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Abstract

Accelerated Dynamics Simulation
using Deep Learning Corrections

Park Sojeong

Advisor Kwak Wooseop
Co-advisor Lee Hwee Kuan
Department of Physics

Graduate School of the Chosun University

Theoretical models capture very precisely the behaviour of materials at the
molecular and atomic level. This makes computer simulations, such as spin
dynamics simulations of magnetic materials and molecular dynamic simu-
lation for analyzing the physical movements of atoms and molecules, ac-
curately mimic experimental results. New approaches to efficient computer
simulations are limited by integration time step barrier to solving the equa-
tions of motions of many-body problems. Using a short time step leads to
an accurate but inefficient simulation regime whereas using a large time step
leads to accumulation of numerical errors that render the whole simulation

useless.
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In the study of spin dynamic simulations, we use a Deep Learning method
to compute the numerical errors of each large time step and use these com-
puted errors to make corrections to achieve higher accuracy in our spin dy-
namics. We validate our method on the 3D Ferromagnetic Heisenberg cubic
lattice over a range of temperatures. Here we show that the Deep Learning
method can accelerate the simulation speed by 10 times while maintaining
simulation accuracy and overcome the limitations of requiring small time
steps in spin dynamic simulations.

In the study of molecular dynamics, Deep Learning is used to learn the effec-
tive forces governed by pair-wise interactions on the Lennard-Jones system.
Once many body or two body interactions have been learned, a single neural
network model is used to perform accelerated simulations for the Hamilto-
nian system of interest for arbitrary thermodynamics states. We show that
by using large time step, our Deep Learning method recovers the stability
of simulation by preventing overflow due to artificially large force and shows

10 times speed up of simulation by producing similar simulation accuracy.

Keyword: Spin dynamics simulations, Molecular dynamics simulations, Deep

learning, Heisenberg models, Lennard-Jones system
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Chapter 1

Introduction

The computer simulation methods are powerful tools for understanding fun-
damental properties of materials that can be verified by experimental meth-
ods. There are two methods in computer simulations, spin dynamics simu-
lation and molecular dynamics simulations. These methods have been used
to investigate the time evolution of physical quantities of physical systems
under different conditions. Spin dynamics simulations [1] have been widely
used to study the underlying physics of magnetic material performed experi-
mentally by using neutron scattering [2]. The study of the properties of these
magnetic materials enables us to develop much better applications such as in
Nd-Fe-B-type permanent magnets used for motors in hybrid cars [3, 4], mag-
netoresistive random access memory (MRAM) based on the storage of data
in stable magnetic states [5], ultrafast spins dynamics in magnetic nanos-

tructures [6, 7], heat assisted magnetic recording and ferromagnetic reso-
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CHAPTER 1. INTRODUCTION

nance methods for increasing the storage density of hard disk drives [8, 9],
exchange bias related to magnetic recording [10], and magnetocaloric materi-
als for refrigeration technologies [3]. The molecular dynamics simulations [11,
12] have been used to the study for investigating the time evolution of atomic
and molecular systems such as Lennard-Jones fluid [13, 14] and have a wide
range of applications to the design of new materials, drug design [15], and
protein folding [16].

In computer simulations, classical equations of motion of dynamic sys-
tems are solved numerically using well known integrators such as leapfrog,
Verlet, predictor-corrector, and Runge-Kutta methods [17, 18, 19]. The accu-
racy of these simulations depends on a time integration step size. If a large
time step is used, the accumulated truncation error becomes larger. Con-
versely, using a short time step is very computationally demanding. So, it is
important to find a trade off between speed and accuracy.

Symplectic methods [20, 21] are among the most useful time integra-
tors for dynamics simulations. The numerical solutions of symplectic meth-
ods have properties of the time reversibility, conservation of the phase-space
volume exactly, and the error in the total energy of the system bounded. For
example, high order Suzuki-Trotter decomposition method, one of the sym-
plectic methods, allows for larger time step with limited error in its compu-
tation. We seek to enhance the time integration step of symplectic methods

further using Deep Learning techniques.
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CHAPTER 1. INTRODUCTION

Machine learning techniques including Deep learning are used to reduce
the computational cost compared with the often high cost of numerical sim-
ulations. Recently, Machine Learning techniques are used to enhance simu-
lation efficiencies in the condensed matter physics. Its applications include
addressing difficulties of phase transition [22, 23, 24, 25, 26, 27| and accel-
erating the Monte-Carlo simulations [28]. A crucial issue in molecular dy-
namics simulations [29] is that generating samples from the equilibrium dis-
tributions is time consuming. Boltzmann generators machine [30] addresses
the long-standing rare-event (e.g. transition) sampling problem. In addition,
study of quantum many body systems using Machine Learning is applied to
simulation of the quantum spin dynamics [31, 32], identifying phase transi-
tions [33] and solving the exponential complexity of the many body problem
in quantum systems [34].

We show that speed up is achieved if Deep Learning learns the cor-
rections terms. The first condition for speed up is enough capacity of Deep
Learning to learn the associations between spin (or molecule) configuration
generated by large time steps and spin (or molecule) configuration generated
by accurate short time steps. The second condition is enough training data
for learning and show the Deep Learning enough pairs of patterns between
spin (or molecule) configuration for large and short time steps.

In spin dynamics, we propose to use Deep Learning to estimate the

correction terms of Suzuki-Trotter decomposition method, and then add the
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CHAPTER 1. INTRODUCTION

correction terms back to spin dynamics simulations results, making them
more accurate [35]. As a result of this correction, larger time step can be
used for Suzuki-Trotter decomposition method, and corrections can be made
for each time step. To evaluate our Deep Learning method, we analyze spin-
spin correlation as a more stringent measure. We also use thermal averages
to benchmark the performance of our method. We compare the Deep Learn-
ing results with those from spin dynamics simulations without Deep Learn-
ing for short time steps.

In molecular dynamics, the large time step causes the numerical inte-
grator to become unstable and particles can overlap, causing artificially large
force calculation. To recover the stability of simulation, our Deep Learning
method is used to learn the effective forces acting on particles. We develop
our neural networks to learn effective many-body interactions replacing the
force calculations from the original physical model ( —%). Once a new two
body and many-body interactions have been learned, a single neural network
model can be used to perform accelerated simulations for the Hamiltonian

system of interest for arbitrary thermodynamics states (e.g. different tem-

peratures, pressures, number of particles, and densities).
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Chapter 2

Theoretical Background

Computer simulations have been used for a broad range of phenomena in
statistical physics. Machine learning (ML) techniques including deep learn-
ing (DL) are applied in enhancing the performance of computer simulations
of materials in physical dynamical systems. This chapter presents the theo-

retical framework for computer simulations and DL techniques.

2.1 Statistical Mechanics for Simulations

This section introduces Metropolis Monte Carlo method and understands

the phase transitions in systems including magnets and liquids.

2.1.1 The Markov Chain and Detailed Balance

dP(x) _

g > T(2 - 2)P(a)) = Y T(x — a/)P(x) (2.1)
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CHAPTER 2. THEORETICAL BACKGROUND

The master equation considers the change of the probability with time t,
expressing the fact that ) P(z) = 1 at all times. All probability of state
2’ that is lost by a move away from the state x is gained in the probability
of that state. The detailed balance with the equilibrium probability P.,(z)
is

T(z' = x)Pey(2') = T(x — 2') Pey(2)
(2.2)
dP.q(x)

dt

=0, In equilibrium

2.1.2 Statistical Ensembles

In statistical mechanics, the behavior of a system based on the possible mi-

crostates are interested and known as the ensemble of states for a system.

Microcanonical Ensemble of Systems

The microcanonical ensemble is an isolated system with a number of particle
N, volume V and energy U fixed. The probability of the system being in a

certain microstate k is

1

Po=—
"7 QU,V,N)

(2.3)

where 2 = )7, 1 is defined as the total number of microstates k for the
system. This probability and thermodynamics are related through the Boltz-

mann relation and the thermodynamic potential to describe the isolated sys-
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CHAPTER 2. THEORETICAL BACKGROUND

tem is entropy, S=S(U,V) which is maximum at equilibrium state when the

energy states are discrete in Eq. (2.4).
S = kplnQ ~ kginWaa (2.4)

where W = %, n; is the number of particles in the energy E;, and W4z
is maximum number of microstates. The Boltzmann probability distribution
is derived by using the principle of maximum entropy which requires N has

to be large and maximize entropy by inserting Largrange multipliers. The

probabilty of it being with energy Ej; in the energy level k is

1
Py = e AEx (2.5)

where Z = 3", e #Fr and 8 = lq%T'

Canonical Ensemble of Systems

The exchange of heat between the system and its surroundings brings the
constant temperature at the equilibrium state. In the canonical ensemble, a
set of microstates with a number of particle N, volume V and temperature T
is fixed but variable energy U. The partition function for a classical system
is

Z(T,V,N)= > = )" gel (2.6)

microstates k energies 1

where the first sum is over all possible states k with energy Ex, 8 = 1/kgT
with kp Boltzmann’s constant, and the second sum is all possible states i

with energy FE;, g; is degeneracy which is the number of microstates with

7
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CHAPTER 2. THEORETICAL BACKGROUND

E;. The probability of any state of the system is determined by the partition

function. The probability of finding the k' state with energy E}, is given by

1

where the exponential factor is called the Boltzmann factor. All macroscopic
thermodynamic properties are connected with the partition function. The
ensemble average of a thermodynamic quantity A can be calculated using

the canonical probability distribution.

> Age P

S (2.8)

M
< A>= ZAkPk =
k

where M is the total number of accessible microstates.

2.1.3 Monte Carlo Move

The Metropolis Monte Carlo method is applied for evolution in the canonical
ensemble. The evolution is driven by the energy change between the old and
new configuration, AE = FE, ¢, — Fyq. From the detailed balance in Eq. (2.2),
T(z — 2) is the transition probability for trial move x — 2/. The relative
probability is the ratio of the individual probability in Eq. (2.9).

T(x—a') P(a) e Pbw
T(z' =) Plxr) e Pk (29)

The transition probability T'(z — 2') itself is used for acceptance probability

calculation by Metropolies et al [36].

T(z — ') = min(1, e PAE) (2.10)

8

Collection @ chosun



CHAPTER 2. THEORETICAL BACKGROUND

where AE = E,» — E, is the energy change by the move from x to z’. The
Metropolis Monte Carlo method is used for calculation of ensemble averages
with importance sampling. Eq. (2.11) represents that only a finite number
m of the total number of all microstates M in Eq. (2.8) are generated as
follows.

X Age P &

k k

The m configurations are generated with random distribution 7 and then

make a simple average of A as follows.

1 m
<A>=— zk:Ak (2.12)

2.1.4 Phase Transitions

Phase transitions are boundaries between different phases of matter, eg. liquid-
gas in fluids, order-disorder in magnet. The critical temperature 7. can be
estimated by specific heat per spin or particle N that is computed from the

fluctuations of the internal energy U in eq. (2.13)

62

(< U? > - <U>?% (2.13)

Cc

where < U > is expressed in terms of the thermal average of the energy. The
fluctuations are intrinsic to the system evolution and large near the phase

transition.
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CHAPTER 2. THEORETICAL BACKGROUND

Tree-dimensional Classical Heisenberg Ferromagnet

The Hamiltonian for the ferromagnetic Heisenberg model on a cubic lattice
is given by the hamiltonian as follow:
H=-J) S8 (2.14)
<t,j>
where a vector S has three components (S;,S;, Si) and |S?| is a unit vec-
tor. This model undergoes a phase transition at a temperature kgT./J =

1.442... [37], where kp is Boltzmann’s constant.

Two-dimensional Lennard-Jones Systems

Given a vector of positions ¢ = (q1,¢2,...) of n particles in a d dimension
space, we have nd dimension, consider a potential ¢ that maps this nd di-
mension into R. Consider the Lennard-Jones potential for two particles,

12 6

¢(Q1,qz)=4e< d S > (2.15)

g1 — @22 g1 — q2|®

here € is depth of ¢(q1,¢2) at the minimum, o is length and ¢(q1,q2) = 0 at
|g1 — q2| = 0. The phase diagram of the 2D Lennard-Jones system obtained
from the equation of state by Reddy et al. [38] and ensemble simulation [39,
40] shows the vapor-liquid phase transition and the vapor-liquid coexistence.
From Singh et al [39], the estimate of the critical temperature and density

T. =0.472 and p, = 0.33 £ 0.02 are obtained.

10
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CHAPTER 2. THEORETICAL BACKGROUND

2.2 Deep Learning and Neural Networks

In this section, some fundamental concepts in ML techniques including deep
learning (DL) are explained. The types of machine learning are distinguished
as supervised or unsupervised. Supervised learning is a method of learning
from labeled data. In the unsupervised learning methods, the machine is
concerned with finding patterns and structure in unlabeled data. We focus

on supervised learning.

2.2.1 Feed-forward Neural Networks

Feed-forward neural networks, or multilayer perceptrons (MLPs), consist of
units and are used for supervised learning. A multilayer perceptron in figure
2.1 is a perceptron with one or more hidden layers. Multilayer perceptron
consists of three types of layers - input layer, hidden layer, and out layer.
The multilayer perceptron multiplies the inputs by the weight for each input
value, and the combined result value becomes the input value of the activa-
tion function. The activation functions help the network learn any complex
relationship between input and output. After that, the result value of the ac-
tivation function becomes the input value of the next node. In this way, the
result of going through some hidden layers becomes the final output value.

The training process of multilayer perceptrons learns the model in the di-
rection of minimizing loss function by changing weights in the network. A

type of loss function is one of the hyperparameters and needs to be deter-

11
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Input layer (i) Hidden layer (j) Output layer (k)
n-neurons M-neurons 1-neurons

Inputs
Output

Figure 2.1: MLP neural networks

mined according to the given tasks. The loss function for regression is mean

absolute error as follows:

N
1 .
Lyvag = N E ly; — 9] (2.16)
J

,where ¢; is the j-th value in the output as the prediction, y; is the actual

value. Whereas mean squared error is typically used as shown in Eq. (2.17).

L
Lyse = N (y; — 9;)° (2.17)
J

The value of each weight is obtained in the reverse order of the method
of calculating the final output, which is called backpropagation. The way to
learn in the direction of minimizing the loss is gradient descent. The gradient

descent in Eq. (2.18) is a way of taking small steps in the direction that

decrease loss.

0Loss
ow

w—w—n (2.18)

12
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CHAPTER 2. THEORETICAL BACKGROUND

where w is for each learable parameter, 7 is the learning rate which controls
the step size, and Loss stands for loss function and the difference between

the actual value and the prediction.

2.2.2 Convolutional Neural Networks

Fully
Connected

Convolution

Input

Feature Extraction Classification

Figure 2.2: CNN architecture

Convolutional neural network (CNN) is known to use convolution oper-
ations to capture the spatial dependencies in an images, significantly detect
the important features compared to feed-forward neural networks. The CNN
are utilized for images classifications and images recognition. The CNN are
divided into feature extraction in multiple hidden layers and classification in
output layer as shown in figure 2.2. The feature extraction consists of convo-
lution layers and pooling layers. One or multiple convolution layers extract

the simple features from input by using convolution operations. The con-

13
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CHAPTER 2. THEORETICAL BACKGROUND

volution layer applies filters to an input and generates the feature maps as

shown in figure 2.3.

2 |0 1 34 | 54 | 27

@ 0 1 1 _— 34 | 41 | 34

1 0| 2 34| 25| 21

3121121310 filter Feature map

input
Figure 2.3: Element-wise multiplication of the input and filter. 3x3 convolu-

tion is performed on the 5x5 input. This convolution produces 3x3 feature
map.

Following each convolution operation, the activation function is applied and

add non-linearity into the network to learn complex structures in the data.

34 | 54 | 27
Max pooling 54 | 54
34 | 41 | 34 _—
41 | 41
34 | 25 | 21

Feature map

Figure 2.4: Max pooling using 2x2 filter with stride of 1 from the feature
map. The maximum value of each filter is selected.

As shown in figure 2.4, the pooling layer after the convolution layer is used
to reduce the dimensions of the feature maps but retain important infor-
mation, and to also control overfitting . Once the features extracted by the

convolution layers and pooling layers are created, the output from the flat-

14
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CHAPTER 2. THEORETICAL BACKGROUND

ten layer that transforms into a 1D array of vector is fed to the fully con-
nected layers for the classification. The final fully connected layer contains
a softmax activation function and has the number of nodes as the number
of classes. The softmax outputs a probability value from 0 to 1 for each of
the classes for j = 1...J given input z and add up to 1 in Eq. (2.19).

e?i

fj(z) = dezk

(2.19)
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Chapter 3

Computational Details

In spin dynamics simulations and molecular dynamics simulations, the clas-
sical equations of motion are solved numerically using symplectic methods.
This chapter describes these dynamics simulations tricks that were imple-

mented.

3.1 Spin Dynamics Simulations

This section describes the symplectic method applied to Spin dynamics sim-

ulation.

3.1.1 Heisenberg Models

The ferromagnetic Heisenberg model on a cubic lattice as shown in Eq. (2.14)

is used to demonstrate the efficiency of our method. We formalize our spin

16
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dynamics following the notations of Tsai et al. [41]. The equations of motion

for all spins are written as

o) _ poe, (3.1)

where o(t) = (8(t), S?(t),...,8™(t)) is the spin configuration at time t.
The integration of the equations of motion in Eq. (3.1) is done using the
second order Suzuki-Trotter decomposition method as in Tsai et al. [41].
The ferromagnetic Heisenberg model is considered on the cubic lattice
of dimensions L x L x L with periodic boundary conditions. In the spin dy-
namics approach, the equations of motion for the Heisenberg model is gov-

erned by the following equation:

‘ 0 _Hgff,z Hez;ff,y
as* - - A ‘ . -
T —S'x H! ;= Hig, 0 —Hig S'=R'S". (3.2)
_Héff,y Héff,x 0

Here, H'; is the effective field acting on the i*" spin. The k component of
the effective field can be specified as Hifﬁk = — Zj:m(i) Si, where the sum

runs over the nearest neighbor pairs of sites and k = z,y, and z.

3.1.2 Symplectic Algorithms

The symplectic methods are based on decompositions of exponential opera-
tors. As following the mathematical notations of Tsai et al., we decompose

the evolution operator R into RA and ]A%B on the sublattices A and B re-

17
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CHAPTER 3. COMPUTATIONAL DETAILS
spectively and obtain
e(RA+RB)T _ eéBT/ZeRATeRBT/Q + 0(7_3). (3_3)

The symplectic method determines temporal evolution of the spin orienta-
tions denoted as o(t) = {oa(t),op(t)}. The formal solution of the equations

of motion of all spins can be written by using symplectic method as follows,

ot + 1) = BT/ 2RATRET/2 (5 (1) (1)) (3.4)

For second-order Suzuki-Trotter decomposition method, the integration time
step is limited up to 7 ~ 0.04/J and for fourth-order Suzuki-Trotter decom-

position method, the integration time step is limited up to 7~ 0.2/J [41].

3.2 Classical Molecular Dynamics Simulations

The movement of particles is predicted by numerically solving the Hamil-
tonian equations of motion. This section describes the symplectic method

applied to molecular dynamics simulation.

3.2.1 Hamiltonian System

A Hamiltonian system is a dynamical system described by the scalar func-

tion H(qq,P,) of the phase space given by (du; Pa) = (1,45 Anjas P1,as -+

Pno) € €2, n is the total number of particles. In this paper for parallel com-

putations in graphical processing units (GPU), we consider an ensemble of

18
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CHAPTER 3. COMPUTATIONAL DETAILS

independent hamiltonian systems index by a, a = 1,--- N. The Hamilton’s
equations of motion with a Hamiltonian H(q,,p,) as a conserved quantity

are written as

. _9H(Aape) . OH(AaPa)
qa - 8pa 9 pa - 8qa (35)

Consider particles with mass m;, = 1 described by their position q;, and
momentum p; , for i-th particle of a-th sample, interacting via a potential
qSLJ(\qw — Qg ol); k # i is the index by the neighboring particle of the i-th
particle and m;o. The Hamiltonian function H(q,,p,) of the system can

be written as

n

H(q,, Pa) = K(po) + U(a,) Z + ) 0" (g — dral). (3.6)
=1 My i,k,i#k

The H is the total energy that is sum of kinetic and potential energies and
is conserved with respect to time. We use Lennard-Jones system as a demon-
stration for physical model. All quantities are computed in dimensionless

units.

3.2.2 Lennard-Jones Potential

For computation convenience and numerical stability, we want to rescale the
system so that the box volume || = 1. U : Q" — R. Eq. (2.15) can write
q1,q2 in dimensionless units, q1 = &1L, qo = &L where L is the box length.

Then ¢ is dimensionless. Break the LJ potential into ¢g and ¢q29,

512 o
O(q1,q2) = 4e <L12]§1 — &2 L6)E - 52’6> 0
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CHAPTER 3. COMPUTATIONAL DETAILS

In dimensionless units, ¢g(&1,&2) = 1/[& — f2|6, d12(61,62) = 1/ — 52‘12-

Then the relationship between dimensionless potential and original potential

is,

4ec® 1 4ea

®6(q1,q2) = Z(g A 206 P6(&1,62) (3.8)
4 12 1 4 12

$12(q1,q2) = ;2 Rk ;2 p12(&1,62) (3.9)

We can also derive the derivative in w.r.t. the individual terms ¢g and ¢qo.

O(q1, 02, qn) = _ S, G) (3.10)
ik

4eot? 1 4ecS 1
(I)(qlan7"'qn) = 12 < 12> - 6 < 6> (311)
L= = &k — &l LS &k — &l

0o
dqr,  LO&

(3.12)

gk, is position of k-particle which has two component (g ., qk,y). Write g, =

L&, = (L&, LEy,) in dimensionless units.

8¢(Q1;Q27 : _ Z < ék,m - gi,:c ) . 4ea® ( gk T Siw gkx gzaz
i I 2\ —enm) T 2 e
gk,y - fi,y ) _ 4ec® ( 6ky Sy gky gz,y )
Ll?’ #Zk( (& — &M LT =\ (& = &l)°
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CHAPTER 3. COMPUTATIONAL DETAILS

3.2.3 Initialization

The initial configurations are used to prepare the input of neural network
model as the phase space (q,(0),p,(0)) that describes the initial state of
system and prepared on gas+solid, gas+liquid, and gas regions at each tem-
perature in two-dimensional phase diagram of Lennard-Jones systems. The
dynamic properties at different temperatures with various densities are stud-
ied. Independent positions q,(0) are sampled using Monte-Carlo simulation
with the Metropolis algorithm [36, 42, 43] for each temperature kgT'/J and
consider the temperature dataset in the range of kpT/J € [0.27 — 0.71].
Initial momentum p,(0) are sampled using Boltzmann distribution at fixed

temperature in the range of kgT'/J € [0.27 — 0.71].

3.2.4 Periodic Boundary Condition and Minimum Image

Convention

Periodic boundary condition approximates a large systems by using small
subsystem. The particles of the small subsystem are controlled in a simula-
tion box. In the case that particle leaves the simulation box, identical parti-
cle of adjacent box enters the simulation box. The periodic boundary condi-
tions use the minimum image convention for short ranged force and consider

the interactions between particle and the closest image in the system.
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CHAPTER 3. COMPUTATIONAL DETAILS

3.2.5 Symplectic Algorithms

Hamilton’s equation of motion can be solved using symplectic algorithms,
for example, using the velocity-verlet algorithm in Eq. (3.13). The method
performs the evolution of the configuration as q; ,(t) and p; ,(t) are updated

to q; o(t +7) and p; ,(t + 7) for each i-th particle of a-th sample as

T ) T dH T
Pt ) = Pialt) + o) =pialt) + (= ] )] (3.13)
T
qi,a(t + T) = qi,a(t) + pi,a(t + 5)7—
T ) T T dH T
pi,a(t + 7_) = pi,Oc(t + 5) + pi,a(t + 7_)5 = pi,a(t + 5) +{ = dqi,a o 5
where 7 is the integration time step.
22
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Chapter 4

Deep Learning Approach to

Spin Dynamics

This chapter introduces the Deep Learning method how to make corrections
to achieve higher accuracy in spin dynamics and validate the performance

of the Deep Learning method.

4.1 Supervised Deep Learning Method

A fully supervised Deep Learning method is developed to perform the spin
dynamics by using the second order Suzuki-Trotter decomposition method

to reduce simulation errors.
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CHAPTER 4. DEEP LEARNING APPROACH TO SPIN DYNAMICS

- I | A | |
3} A
A
A
0 o’
- |
* "
5 | L |
|
.. M a=m (kgT/ <kgT/J)
- ® a=0 (kgTHW =kgTN)
-10 Ly A a=n (kgTH>kgTJJ) | |

0.5 15 2.5
kg T/J

Figure 4.1: Plot of f* as a function of temperature kgT'/J used for the sim-
ulated annealing methods, where f is modification factor and a is power of

f.

4.1.1 Data Preparation

In order to produce training data for our supervised Deep Learning, initial
spin configurations are considered at ordered, near-critical, and disordered
states in the temperature range kpT/J € [0.5,2.4] and sampling 9.1 x 10°
independent spin configurations using Monte-Carlo simulations with the Met
ropolis—Hastings algorithm [36, 42, 43]. The initial spin configurations are
prepared with 300,000 samples in ordered states, 210,000 samples near crit-

ical states, and 400,000 samples disordered states by simulated annealing

24

Collection @ chosun



CHAPTER 4. DEEP LEARNING APPROACH TO SPIN DYNAMICS

method. In the Monte Carlo simulation, transition probability from one state
to another state is W = e #2F for AE < 0 in the metropolis algorithm.
Since an inverse temperature § goes to infinite at low temperature, it is easy
to fall into the local minima because the transition probability is W = 0.
For the purpose of avoiding the local minima problem, we gradually lower
the temperature from a high temperature to a low temperature using the
simulated annealing method. Temperature dataset shown in figure 4.1 are
generated in range of temperature kg1'/J € [0.5,2.4], where kpT'/J is de-

fined as follows:

kgT/J = f~"kgT./J , kgT/J < kpT./J
(4.1)

kBT/J: fnk'BTC/J s ]{JBT/J > kBTC/J .
Here, the positive real number f, the modification factor, is used to adjust
the number of temperature dataset between minimum temperature kgTy,in/J
= 0.5 and maximum temperature kpTy./J = 2.4, where m is the num-
ber of temperature dataset between the critical temperature kpT./J and

kpTimaz/J and n is the number of temperature dataset between kgTyin/J

and kpT./J. The values of m and n are estimated as follows:

o logkpTe/J — logkpT/J
log (4.2)
logkpT/J — logkgT./J
n= 5
logf

where kpT,./J ~ 1.44, m = 11, n = 5, and f = 1.1 are used in this paper.

The initial spin configurations are obtained below, near, and above the crit-

ical temperature. Below the critical temperature, 30,000 spin configurations

25

Collection @ chosun
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representing order states are generated by using the Monte Carlo simulation
at temperatures kgT/J = 0.5, 0.56, 0.61, 0.67, 0.74, 0.81, 0.89, 0.98, 1.08,
1.19 each. Near the critical temperature, 70,000 spin configurations are gen-
erated at temperatures kgT'/J = 1.31, 1.44, 1.58 each. Above the critical
temperature, 100,000 spin configurations representing disordered states are
generated at temperatures kgT'/J = 1.74, 1.92, 2.11, 2.32 each.

Below the critical temperature, the entropy is low so the generated
number of initial spin configurations are smaller than other temperatures.
As the temperature increases as the entropy is high, we increase the num-
ber of initial spin configurations.

The temperatures for annealing are gradually lowered from high to low
temperatures and Monte Carlo data are always obtained at equilibrium con-
figurations. For each sampled initial spin configuration o;, two sets of spin
dynamics simulations are performed with the time steps 71 = 10~ and 73 =
1072 as illustrated in figure 4.2. Second-order Suzuki-Trotter method uses
7 =0.04 as typical integration time step, so we use 7 = 10> which would
give good accurate simulation. For large time step, we tried 7 = 102 and
7 = 10", with our Deep Learning corrections, a large time step of 7 = 107"
gives the best speed up with a good accuracy. The spin configuration with
time step 73 = 1073 needs 100 time steps of simulations to pair with the
spin configuration with one time step 7 = 10~!. Formally, we represent the

(10-%)

i

(10-1)

i and o by using the Suzuki-Trotter

updated spin configurations o
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Uj[res): _{10‘3}_0'(10‘1J

100 time steps

| >
100107 time

O =m

Figure 4.2: Spin configurations for training data preparation. o; is ini-

(10~1)
(10-3)

i

tial spin configuration, o

71 = 107! from oy, and o

(res)

73 =103 from o;. o;

(107%)

%

(10-).

is residue of o and o,

position method as

10-! R R R _
U@( ) oltm/2oam o Bam /2, 1 01

(4.3)

10-3 R R R - .
O'i( 07%) — (eRBTi”/%RATi”eRBTB/2)1000i, 3 =1073 i=1,..D,

is spin configuration after one time step of

is spin configuration after 100 time steps of

where o; is an initial spin configuration and D represents the number of

(107%)

training data. The difference between spin configuration o,

(1071)

using 73 = 1073 and spin configuration op generated using 71 = 107! is

captured by

Sres) _ (1078 (1071 i=1,...,D, (4.4)

7 A 7

(res)

where o, is residue.
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Cc C, C, c,+C,C, C, C,
m.._q m'-l .

v ¢, c, ¢

—|— | —>

— C, = 90 channels
e C, = 120 channels
> Conv 3x3x3, ReLu [ Concat + Max pool 2x2x2

* Upsampling 2x2x2 —pm» Reshape ~J» Conv 1x1x1,sigmoid

Figure 4.3: Illustration of the U-Net architecture. The architecture consists
of encoder and decoder layers. Each vertical black line represents a multi-
channel feature map. The number of channels is denoted on the top of
straight vertical black line and each map’s dimension is indicated on the
left edge. Vertical dashed black lines correspond on the copied feature maps
from each encoder layer.

4.1.2 U-Net Architecture

For our Deep Learning, initial spin configuration o; and spin configuration
0510_1) are used as the inputs into U-Net [44], a kind of convolutional neu-
ral networks. The U-Net is a proven architecture for image segmentation as
well as for extracting subtle features. The architecture of U-Net described in
figure 4.3 is used for 4 x 4 x 4 cubic lattice. Convolutional layers are used as
an encoder followed by a decoder that consists of upsamplings and concate-
nations with the correspondingly feature maps from the encoder. The input

dimensions of U-Net are reshaped to [D, L, L, L, C] as cubic grid vector map.

D is total number of training data and input channels C' is 6 (34+3) by con-
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Cc C, C C,+C; C, C, C,
- |—> > | |||
3 C3 C3 + C3 CS 4}
- —-| —P uuuumumm:umm’ : — |—
Se =lev
" c, C, ') C, =60 channels
) C, =90 channels
- == [—> C, =120 channels
= C, = 960 dense nodes

= Conv 3x3x3, ReLu == Concat + Max pool 2x2x2 f Upsampling 2x2x2
= Fully connected — Reshape = Conv 1x1x1,sigmoid

Figure 4.4: Illustration of the U-Net architecture. Each vertical black line
represents a multi-channel feature map. The number of channels is denoted
on the top of the straight vertical black line and each map’s dimension is in-
dicated on the left edge. Vertical dashed black lines correspond on the copied
feature maps from each encoder layer.

(1071

catenating spin coordinates S, Sy, and S, of o; and o, , respectively.
The encoder consists of the repeated two convolutional layers with 3 x 3 x 3
filters followed by a 2 x 2 x 2 max pooling. Every step in decoder consists of
upsampling layers with a 2 x 2 x 2 filters followed by the repeated two con-
volutional layers with 3 x 3 x 3 filters and copy with correspondingly cropped
feature map from encoding layers. The periodic boundary conditions are also
applied to the convolutional layers. The activation function of the output is

a sigmoid for predicting values of residue with [D, L, L, L,C,] dimensions,

where the number of output channels C, is 3.
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The architecture of U-net used for 8 x 8 x 8 cubic lattice as shown in
figure 4.4 is that convolutional layers are used as an encoder on left upper
side followed by a decoder on right upper side that consists of upsamplings
and concatenations with the correspondingly feature maps from the encoder.
We add fully connected layers (FC) in the bottom of the network between
the encoder and the decoder to efficiently determine particular weights in
the feature map from the encoder , such as capturing more information of
spin-spin interactions. The input channels C' are 6 by concatenating spin
coordinates S;, Sy, and S, of both o; and 01(10_1), respectively. The input
dimensions of U-Net are reshaped to [D, L, L, L, C] as cubic grid vector map,
where D is the total number of training data, L is lattice size, and C' is in-
put channels. The encoder consists of the repeated two convolutional layers
with 3x3x 3 filters followed by a 2x2x2 max pooling. We apply a reshaping
function to FC with dimensions from [D, %x % X % x Cy] into [D, %, %, %, Cly].
Every step in decoder consists of upsampling layers with a 2x2x2 filters fol-
lowed by the repeated two convolutional layers with 3x3x 3 filters and copies
with correspondingly cropped feature maps from encoding layers. The peri-
odic boundary conditions are also applied to the convolutional layers. The
activation function of the output is a sigmoid for predicting values of residue

with [D, L, L, L,C,] dimensions, where the number of output channels C, is

3.
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4.1.3 Deployment of U-Net

To deploy the trained U-Net for spin dynamics, spin dynamics simulation is

carried out with one large time step 71 = 107! and this simulation result

02(1071) can be used to predict 01(1073) as follows:
6’1(10_3) _ 02(10—1) + 5Z(res) ~ 01(10—3)’ (4.5)

(107%)

where &, is the predicted spin configuration for 100 time steps of 73 =

(res)

1073 and predicted residue &, is the correction term by Deep Learning.

A sequence of spin dynamics is conducted at 71 = 10~! and for each step,
Eq. (4.5) is used to perform corrections as shown in figure 4.5. This new
time integration scheme is repeated up to maximum time t,,q,. This scheme
requires only forward propagation using the GPU implemented with Tensor-

Flow library [45], so the computing time is negligible.

4.1.4 Normalization of Residue

The difference between spin configuration generated with 73 = 10~3 and that

(res)

generated with 7 = 10~ is captured by residue o, as shown in Eq. (4.4).

(res)

Let (o, )i be the k component of residual spin at site j of the lattice, and

k denotes z, y, and z components. The values of (al-(ms))i can be quite small

for some simulations, to maintain numerical stability, we normalize these val-
(res)yj

ues as follows. Each component (o, 6S)) . over D samples of training data is

normalized to a range of [0,1] by fitting to have a Gaussian distribution, and
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1% step 2" step t /1 step
One spin dynamics =
stepwitht = 10" °

A \I [ ]
[] (1071)’ [ ]

(@)

(b) | Correction

K *Correction
0,= 0;(t=0) ~ (107) ~ JAN
\ C)'l ([:0»1) ( 71]

o L0 (e=02)
Initial spin \ :

S

— configuration N >
0 Machine learning time
prediction

Figure 4.5: A sequence of spin dynamics for testing the trained U-Net

model: (a) conduct one time step 71 = 107! of spin dynamics simulation;
(107%)

—1
(b) use UZ-(IO ) to predict the spin configuration o;

(res)

7

by estimating pre-
dicted residue &
tmaz time.

using Eq. (4.5). Steps (a) and (b) are repeated up to

find the mean and standard deviation for each k& component, respectively.

For lattice size L = 4, A\in = —0.22455 and A\jpq; = 0.22455 are defined by
taking 11 times the largest standard deviation of & component. 11 standard
deviations translates to a p-value of 1.911 x10~2®, which ensures that during
inference, the normalized residue (U,L(Tes))i is always within the range [0,1].

For lattice size L = 8, A\pin = —0.25472 and A, = 0.25472 are defined

by taking 13 times the largest standard deviation of k component. Finally,

(TGS))j

each component (o, ' ); is normalized to the range [0, 1] and guarantee sta-
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ble convergence of weights and biases in Deep Learning as follows :

B (Ul(res))i . )\mm

k )\max - Amzn

(k=z,y,2, 1=1,...D). (4.6)

During the prediction, (Uyes) )fe from test data is normalized to a range of

[0, 1] by using Apin and Apee, which have already been obtained.

Loss Function and Training

-1
The loss function for one data point of (oy, Ji(lo ), o’ is the mean-square

norm

error between the normalized residue o] and the predicted normalized

residue ¢;"°"™ and is defined as
L3
(1071 _norm 1 norm\j ~norm\j2
L(oi, 0, Lo M) = ﬁz (0™ = (6775 (4.7)
j=1

where j is the index of lattice sites. The distance function between the jt*
site of o' and the gt site of 6;°" is the sum of the square difference
of all spin components :
. . 9 . . N\ 2
(orrmyi — ey = 30 (ermi - erml) . @s)
k?:CC7y,Z

where 7 is the index of training data.

4.1.5 Converting 67 to 6"

For our Deep Learning, inputs into U-Net are obtained initial spin configu-

(1071

rations o; and spin configurations o; generated by spin dynamics sim-

ulations, and output is 6;""™. We finally predict the spin configuration for
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-3
100 time steps of 73 = 1073 using trained Deep Learning model as 6510 ) =

J1(10’1) + &l(res)

(res)

, where the predicted residue &; can be obtained by the

following converting formula as &gres)

&?OTm(Amax - Amzn) + )\min'

4.2 Results and Discussions

The effectiveness of our proposed Deep Learning method is evaluated at
kpT/J = 04 < kpT./J, kgT/J = 144 =~ kgT./J, and kpT/J = 2.4 >
kpT./J. Note that at kpT/J = 2.4, the system is in a disordered state and
spatial corrections between spins are very short. One hundred independent
spin configurations are generated by using Monte-Carlo simulation for use
as test data sets at each temperature kgT/J = 0.4, 1.44, and 2.4. Second

order Suzuki-Trotter decomposition methods are used for all experiments.

4.2.1 Spin-Spin Correlation using Reference Trajectory

To evaluate the accuracy of simulation results, correlation is investigated by
comparing spin dynamics trajectory o(t) with highly accurate spin dynamics
trajectory p(t) performed with 7 = 1076. 7 = 1076 is used as the reference
time step as we found that it can give accurate trajectories. Correlation &(t)

as function of time ¢ in which o(t) and p(t) are compared is given by

L3
§(o,t) = %Z[(pj(t))x(aj(t))z + (P )y (7 ())y + (¢ (1)=(07 (1)):], (4.9)
j=1
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Figure 4.6: Spin-spin correlation using reference trajectory generated at
7 =1075. Analysis of the mean of correlation He(r) as a function of time
on 4 x 4 x 4 cubic lattice at a,kgT/J = 0.4, b,kgT./J ~ 1.44, and
c,kpT/J = 2.4 and those on 8 x 8 x 8 cubic lattice at d,kgT/J = 0.4,
e kpT,/J =~ 1.44, and f,kpT/J = 2.4. Blue line presents the Deep Learning
result while black line, yellow line, and red line are the simulation results for
=107, 7=1072, and 7 = 1073, respectively. Especially, at kpT/J = 1.44
and kpT/J = 2.4, green line and violet line show the simulation results for
7=10"% and 7 = 1075, respectively.

where index j denotes lattice site of spins, L is the linear dimension of the
lattice, and L3 is total number of spins at lattice sites. Since the initial
spin configurations are the same, p(0) is identical to o(0). We compute one
hundred correlation £(o;,t) for spin configurations o;(t), where i is from 1
to 100. Then, we also estimate the mean of correlation pe(;) and the stan-
dard deviation of correlation std(£(t)) of &(oj,t) as a function of time at
each temperature. In figure 4.6, the spin-spin correlation plots are shown

as using reference trajectory generated at the reference time step 7 = 1076

for kpT/J = 04 (kgT/J < kpT./J) [figure 4.6a and 4.6d], kpT/J =
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1.44 (kgT/J =~ kgT./J) [figure 4.6b and 4.6e], and kpgT/J = 2.4 (kgT/J >
kpT./J) [figure 4.6¢c and 4.6f]. At kpT/J < kpT./J , correlations remain
high (red line, yellow line, and blue line) except for at 7 = 107! with-
out Deep Learning corrections (black line), where correlation drops around
t = 2. This is due to accumulation of errors for large time steps. Corre-
lation is recovered with Deep Learning corrections (blue line). Indeed cor-
relations of 7 = 107! with Deep Learning corrections are as good as for
7 = 1072 without Deep Learning corrections (yellow line), demonstrating
a ~ 10 times speed up. At kgT/J =~ kpT./J and kgT/J > kpT./J ,
spin-spin correlation drops faster than kgT'/J < kgT./J even for short time
steps, 7 = 107% (green line) and 7 = 1075 (violet line), due to disorder
in the spin lattices. We define threshold time ty,..s as the average time re-
quired for spin-spin correlation pg) to drop from 1 to 0.99. In figure 4.7,
the plot of tipres as a function of temperature kpT'/J has the logarithmic
scale on the y-axis, and simulations for 7 = 10™3 have higher threshold time
(red squares) at each temperature than for 7 = 10~! without Deep Learning
corrections. Threshold time (filled blue diamonds) for 7 = 10~! with Deep
Learning corrections approaches to almost the same threshold time (yellow

circles) for 7 = 1072 without Deep Learning corrections at each temperature.
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Figure 4.7: Threshold time t,.s as function of temperature. Filled blue
rhombus represents the Deep Learning result while filled black triangles,
filled yellow circles, filled red squares, filled green inverted triangles, and
filled violet pentagons are the simulation results without DL corrections for
7=10"Y 7=10"2, 7 =103, 7 =107%, and 7 = 107, respectively.

4.2.2 Conservation of Energy and Magnetization

Suzuki-Trotter decomposition method provides important properties such as

I3

conservation of energy e = —L733 ;> 8"+ 57 and magnetization m =

L*3\/(Zi S+ (X 52)2 +(32,8%) , and time reversibility. We wish to
compare the conservation of energy and magnetization across one hundred
samples, but their starting spin configurations are different. In order to take
statistics across the samples, we shift the energy and magnetization of the

initial spin configurations to zero. Eq. (4.10) show how we shift the energy

37

Collection @ chosun



CHAPTER 4. DEEP LEARNING APPROACH TO SPIN DYNAMICS

per site e(t) and magnetization per site m(t) at each time step t. Here, Q
represents the number of samples at each temperature. We use Q as one

hundred.

éi(t) = ei(t) — e;(0) i=1,...,Q
(4.10)
m;(t) = m;(t) —m;(0) i=1,...,Q .
With the shifting of energy and magnetization, we can compute the mean
of absolute energy per site ps;), the mean of absolute magnetization per
site pm ()|, standard deviation of energy per site std(é(t)), and standard de-
viation of magnetization per site std(m(¢)) over independent samples.
Figure 4.8 (L = 4) and figure 4.9 (L = 8) show fu5(s)|, std(€(t)), ppm(e))s
and std(m(t)) as a function of time at kgT/J = 0.4 (kgT/J < kgT./J) [fig-
ure 4.8a and 4.9a], kT /J = 1.44 (kgT/J =~ kpT./J) [figure 4.8b and 4.9b],
and kpT/J = 2.4 (kgT/J > kpT./J) [figure 4.8c and 4.9¢c]. For time steps
7 =10"2 (yellow line) and 7 = 10~3 (red line), conservation of both energy
and magnetization is good, as shown by the relatively constant mean plots
(e and i) and small standard deviations (std(é(t)) and std(m(t)))
across independent simulations. At kgT'/J < kgT./J and kT /J ~ kgT./J,
both energy and magnetization are not conserved in simulations without
Deep Learning corrections for time step 7 = 10~! (black line). On the other
hand, conservation is recovered using Deep Learning corrections (blue line).
In figure 4.8¢c, at kT /J > kpT./J, the system is disordered and the mean

of absolute energy f5;)) and the mean of absolute magnetization fi; ;) be-
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Figure 4.8: Conservation of energy and magnetization on 4 x 4 x 4 cubic lat-
tice. Predictions of the mean of absolute energy per site pz(;), standard de-
viation of energy per site std(é(t)), the mean of absolute magnetization per
site (), and standard deviation of magnetization per site std(/m(t)) as a
function of time at a,kpT/J = 0.4, b,kpT,./J ~ 1.44, and c, kT /J = 2.4.
Black line, yellow line, and red line represent data obtained from spin dy-
namics simulations with 7 = 107!, 7 = 1072, and 7 = 1073, respectively,
while blue line represents data from Deep Learning correction.
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Figure 4.9: Conservation of energy and magnetization on 8 x 8 x 8 cubic lat-
tice. Predictions of g, std(€(t)), pm, and std(m(t)) as a function of
time at a,kpT/J = 0.4, b, kpT./J ~ 1.44, and ¢, kpT/J = 2.4. Black line,
yellow line, and red line represent data obtained from spin dynamics simu-
lations with 7 = 107!, 7 = 1072, and 7 = 1073, respectively, while blue line
represents data from Deep Learning correction. These figures show that the
effect of averaging over disordered spins for L = 8 is stronger than for L =4
above the critical temperature kgT./J.
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come more constant, simply due to averaging of disordered spins. Especially,
figure 4.9c shows that at kgT/J > kpT./J, the effect of averaging over dis-
ordered spins for L = 8 is stronger than for L = 4. At high temperature, the
number of possible states increase exponentially and hence fitting by Deep

Learning corrections is more difficult.
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Chapter 5

Deep Learning Approach to

Molecular Dynamics

This chapter introduces the Deep Learning method used to learn effective
force to recover simulation stability and validate the performance of the Deep

Learning method.

5.1 Supervised Deep Learning Method

5.1.1 Data Preparations

Let us consider a system of the 2-dimensional Lennard-Jones small n=16
particles system. The density of the system is chosen to be p = 0.1, 0.14,

0.2, 0.27, and 0.38 and the particles are confined to a square box of length
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Figure 5.1: Specific heat ¢, in two-dimensional LJ potential on N=16 par-
ticles at the range of kgT'/J € [0.27 — 0.71] that is critical temperature
T. = 0.472 with (a) p=0.1, (b) p=0.2, (¢c) p=10.3 and, (d) p=0.4.

L= \/7% The initial configurations are used to prepare the input of neu-
ral network model as a set of coordinates (q(0),p(0)) that describe the ini-
tial state of system and total sampling 1,200,000 independent configurations
with a various densities p. Independent q(0) are sampled using Monte-Carlo
simulation with the Metropolis algorithm for each temperature kT /J and
consider the temperature dataset in the range of kgT/J € [0.27 — 0.71].
From Singh et al. [39], the estimate of the critical temperature and density

T.=0.472 and p. = 0.33+£0.02 are obtained. Fig 5.1 shows the high specific

heat per particle near critical temperature T, about one sample in a Monte-
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Carlo simulation. Initial positions q,(0) are prepared with 60,000 samples

at the range of kgT/J € [0.27,0.39] on gas+solid regions, 60,000 samples at

the range of kgT'/J € [0.43,0.55] on gas+liquid regions and, 120,000 sam-

ples at the range of kpT'/J € [0.59,0.71] on gas regions with each density in

two-dimensional phase diagram of Lennard-Jones systems as shown in figure

5.2.
n P L Phase T # of (q(0),p(0))
gas+solid | 0.27, 0.31, 0.35, 0.39 | 15,000x4 = 60,000
0.1 12.65 | gas+liquid | 0.43, 0.47, 0.51, 0.55 | 15,000x4 = 60,000
gas 0.59, 0.63, 0.67, 0.71 | 30,000x4 = 120,000
gas+solid | 0.27, 0.31, 0.35, 0.39 | 15,000x4 = 60,000
0.14 | 10.69 | gas+liquid | 0.43, 0.47, 0.51, 0.55 | 15,000x4 = 60,000
gas 0.59, 0.63, 0.67, 0.71 | 30,000x4 = 120,000
gas+solid | 0.27, 0.31, 0.35, 0.39 | 15,000x4 = 60,000
16 0.2 894 | gas+liquid | 0.43, 0.47, 0.51, 0.55 | 15,000x4 = 60,000
gas 0.59, 0.63, 0.67, 0.71 | 30,000x4 = 120,000
gas+solid | 0.27, 0.31, 0.35, 0.39 | 15,000x4 = 60,000
027 | 7.70 | gas+liquid | 0.43, 0.47, 0.51, 0.55 | 15,000x4 = 60,000
gas 0.59, 0.63, 0.67, 0.71 | 30,000x4 = 120,000
gas+solid | 0.27, 0.31, 0.35, 0.39 | 15,000x4 = 60,000
038 | 649 | gas+liquid | 043, 047, 0.51, 0.55 | 15,000x4 = 60,000
gas 0.59, 0.63, 0.67, 0.71 | 30,000x4 = 120,000

Total 1,200,000

Figure 5.2: Initial configurations for data preparations

Figure 5.3 shows the initial position q(0)on gas+solid, gas+liquid, and gas

region at each temperature with p = 0.1 about one sample.

p(0) are sampled using Boltzmann distribution at fixed temperature in the
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Figure 5.3: Initial position q(0) on (a) gas+solid, (b) gas+liquid, and (c)
gas with p = 0.1.
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Figure 5.4: Histogram of (a) Energy per particle, (b) Kinetic energy per par-
ticle (c) Momentum (d) Potential energy per particle from the initial con-
figurations over all temperatures in 7' = [0.59,0.71] with density p.
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range of kpT/J € [0.27 — 0.71]. Figure 5.4 shows the histogram of prepared

samples as the initial configurations over all temperatures with each density.

qq(t) =TS  pu(d - Tg
* T, ¢ 1,
g & Label - 4"%Label
[ 92 [ S V5
0 1, XTL time 0 71 X7y, time

Figure 5.5: A labeled set of training data. 7g is used to generate q,(xmrs)
and p,(xm7s) of a-th sample as labels. m is the number of iterations of
XTs to pair with y7r.

For each sampled independent configuration, molecular dynamic simulations
with velocity-Verlet algorithm in Eq. (3.13) are performed with the time
steps 74 = 10™* as small time step. Small time step 74 = 10~* gives high
simulation accuracies. Small time step is used to generate accurate data for

Deep Learning labels.

5.1.2 Deep Learning to Learn Effective Force

Numerical integrators such as symplectic integrators are effective for small
time steps (7 < 1, where 7 is a dimensionless time unit). However, a large
time step causes the numerical integrators to become unstable and parti-

cles can overlap, causing artificially large force calculation. To recover the
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stability of simulation, we use Deep Learning to learn the effective forces
acting on particles. We develop our neural networks to learn effective many-

body interactions replacing the force calculations from the original physi-

cal model ( _gTH)‘ Once a new two body and many-body interactions have

been learned, a single neural network model can be used to perform acceler-
ated simulations for the Hamiltonian system of interest for arbitrary thermo-
dynamics states (e.g. different temperatures, pressures, number of particles,

and densities).

X -steps weights tying

| j prediction

a0, Pa() — e Qa7 Pt + 1) — [updg’t:ztep] -------- [u,,dg:zte,,] e Gt 4 XT), Pl + 1)
/ \
label qq(t + ymts), pa(t + ymts) /
One update step

o) = U fad)
*
t

Preprocess on data

"""""""""""""" AV
t+ 2 ) + 2 fﬂz

Figure 5.6: Illustration of the x large time steps neural network forward
propagation for symplectic algorithm. Two neural network models for one

update step are a MLP and parameterized by 01, 62 to predict forces fg?, féi) .

A system of the 2-dimensional Lennard-Jones n particles is considered to
produce training data for our fully supervised Deep Learning. Any number
of particles can be considered in the experiment. The density of the sys-

tem is chosen to be various densities p and the particles are confined to a
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square box of length L = \/1% As shown in figure 5.6, our Deep Learning
integration algorithm follows a form of the symplectic algorithm, it is pa-
rameterized by 61, 05 to predict effective forces for each i-th particle fé?, fgi)
which is the output of parametric function f(eil) : Q +— R? used in Eq. (5.1)
and féi) : Q — R? used in Eq. (5.3), (q,,P,) €  is the phase space. Our
Deep Learning integrator consists of a series of mathematical manipulation
on (qu,p,) followed by neural network predictions for effective forces for
each particle. In this paper, we present several different ways of calculat-
ing the effective forces and call these pair-wise neural network (PW-NN),
many-body neural network (MB-NN), and combined PW-NN and MB-NN
((PW+MB)-NN). The details will be described in the next subsection. In
figure 5.6, we chain up x large time steps x7; to predict the phase space
configuration at (q, (t+ Xx7L), Po(t+ x7r)) and compare to the ground truth
labels (q,(t + xm7s), p,(t + xm7s)). m is the number of iterations of x7g
to pair with x7r. The ground truths are generated using the Velocity-Verlet
algorithm with very short time step 7g to get high simulation accuracies
whereas our Deep Learning integrators uses large time step 77. At each up-
date step, the same parametric functions fgil), fgi) are used. In another word,
the neural network models used to calculate fé?,f(ei) are the same in each
one update step. The first neural network model predicts parametric func-

tion ffgil) to update p;,(t) given by 77/2 for i-th particle of a-th sample.

Bialt+ 5) = Pialt) + 45 (da(), Palt). ) (5.1)
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After moving p; ,(t) — P, o(t + %), update q; ,(t) given by 7, as,

A A TL
Uia(t +72) = Qia(t) + TEDia(t + 57 (5.2)

The new coordinates q,(t+7L), P, (t+ %) of a-th sample use to prepare the

input to the second neural network model which predicts parametric func-

tion fgi) to update p; ,(t + &) given by 77/2.

)+ DA @+ 7). ot + ), ) (5:3)

L
2

f)i,a (t + TL) - ﬁi,a(t +
The final configurations q,(t + 71), P, (t + 71,) at one update step are used

for the next update step and update the configurations until x large time

steps.

Computing Parametric Functions fg?,fgi) for Pairwise Interactions

The force on i-th particle of the LJ system is computed with the pair of
its neighboring k-th particle. In Eq. (5.4), the relative position and momen-
tum of neighboring k-th particle with respect to the i-th particle of the a-th
sample are considered as input for neural network model for the prediction

of pair-wise force between the i-th and k-th particles.

Aqik,a =qjq — Ak, Apik,a = Pia — Pk,a (54)

In figure 5.6, phase space q, and p, of a sample at time ¢ prepare the input
to feed into the first neural network model as Aqyy, o, AP o, and large time

step . The function fé?(qa(t),pa(t),%) is computed as the sum of the
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predicted individual force on i-th particle with a pair of its neighboring k-
th particle as shown in Eq. (5.5).

7 L
f) = > pw-nety, (A qyo(t), APy a (1), ) (5.5)
ki

The new configurations q,(t + 77), P, (t + &) are calculated from féil) using
Eq. (5.1) and (5.2), and use to prepare the input to the second neural net-
work model as Aqy, o(t +71), APy o(t + %), and large time step . In the
same way, the function fgi)(qa(t +71),Pa(t + ), &) is computed from the
individual force output in Eq. (5.6).

i ~ A TL\ TL
fél) = Z pw—net92 (Aqik,a(t + TL)a Apik,a(t + ?)7 ?) (56)
kot

The final configurations q, (¢t + 71.), o (t + 71.) using Eq. (5.3) complete one

integration step.

Computing Parametric Functions ffg?,fé? for Many-Body

Interactions

To calculate many-body interactions of a i-th particle with a set of neigh-
boring particles {k;}, a hexagonal grid (see Figure 5.7) centered at the i-th
particle is created. Let w;;, be the [-th grid position of i-th particle of a-
th sample, I = 1,...,6. u;; has two components (u;zq,Uilya) Given a

vector of position wu;;, of I-th grid point of the a-th sample confined to

0P 0P
aui,l,z,a’ aui,l,y,a

a square box, a derivative potential Vu;;,® = ( ) gives the
force field on the I[-th grid position of i-th particle, interacting via potential
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Figure 5.7: I-th grid position u;; centered at the i-th particle created to

calculate many-body interactions of a i-th particle.

#*' defined in Eq. (3.6).

Vui,l,aq)(ui,l,a) 1,05 -+ qn,a) = Z V¢LJ(|ui,l,oz - qk,a|)
k#i

(5.7)

If the distance of |u;; o — di,a| is too close, derivative potential energy cal-
culates large value and makes training for Deep Learning hard. Each com-
ponent of Vu;;,® is clipped to a threshold w in Eq.(5.8) to prevent the

artificially large value of derivative potential energy . We set w = 108.35

which is derivative potential energy with |w;; — qia| = 0.9.

_‘ 0P

O 1y,

¢ =w (5.8)

aui,l,x,a

The momentum field v;; , of the grid points of a-th sample can be obtained
to average of weights wEL ., factored by the velocity of k-th particle

k
B > k=1 Wi 1.aPk,a

Vila = L
> k=1 Wi o

o1
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where py , is monentum of k-th particle of a-th sample. The weight wﬁ o
is defined as the inverse proportion of the distance between the w;;, and
Q. in Eq. (5.10).

1

e 5.10
|ui,l,a - qk,a| ( )

wi,l,a

In figure 5.6, data is q,, p, of a-th sample at time ¢ and input into first
neural network model is considered as {Vu;;o®}, {vija — P; o}, and large
time step . The relative momentum wv;;o — P; o causes the information
of momentum and preserve the difference from the center of i-th particle
as the reference point regardless of the independent configurations such as
the translation invariance. The output is the function fg? (Ao (t), Pa(t), &)

computed for i-th particle of a-th sample as shown in Eq. (5.11).

£ = mb-nety, ({Vui 1o ®(t)}, {vigalt) — Pia()}, %L) (5.11)

A

The second neural network model uses the input as {Vu, ;o ®(t+71)}, {010 (t+
%) = Dio(t+ )}, and large time step & with the new coordinates q; ,(t+

TL), Pio(t + &) calculated from the output using Eq. (5.1) and Eq. (5.2).

; . . T . T T
£y, = mb-nety, ({Vuira®(t +70)}, (Bisalt + 5) = Pialt + 5}, 5 (5.12)

The final configurations q,(t + 72.),P,(t + 72) by the output féi)(qa(t +
1), Po(t + &), %) in Eq. (5.12) using Eq. (5.3) complete one integration

step.
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Combined PW-NN and MB-NN : (PW+MB)-NN

(PW+MB)-NN is combined with PW-NN and MB-NN. Each neural net-
work model to predict effective force, fé?(qa(t),pa(t),%) and f( )(qa( t+

TL), Po(t + &), &) , has the parametric function as follows:.

7 T
) = (Timb-nets, ({Vuina®(O)}, (vi1a(t) ~ pra()}, %)
T
(1T Y pwenets, (Mualt): Apalt). 3)) (519
k
7 N T, T
() = (Fombometn, (Vaadlt-+ 700} 0ualt + )~ Bialt + 201 F)

N N T T,
b (1= T) 3 pwenety, (Adiga(t-+72), Mpia(t+ ). 7)) (519
k

where I'; and I'y are the learning parameters with sigmoid function and rep-
resent the weights of MB-NN to learn the effective forces compared with

PW-NN.

5.1.3 Loss Functions
The loss function is defined in Eq. (5.15) as follows:

L(Gl, 92, 93) = Lqp(ﬂl, 92) + weLe(eg) (5.15)

Lyp(61,02) = Ly(61,02) + Ly(61,02)
Ly(61,02) = Z 140 (x72) = Ao (Xm7s) 5
Ly(01,02) = Z [Pa(XTL) — Pa(xmTs)|l5
Le(03) = ‘E(XTL) - E(O)‘
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here, N is the training data set. The first term of loss function for one data
point of (q,(0),p,(0),dn(Xxm7s), Po(xmTs)) is the mean-square error. Lg,
minimizes difference between predictions at x large time steps and labels at
a number of short time steps that pair with y large time steps. By adding
a second term L., conservation of energy is learned from initial energy and
becomes small when E(x7r) is close to the E(0) during training. w, is the

weight of the second term of the loss.

5.1.4 Sequence of Molecular Dynamics with Deep Learning

To deploy the trained PW-NN, MB-NN, and (PW+MB)-NN for molecular
dynamics, a sequence of molecular dynamics are conducted every y large
time steps at a given large time step 77, = 0.1. The effective forces are pre-
dicted by deep learning model and predict the new configurations ( q,(x7r),
P, (x7)) by using the predicted forces. With the new configurations, the
configurations ( q,(2x77), P, (2x7L)) at next x-time steps are predicted. The
new time integration scheme is repeated up to maximum time %,,q,. This
scheme requires only forward propagation using the GPU implemented with

PyTorch library [46], so the computing time is negligible.

5.2 Results and Discussions

Our proposed PW-NN, MB-NN, and (PW+MB)-NN is used to recover the

stability of the simulation and speed up time integration using large time
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step by predicting the effective forces. The effectiveness of our PW-NN, MB-
NN, and (PW+MB)-NN is evaluated on gas-+solid regions at kgT'/J = 0.27,
gas+liquid regions at kpT/J = 0.47, and gas regions at kgT/J = 0.71 with
various densities p = 0.1,0.14,0.2,0.27, and 0.38 in the phase diagram of
Lennard-Jones systems. v = 1,000 independent configurations are generated
for use as test data sets at each temperature. The velosity-verlet algorithm

is used for all experiments.

5.2.1 Accumulate Function of Time

When two particles interacting with the LJ potential are nearly overlapping,
the forces can compute the artificially large value. To check the stability of
the simulation at large time step, we find the threshold distance g5, using
the minimum distance about all samples and set the threshold force fin,sn

by instituting gursp for the force on LJ potential formula in Eq. (5.16).

J ((—12)131—(—6) ! ) (5.16)

7
Qihrsh Qihrsh

A number of unstable configurations that have more than threshold force
fihrsh over time are counted. We set the qprsn = 0.7259, causing the large
force calculation. The force f on the k-th particle for all pairs has compo-
nents fiz, fry- The magnitude of force per particle is calculated as | fi,| =
%. k=1,...,n, n is the number of particles. The number of the unstable con-
figurations that have the maximum value f, = max(|f,|) of n particles more

than fin.sn are accumulated over time t for a maximum time of %,,,, = 1000
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at kgT/J = 0.27,0.47, and 0.71 as shown in figure 5.8.

= MDIt0.025 ===== MDIt0.02 ===== PW-NN, MB-NN, (PW+MB)-NN-x=87; , 7, =101

a o b o c 0
w 4P = 0.1 wo 4 P= 0.1 w4 P = 0.1 -
-
50 <4 50 4 50 <4 /

150 S ————| 150 - ———— 15 :gsET
w | P =014 wo | P =014 w | P =014

50 4 50 4
158 o= T T T T T 158
&) 100 p =02 100 p =0.2
23 0 % |
» o) S —————
p =027 p =027
10 4 10 4
0 A 0
p =038 p=038
10 4 10
04 N -'-_/‘
L L L 0 W0 M0 @0 E0 1000 0 W0 w0 0 o 1000
time time time

Figure 5.8: Accumulate function of time for a maximum time of t,,,, = 1000
at a,kpT/J = 0.27 on gas+solid regions, b, kgT/J = 0.47, on gas+liquid
regions, and ¢, kgT/J = 0.71 on gas regions with various densities p.

The maximum of a number of configurations from instability of simulation is
1000 as the test data sets. Overall, the MD simulations at 7 = 0.025 (black)
and 7 = 0.02 (green) show that a number of the unstable configurations are
accumulated with a various density near critical temperature and at high
temperature. On the gas region at high temperature, the particles move fast
and easily come much closer together. At time step tau 0.025, the unstable
configurations are accumulated early with a various density and also accu-

mulated at tau=0.02. The Deep Learning results at t = 0.1 for PW-NN,
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MB-NN, and (PW+MB)-NN show the stability of simulation. The configu-
rations is not accumulated over time at each temperature with various den-

sities.

5.2.2 Distance Metric

To evaluate the accuracy of the simulation results, the mean square error
between two trajectories is investigated by comparing with highly accurate
molecular dynamics trajectory (q7, (t),p% (t)) performed with 7 = 107%.
7 =10"* is used as the reference time step. Let a7 (1) = (4] 4o (1), 47, (1))
and p],(t) = (p], (1) P], (1)) be the o™ trajectory of i-th particle inte-
grated over time step 7. i = 1---n, n is the number of particles. For com-
paring two integration schemes with time steps 7 and 7/, the mean square

error between two trajectories is defined as follows.

AT = 1 () - aa0) 230 (Lt - pra)” a7

2 2

We estimate the mean of the v = 1000 mean square error between two tra-
jectories as function of time at each temperature.

Figure 5.9 shows that the mean of mean square error between two tra-
jectories AT (t) over time t for a maximum time of ¢,,,, = 1000 at kpT'/J =
0.27, 0.47, and 0.71. Each figure shows the mean square error results at dif-
ferent temperature with various densities. The MD simulation at time step
7 = 0.01 (black) shows that the mean square error at low temperature is

lower than higher temperature with various densities. The results of PW-NN
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Figure 5.9: The mean of correlation values A™7 (¢) for a maximum time of
tmaz = 1000 at a,kpT/J = 0.27, b,kgT/J = 0.47, and c,kgT/J = 0.71
with various densities.

(red) show that the mean square error is similar results with MD results at
time step 7 = 0.01 at each temperature with various densities than other

NNs methods. the PW-NN with time step 7 = 0.1 are similar accuracy as

the MD simulation with time step 7 = 0.01.

5.2.3 Conservation of Energy

We investigate the conservation of energy by calculating the total energy as
function of time. To calculate the mean of energy over time about the all

samples, energy of the initial configurations are shifted to zero. because the
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starting configurations across samples are different. Eq. (5.18) show how we
shift the energy e,(t) per a sample at each time step ¢. Here, v represents

the number of samples at each temperature.

€a(t) = eq(t) — eq(0) a=1,...,7. (5.18)

With the shifting of energy, we compute the mean of energy per particle

ue(t) over independent samples.

= MDIt0.01 === PW-NN-y=87, = MB-NN- =87, ==== (PW+MB)-NN- x=87;
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Figure 5.10: Energy conservations for a maximum time of %4, = 1000 at
a,kpT/J =0.27, b,kpT/J = 0.47, and ¢, kT /J = 0.71 with various densi-
ties.

Figure 5.10 shows the mean of energy results at different temperature

with various densities. Overall, for MD simulation with time steps 7 = 0.01,
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conservation of energy is good compared with the Deep Learning results.
The results of PW-NN show that the mean of energy is lower than other
NN methods over time. Our Deep Learning models are still training and
have not reached convergence yet so if they train more, the results will show

that the conservation of energy is recovered.
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Chapter 6

Conclusion

Our results have demonstrated that the deep learning corrections enhance
the time integration step of the symplectic method. In spin dynamic simu-
lations, our DL method has achieved ~ 10 times computational speed up
while maintaining accuracy compared to the original Suzuki-Trotter decom-
position method. The natural of local nearest neighbours interactions in the
lattice means that convolutional structure of the Deep Neural Network is
a nature choice of network architecture. Since convolution is translationally
invariant, the effect of lattice size on training our U-Net is not a major con-
cern. For example, between L = 4 and L = 8 lattices, the time required
for training the U-Net parameters increases by about 4 times, which is sub-
linear with respect to the number of lattice sites. Our Deep Learning was
trained on simulation data at 7 = 1073, however, its accuracy performance

is equivalent to simulation data at 7 = 1072. This shows that our Deep
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Learning training has not reached its theoretical limit of a perfect predic-
tion. This theoretical limit can be achieved exactly if we train on an infinite
amount of data for an infinite capacity. In practice, Deep Learning methods
can not be perfect because the amount of data and the capacity of U-Net
are finite. The main source of inaccuracies in our Deep Learning method
is that U-Net’s output does not fit exactly the labeled data generated at
7 =1072 and that even if U-Net is able to fit the data it has through train-
ing, it may not predict perfectly on the data it has never seen in training. In
the study of molecular dynamic simulations, Our results using PW-NN have
demonstrated that the effective force obtained by using Deep Learning with
large time step 7 = 0.1 recovers the stability of simulation and produces
similar accuracy as the MD simulation with integration time step 7 = 0.01.
With other NN methods, MB-NN and (PW+MB)-NN, training more longer
to reach convergence, our Deep Learning simulations will show that about
10x speed up of the simulation. We can apply the Deep Learning driven MD
simulations to the study of protein simulations (protein-protein interactions,

protein-ligand interactions, etc) that it takes long time.
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