0 ~ A2 located in their known 

positions (, ) ~ (, ), whereas the distances  ~  between a tag and 

anchors are obtained using the TWR.

 

2

10
 

A1(1 , 1 )

A2(2 , 2 )
tag( ) , 

A0(0 , 0 )

Figure 6. TWR-based UWB positioning in 2D (trilateration).

  Fig. 6 shows TWR-based positioning in two-dimensional space; the tag position 

becomes the intersection of the created circles and is expressed by the formula as 

follows:
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










 






 





 


⋮




 


 (9)

where  is the distance between the tag located at (, ) coordinates and the 

pre-deployed th anchor located at (, ) coordinates.

  In practical applications, the LS method can be used for the approximation of 

the tag position because ranging errors do not create a single intersection [15]. The 

LS solution for the tag position (, ) is listed as follows:

Firstly, (9) is expanded to get











 






 







 






⋮


 

 
 



 (10)

then applied secondly with    form













  
  
  

⋮ ⋮ ⋮
 

 (11)

















 (12)
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





























⋮


 

 


 (13)

Now, a vector   for tag location can be approximated as

   (14)

  TWR tends to increase errors due to clock skew and multipath as the distance 

between the devices increases. Hence, the LS solution has a limitation in multipath 

environments because it uses the same weight for the distance measurement of each 

anchor. WLS can improve the positioning performance by applying a weight factor 

for the distance measurement [20][21]. The distance-weighted WLS solution   and 

its weight matrix   are expressed as follows:

   (15)
















 ⋯ 

 


⋯ 

⋮ ⋮ ⋱ 

   



 (16)

  WLS can enhance the estimation performance of the tag location but is not 

adaptive to unstable measurement noise.



- 16 -

2) Extended-Kalman Filter (EKF) Localization

  In this thesis, the proposed UWB system includes the EKF localization 

introduced in [20][22]. It was assumed that the target pedestrian moves the tag in 

a straight path with uniform velocity and acceleration in the 2D plane. Hence, a 

state vector X at the time step  is expressed as follows:

X 






































  

 


 
 






 


  
 


 
 






 


 
  

 




 


 
  

 




 


 
  



 
  



 (17)

where  and  are the coordinates of the tag, 
  and 

 are the velocities, and 


  and 

 are the accelerations. Hence, the state equation of UWB localization is 

expressed as

X AX GW  (18)

where W     
  

  is the process noise vector expressed as the covariance 

matrix Q  
 


  and zero mean, and A  and G  expressed in (19) and 

(20) denote the state transition matrix and the noise driving matrix, respectively.
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 (19)

G
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

































 

 

 (20)

where   is the sample time.

  Let Z denote the measurement vector for each TWR between the tag and 

anchor , including the actual distance  with the measurement noise  at the 

time step . Hence, the measurement equation of UWB ranging is expressed as 

follows:

Z 














⋮



mXv (21)
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mX
















⋮



 (22)

where v represents the measurement noise vector denoted as the covariance matrix 

R 


 ⋯
 , and zero mean. Because (22) is a nonlinear function, the 

Jacobian matrix of (22), H is required as follows:

H 











∂
∂
∂
∂

   

∂
∂
∂
∂

   

∂
∂
∂
∂

   

⋮ ⋮ ⋮⋮⋮⋮

∂
∂
∂
∂

   

 (23)

where






















 (24)

  The procedure for EKF localization algorithm in the 2D plane is shown in Fig. 

7. The prediction and correction phases were performed at time step  with 

positioning interval time  .
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Figure 7. Algorithm of EKF localization for UWB positioning system.
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III. AI-Applied UWB Positioning System

  The EKF can be used to estimate the UWB tag in an LOS environment. 

However, in an NLOS environment with dynamic indoor conditions, the location 

estimation performance is degraded owing to the variation in the measurement 

model, which is influenced by NLOS conditions. Therefore, a positioning method 

that identifies the NLOS channel conditions and updates the measurement model is 

required. In this study, a UWB positioning system is proposed to improve the 

NLOS identification of EKF localization. Fig. 8 illustrates the experimental 

environment of the proposed system comprising pre-deployed anchors, tag, and host 

computer. First, the UWB tag of this system performs DS-TWR+ with anchors to 

capture the distance and its CIR. Then, it transfers the anchor ID (number), 

distance, CIR stream, additional link diagnostic data, and its cyclic redundancy 

check (CRC) to the host computer, which estimates the tag position using AI-EKF 

localization. Depending on the application, the UWB tag and host computer can be 

integrated or separated from each other.

Tag

Host computer

AI inference
EKF localizationUWB radio

MCU

Data transfer

SPI

UART
USB

Anchor

Anchor

Anchor Results of DS-TWR+

Enhanced position

Figure 8. Experimental environment of the AI-applied UWB positioning system.
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  Fig. 9 presents a flowchart for the AI-EKF localization of the proposed UWB 

positioning system. First, DS-TWR+ obtains the distance and CIR between the tag 

and anchors. Then, the CIR is provided as input to the AI inference step, which 

includes a trained LSTM classification network for channel conditions. Next, the 

NLOS mitigation block reduces the NLOS error of the obtained distance using the 

channel condition determined at the AI inference step. Subsequently, it generates 

the NLOS mitigated measurement vector containing the distance and its noise 

parameter required for EKF localization, which is expressed as Z and R. Finally, 

the EKF localization adopts the NLOS mitigated measurement at its correction 

phase and provides the current position. The remainder of this section 

comprehensively describes the AI inference and NLOS mitigation block.

Figure 9. AI-EKF localization of the proposed positioning system.
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A. DS-TWR with a Report Message (DS-TWR+)

  In this study, the observed distance is reported to the tag via a message Report 

and is used to estimate the tag position. In addition, the message Report signal is 

employed to measure the CIR and determine the channel condition. Distance 

observation and CIR measurement are conducted after the TWR message exchange 

because these operations may interrupt the transmission times of TWR messages. 

Actually, the TWR approach is expected to operate during a limited short 

processing time owing to the clock skew problem. However, when CIR is 

measured and used for the channel classification, the tag consumes a relatively 

longer processing time because CIR is a data stream with a size of several Kbytes 

and is recorded to the memory of the UWB device.

TS1

TS2

TS3

TS4

TS5

TS6

 

    

  ranging
marker

CIR observation

distance calculation

AnchorTag

Poll

Response

Report

Request

Figure 10. Double-sided TWR with report message (DS-TWR+).
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  The tag of the proposed system has to access the CIR stored at the memory and 

transfer it to the host computer without interrupting other process works. The 

processing time for the CIR management should be guaranteed for beneficial 

CIR-based positioning performance. Therefore, DS-TWR-MA is unsuitable for the 

proposed system because of its streamlined message-exchange procedure. Hence, a  

better TWR is introduced in this thesis. Fig. 10 presents a DS-TWR with a report 

message named DS-TWR+. As illustrated in this figure, the message exchange of 

the DS-TWR producing timestamps from  to  is adopted to DS-TWR+. The 

tag sends captured timestamps , , and  within the message Request to 

the anchor, as all timestamps are required for distance calculation. Subsequently, the 

anchor handles the received message Request and its stored timestamps , , 

and  to obtain  and  of both tag and anchor sides as follows:

 Tag side:

  (25)

  (26)

 Anchor side:

  (27)

  (28)

Hence, these timing factors apply to (7).

  The DS-TWR+ presented in Fig. 10 comprises four ranging messages. Among 

these messages, Poll, Response, and Request generate timestamps that are adopted 

for distance calculation. Message Report conveys the obtained distance from the 
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anchor to the tag and is itself used for the CIR observation. In this DS-TWR+, 

each message is also encoded based on the IEEE 802.15.4 std. [7] medium access 

control (MAC) data frame comprising a MAC header (MHR), MAC payload, and 

MAC footer (MFR), as illustrated in Fig. 11.

sNum
[1]

fCtl
[2]

PAN ID
[2]

Dest. Addr.
[2]

Sour. Addr.
[2]

802.15.4 MHR [octets]

MHR
[9]

MFR
[2]

MAC payload
[Variable number of octets]

Figure 11. DS-TWR+ frame format.

  Specifically, the MHR includes fields for the message identification as follows: 

frame control (fCtl), sequence number (sNum), destination PAN identifier (PAN 

ID), destination address, and source address. The fCtl of two-octets expresses the 

frame type, PAN ID compression, destination addressing mode, and source 

addressing mode as presented in Table 1. In this configuration, ranging messages of 

DS-TWR+ adopt the PAN ID compression and the short addressing mode, because 

DS-TWR+ has been designed to minimize its frame length for the fast ranging 

process.

Sub-field Bits Value Description
Frame type 0–2 001(2) Data frame

PAN ID compression 6 1(2) Enabled
Destination addressing mode 10–11 01(2) Short address mode (16 bits)

Source addressing mode 14–15 01(2) Short address mode (16 bits)

Table 1. Frame control field of the MHR used in DS-TWR+.

  The MAC payload with the variable number of octets contains the ranging 
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message type (mType) of a single octet and the attached data, such as timestamps 

and calculated distance. Table 2 presents the MAC payload defined for each 

ranging message, where the messages Poll and Response have no attached data and 

the message Request delivers timestamps , , and  to the anchor. In 

addition, message Report contains a calculated distance of four octets. In this 

ranging approach, the timestamp unit of approximately 15.65 ps and a 

single-precision floating-point format are employed for the distance estimation.

Message mType Attached data [octets]
Poll AA(16) -

Response BB(16) -
Request CC(16) Timestamps of the tag [15]
Report DD(16) Distance [4]

Table 2. MAC payload definition for each ranging message.

  The MFR field of two-octets has the frame checking sequence (FCS) used for 

the cyclic redundancy check (CRC) conducting error detection on the transmitted 

frame. Fig. 12 presents the DS-TWR+ frame structure for each ranging message 

comprising the MHR of 9 octets, MAC payload of 1–16 octets, and FCS of 2 

octets. As illustrated in Fig. 12 (a), messages Poll and Response have the same 

size of 12 octets. Furthermore, the message Request of Fig. 12 (b) containing 

timestamps uses a frame length of 27 octets, while the message Report of Fig. 12 

(c) with a distance estimation result has 16 octets.
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MHR
[9]

TS1
[5]

TS4
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TS5
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[9]
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Figure 12. DS-TWR+ frames for each message: (a) Poll and Response (b) 
Request (c) Report.

  In addition, Fig. 13 presents the packet format of the Result used for the 

delivery of the estimated distances to the host computer performing EKF 

localization to identify the tag location in our study. It comprises fCnt of 2 bytes, 

UWB-operating mode of a single byte, aID of a single byte, sNum of a single 

byte, calculated distance from Report, UWB RX diagnostic data of 16 bytes, CIR 

signal captured from Report of 1984 bytes, and FCS generated by 32-bit CRC.

fCnt
[2]

Distance
[4]

RX diagnostic data
[16]

CIR
[1984]

Mode
[1]

CRC
[4]

aID
[1]

sNum
[1]

Figure 13. Packet format of Result transmitted from the tag.

  In the Result format, fCnt is increased whenever the tag completes DS-TWR+ 

with each anchor. In addition, it is adopted as the time step () of EKF 

localization. Mode expresses the configuration of the UWB system such as channel, 

preamble length, etc. aID indicates an anchor identifier that represents a destination 

address of messages Poll and Request. sNum and distance represent the sequence 
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number and estimated distance obtained from MHR and MAC payload of message 

Report, respectively. The RX diagnostic data for message Report provides the status 

of received signals such as received signal power level (RSL), signal power in the 

first path (FSL), first path index of CIR, etc [59]. The CIR field presents the 

received UWB signal comprising real and imaginary parts of 2 bytes each, where 

the CIR length is 496, as illustrated in Fig. 1. CRC for data integrity has an 

output of CRC-32 [60] computed for the Result packet. Finally, the host computer 

performing localization confirms the CRC field and operates AI-EKF using the data 

obtained from the received Result packet.

  The testbed devices, DS-TWR+ tag and anchors, are developed based on the 

Decawave driver API [59], TWR implementation guide [61], and Mbed OS [62]. 

The driver API controls the UWB transceiver that generates interrupt requests 

(IRQ) to receive and transmit frames. Furthermore, Mbed OS, a real-time operating 

system (RTOS), is adopted as the task scheduler for a finite-state machine (FSM) 

at DS-TWR+ devices.

Initialize

Frame
decodingIdle

Poll Request

Result

No 
IRQ

RX IRQ

Frame dropping

Response
from 

anchorTX
 d

on
e

Init. done

Report
from 

anchor

Figure 14. Tag operation of DS-TWR+ represented with FSM state diagram.
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  Fig. 14 presents the tag operation of DS-TWR+ with the FSM state diagram. 

First, the tag starts the DS-TWR+ operation by initializing its UWB PHY and 

MAC configurations. Then, it prepares for the frame of message Poll including a 

target anchor number as the destination address and transfers it to the UWB 

channel. Next, the state of the FSM shifts to Idle and waits for RX IRQ. 

Subsequently, the tag decodes the received frame when RX IRQ occurs. The MHR 

and mType of the received frame are interpreted at this state. When the received 

frame is the message Response as an acknowledgment to the message Poll, the 

Request state is invoked, which transmits message Request with recorded time 

stamps  and , and . Then, DS-TWR+ returns to the Idle state again. 

After obtaining RX IRQ for the message Report reception, the tag obtains the 

estimated distance from the received message Report and captures its CIR signal at 

the frame decoding state. Finally, the state becomes Result, which transfers the 

estimated distance and its CIR observation of DS-TWR+ to the host computer for 

the localization in this study.

Initialize

Frame
decodingIdle

Response

ReportRX IRQ

Poll
from tag

TX done

Init. done

Request
from tag

No 
IRQ

Frame 
dropping

Figure 15. Anchor operation of DS-TWR+ represented with FSM state diagram.
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  Fig. 15 presents the anchor operation of DS-TWR+ with the FSM state diagram. 

First, the anchor initializes its configuration as a tag does. After the initialization is 

complete, the anchor enters the Idle state and waits for the RX IRQ generated by 

the Poll or Request reception from the tag. If RX IRQ occurs and a received 

frame is valid and not dropped, the anchor state becomes the frame decoding state. 

In this state, the next state transition is decided based on the mType in the 

decoded frame. When the message Poll from the tag arrives, i.e., mType is AA(16), 

the anchor immediately sends the message Response to the tag. However, when the 

message Request is received, i.e., mType is CC(16), the anchor estimates the 

distance between devices by using timestamps obtained from the tag, anchors both 

sides, and sends the message Report with the estimated distance. Subsequently, the 

anchor goes back to the Idle state and waits for the following message from the 

tag to be received.

  For channel decoding, the UWB transceiver checks the error condition with the 

FCS delivered in every received frame and then generates RX IRQ. When the 

invalid FCS is detected, the device drops the received frame. In addition, when the 

frame belonging to another PAN arrives (invalid PAN ID) or the device address 

differs from the destination address of the received frame, the received frame is 

dropped.

  It is expected that the message-exchange procedure of DS-TWR+ has to perform 

without the message frame loss, while the proposed UWB positioning system 

requires a tag and multiple anchors implemented with DS-TWR+. In this study, the 

anchors run without a specific transmission schedule because it passively operates 

according to the message from the tag. However, the tag requires the transmission 



- 30 -

schedule to lead the message exchange. Fig. 16 presents the positioning schedule of 

the proposed UWB positioning system. ​In the active period during the total 

positioning time, the tag performs DS-TWR+  times by updating the destination 

address according to the number of anchors () required for the tag localization 

observation. Hence, the active period is  ×, where  denotes the 

time duration required for the DS-TWR+ operation. After performing DS-TWR+ 

with the surrounding anchors, the tag is set to be inactive. In addition, the inactive 

period can be managed by increasing or decreasing the positioning interval time 

() defined as

  (29)

where,  and  represent the active and inactive periods, respectively. Finally, 

the tag repeats the active and inactive periods every  and increases fCnt. In this 

study, the host computer operates this timing schedule for EKF localization. For the 

multi-tag service, it can be beneficial to design time division multiple access or 

duty cycle limitation.
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Figure 16. Positioning schedule of the proposed UWB positioning system.
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B. AI Training and Inference

  The AI inference phase in Fig. 9 performs channel classification based on the 

pre-trained LSTM network. In this thesis, the NLOS channel conditions were 

classified using an extensive dataset of TWRs. This dataset comprised TWR error 

and CIR data collected in various indoor environments with LOS and NLOS 

channel conditions. The UWB channels are divided into 10 levels based on deciles 

of TWR errors without any information on propagation conditions such as clutter, 

reflection, and through-the-wall.

Frequency

TWR
error

0

···

Label 1
Label 2
Label 3

Deciles D1D2D3       ···            D8             D9                                                                 D10

Label 10Label 9

Figure 17. Labeling method for classification of NLOS channel conditions.

  Fig. 17 presents the labeling of NLOS channel conditions denoted as deciles for 

TWR errors with the overall dataset as a population. The labels of channel 

conditions are determined by the deciles (, , ⋯, ) of the overall dataset. 
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The distribution information of TWR estimation errors from  to  is presented 

in Table 3. Each labeled sample has the same data size equal to 10 % of the 

population set. In addition, the range of each label is increased exponentially 

because the TWR error is modeled by an exponential random variable. For 

example, the channel condition for Label 1 (top 10 % TWR accuracy) exhibits 

high precision in the narrow error range. Hence, it could belong to a clean LOS 

environment with the shortest direct path. However, Label 10 (bottom 10 % TWR 

accuracy) exhibits a low precision in the broad error range and is close to the 

extreme NLOS environment with severe biased error. In our training data set, Label 

1 has an average error and error variance of 40 cm and 5.41e-4, respectively. 

However, an average error and error variance of Label 10 are 6.16 m and 0.58, 

respectively.

Label Deciles Average error Error variance
Number of data

() () [m] ( ) [m] (

)

1 0.078 0.0409 5.4144e-4 16,659

2 0.1503 0.1132 4.5576e-4 16,566

3 0.226 0.1851 4.5895e-4 16,787

4 0.315 0.2735 6.328e-4 16,618

5 0.4075 0.3598 7.0324e-4 16,624

6 0.576 0.4756 0.0023 16,683

7 1.3925 0.8949 0.0536 16,635

8 3.0809 2.2323 0.2634 16,678

9 5.1861 4.0329 0.3677 16,670

10 10.0107 6.1466 0.5819 16,662

Total 1.4755 3.9818 166,582

Table 3. Labeled dataset used for AI training, validation, and test.
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  Before the LSTM training for the UWB channel classification operates, the 

labeled dataset was divided, as illustrated in Fig. 18, into training, validation, and 

test sets with 80 %, 10 %, and 10 % ratios, respectively. At each processing step, 

they were shuffled by normally distributed random numbers. The LSTM 

classification network was fit by a training dataset and evaluated by a validation 

set. In this work, the unbiased evaluation results obtained with the validation set 

were adopted to select the most suitable LSTM conditions and model 

hyperparameters.

Labeling denoted as deciles for TWR error

Label 1 Label 2 Label 3 Label 10

Training

Validation
Test

Training

Validation
Test

Training

Validation
Test

Training

Validation
Test

Overall dataset
Consisting of TWR error and  CIR

80 %

10 %
10 %

10 % 10 % 10 % 10 %

Figure 18. Split method in the labeled dataset.
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  Table 4 presents the designed models and their validation accuracies. For the 

model validation, the LSTM, bidirectional LSTM (Bi-LSTM) [63], and GRU [64] 

were compared. The input layer adopted a half-size CIR stream for AI training and 

inference, where the CIR samples were selected in Fig. 1 from 496–992 ns. 

Therefore, the length of the input sequence was 496 in the form of either the 

absolute of the CIR () or raw CIR () comprising the real and 

imaginary. Each RNN layer (LSTM, Bi-LSTM, and GRU) has hidden states of 

496, same as the input sequence, and is connected to a dropout layer of 20 % to 

prevent the model from overfitting [65][66]. After the fully connected layer, it 

contains the softmax output layer for the channel condition classification. In our 

study, various models with a deeper network and half-reduced hidden units were 

evaluated, and the training time required to evaluate model complexity was 

measured for the epoch of 200 using the MATLAB deep learning training progress 

monitor [67]. Each model was evaluated with each learning process condition as 

follows: Adam optimizer, learning rate of 0.001 (constant), gradient threshold of 1, 

loss function of cross-entropy, iteration per epoch of 1041, and validation frequency 

of 8320 iterations.
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Model Input RNN Hidden Training Overall
shape layers units time [min] accuracy [%]

1  Single LSTM 248 130 53.79

2 
1st LSTM 248 211 79.852nd LSTM 124

3  Single LSTM 248 129 63.65

4 
1st LSTM 248 210 82.152nd LSTM 124

5 

1st LSTM 248
270 82.022nd LSTM 124

3rd LSTM 62

6 

1st LSTM 248

322 82.012nd LSTM 124
3rd LSTM 62
4th LSTM 31

7  Single Bi-LSTM 248 223 62.61

8 
1st Bi-LSTM 248 593 81.052nd Bi-LSTM 124

9  Single GRU 248 124 65.86

10 
1st GRU 248 202 79.682nd GRU 124

Table 4. Validation accuracy for each RNN model.

  As presented in the validation result, Models 1 and 2 using the input shape of 

  defined as CIR magnitude exhibited partially divergent accuracy and loss in 

the training progress. They had validation accuracy lower than Models 3 and 4 

using the same LSTM model because they excluded phase information of CIR 

signal at the model training. Hence, Models 1 and 2 were unsuitable for the 

proposed system. Models 3, 7, and 9 designed by a single RNN layer did not 

achieve validation accuracy above 80 %. This implies that the proposed method 

requires deeper neural networks for channel condition classification. In contrast, the 

models stacked with two or more RNN layers achieved an 80 % level of 

validation accuracy. However, Models 5, 6, and 8 spent more training time than 
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Model 4. Among these models, although Model 8 using the Bi-LSTM spent the 

longest training time of 593 min at the AI server used for the AI training in this 

study. It exhibited a similar performance of the accuracy of 80 % level. It could 

mean that there is no beneficial information in the backward sequence of the CIR. 

However, Model 10 using double GRU layers exhibited a validation accuracy close 

to 80 % and required a short training time of 202 min because of its lightweight 

design. However, it still exhibited lower performance than Model 4 using double 

LSTM layers that required an additional time of 8 min. Model 4 achieved an 

overall accuracy of 82.15 % with a training time of 210 min. Moreover, it 

exhibited a fast model convergence than more complex Models 5, 6, and 8. 

Finally, Model 4 was selected for the proposed system because of its superior 

classification performance and efficient training time. Subsequently, the Model 4 

trained labels for channel classification was pre-deployed for the NLOS mitigation 

phase in the host computer.
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C. NLOS Mitigation

  In the AI inference phase, the pre-trained model (stacked-LSTM classification 

network) predicts channel condition with a label number for each DS-TWR+ result. 

Subsequently, the NLOS mitigation phase adopts these classified labels for 

generating NLOS mitigated measurements. In this thesis, the statistics of the dataset 

were used to approximate NLOS errors [44]. It was assumed that there was an 

NLOS-biased error   in the labeled dataset, and it could be modeled by the 

average error of its dataset [68]. In this step, the measurement noise covariance 

matrix R  was updated using the variance of the labeled dataset because the 

performance of TWR varies with the change in the NLOS channel [69]. Hence, the 

NLOS mitigated measurement Z and its noise covariance matrix R at the time 

step , classified label , and anchor number  are expressed as:

Z 



















⋮




 (30)

R 


 


 


 ⋯ 


 (31)

where   and 


 denote the average error and error variance of the labeled 

dataset, respectively. Finally, the determined Z and R were used as Z and R 

of the correction phase of Fig. 7.
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IV. Experimental Setup

  This section introduces the testbed of the proposed UWB positioning system in a 

typical indoor environment and describes the dataset and its collection method.

A. Testbed Setup

  The tag device of the proposed system comprises three modules, as illustrated in 

Fig. 19. In this study, the UWB, microcontroller unit, and data transfer modules 

used were DWM1000, LPC1768, and FT232H, respectively. LPC1768 and FT232H 

can transfer ranging results and its CIR stream of 1984 bytes to the host computer 

using 6 Mbps serial communication.

Figure 19. Main modules of tag device.

  The anchors used in this study were DWM1001-DEV devices manufactured by 

Decawave. These devices were reprogrammed to work as DS-TWR+ anchors. In 

addition, the parameters of UWB positioning were configured as denoted in Table 

5. 
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Parameter Value Parameter Value
Channel 3 Bandwidth 499.2 [MHz]

Data rate 110 [Kbps]
Pulse repetition

frequency (PRF)
16 [MHz]

Preamble length 1024 Preamble code 5
Operation time of 

DS-TWR+ ()
25 [ms]

Positioning interval 

()
200 [ms]

Table 5. Parameter configuration of the UWB system.

  The AI server performed AI training, validation, and test using MATLAB 2021a 

of Mathworks [67]. Its specifications are presented in Table 6. In addition, the host 

computer illustrated in Fig. 8 performed AI-EKF localization. Its specifications are 

as follows: CPU of Intel i7 10875H, GPU of Nvidia RTX 2060, and RAM of 

32GB.

Category Tool
CPU AMD Ryzen 7 5800X @ 3.8 GHz

GPU Nvidia GeForce GTX 3080 10 GB @ 8704 CUDAs

RAM DDR4 32 GB @ 3600 MHz
Operating system Windows 10 Education

AI framework

Deep learning toolbox, parallel computing toolbox, 

statistics and machine learning toolbox of MATLAB 

2021a

Table 6. AI server configuration and its framework.
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B. Dataset Setup

  The experimental area for data collection was a typical indoor environment on 

the 8th floor, college of IT convergence, Chosun University, in KOREA, as 

illustrated in Fig. 20. Data collection was performed at four sub-areas from (a) to 

(d).

Figure 20. Experimental area for the data collection.

  Sub-area (a) was a laboratory with tables and experimental devices such as a 

multimeter, oscilloscope, power supply, and function generator. Sub-area (b) was a 

corridor without obstacles. The picture in Fig. 20 expresses data collection in this 

sub-area. Fig. 21 presents the DS-TWR+ testbed tag and anchor positions for the 

data collection in sub-areas (a) and (b). In sub-area (a), the tag was located at T0 

and T1, and the anchor was installed on black dots. The distance between positions 

for each device to be located was 2 m in width and 2.925 m in height. In 
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sub-area (b), the tag positions were M0 and M1, and the locations of the anchor 

were on each black dot in the corridor. The distance intervals of each device were 

2 m in width and 0.67 m in height. The tag in sub-area (a) could measure the 

through-the-wall propagation effect of the UWB signal transferred from sub-area 

(b). In this collection, the tag obtained DS-TWR+ data at T0 and T2 when the 

anchor was placed on one of M0, M1, and black dots in sub-area (b).

(a) Laboratory

2 m
2.925 m

2.925 m
1.125

m

2 m

(b) Corridor0.67 m

2.495 m

M0

M1

T0

T1

T2

Tag positions
Anchor positions
Tag or anchor positions

Figure 21. Sub-areas (a) and (b) with tag and anchor positions for the data collection.

  Sub-area (c) was a hall with a corner, as illustrated in Fig. 22. Anchor positions 

were between the stair and elevator, while tag positions were in front of the office. 

This placement of the testbed tag and anchor generated the NLOS channel. 
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Significantly, the space of the intermediate distribution frame (IDF) adopted for 

cross-connecting ethernet cables was located in this corner, which created an 

extreme NLOS path. In sub-area (c), the distance interval of the tag was 1.8 m in 

width, while the distance intervals of the anchor were 0.9 m in width and 1.8 m 

in height.

EV
1

EV
2

0.9
m

7.2 m

1.8 m

1.8 m

Hall

office

stair

stair

IDF EPS

down up

Heater

Tag positions
Anchor positions

Figure 22. Sub-area (c) with tag and anchor positions for the data collection.

  Sub-area (d) shown in Fig. 23 was a common office area with partitions, PCs, 

monitors, and office furniture. This sub-area contained a higher density of obstacles 

than other sub-areas. Thus, the occurrence of LOS channels was limited, and 
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multipath propagation was primarily observed. In this sub-area, anchor positions 

were also on the black dots. The distance interval of the tag was 1.8 m in width, 

while the distance intervals of the anchor were 5.4 m in width and 2.25 m and 

5.4 m in height.

2.25 m
5.4 m

1.8 m Tag positions
Anchor positions

Figure 23. Sub-area (d) with tag and anchor 
positions for the data collection.

  For the data collection at each sub-area, the tag and anchors moved with a 

uniform distance interval, and the tag at each measurement point stored the 

measured 500 DS-TWR+ distance estimation results without human interference and 

another 500 results with human interference. Hence, this collecting method could 

enable the application of the human body impact to the AI model [70]. Finally, 

outlier removal was performed from the collected TWR error based on a standard 

deviation of 3 [71]. Table 3 presents the labeled dataset measured in the 

experimental area for UWB channel classification.
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C. Scenario Setup

  Two types of experimental scenarios were set up to evaluate the performance of 

the proposed UWB positioning system, as illustrated in Fig. 24. The first scenario, 

KNOWN, which employs the same places from the training set, was obtained for 

the AI-EKF performance test. It was performed in a laboratory and corridor 

separated by the wall on the 8th floor used in the data collection area. The other 

scenario, UNKNOWN, which adopts different locations from the training set, was 

obtained for the AI-EKF performance evaluation at another office and corridor 

separated by tempered glass on the 2nd floor of the same building. At this 

location, the corridor had an open space expanded on the 2nd floor. The 2nd 

scenario, UNKNOWN, was designed for a fair evaluation of the AI approach 

because AI-EKF was one of supervised learning.
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Figure 24. Location of experimental scenarios for the performance 
evaluation of the proposed UWB positioning system: (a) scenario 
KNOWN on the 8th floor (b) scenario UNKNOWN on the 2nd 
floor.

  For the performance evaluation, as illustrated in Fig. 25 and 26, indoor maps of 

the experimental scenarios and their reference points were created, with which the 

tag positions were estimated. Tables 7, 8, 9, and 10 present the coordinates of the 

reference points. In addition, the tags and anchors were placed at a height of 1.5 

m.
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A1

P1
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A7A2

X (13.95m)

Y
 (9.48m

)

P2

P3

P4

P5

P6

P7

P8

P9

P11

P13

P15

P14

Laboratory

Corridor

P12

P0 A8

P10

P16

Anchors in laboratory
Anchors in corridor 
Waypoints

A5

A3

A4

A0

Figure 25. Indoor map with reference points and anchors in scenario KNOWN.

Anchor
Coordinates 

Anchors
Coordinates 

Anchors
Coordinates 

(x, y) [m] (x, y) [m] (x, y) [m]

A0 0.45, 0 A1 0.67, 3.62 A2 0.67, 9.47

A3 6.97, 3.62 A4 6.97, 9.47 A5 7.2, 0

A6 12.82, 3.62 A7 12.82, 9.47 A8 13.95, 0

Table 7. Coordinates of anchors in scenario KNOWN.
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Ref.
Coordinates 

Ref.
Coordinates 

Ref.
Coordinates 

(x, y) [m] (x, y) [m] (x, y) [m]

P0 0, 0 P1 0.52, 1.125 P2 0.52, 2.4

P3 1.79, 3.62 P4 1.79, 6.545 P5 1.79, 9.47

P6 6.6, 0 P7 6.6, 1.125 P8 8.32, 3.62

P9 8.32, 6.545 P10 8.32, 9.47 P11 12.595, 3.62

P12 12.595, 4.52 P13 12.595, 6.545 P14 12.595, 9.47

P15 13.045, 1.125 P16 13.045, 3.17 - -

Table 8. Coordinates of reference points in scenario KNOWN.

X (10.35m)

Y
 (9.43m

)

P0/A0 A3 A8

A1

A2

A6

A7

A4

A5

P1
Corridor

P2

P3 P4

P5

P6

P7

P9

P10

P11

P8

Office

Anchors in office
Anchors in corridor 
Waypoints

Figure 26. Indoor map with reference points and anchors in 
scenario UNKNOWN.
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Anchor
Coordinates 

Anchors
Coordinates 

Anchors
Coordinates 

(x, y) [m] (x, y) [m] (x, y) [m]

A0 0, 0 A1 0.49, 3.58 A2 0.49, 9.43

A3 5.175, 0 A4 5.215, 3.58 A5 5.215, 9.43

A6 9.94, 3.58 A7 9.94, 9.43 A8 10.35, 0

Table 9. Coordinates of anchors in scenario UNKNOWN.

Ref.
Coordinates 

Ref.
Coordinates 

Ref.
Coordinates 

(x, y) [m] (x, y) [m] (x, y) [m]

P0 0, 0 P1 0, 1.125 P2 1.39, 4.48

P3 1.39, 6.73 P4 3.19, 6.73 P5 3.19, 8.98

P6 6.75, 0 P7 6.79, 6.73 P8 6.79, 8.98

P9 9.49, 1.125 P10 9.49, 4.48 P11 9.49, 6.73

Table 10. Coordinates of reference points in scenario UNKNOWN.

  In addition, three different routes and two anchor deployments were generated for 

each scenario, as presented in Tables 11 and 12, and the AI-EKF method was 

compared with the proposed UWB positioning system and existing positioning 

methods such as LS, WLS, and EKF without AI approaches. For the comparison, 

the Q  values of EKF and AI-EKF were set as  , and R of EKF 

was configured with  ⋯  for four and five anchors, respectively.
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Map Route Waypoints

Scenario KNOWN

(8th floor)

Laboratory P5⇒P4⇒P9⇒P8⇒P11⇒P14

Corridor P1⇒P6⇒P15

Both
P1⇒P15⇒P16⇒P11⇒P14⇒P10⇒P9⇒P4

⇒P3⇒P2⇒P1

Scenario UNKNOWN

(2nd floor)

Office P2⇒P3⇒P4⇒P5⇒P8⇒P7⇒P11⇒P10

Corridor P1⇒P6⇒P9

Both P1⇒P9⇒P10⇒P2⇒P7

Table 11. Waypoints of each trajectory used in the scenario.

Map Number of anchors Anchor deployment

Scenario KNOWN

(8th floor)

4 A1, A4, A5, A6

5 A0, A2, A3, A7, A8

Scenario UNKNOWN

(2nd floor)

4 A1, A3, A5, A6

5 A0, A2, A4, A7, A8

Table 12. Anchor deployment used in the scenario.
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V. Performance Evaluation

A. NLOS Classification Performance

  Fig. 27 presents a confusion matrix evaluated with the test set to provide the 

classification performance of the proposed LSTM model shown in Fig. 9. In this 

figure, the target class is the actual label of the test dataset, while the output label 

is the predicted label of the proposed model. For each label, the column on the far 

right expresses precision and false discovery rate (FDR), while the row at the 

bottom denotes recall and false-negative rate (FNR). In this evaluation, an overall 

accuracy of 81.7 % was achieved, and the FDR and FNR for each label mainly 

occurred for adjacent labels. It is clear that the selected model can be beneficial to 

the UWB channel classification for the proposed UWB positioning system. For 

example, when the actual channel condition is a clear LOS indicated as Label 1 or 

2, but the proposed LSTM model infers channel condition as Label 9 or 10, the 

proposed UWB positioning system excludes this distance measurement because of 

its significant variance. Hence, it triggers the performance degradation of 

positioning. In another case, the selected model predicts channel class as Label 1 

or 2, but the actual channel is the NLOS indicated as Label 9 or 10. The 

proposed UWB positioning system primarily adopts this measurement because of its 

slight variance. Therefore, its positioning performance deteriorates. Unlike the 

example, the selected LSTM model mainly inferred correct channel conditions and 

selected the adjacent labels even in the worse cases. In other words, even though 

there is an incorrect inference, the selected model can be beneficial in improving 

positioning performance.
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Figure 27. Classification performance of the proposed LSTM network.

B. Positioning Performance

  This section provides the positioning performance of the proposed system for 

each scenario with a 2D trajectory in terms of the cumulative distribution function 

(CDF) of positioning errors, root mean square error (RMSE), and standard deviation 

(STD) of the positioning errors.
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1) Scenario KNOWN Using Four Anchors

  Fig. 28, 29, and 30 present trajectories and CDFs of positioning errors for each 

method in the scenario KNOWN using four anchors. Furthermore, Tables 13 and 

14 express RMSE and STD of positioning errors measured for each method under 

the same condition. In this scenario, three anchors (A1, A4, and A6) were installed 

in the laboratory, and an anchor A5 was installed the corridor. Therefore, channel 

conditions in the laboratory (sub-area (a)) generated by anchors A1, A4, and A6 

were better than those generated by A5 located in the corridor. However, in the 

corridor route, anchors located in the corridor provided more favorable channel 

conditions than others. Among the existing positioning approaches, WLS achieved 

8.5 % RMSE improvement on average for each trajectory over LS because its 

adaptive weight based on distance proximity exerted a higher impact on the 

anchors within the same area in each experimental path. In addition, WLS achieved 

an average precision improvement of 70.5 % over LS. In contrast, EKF generated 

biased trajectories because of NLOS error. It performed similar to WLS, with an 

8.4 % RMSE improvement on average compared to LS. However, it achieved an 

average precision enhancement of 158.1 % over LS because of its noise reduction 

ability. In contrast, AI-EKF obtained precise trajectories at every route without 

biased error. Moreover, it corrected the trajectory fluctuation around P2 and P16. In 

this zone, several anchors were located behind the pedestrian's handheld tag, and 

steel doors, walls, and furniture were located near the tags. Therefore, the 

furnishing in this zone exhibited an adverse effect on the positioning performance. 

Although LS, WLS, and EKF generated unstable and biased trajectories, AI-EKF 

improved the positioning accuracy and precision by an average RMSE of 66.4 % 

and an average STD of 199.1 % compared to LS.
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Figure 28. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in the laboratory on the 8th floor using four anchors.
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Figure 29. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in the corridor on the 8th floor using four anchors.
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Figure 30. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in both the laboratory and corridor on the 8th floor using four 
anchors.
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Methods
Laboratory Corridor Both

[m] [m] [m]

LS 0.8782 1.0519 1.1309

WLS 0.8609 0.9708 0.9903

EKF 0.8656 1.0248 0.9341

AI-EKF 0.6719 0.5712 0.5968

Table 13. RMSE of positioning results at each method 
in scenario KNOWN using four anchors.

Methods Laboratory Corridor Both

LS 0.0968 0.2589 0.4142

WLS 0.0938 0.1427 0.2151

EKF 0.102 0.083 0.1133

AI-EKF 0.0707 0.0953 0.0914

Table 14. STD of positioning errors at each method 
in scenario KNOWN using four anchors.
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2) Scenario KNOWN Using Five Anchors

  Fig. 31, 32, and 33 present trajectories and CDFs of positioning errors for each 

method in the scenario KNOWN using five anchors. Furthermore, Tables 15 and 

16 present the RMSE and STD of positioning errors measured for each method 

under the same condition. Fig. 34 presents the average RMSE and STD for routes 

of each method. In this scenario, three anchors (A2, A3, and A7) were installed in 

the laboratory, while two anchors (A0 and A8) were installed in the corridor. 

Therefore, channel conditions in the laboratory (sub-area (a)) generated by anchors 

A2, A3, and A7 were better than those generated by A0 and A8 in the corridor. 

However, in the corridor route, anchors located in the corridor provided more 

favorable channel conditions than others. Similar to the results of the scenario using 

four anchors, WLS achieved an average 16.8 % RMSE improvement for each 

trajectory over LS. In addition, WLS achieved an average precision improvement of 

55.2 % over LS. In contrast, EKF generated biased trajectories because of the 

NLOS error. It performed worse than WLS, with an average 10 % RMSE 

improvement compared to LS. However, it achieved an average precision 

enhancement of 166.8 % over LS. Although LS, WLS, and EKF generated unstable 

and biased trajectories, AI-EKF improved the positioning accuracy and precision by 

an average RMSE of 112.7 % and an average STD of 368 % compared to LS. 

  In this scenario, the additional anchor deployed at the corridor enhanced the 

positioning performance. As illustrated in Fig. 34, LS, WLS, EKF, and AI-EKF 

achieved average RMSEs of 41.6 %, 52.5 %, 43.7 %, and 81.1 % improvements, 

respectively; also, each method enhanced average STD of 105.4 %, 86.9 %, 112.3 

%, and 221.3 %, respectively, compared with the case of the four anchors.
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Figure 31. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in the laboratory on the 8th floor using five anchors.
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Figure 32. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in the corridor on the 8th floor using five anchors.



- 60 -

Figure 33. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in both the laboratory and corridor on the 8th floor using five 
anchors.
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Methods
Laboratory Corridor Both

[m] [m] [m]

LS 0.7266 0.653 0.7822

WLS 0.582 0.6058 0.6627

EKF 0.607 0.6431 0.7149

AI-EKF 0.297 0.3241 0.3951

Table 15. RMSE of positioning results at each method 
in scenario KNOWN using five anchors.

Methods Laboratory Corridor Both

LS 0.1561 0.0787 0.1401

WLS 0.0896 0.0628 0.0892

EKF 0.0665 0.0296 0.0444

AI-EKF 0.0228 0.0199 0.0374

Table 16. STD of positioning errors at each method 
in scenario KNOWN using five anchors.
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Figure 34. Average RMSE (top) and STD (bottom) for each route of each 
method for anchor deployments in scenario KNOWN.
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3) Scenario UNKNOWN Using Four Anchors

  Fig. 35, 36, and 37 present trajectories and CDFs of positioning errors for each 

method in scenario UNKNOWN using four anchors. Tables 17 and 18 also present 

the RMSE and STD values for each method. Furthermore, Fig. 41 shows the 

average RMSE and STD for routes of each method. The deployment of anchors 

was divided into office groups (A1, A5, and A6) and one corridor (A3), similar to 

the scenario KNOWN. However, this scenario had different UWB channel 

conditions from scenario KNOWN. The worst zone was generated around P6 and 

P9 because of reasons such as concrete pillars, tempered glasses, stainless steel 

frames, and human bodies. Therefore, WLS and EKF exhibited similar performance 

improvements as on the 8th floor. WLS achieved an average RMSE of 4.5 % and 

an average STD of 40 % compared to LS, while EKF improved the average STD 

of 172.8 % compared to LS. However, it reduced the performance of the average 

RMSE of -2.7 % because the insufficient number of anchors triggers the majority 

ratio of NLOS channels. The average RMSE and STD of the AI-EKF were 

enhanced by 95.6 % and 309.9 % compared to LS. Note that the trained model of 

AI-EKF did not learn CIRs in this environment. However, it successfully mitigated 

NLOS effects because the LSTM network optimally classified the channel status, 

irrespective of the environmental conditions. In other words, the proposed labeling 

of the channels provides flexibility to the design and can employ the proposed AI 

model for positioning services.



- 64 -

Figure 35. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in the office on the 2nd floor using four anchors.
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Figure 36. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in the corridor on the 2nd floor using four anchors.
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Figure 37. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in both the office and corridor on the 2nd floor using four 
anchors.
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Methods
Laboratory Corridor Both

[m] [m] [m]

LS 0.3998 0.5583 0.6519

WLS 0.4159 0.5204 0.604

EKF 0.5042 0.5388 0.6121

AI-EKF 0.2189 0.281 0.323

Table 17. RMSE of positioning results at each method 
in scenario UNKNOWN using four anchors.

Methods Laboratory Corridor Both

LS 0.0317 0.0991 0.1537

WLS 0.0314 0.0623 0.1095

EKF 0.0258 0.0218 0.0567

AI-EKF 0.0173 0.0273 0.0248

Table 18. STD of positioning errors at each method 
in scenario UNKNOWN using four anchors.
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4) Scenario UNKNOWN Using Five Anchors

  Fig. 38, 39, and 40 present trajectories and CDFs of positioning errors for each 

method in scenario UNKNOWN. Tables 19 and 20 also present RMSE and STD 

values for each method. The deployment of anchors was divided into office (A2, 

A4, and A7) and corridor (A0 and A8) groups, similar to the scenario KNOWN. 

WLS achieved average RMSE and STD values of 17.6 % and 68.6 % compared to 

LS, while EKF achieved average RMSE and STD values of 7.4 % and 100.1 % 

compared to LS. The average RMSE and STD values of AI-EKF were enhanced 

by 114.7 % and 454.5 %, respectively, compared to LS.

  The additional anchor deployed at the corridor enhanced the positioning 

performance more than that of the case with four anchors. In this scenario, as 

illustrated Fig. 41, LS maintained its positioning performance of an average RMSE 

and improved average STD of 35 %. WLS achieved the improvement of an 

average RMSE of 12.8 % and average STD of 62.6 %. EKF improved an average 

RMSE of 10.6 % and maintained its average STD similarly. In addition, the 

average RMSE and STD of AI-EKF were enhanced by 9.9 % and 82.6 %.

  The CDFs of the positioning errors in both scenarios also indicate that the 

AI-EKF in the proposed system exhibited a better positioning performance than the 

other existing methods. Hence, it can be inferred that the proposed system mitigates 

the NLOS effects of the UWB system.
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Figure 38. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in the office on the 2nd floor using five anchors.
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Figure 39. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in the corridor on the 2nd floor using five anchors.
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Figure 40. Trajectories (top) and positioning error CDFs (bottom) measured by 
each method in both the office and corridor on the 2nd floor using five 
anchors.
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Methods
Laboratory Corridor Both

[m] [m] [m]

LS 0.3799 0.6551 0.5718

WLS 0.3184 0.5489 0.4986

EKF 0.4122 0.5565 0.528

AI-EKF 0.2239 0.2254 0.2992

Table 19. RMSE of positioning results at each method 
in scenario UNKNOWN using five anchors.

Methods Laboratory Corridor Both

LS 0.0392 0.0942 0.0773

WLS 0.0231 0.0464 0.0555

EKF 0.026 0.0234 0.0559

AI-EKF 0.0115 0.0105 0.016

Table 20. STD of positioning errors at each method 
in scenario UNKNOWN using five anchors.
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Figure 41. Average RMSE (top) and STD (bottom) for each route of each 
method for anchor deployments in scenario UNKNOWN.
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VI. Conclusion

  This thesis proposed the AI-applied UWB positioning system with an AI-EKF 

localization based on LSTM and EKF localization. In the proposed method, the 

system determines the channel conditions for NLOS error mitigation. Then, the 

statistics of the channel are used to mitigate the NLOS effects from the TWR 

measurement. Finally, the user obtains an enhanced position using EKF localization 

with an NLOS-mitigated measurement. The proposed method was compared with 

existing localization methods in two experimental scenarios. In both scenarios, the 

proposed method mitigated the NLOS-biased error and enhanced the positioning 

accuracy. Moreover, it exhibited a superior positioning precision owing to the 

attached EKF algorithm. Additionally, even in scenario UNKNOWN using five 

anchors, the proposed AI-EKF method showed an average improvement of RMSE 

of 82.5 % and 100 % in terms of positioning error compared to existing methods 

WLS and EKF, respectively. Furthermore, it exhibited improved precision on 

trajectories with an average STD of 228.9 % and 177.1 % compared to WLS and 

EKF, respectively. In conclusion, the proposed UWB positioning system using 

UWB channel classification with LSTM network and NLOS effect mitigation with 

EKF can provide more accurate positioning solutions as compared to existing 

methods even in the case of no training on the channel conditions at the current 

tag position.
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