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Abstract

Accelerated Dynamics Simulation
using Deep Learning Corrections

Park Sojeong

Advisor Kwak Wooseop

Co-advisor Lee Hwee Kuan

Department of Physics

Graduate School of the Chosun University

Theoretical models capture very precisely the behaviour of materials at the

molecular and atomic level. This makes computer simulations, such as spin

dynamics simulations of magnetic materials and molecular dynamic simu-

lation for analyzing the physical movements of atoms and molecules, ac-

curately mimic experimental results. New approaches to efficient computer

simulations are limited by integration time step barrier to solving the equa-

tions of motions of many-body problems. Using a short time step leads to

an accurate but inefficient simulation regime whereas using a large time step

leads to accumulation of numerical errors that render the whole simulation

useless.

x



In the study of spin dynamic simulations, we use a Deep Learning method

to compute the numerical errors of each large time step and use these com-

puted errors to make corrections to achieve higher accuracy in our spin dy-

namics. We validate our method on the 3D Ferromagnetic Heisenberg cubic

lattice over a range of temperatures. Here we show that the Deep Learning

method can accelerate the simulation speed by 10 times while maintaining

simulation accuracy and overcome the limitations of requiring small time

steps in spin dynamic simulations.

In the study of molecular dynamics, Deep Learning is used to learn the effec-

tive forces governed by pair-wise interactions on the Lennard-Jones system.

Once many body or two body interactions have been learned, a single neural

network model is used to perform accelerated simulations for the Hamilto-

nian system of interest for arbitrary thermodynamics states. We show that

by using large time step, our Deep Learning method recovers the stability

of simulation by preventing overflow due to artificially large force and shows

10 times speed up of simulation by producing similar simulation accuracy.

Keyword: Spin dynamics simulations, Molecular dynamics simulations, Deep

learning, Heisenberg models, Lennard-Jones system
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국문초록

딥러닝보정을이용한동력학

시뮬레이션의가속화연구

박 소 정

지도교수 곽 우 섭

공동지도교수 Lee Hwee Kuan

조선대학교 대학원 물리학과

이론적인 모델은 분자 및 원자 수준에서 물질의 움직임을 매우 정확하게 연구되

어진다. 따라서 자성 물질의 스핀 동역학 시뮬레이션 및 원자 및 분자의 물리적

움직임을 분석하기 위한 분자 동력학 시뮬레이션과 같은 컴퓨터 시뮬레이션이

실험 결과를 정확하게 모방한다. 효율적인 컴퓨터 시뮬레이션에 대한 새로운

접근 방식은 다체 문제의 운동 방정식을 풀기 위한 시간 적분 간격의 장벽으로

인해 적분 간격이 제한된다. 짧은 시간 간격을 사용하면 정확하지만 비효율적인

시뮬레이션 체제가 생성되는 반면, 큰 시간 간격을 사용하면 전체 시뮬레이션

의 수치적 오차가 누적된다.

스핀 동역학 시뮬레이션 연구에서 우리는 다양한 온도 범위에서 3D 입방 격자

안에 있는 강자성 Heisenberg 스핀 모형으로 딥 러닝 방법을 사용하여 각 큰

시간 간격의 수치적 오차를 계산하고 이러한 계산된 오차를 사용하여 스핀 동

역학 시뮬레이션에서 더 높은 정확도를 달성한다. 여기에서 딥 러닝 방법이 시

xii



뮬레이션 정확도를 유지하면서 시뮬레이션 속도를 10배 가속화할 수 있고 스핀

동역학 시뮬레이션에서 작은 시간 간격의 한계를 극복할 수 있음을 보여준다.

분자 동역학 연구에서 딥 러닝 방법은 레너드 존스 상호 작용에 의한 시스템에

서 근본적인 힘을 학습하여 딥러닝 보정을 통해 분자 동역학 결과를 향상시키는

데 사용한다. 두 물체 또는 다체 간의 상호작용이 학습되어지면, 뉴럴 네트워크

모델을 사용하여 임의의 열역학 상태에서 해밀턴 시스템에 대한 가속 시뮬레

이션을 수행한다. 딥 러닝 방법을 이용하여 두 원자 간의 간격이 가까워지면

생기는 컴퓨터 시뮬레이션의 오퍼플로우 문제를 해결함으로써 컴퓨터 시뮬레이

션의 안정성을 개선하고 분자 동력학 시뮬레이션의 정확도를 유지함과 동시에

속도를 약 10배 향상시킴을 보여준다.

주요어휘: 스핀 동력학 시뮬레이션, 분자 동력학 시뮬레이션, 딥 러닝, 하이젠

베르크 모형, 레너드 존스 시스템
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Chapter 1

Introduction

The computer simulation methods are powerful tools for understanding fun-

damental properties of materials that can be verified by experimental meth-

ods. There are two methods in computer simulations, spin dynamics simu-

lation and molecular dynamics simulations. These methods have been used

to investigate the time evolution of physical quantities of physical systems

under different conditions. Spin dynamics simulations [1] have been widely

used to study the underlying physics of magnetic material performed experi-

mentally by using neutron scattering [2]. The study of the properties of these

magnetic materials enables us to develop much better applications such as in

Nd-Fe-B-type permanent magnets used for motors in hybrid cars [3, 4], mag-

netoresistive random access memory (MRAM) based on the storage of data

in stable magnetic states [5], ultrafast spins dynamics in magnetic nanos-

tructures [6, 7], heat assisted magnetic recording and ferromagnetic reso-
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CHAPTER 1. INTRODUCTION

nance methods for increasing the storage density of hard disk drives [8, 9],

exchange bias related to magnetic recording [10], and magnetocaloric materi-

als for refrigeration technologies [3]. The molecular dynamics simulations [11,

12] have been used to the study for investigating the time evolution of atomic

and molecular systems such as Lennard-Jones fluid [13, 14] and have a wide

range of applications to the design of new materials, drug design [15], and

protein folding [16].

In computer simulations, classical equations of motion of dynamic sys-

tems are solved numerically using well known integrators such as leapfrog,

Verlet, predictor-corrector, and Runge-Kutta methods [17, 18, 19]. The accu-

racy of these simulations depends on a time integration step size. If a large

time step is used, the accumulated truncation error becomes larger. Con-

versely, using a short time step is very computationally demanding. So, it is

important to find a trade off between speed and accuracy.

Symplectic methods [20, 21] are among the most useful time integra-

tors for dynamics simulations. The numerical solutions of symplectic meth-

ods have properties of the time reversibility, conservation of the phase-space

volume exactly, and the error in the total energy of the system bounded. For

example, high order Suzuki-Trotter decomposition method, one of the sym-

plectic methods, allows for larger time step with limited error in its compu-

tation. We seek to enhance the time integration step of symplectic methods

further using Deep Learning techniques.

2



CHAPTER 1. INTRODUCTION

Machine learning techniques including Deep learning are used to reduce

the computational cost compared with the often high cost of numerical sim-

ulations. Recently, Machine Learning techniques are used to enhance simu-

lation efficiencies in the condensed matter physics. Its applications include

addressing difficulties of phase transition [22, 23, 24, 25, 26, 27] and accel-

erating the Monte-Carlo simulations [28]. A crucial issue in molecular dy-

namics simulations [29] is that generating samples from the equilibrium dis-

tributions is time consuming. Boltzmann generators machine [30] addresses

the long-standing rare-event (e.g. transition) sampling problem. In addition,

study of quantum many body systems using Machine Learning is applied to

simulation of the quantum spin dynamics [31, 32], identifying phase transi-

tions [33] and solving the exponential complexity of the many body problem

in quantum systems [34].

We show that speed up is achieved if Deep Learning learns the cor-

rections terms. The first condition for speed up is enough capacity of Deep

Learning to learn the associations between spin (or molecule) configuration

generated by large time steps and spin (or molecule) configuration generated

by accurate short time steps. The second condition is enough training data

for learning and show the Deep Learning enough pairs of patterns between

spin (or molecule) configuration for large and short time steps.

In spin dynamics, we propose to use Deep Learning to estimate the

correction terms of Suzuki-Trotter decomposition method, and then add the

3



CHAPTER 1. INTRODUCTION

correction terms back to spin dynamics simulations results, making them

more accurate [35]. As a result of this correction, larger time step can be

used for Suzuki-Trotter decomposition method, and corrections can be made

for each time step. To evaluate our Deep Learning method, we analyze spin-

spin correlation as a more stringent measure. We also use thermal averages

to benchmark the performance of our method. We compare the Deep Learn-

ing results with those from spin dynamics simulations without Deep Learn-

ing for short time steps.

In molecular dynamics, the large time step causes the numerical inte-

grator to become unstable and particles can overlap, causing artificially large

force calculation. To recover the stability of simulation, our Deep Learning

method is used to learn the effective forces acting on particles. We develop

our neural networks to learn effective many-body interactions replacing the

force calculations from the original physical model ( − ∂H
∂qα

). Once a new two

body and many-body interactions have been learned, a single neural network

model can be used to perform accelerated simulations for the Hamiltonian

system of interest for arbitrary thermodynamics states (e.g. different tem-

peratures, pressures, number of particles, and densities).
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Chapter 2

Theoretical Background

Computer simulations have been used for a broad range of phenomena in

statistical physics. Machine learning (ML) techniques including deep learn-

ing (DL) are applied in enhancing the performance of computer simulations

of materials in physical dynamical systems. This chapter presents the theo-

retical framework for computer simulations and DL techniques.

2.1 Statistical Mechanics for Simulations

This section introduces Metropolis Monte Carlo method and understands

the phase transitions in systems including magnets and liquids.

2.1.1 The Markov Chain and Detailed Balance

dP (x)

dt
=
∑
x′

T (x′ → x)P (x′)−
∑
x′

T (x→ x′)P (x) (2.1)

5
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The master equation considers the change of the probability with time t,

expressing the fact that
∑

x P (x) ≡ 1 at all times. All probability of state

x′ that is lost by a move away from the state x is gained in the probability

of that state. The detailed balance with the equilibrium probability Peq(x)

is

T (x′ → x)Peq(x
′) = T (x→ x′)Peq(x)

dPeq(x)

dt
= 0, In equilibrium

(2.2)

2.1.2 Statistical Ensembles

In statistical mechanics, the behavior of a system based on the possible mi-

crostates are interested and known as the ensemble of states for a system.

Microcanonical Ensemble of Systems

The microcanonical ensemble is an isolated system with a number of particle

N, volume V and energy U fixed. The probability of the system being in a

certain microstate k is

Pk =
1

Ω(U, V,N)
(2.3)

where Ω =
∑

k 1 is defined as the total number of microstates k for the

system. This probability and thermodynamics are related through the Boltz-

mann relation and the thermodynamic potential to describe the isolated sys-

6
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tem is entropy, S=S(U,V) which is maximum at equilibrium state when the

energy states are discrete in Eq. (2.4).

S = kBlnΩ ≈ kBlnWmax (2.4)

where W = N !
n1!n2!... , ni is the number of particles in the energy Ei, and Wmax

is maximum number of microstates. The Boltzmann probability distribution

is derived by using the principle of maximum entropy which requires N has

to be large and maximize entropy by inserting Largrange multipliers. The

probabilty of it being with energy Ek in the energy level k is

Pk =
1

Z
e−βEk (2.5)

where Z =
∑

k e
−βEk and β = 1

kBT
.

Canonical Ensemble of Systems

The exchange of heat between the system and its surroundings brings the

constant temperature at the equilibrium state. In the canonical ensemble, a

set of microstates with a number of particle N, volume V and temperature T

is fixed but variable energy U. The partition function for a classical system

is

Z(T, V,N) =
∑

microstates k

e−βEk =
∑

energies i

gie
−βEi (2.6)

where the first sum is over all possible states k with energy Ek, β = 1/kBT

with kB Boltzmann’s constant, and the second sum is all possible states i

with energy Ei, gi is degeneracy which is the number of microstates with

7
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Ei. The probability of any state of the system is determined by the partition

function. The probability of finding the kth state with energy Ek is given by

Pk =
1

Z
e−βEk (2.7)

where the exponential factor is called the Boltzmann factor. All macroscopic

thermodynamic properties are connected with the partition function. The

ensemble average of a thermodynamic quantity A can be calculated using

the canonical probability distribution.

< A >=

M∑
k

AkPk =

∑M
k Ake

−βEk∑M
k e−βEk

(2.8)

where M is the total number of accessible microstates.

2.1.3 Monte Carlo Move

The Metropolis Monte Carlo method is applied for evolution in the canonical

ensemble. The evolution is driven by the energy change between the old and

new configuration, ∆E = Enew−Eold. From the detailed balance in Eq. (2.2),

T (x → x′) is the transition probability for trial move x → x′. The relative

probability is the ratio of the individual probability in Eq. (2.9).

T (x→ x′)

T (x′ → x)
=
P (x′)

P (x)
=
e−βEx′

e−βEx
(2.9)

The transition probability T (x→ x′) itself is used for acceptance probability

calculation by Metropolies et al [36].

T (x→ x′) = min(1, e−β∆E) (2.10)

8



CHAPTER 2. THEORETICAL BACKGROUND

where ∆E = Ex′ − Ex is the energy change by the move from x to x′. The

Metropolis Monte Carlo method is used for calculation of ensemble averages

with importance sampling. Eq. (2.11) represents that only a finite number

m of the total number of all microstates M in Eq. (2.8) are generated as

follows.

< A >≈ Am =

∑m
k Ake

−βEk∑m
k e
−βEk

=
m∑
k

Akπk (2.11)

The m configurations are generated with random distribution πk and then

make a simple average of A as follows.

< A >=
1

m

m∑
k

Ak (2.12)

2.1.4 Phase Transitions

Phase transitions are boundaries between different phases of matter, eg. liquid-

gas in fluids, order-disorder in magnet. The critical temperature Tc can be

estimated by specific heat per spin or particle N that is computed from the

fluctuations of the internal energy U in eq. (2.13)

c =
β2

N
(< U2 > − < U >2) (2.13)

where < U > is expressed in terms of the thermal average of the energy. The

fluctuations are intrinsic to the system evolution and large near the phase

transition.

9
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Tree-dimensional Classical Heisenberg Ferromagnet

The Hamiltonian for the ferromagnetic Heisenberg model on a cubic lattice

is given by the hamiltonian as follow:

H = −J
∑
<i,j>

Si · Sj (2.14)

where a vector Si has three components (Six, S
i
y, S

i
z) and |Si| is a unit vec-

tor. This model undergoes a phase transition at a temperature kBTc/J =

1.442 . . . [37], where kB is Boltzmann’s constant.

Two-dimensional Lennard-Jones Systems

Given a vector of positions ~q = (q1, q2, ...) of n particles in a d dimension

space, we have nd dimension, consider a potential φ that maps this nd di-

mension into R. Consider the Lennard-Jones potential for two particles,

φ(q1, q2) = 4ε

(
σ12

|q1 − q2|12
− σ6

|q1 − q2|6

)
(2.15)

here ε is depth of φ(q1, q2) at the minimum, σ is length and φ(q1, q2) = 0 at

|q1 − q2| = σ. The phase diagram of the 2D Lennard-Jones system obtained

from the equation of state by Reddy et al. [38] and ensemble simulation [39,

40] shows the vapor-liquid phase transition and the vapor-liquid coexistence.

From Singh et al [39], the estimate of the critical temperature and density

Tc = 0.472 and ρc = 0.33± 0.02 are obtained.

10
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2.2 Deep Learning and Neural Networks

In this section, some fundamental concepts in ML techniques including deep

learning (DL) are explained. The types of machine learning are distinguished

as supervised or unsupervised. Supervised learning is a method of learning

from labeled data. In the unsupervised learning methods, the machine is

concerned with finding patterns and structure in unlabeled data. We focus

on supervised learning.

2.2.1 Feed-forward Neural Networks

Feed-forward neural networks, or multilayer perceptrons (MLPs), consist of

units and are used for supervised learning. A multilayer perceptron in figure

2.1 is a perceptron with one or more hidden layers. Multilayer perceptron

consists of three types of layers - input layer, hidden layer, and out layer.

The multilayer perceptron multiplies the inputs by the weight for each input

value, and the combined result value becomes the input value of the activa-

tion function. The activation functions help the network learn any complex

relationship between input and output. After that, the result value of the ac-

tivation function becomes the input value of the next node. In this way, the

result of going through some hidden layers becomes the final output value.

The training process of multilayer perceptrons learns the model in the di-

rection of minimizing loss function by changing weights in the network. A

type of loss function is one of the hyperparameters and needs to be deter-

11
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Figure 2.1: MLP neural networks

mined according to the given tasks. The loss function for regression is mean

absolute error as follows:

LMAE =
1

N

N∑
j

|yj − ŷj | (2.16)

,where ŷj is the j-th value in the output as the prediction, yj is the actual

value. Whereas mean squared error is typically used as shown in Eq. (2.17).

LMSE =
1

N

N∑
j

(yj − ŷj)2 (2.17)

The value of each weight is obtained in the reverse order of the method

of calculating the final output, which is called backpropagation. The way to

learn in the direction of minimizing the loss is gradient descent. The gradient

descent in Eq. (2.18) is a way of taking small steps in the direction that

decrease loss.

w ←− w − η∂Loss
∂w

(2.18)
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where w is for each learable parameter, η is the learning rate which controls

the step size, and Loss stands for loss function and the difference between

the actual value and the prediction.

2.2.2 Convolutional Neural Networks

Figure 2.2: CNN architecture

Convolutional neural network (CNN) is known to use convolution oper-

ations to capture the spatial dependencies in an images, significantly detect

the important features compared to feed-forward neural networks. The CNN

are utilized for images classifications and images recognition. The CNN are

divided into feature extraction in multiple hidden layers and classification in

output layer as shown in figure 2.2. The feature extraction consists of convo-

lution layers and pooling layers. One or multiple convolution layers extract

the simple features from input by using convolution operations. The con-
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volution layer applies filters to an input and generates the feature maps as

shown in figure 2.3.

Figure 2.3: Element-wise multiplication of the input and filter. 3x3 convolu-
tion is performed on the 5x5 input. This convolution produces 3x3 feature
map.

Following each convolution operation, the activation function is applied and

add non-linearity into the network to learn complex structures in the data.

Figure 2.4: Max pooling using 2x2 filter with stride of 1 from the feature
map. The maximum value of each filter is selected.

As shown in figure 2.4, the pooling layer after the convolution layer is used

to reduce the dimensions of the feature maps but retain important infor-

mation, and to also control overfitting . Once the features extracted by the

convolution layers and pooling layers are created, the output from the flat-
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ten layer that transforms into a 1D array of vector is fed to the fully con-

nected layers for the classification. The final fully connected layer contains

a softmax activation function and has the number of nodes as the number

of classes. The softmax outputs a probability value from 0 to 1 for each of

the classes for j = 1...J given input z and add up to 1 in Eq. (2.19).

fj(z) =
ezj∑J
k e

zk
(2.19)
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Chapter 3

Computational Details

In spin dynamics simulations and molecular dynamics simulations, the clas-

sical equations of motion are solved numerically using symplectic methods.

This chapter describes these dynamics simulations tricks that were imple-

mented.

3.1 Spin Dynamics Simulations

This section describes the symplectic method applied to Spin dynamics sim-

ulation.

3.1.1 Heisenberg Models

The ferromagnetic Heisenberg model on a cubic lattice as shown in Eq. (2.14)

is used to demonstrate the efficiency of our method. We formalize our spin

16



CHAPTER 3. COMPUTATIONAL DETAILS

dynamics following the notations of Tsai et al. [41]. The equations of motion

for all spins are written as

dσ(t)

dt
= R̂σ(t), (3.1)

where σ(t) = (S1(t),S2(t), . . . ,Sn(t)) is the spin configuration at time t.

The integration of the equations of motion in Eq. (3.1) is done using the

second order Suzuki-Trotter decomposition method as in Tsai et al. [41].

The ferromagnetic Heisenberg model is considered on the cubic lattice

of dimensions L×L×L with periodic boundary conditions. In the spin dy-

namics approach, the equations of motion for the Heisenberg model is gov-

erned by the following equation:

dSi

dt
= −Si ×H i

eff =


0 −H i

eff,z H i
eff,y

H i
eff,z 0 −H i

eff,x

−H i
eff,y H i

eff,x 0

Si = RiSi. (3.2)

Here, H i
eff is the effective field acting on the ith spin. The k component of

the effective field can be specified as H i
eff,k = −

∑
j=nn(i) S

j
k, where the sum

runs over the nearest neighbor pairs of sites and k = x, y, and z.

3.1.2 Symplectic Algorithms

The symplectic methods are based on decompositions of exponential opera-

tors. As following the mathematical notations of Tsai et al., we decompose

the evolution operator R̂ into R̂A and R̂B on the sublattices A and B re-
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spectively and obtain

e(R̂A+R̂B)τ = eR̂Bτ/2eR̂AτeR̂Bτ/2 +O(τ3). (3.3)

The symplectic method determines temporal evolution of the spin orienta-

tions denoted as σ(t) = {σA(t), σB(t)}. The formal solution of the equations

of motion of all spins can be written by using symplectic method as follows,

σ(t+ τ) ∼= eR̂Bτ/2eR̂AτeR̂Bτ/2{σA(t), σB(t)}. (3.4)

For second-order Suzuki-Trotter decomposition method, the integration time

step is limited up to τ ∼ 0.04/J and for fourth-order Suzuki-Trotter decom-

position method, the integration time step is limited up to τ ∼ 0.2/J [41].

3.2 Classical Molecular Dynamics Simulations

The movement of particles is predicted by numerically solving the Hamil-

tonian equations of motion. This section describes the symplectic method

applied to molecular dynamics simulation.

3.2.1 Hamiltonian System

A Hamiltonian system is a dynamical system described by the scalar func-

tion H(qα,pα) of the phase space given by (qα,pα) = (q1,α, ...,qn,α,p1,α, ...,

pn,α) ∈ Ω, n is the total number of particles. In this paper for parallel com-

putations in graphical processing units (GPU), we consider an ensemble of
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independent hamiltonian systems index by α, α = 1, · · ·N . The Hamilton’s

equations of motion with a Hamiltonian H(qα,pα) as a conserved quantity

are written as

q̇α =
∂H(qα,pα)

∂pα
, ṗα = −∂H(qα,pα)

∂qα
. (3.5)

Consider particles with mass mi,α = 1 described by their position qi,α and

momentum pi,α for i-th particle of α-th sample, interacting via a potential

φLJ(|qi,α − qk,α|), k 6= i is the index by the neighboring particle of the i-th

particle and mi,α. The Hamiltonian function H(qα,pα) of the system can

be written as

H(qα,pα) = K(pα) + U(qα) =
n∑
i=1

p2
i,α

2mi,α
+
∑
i,k,i6=k

φLJ(|qi,α − qk,α|). (3.6)

The H is the total energy that is sum of kinetic and potential energies and

is conserved with respect to time. We use Lennard-Jones system as a demon-

stration for physical model. All quantities are computed in dimensionless

units.

3.2.2 Lennard-Jones Potential

For computation convenience and numerical stability, we want to rescale the

system so that the box volume |Ω| = 1. U : Ωn 7→ R. Eq. (2.15) can write

q1, q2 in dimensionless units, q1 = ξ1L, q2 = ξ2L where L is the box length.

Then ξ is dimensionless. Break the LJ potential into φ6 and φ12,

φ(q1, q2) = 4ε

(
σ12

L12|ξ1 − ξ2|12
− σ6

L6|ξ1 − ξ2|6

)
(3.7)
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In dimensionless units, φ6(ξ1, ξ2) = 1/|ξ1 − ξ2|6, φ12(ξ1, ξ2) = 1/|ξ1 − ξ2|12.

Then the relationship between dimensionless potential and original potential

is,

φ6(q1, q2) =
4εσ6

L6

1

|ξ1 − ξ2|6
=

4εσ6

L6
φ6(ξ1, ξ2) (3.8)

φ12(q1, q2) =
4εσ12

L12

1

|ξ1 − ξ2|12
=

4εσ12

L12
φ12(ξ1, ξ2) (3.9)

We can also derive the derivative in w.r.t. the individual terms φ6 and φ12.

Φ(q1, q2, · · · qn) =
∑
i6=k

φ(qi, qk) (3.10)

Φ(q1, q2, · · · qn) =
4εσ12

L12

∑
i6=k

(
1

|ξk − ξi|12

)
− 4εσ6

L6

∑
i6=k

(
1

|ξk − ξi|6

)
(3.11)

∂

∂qk
=

∂

L∂ξk
(3.12)

~qk is position of k-particle which has two component (qk,x, qk,y). Write ~qk =

L~ξk = (Lξk,x, Lξk,y) in dimensionless units.

∂Φ(q1, q2, · · · qn)

∂~qk
=

4εσ12

L13

∑
i6=k

(
−12

ξk,x − ξi,x
(|ξk − ξi|)14

)
− 4εσ6

L7

∑
i6=k

(
−6

ξk,x − ξi,x
(|ξk − ξi|)8

)
,

4εσ12

L13

∑
i6=k

(
−12

ξk,y − ξi,y
(|ξk − ξi|)14

)
− 4εσ6

L7

∑
i6=k

(
−6

ξk,y − ξi,y
(|ξk − ξi|)8

)
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3.2.3 Initialization

The initial configurations are used to prepare the input of neural network

model as the phase space (qα(0),pα(0)) that describes the initial state of

system and prepared on gas+solid, gas+liquid, and gas regions at each tem-

perature in two-dimensional phase diagram of Lennard-Jones systems. The

dynamic properties at different temperatures with various densities are stud-

ied. Independent positions qα(0) are sampled using Monte-Carlo simulation

with the Metropolis algorithm [36, 42, 43] for each temperature kBT/J and

consider the temperature dataset in the range of kBT/J ∈ [0.27 − 0.71].

Initial momentum pα(0) are sampled using Boltzmann distribution at fixed

temperature in the range of kBT/J ∈ [0.27− 0.71].

3.2.4 Periodic Boundary Condition and Minimum Image

Convention

Periodic boundary condition approximates a large systems by using small

subsystem. The particles of the small subsystem are controlled in a simula-

tion box. In the case that particle leaves the simulation box, identical parti-

cle of adjacent box enters the simulation box. The periodic boundary condi-

tions use the minimum image convention for short ranged force and consider

the interactions between particle and the closest image in the system.
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3.2.5 Symplectic Algorithms

Hamilton’s equation of motion can be solved using symplectic algorithms,

for example, using the velocity-verlet algorithm in Eq. (3.13). The method

performs the evolution of the configuration as qi,α(t) and pi,α(t) are updated

to qi,α(t+ τ) and pi,α(t+ τ) for each i-th particle of α-th sample as

pi,α(t+
τ

2
) = pi,α(t) + ṗi,α(t)

τ

2
= pi,α(t) +

(
− dH

dqi,α

∣∣∣∣
t

)
τ

2
(3.13)

qi,α(t+ τ) = qi,α(t) + pi,α(t+
τ

2
)τ

pi,α(t+ τ) = pi,α(t+
τ

2
) + ṗi,α(t+ τ)

τ

2
= pi,α(t+

τ

2
) +

(
− dH

dqi,α

∣∣∣∣
t+τ

)
τ

2

where τ is the integration time step.
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Chapter 4

Deep Learning Approach to

Spin Dynamics

This chapter introduces the Deep Learning method how to make corrections

to achieve higher accuracy in spin dynamics and validate the performance

of the Deep Learning method.

4.1 Supervised Deep Learning Method

A fully supervised Deep Learning method is developed to perform the spin

dynamics by using the second order Suzuki-Trotter decomposition method

to reduce simulation errors.
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Figure 4.1: Plot of fa as a function of temperature kBT/J used for the sim-
ulated annealing methods, where f is modification factor and a is power of
f .

4.1.1 Data Preparation

In order to produce training data for our supervised Deep Learning, initial

spin configurations are considered at ordered, near-critical, and disordered

states in the temperature range kBT/J ∈ [0.5, 2.4] and sampling 9.1× 105

independent spin configurations using Monte-Carlo simulations with the Met

ropolis–Hastings algorithm [36, 42, 43]. The initial spin configurations are

prepared with 300,000 samples in ordered states, 210,000 samples near crit-

ical states, and 400,000 samples disordered states by simulated annealing
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method. In the Monte Carlo simulation, transition probability from one state

to another state is W = e−β∆E for ∆E < 0 in the metropolis algorithm.

Since an inverse temperature β goes to infinite at low temperature, it is easy

to fall into the local minima because the transition probability is W = 0.

For the purpose of avoiding the local minima problem, we gradually lower

the temperature from a high temperature to a low temperature using the

simulated annealing method. Temperature dataset shown in figure 4.1 are

generated in range of temperature kBT/J ∈ [0.5, 2.4], where kBT/J is de-

fined as follows:

kBT/J = f−mkBTc/J , kBT/J < kBTc/J

kBT/J = fnkBTc/J , kBT/J > kBTc/J .

(4.1)

Here, the positive real number f , the modification factor, is used to adjust

the number of temperature dataset between minimum temperature kBTmin/J

= 0.5 and maximum temperature kBTmax/J = 2.4, where m is the num-

ber of temperature dataset between the critical temperature kBTc/J and

kBTmax/J and n is the number of temperature dataset between kBTmin/J

and kBTc/J . The values of m and n are estimated as follows:

m =
logkBTc/J − logkBT/J

logf

n =
logkBT/J − logkBTc/J

logf
,

(4.2)

where kBTc/J ≈ 1.44, m = 11, n = 5, and f = 1.1 are used in this paper.

The initial spin configurations are obtained below, near, and above the crit-

ical temperature. Below the critical temperature, 30,000 spin configurations

25



CHAPTER 4. DEEP LEARNING APPROACH TO SPIN DYNAMICS

representing order states are generated by using the Monte Carlo simulation

at temperatures kBT/J = 0.5, 0.56, 0.61, 0.67, 0.74, 0.81, 0.89, 0.98, 1.08,

1.19 each. Near the critical temperature, 70,000 spin configurations are gen-

erated at temperatures kBT/J = 1.31, 1.44, 1.58 each. Above the critical

temperature, 100,000 spin configurations representing disordered states are

generated at temperatures kBT/J = 1.74, 1.92, 2.11, 2.32 each.

Below the critical temperature, the entropy is low so the generated

number of initial spin configurations are smaller than other temperatures.

As the temperature increases as the entropy is high, we increase the num-

ber of initial spin configurations.

The temperatures for annealing are gradually lowered from high to low

temperatures and Monte Carlo data are always obtained at equilibrium con-

figurations. For each sampled initial spin configuration σi, two sets of spin

dynamics simulations are performed with the time steps τ1 = 10−1 and τ3 =

10−3 as illustrated in figure 4.2. Second-order Suzuki-Trotter method uses

τ = 0.04 as typical integration time step, so we use τ = 10−3 which would

give good accurate simulation. For large time step, we tried τ = 10−2 and

τ = 10−1, with our Deep Learning corrections, a large time step of τ = 10−1

gives the best speed up with a good accuracy. The spin configuration with

time step τ3 = 10−3 needs 100 time steps of simulations to pair with the

spin configuration with one time step τ1 = 10−1. Formally, we represent the

updated spin configurations σ
(10−1)
i and σ

(10−3)
i by using the Suzuki-Trotter
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Figure 4.2: Spin configurations for training data preparation. σi is ini-

tial spin configuration, σ
(10−1)
i is spin configuration after one time step of

τ1 = 10−1 from σi, and σ
(10−3)
i is spin configuration after 100 time steps of

τ3 = 10−3 from σi. σ
(res)
i is residue of σ

(10−3)
i and σ

(10−1)
i .

position method as

σ
(10−1)
i ← eR̂Bτ1/2eR̂Aτ1eR̂Bτ1/2σi, τ1 = 10−1

σ
(10−3)
i ← (eR̂Bτ3/2eR̂Aτ3eR̂Bτ3/2)100σi, τ3 = 10−3 i = 1, ...D,

(4.3)

where σi is an initial spin configuration and D represents the number of

training data. The difference between spin configuration σ
(10−3)
i generated

using τ3 = 10−3 and spin configuration σ
(10−1)
i generated using τ1 = 10−1 is

captured by

σ
(res)
i = σ

(10−3)
i − σ(10−1)

i i = 1, . . . , D , (4.4)

where σ
(res)
i is residue.
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Figure 4.3: Illustration of the U-Net architecture. The architecture consists
of encoder and decoder layers. Each vertical black line represents a multi-
channel feature map. The number of channels is denoted on the top of
straight vertical black line and each map’s dimension is indicated on the
left edge. Vertical dashed black lines correspond on the copied feature maps
from each encoder layer.

4.1.2 U-Net Architecture

For our Deep Learning, initial spin configuration σi and spin configuration

σ
(10−1)
i are used as the inputs into U-Net [44], a kind of convolutional neu-

ral networks. The U-Net is a proven architecture for image segmentation as

well as for extracting subtle features. The architecture of U-Net described in

figure 4.3 is used for 4×4×4 cubic lattice. Convolutional layers are used as

an encoder followed by a decoder that consists of upsamplings and concate-

nations with the correspondingly feature maps from the encoder. The input

dimensions of U-Net are reshaped to [D,L,L, L,C] as cubic grid vector map.

D is total number of training data and input channels C is 6 (3+3) by con-
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Figure 4.4: Illustration of the U-Net architecture. Each vertical black line
represents a multi-channel feature map. The number of channels is denoted
on the top of the straight vertical black line and each map’s dimension is in-
dicated on the left edge. Vertical dashed black lines correspond on the copied
feature maps from each encoder layer.

catenating spin coordinates Sx, Sy, and Sz of σi and σ
(10−1)
i , respectively.

The encoder consists of the repeated two convolutional layers with 3× 3× 3

filters followed by a 2×2×2 max pooling. Every step in decoder consists of

upsampling layers with a 2× 2× 2 filters followed by the repeated two con-

volutional layers with 3×3×3 filters and copy with correspondingly cropped

feature map from encoding layers. The periodic boundary conditions are also

applied to the convolutional layers. The activation function of the output is

a sigmoid for predicting values of residue with [D,L,L, L,Co] dimensions,

where the number of output channels Co is 3.
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The architecture of U-net used for 8 × 8 × 8 cubic lattice as shown in

figure 4.4 is that convolutional layers are used as an encoder on left upper

side followed by a decoder on right upper side that consists of upsamplings

and concatenations with the correspondingly feature maps from the encoder.

We add fully connected layers (FC) in the bottom of the network between

the encoder and the decoder to efficiently determine particular weights in

the feature map from the encoder , such as capturing more information of

spin-spin interactions. The input channels C are 6 by concatenating spin

coordinates Sx, Sy, and Sz of both σi and σ
(10−1)
i , respectively. The input

dimensions of U-Net are reshaped to [D,L,L, L,C] as cubic grid vector map,

where D is the total number of training data, L is lattice size, and C is in-

put channels. The encoder consists of the repeated two convolutional layers

with 3×3×3 filters followed by a 2×2×2 max pooling. We apply a reshaping

function to FC with dimensions from [D, L4×
L
4×

L
4×C4] into [D, L4 ,

L
4 ,

L
4 , C4].

Every step in decoder consists of upsampling layers with a 2×2×2 filters fol-

lowed by the repeated two convolutional layers with 3×3×3 filters and copies

with correspondingly cropped feature maps from encoding layers. The peri-

odic boundary conditions are also applied to the convolutional layers. The

activation function of the output is a sigmoid for predicting values of residue

with [D,L,L, L,Co] dimensions, where the number of output channels Co is

3.
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4.1.3 Deployment of U-Net

To deploy the trained U-Net for spin dynamics, spin dynamics simulation is

carried out with one large time step τ1 = 10−1 and this simulation result

σ
(10−1)
i can be used to predict σ

(10−3)
i as follows:

σ̂
(10−3)
i = σ

(10−1)
i + σ̂

(res)
i ' σ(10−3)

i , (4.5)

where σ̂
(10−3)
i is the predicted spin configuration for 100 time steps of τ3 =

10−3 and predicted residue σ̂
(res)
i is the correction term by Deep Learning.

A sequence of spin dynamics is conducted at τ1 = 10−1 and for each step,

Eq. (4.5) is used to perform corrections as shown in figure 4.5. This new

time integration scheme is repeated up to maximum time tmax. This scheme

requires only forward propagation using the GPU implemented with Tensor-

Flow library [45], so the computing time is negligible.

4.1.4 Normalization of Residue

The difference between spin configuration generated with τ3 = 10−3 and that

generated with τ1 = 10−1 is captured by residue σ
(res)
i as shown in Eq. (4.4).

Let (σ
(res)
i )jk be the k component of residual spin at site j of the lattice, and

k denotes x, y, and z components. The values of (σ
(res)
i )jk can be quite small

for some simulations, to maintain numerical stability, we normalize these val-

ues as follows. Each component (σ
(res)
i )jk over D samples of training data is

normalized to a range of [0,1] by fitting to have a Gaussian distribution, and
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Figure 4.5: A sequence of spin dynamics for testing the trained U-Net
model: (a) conduct one time step τ1 = 10−1 of spin dynamics simulation;

(b) use σ
(10−1)
i to predict the spin configuration σ

(10−3)
i by estimating pre-

dicted residue σ̂
(res)
i using Eq. (4.5). Steps (a) and (b) are repeated up to

tmax time.

find the mean and standard deviation for each k component, respectively.

For lattice size L = 4, λmin = −0.22455 and λmax = 0.22455 are defined by

taking 11 times the largest standard deviation of k component. 11 standard

deviations translates to a p-value of 1.911×10−28, which ensures that during

inference, the normalized residue (σ
(res)
i )jk is always within the range [0,1].

For lattice size L = 8, λmin = −0.25472 and λmax = 0.25472 are defined

by taking 13 times the largest standard deviation of k component. Finally,

each component (σ
(res)
i )jk is normalized to the range [0, 1] and guarantee sta-
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ble convergence of weights and biases in Deep Learning as follows :

(σnormi )jk =
(σ

(res)
i )jk − λmin
λmax − λmin

(k = x, y, z, i = 1, ...D). (4.6)

During the prediction, (σ
(res)
i )jk from test data is normalized to a range of

[0, 1] by using λmin and λmax, which have already been obtained.

Loss Function and Training

The loss function for one data point of (σi, σ
(10−1)
i , σnormi ) is the mean-square

error between the normalized residue σnormi and the predicted normalized

residue σ̂normi and is defined as

L(σi, σ
(10−1)
i , σnormi ) =

1

L3

L3∑
j=1

(σnormi )j − (σ̂normi )j
2
2 , (4.7)

where j is the index of lattice sites. The distance function between the jth

site of σnormi and the jth site of σ̂normi is the sum of the square difference

of all spin components :

(σnormi )j − (σ̂normi )j
2
2 =

∑
k=x,y,z

(
(σnormi )jk − (σ̂normi )jk

)2
, (4.8)

where i is the index of training data.

4.1.5 Converting σ̂normi to σ̂
(res)
i

For our Deep Learning, inputs into U-Net are obtained initial spin configu-

rations σi and spin configurations σ
(10−1)
i generated by spin dynamics sim-

ulations, and output is σ̂normi . We finally predict the spin configuration for
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100 time steps of τ3 = 10−3 using trained Deep Learning model as σ̂
(10−3)
i =

σ
(10−1)
i + σ̂

(res)
i , where the predicted residue σ̂

(res)
i can be obtained by the

following converting formula as σ̂
(res)
i = σ̂normi (λmax − λmin) + λmin.

4.2 Results and Discussions

The effectiveness of our proposed Deep Learning method is evaluated at

kBT/J = 0.4 < kBTc/J , kBT/J = 1.44 ≈ kBTc/J, and kBT/J = 2.4 >

kBTc/J . Note that at kBT/J = 2.4, the system is in a disordered state and

spatial corrections between spins are very short. One hundred independent

spin configurations are generated by using Monte-Carlo simulation for use

as test data sets at each temperature kBT/J = 0.4, 1.44, and 2.4. Second

order Suzuki-Trotter decomposition methods are used for all experiments.

4.2.1 Spin-Spin Correlation using Reference Trajectory

To evaluate the accuracy of simulation results, correlation is investigated by

comparing spin dynamics trajectory σ(t) with highly accurate spin dynamics

trajectory ρ(t) performed with τ = 10−6. τ = 10−6 is used as the reference

time step as we found that it can give accurate trajectories. Correlation ξ(t)

as function of time t in which σ(t) and ρ(t) are compared is given by

ξ(σ, t) =
1

L3

L3∑
j=1

[(ρj(t))x(σj(t))x + (ρj(t))y(σ
j(t))y + (ρj(t))z(σ

j(t))z], (4.9)
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Figure 4.6: Spin-spin correlation using reference trajectory generated at
τ = 10−6. Analysis of the mean of correlation µξ(t) as a function of time
on 4 × 4 × 4 cubic lattice at a, kBT/J = 0.4, b, kBTc/J ≈ 1.44, and
c, kBT/J = 2.4 and those on 8 × 8 × 8 cubic lattice at d, kBT/J = 0.4,
e, kBTc/J ≈ 1.44, and f, kBT/J = 2.4. Blue line presents the Deep Learning
result while black line, yellow line, and red line are the simulation results for
τ = 10−1, τ = 10−2, and τ = 10−3, respectively. Especially, at kBT/J = 1.44
and kBT/J = 2.4, green line and violet line show the simulation results for
τ = 10−4 and τ = 10−5, respectively.

where index j denotes lattice site of spins, L is the linear dimension of the

lattice, and L3 is total number of spins at lattice sites. Since the initial

spin configurations are the same, ρ(0) is identical to σ(0). We compute one

hundred correlation ξ(σi, t) for spin configurations σi(t), where i is from 1

to 100. Then, we also estimate the mean of correlation µξ(t) and the stan-

dard deviation of correlation std(ξ(t)) of ξ(σi, t) as a function of time at

each temperature. In figure 4.6, the spin-spin correlation plots are shown

as using reference trajectory generated at the reference time step τ = 10−6

for kBT/J = 0.4 (kBT/J < kBTc/J) [figure 4.6a and 4.6d], kBT/J =
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1.44 (kBT/J ≈ kBTc/J) [figure 4.6b and 4.6e], and kBT/J = 2.4 (kBT/J >

kBTc/J) [figure 4.6c and 4.6f]. At kBT/J < kBTc/J , correlations remain

high (red line, yellow line, and blue line) except for at τ = 10−1 with-

out Deep Learning corrections (black line), where correlation drops around

t = 2. This is due to accumulation of errors for large time steps. Corre-

lation is recovered with Deep Learning corrections (blue line). Indeed cor-

relations of τ = 10−1 with Deep Learning corrections are as good as for

τ = 10−2 without Deep Learning corrections (yellow line), demonstrating

a ∼ 10 times speed up. At kBT/J ≈ kBTc/J and kBT/J > kBTc/J ,

spin-spin correlation drops faster than kBT/J < kBTc/J even for short time

steps, τ = 10−4 (green line) and τ = 10−5 (violet line), due to disorder

in the spin lattices. We define threshold time tthres as the average time re-

quired for spin-spin correlation µξ(t) to drop from 1 to 0.99. In figure 4.7,

the plot of tthres as a function of temperature kBT/J has the logarithmic

scale on the y-axis, and simulations for τ = 10−3 have higher threshold time

(red squares) at each temperature than for τ = 10−1 without Deep Learning

corrections. Threshold time (filled blue diamonds) for τ = 10−1 with Deep

Learning corrections approaches to almost the same threshold time (yellow

circles) for τ = 10−2 without Deep Learning corrections at each temperature.
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Figure 4.7: Threshold time tthres as function of temperature. Filled blue
rhombus represents the Deep Learning result while filled black triangles,
filled yellow circles, filled red squares, filled green inverted triangles, and
filled violet pentagons are the simulation results without DL corrections for
τ = 10−1, τ = 10−2, τ = 10−3, τ = 10−4, and τ = 10−5, respectively.

4.2.2 Conservation of Energy and Magnetization

Suzuki-Trotter decomposition method provides important properties such as

conservation of energy e = −L−3
∑L3

<i,j> Si · Sj and magnetization m =

L−3
√

(
∑

i S
i
x)2 +

(∑
i S

i
y

)2
+ (
∑

i S
i
z)

2 , and time reversibility. We wish to

compare the conservation of energy and magnetization across one hundred

samples, but their starting spin configurations are different. In order to take

statistics across the samples, we shift the energy and magnetization of the

initial spin configurations to zero. Eq. (4.10) show how we shift the energy
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per site e(t) and magnetization per site m(t) at each time step t. Here, Q

represents the number of samples at each temperature. We use Q as one

hundred.

ẽi(t) = ei(t)− ei(0) i = 1, . . . , Q

m̃i(t) = mi(t)−mi(0) i = 1, . . . , Q .

(4.10)

With the shifting of energy and magnetization, we can compute the mean

of absolute energy per site µ|ẽ(t)|, the mean of absolute magnetization per

site µ|m̃(t)|, standard deviation of energy per site std(ẽ(t)), and standard de-

viation of magnetization per site std(m̃(t)) over independent samples.

Figure 4.8 (L = 4) and figure 4.9 (L = 8) show µ|ẽ(t)|, std(ẽ(t)), µ|m̃(t)|,

and std(m̃(t)) as a function of time at kBT/J = 0.4 (kBT/J < kBTc/J) [fig-

ure 4.8a and 4.9a], kBT/J = 1.44 (kBT/J ≈ kBTc/J) [figure 4.8b and 4.9b],

and kBT/J = 2.4 (kBT/J > kBTc/J) [figure 4.8c and 4.9c]. For time steps

τ = 10−2 (yellow line) and τ = 10−3 (red line), conservation of both energy

and magnetization is good, as shown by the relatively constant mean plots

(µ|ẽ(t)| and µ|m̃(t)|) and small standard deviations (std(ẽ(t)) and std(m̃(t)))

across independent simulations. At kBT/J < kBTc/J and kBT/J ≈ kBTc/J ,

both energy and magnetization are not conserved in simulations without

Deep Learning corrections for time step τ = 10−1 (black line). On the other

hand, conservation is recovered using Deep Learning corrections (blue line).

In figure 4.8c, at kBT/J > kBTc/J , the system is disordered and the mean

of absolute energy µ|ẽ(t)| and the mean of absolute magnetization µ|m̃(t)| be-
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Figure 4.8: Conservation of energy and magnetization on 4× 4× 4 cubic lat-
tice. Predictions of the mean of absolute energy per site µ|ẽ(t)|, standard de-
viation of energy per site std(ẽ(t)), the mean of absolute magnetization per
site µ|m̃(t)|, and standard deviation of magnetization per site std(m̃(t)) as a
function of time at a, kBT/J = 0.4, b, kBTc/J ≈ 1.44, and c, kBT/J = 2.4.
Black line, yellow line, and red line represent data obtained from spin dy-
namics simulations with τ = 10−1, τ = 10−2, and τ = 10−3, respectively,
while blue line represents data from Deep Learning correction.
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Figure 4.9: Conservation of energy and magnetization on 8× 8× 8 cubic lat-
tice. Predictions of µ|ẽ(t)|, std(ẽ(t)), µ|m̃(t)|, and std(m̃(t)) as a function of
time at a, kBT/J = 0.4, b, kBTc/J ≈ 1.44, and c, kBT/J = 2.4. Black line,
yellow line, and red line represent data obtained from spin dynamics simu-
lations with τ = 10−1, τ = 10−2, and τ = 10−3, respectively, while blue line
represents data from Deep Learning correction. These figures show that the
effect of averaging over disordered spins for L = 8 is stronger than for L = 4
above the critical temperature kBTc/J .
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come more constant, simply due to averaging of disordered spins. Especially,

figure 4.9c shows that at kBT/J > kBTc/J , the effect of averaging over dis-

ordered spins for L = 8 is stronger than for L = 4. At high temperature, the

number of possible states increase exponentially and hence fitting by Deep

Learning corrections is more difficult.
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Chapter 5

Deep Learning Approach to

Molecular Dynamics

This chapter introduces the Deep Learning method used to learn effective

force to recover simulation stability and validate the performance of the Deep

Learning method.

5.1 Supervised Deep Learning Method

5.1.1 Data Preparations

Let us consider a system of the 2-dimensional Lennard-Jones small n=16

particles system. The density of the system is chosen to be ρ = 0.1, 0.14,

0.2, 0.27, and 0.38 and the particles are confined to a square box of length
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Figure 5.1: Specific heat cv in two-dimensional LJ potential on N=16 par-
ticles at the range of kBT/J ∈ [0.27 − 0.71] that is critical temperature
Tc = 0.472 with (a) ρ = 0.1, (b) ρ = 0.2, (c) ρ = 0.3 and, (d) ρ = 0.4.

L =
√
n/ρ. The initial configurations are used to prepare the input of neu-

ral network model as a set of coordinates (q(0),p(0)) that describe the ini-

tial state of system and total sampling 1,200,000 independent configurations

with a various densities ρ. Independent q(0) are sampled using Monte-Carlo

simulation with the Metropolis algorithm for each temperature kBT/J and

consider the temperature dataset in the range of kBT/J ∈ [0.27 − 0.71].

From Singh et al. [39], the estimate of the critical temperature and density

Tc = 0.472 and ρc = 0.33±0.02 are obtained. Fig 5.1 shows the high specific

heat per particle near critical temperature Tc about one sample in a Monte-
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Carlo simulation. Initial positions qα(0) are prepared with 60, 000 samples

at the range of kBT/J ∈ [0.27, 0.39] on gas+solid regions, 60, 000 samples at

the range of kBT/J ∈ [0.43, 0.55] on gas+liquid regions and, 120, 000 sam-

ples at the range of kBT/J ∈ [0.59, 0.71] on gas regions with each density in

two-dimensional phase diagram of Lennard-Jones systems as shown in figure

5.2.

Figure 5.2: Initial configurations for data preparations

Figure 5.3 shows the initial position q(0)on gas+solid, gas+liquid, and gas

region at each temperature with ρ = 0.1 about one sample.

p(0) are sampled using Boltzmann distribution at fixed temperature in the
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Figure 5.3: Initial position q(0) on (a) gas+solid, (b) gas+liquid, and (c)
gas with ρ = 0.1.

Figure 5.4: Histogram of (a) Energy per particle, (b) Kinetic energy per par-
ticle (c) Momentum (d) Potential energy per particle from the initial con-
figurations over all temperatures in T = [0.59, 0.71] with density ρ.
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range of kBT/J ∈ [0.27− 0.71]. Figure 5.4 shows the histogram of prepared

samples as the initial configurations over all temperatures with each density.

Figure 5.5: A labeled set of training data. τS is used to generate qα(χmτS)
and pα(χmτS) of α-th sample as labels. m is the number of iterations of
χτS to pair with χτL.

For each sampled independent configuration, molecular dynamic simulations

with velocity-Verlet algorithm in Eq. (3.13) are performed with the time

steps τ4 = 10−4 as small time step. Small time step τ4 = 10−4 gives high

simulation accuracies. Small time step is used to generate accurate data for

Deep Learning labels.

5.1.2 Deep Learning to Learn Effective Force

Numerical integrators such as symplectic integrators are effective for small

time steps (τ � 1, where τ is a dimensionless time unit). However, a large

time step causes the numerical integrators to become unstable and parti-

cles can overlap, causing artificially large force calculation. To recover the
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stability of simulation, we use Deep Learning to learn the effective forces

acting on particles. We develop our neural networks to learn effective many-

body interactions replacing the force calculations from the original physi-

cal model ( − ∂H
∂qα

). Once a new two body and many-body interactions have

been learned, a single neural network model can be used to perform acceler-

ated simulations for the Hamiltonian system of interest for arbitrary thermo-

dynamics states (e.g. different temperatures, pressures, number of particles,

and densities).

Figure 5.6: Illustration of the χ large time steps neural network forward
propagation for symplectic algorithm. Two neural network models for one

update step are a MLP and parameterized by θ1, θ2 to predict forces f
(i)
θ1
, f

(i)
θ2

.

A system of the 2-dimensional Lennard-Jones n particles is considered to

produce training data for our fully supervised Deep Learning. Any number

of particles can be considered in the experiment. The density of the sys-

tem is chosen to be various densities ρ and the particles are confined to a
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square box of length L =
√
n/ρ. As shown in figure 5.6, our Deep Learning

integration algorithm follows a form of the symplectic algorithm, it is pa-

rameterized by θ1, θ2 to predict effective forces for each i-th particle f
(i)
θ1
, f

(i)
θ2

which is the output of parametric function f
(i)
θ1

: Ω 7→ R2 used in Eq. (5.1)

and f
(i)
θ2

: Ω 7→ R2 used in Eq. (5.3), (qα,pα) ∈ Ω is the phase space. Our

Deep Learning integrator consists of a series of mathematical manipulation

on (qα,pα) followed by neural network predictions for effective forces for

each particle. In this paper, we present several different ways of calculat-

ing the effective forces and call these pair-wise neural network (PW-NN),

many-body neural network (MB-NN), and combined PW-NN and MB-NN

((PW+MB)-NN). The details will be described in the next subsection. In

figure 5.6, we chain up χ large time steps χτL to predict the phase space

configuration at (q̂α(t+χτL), p̂α(t+χτL)) and compare to the ground truth

labels (qα(t + χmτS),pα(t + χmτS)). m is the number of iterations of χτS

to pair with χτL. The ground truths are generated using the Velocity-Verlet

algorithm with very short time step τS to get high simulation accuracies

whereas our Deep Learning integrators uses large time step τL. At each up-

date step, the same parametric functions f
(i)
θ1
, f

(i)
θ2

are used. In another word,

the neural network models used to calculate f
(i)
θ1
, f

(i)
θ2

are the same in each

one update step. The first neural network model predicts parametric func-

tion f
(i)
θ1

to update pi,α(t) given by τL/2 for i-th particle of α-th sample.

p̂i,α(t+
τL
2

) = pi,α(t) +
τL
2
f
(i)
θ1

(qα(t),pα(t),
τL
2

) (5.1)
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After moving pi,α(t)→ p̂i,α(t+ τL
2 ), update qi,α(t) given by τL as,

q̂i,α(t+ τL) = qi,α(t) + τLp̂i,α(t+
τL
2

) (5.2)

The new coordinates q̂α(t+τL), p̂α(t+ τL
2 ) of α-th sample use to prepare the

input to the second neural network model which predicts parametric func-

tion f
(i)
θ2

to update p̂i,α(t+ τL
2 ) given by τL/2.

p̂i,α(t+ τL) = p̂i,α(t+
τL
2

) +
τL
2
f
(i)
θ2

(q̂α(t+ τL), p̂α(t+
τL
2

),
τL
2

) (5.3)

The final configurations q̂α(t + τL), p̂α(t + τL) at one update step are used

for the next update step and update the configurations until χ large time

steps.

Computing Parametric Functions f
(i)
θ1
, f

(i)
θ2

for Pairwise Interactions

The force on i-th particle of the LJ system is computed with the pair of

its neighboring k-th particle. In Eq. (5.4), the relative position and momen-

tum of neighboring k-th particle with respect to the i-th particle of the α-th

sample are considered as input for neural network model for the prediction

of pair-wise force between the i-th and k-th particles.

∆qik,α = qi,α − qk,α, ∆pik,α = pi,α − pk,α (5.4)

In figure 5.6, phase space qα and pα of α sample at time t prepare the input

to feed into the first neural network model as ∆qik,α, ∆pik,α, and large time

step τL
2 . The function f

(i)
θ1

(qα(t),pα(t), τL2 ) is computed as the sum of the
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predicted individual force on i-th particle with a pair of its neighboring k-

th particle as shown in Eq. (5.5).

f
(i)
θ1

=
∑
k 6=i

pw-netθ1(∆ qik,α(t),∆pik,α(t),
τL
2

) (5.5)

The new configurations q̂α(t+ τL), p̂α(t+ τL
2 ) are calculated from f

(i)
θ1

using

Eq. (5.1) and (5.2), and use to prepare the input to the second neural net-

work model as ∆q̂ik,α(t+ τL),∆p̂ik,α(t+ τL
2 ), and large time step τL

2 . In the

same way, the function f
(i)
θ2

(q̂α(t+ τL), p̂α(t+ τL
2 ), τL2 ) is computed from the

individual force output in Eq. (5.6).

f
(i)
θ2

=
∑
k 6=i

pw-netθ2(∆q̂ik,α(t+ τL),∆p̂ik,α(t+
τL
2

),
τL
2

) (5.6)

The final configurations q̂α(t+ τL), p̂α(t+ τL) using Eq. (5.3) complete one

integration step.

Computing Parametric Functions f
(i)
θ1
, f

(i)
θ2

for Many-Body

Interactions

To calculate many-body interactions of a i-th particle with a set of neigh-

boring particles {kj}, a hexagonal grid (see Figure 5.7) centered at the i-th

particle is created. Let ui,l,α be the l-th grid position of i-th particle of α-

th sample, l = 1, ..., 6. ui,l,α has two components (ui,l,x,α, ui,l,y,α). Given a

vector of position ui,l,α of l-th grid point of the α-th sample confined to

a square box, a derivative potential ∇ui,l,αΦ = ( ∂Φ
∂ui,l,x,α

, ∂Φ
∂ui,l,y,α

) gives the

force field on the l-th grid position of i-th particle, interacting via potential
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Figure 5.7: l-th grid position ui,l centered at the i-th particle created to
calculate many-body interactions of a i-th particle.

φLJ defined in Eq. (3.6).

∇ui,l,αΦ(ui,l,α,q1,α, ...,qn,α) =
∑
k 6=i
∇φLJ(|ui,l,α − qk,α|) (5.7)

If the distance of |ui,l,α − qk,α| is too close, derivative potential energy cal-

culates large value and makes training for Deep Learning hard. Each com-

ponent of ∇ui,l,αΦ is clipped to a threshold ω in Eq.(5.8) to prevent the

artificially large value of derivative potential energy . We set ω = 108.35

which is derivative potential energy with |ui,l,α − qk,α| = 0.9.

∣∣∣∣ ∂Φ

∂ui,l,x,α

∣∣∣∣ =

∣∣∣∣ ∂Φ

∂ui,l,y,α

∣∣∣∣ = ω (5.8)

The momentum field vi,l,α of the grid points of α-th sample can be obtained

to average of weights wki,l,α factored by the velocity of k-th particle

vi,l,α =

∑
k=1w

k
i,l,αpk,α∑

k=1w
k
i,l,α

(5.9)

51



CHAPTER 5. DEEP LEARNING APPROACH TO MOLECULAR
DYNAMICS

where pk,α is monentum of k-th particle of α-th sample. The weight wki,l,α

is defined as the inverse proportion of the distance between the ui,l,α and

qk,α in Eq. (5.10).

wki,l,α =
1

|ui,l,α − qk,α|
(5.10)

In figure 5.6, data is qα, pα of α-th sample at time t and input into first

neural network model is considered as {∇ui,l,αΦ}, {vi,l,α − pi,α}, and large

time step τL
2 . The relative momentum vi,l,α − pi,α causes the information

of momentum and preserve the difference from the center of i-th particle

as the reference point regardless of the independent configurations such as

the translation invariance. The output is the function f
(i)
θ1

(qα(t),pα(t), τL2 )

computed for i-th particle of α-th sample as shown in Eq. (5.11).

f
(i)
θ1

= mb-netθ1({∇ui,l,αΦ(t)}, {vi,l,α(t)− pi,α(t)}, τL
2

) (5.11)

The second neural network model uses the input as {∇ui,l,αΦ̂(t+τL)}, {v̂i,l,α(t+

τL
2 )− p̂i,α(t+ τL

2 )}, and large time step τL
2 with the new coordinates q̂i,α(t+

τL), p̂i,α(t+ τL
2 ) calculated from the output using Eq. (5.1) and Eq. (5.2).

f
(i)
θ2

= mb-netθ2({∇ui,l,αΦ̂(t+ τL)}, {v̂i,l,α(t+
τL
2

)− p̂i,α(t+
τL
2

)}, τL
2

)(5.12)

The final configurations q̂α(t + τL), p̂α(t + τL) by the output f
(i)
θ2

(q̂α(t +

τL), p̂α(t + τL
2 ), τL2 ) in Eq. (5.12) using Eq. (5.3) complete one integration

step.
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Combined PW-NN and MB-NN : (PW+MB)-NN

(PW+MB)-NN is combined with PW-NN and MB-NN. Each neural net-

work model to predict effective force, f
(i)
θ1

(qα(t),pα(t), τL2 ) and f
(i)
θ2

(q̂α(t +

τL), p̂α(t+ τL
2 ), τL2 ) , has the parametric function as follows:.

f
(i)
θ1

=

(
Γ1mb-netθ1({∇ui,l,αΦ(t)}, {vi,l,α(t)− pi,α(t)}, τL

2
)

+ (1− Γ1)
∑
k

pw-netθ1(∆qik,α(t),∆pik,α(t),
τL
2

)

)
(5.13)

f
(i)
θ2

=

(
Γ2mb-netθ2({∇ui,l,αΦ̂(t+ τL)}, {v̂i,l,α(t+

τL
2

)− p̂i,α(t+
τL
2

)}, τL
2

)

+ (1− Γ2)
∑
k

pw-netθ2(∆q̂ik,α(t+ τL),∆p̂ik,α(t+
τL
2

),
τL
2

)

)
(5.14)

where Γ1 and Γ2 are the learning parameters with sigmoid function and rep-

resent the weights of MB-NN to learn the effective forces compared with

PW-NN.

5.1.3 Loss Functions

The loss function is defined in Eq. (5.15) as follows:

L(θ1, θ2, θ3) = Lqp(θ1, θ2) + weLe(θ3) (5.15)

Lqp(θ1, θ2) = Lq(θ1, θ2) + Lp(θ1, θ2)

Lq(θ1, θ2) =
1

N

N∑
α

‖q̂α(χτL)− qα(χmτS)‖2

Lp(θ1, θ2) =
1

N

N∑
α

‖p̂α(χτL)− pα(χmτS)‖2

Le(θ3) =
∣∣∣Ê(χτL)− E(0)

∣∣∣
53



CHAPTER 5. DEEP LEARNING APPROACH TO MOLECULAR
DYNAMICS

here, N is the training data set. The first term of loss function for one data

point of (qα(0),pα(0),qα(χmτS),pα(χmτS)) is the mean-square error. Lqp

minimizes difference between predictions at χ large time steps and labels at

a number of short time steps that pair with χ large time steps. By adding

a second term Le, conservation of energy is learned from initial energy and

becomes small when Ê(χτL) is close to the E(0) during training. we is the

weight of the second term of the loss.

5.1.4 Sequence of Molecular Dynamics with Deep Learning

To deploy the trained PW-NN, MB-NN, and (PW+MB)-NN for molecular

dynamics, a sequence of molecular dynamics are conducted every χ large

time steps at a given large time step τL = 0.1. The effective forces are pre-

dicted by deep learning model and predict the new configurations ( q̂α(χτL),

p̂α(χτL)) by using the predicted forces. With the new configurations, the

configurations ( q̂α(2χτL), p̂α(2χτL)) at next χ-time steps are predicted. The

new time integration scheme is repeated up to maximum time tmax. This

scheme requires only forward propagation using the GPU implemented with

PyTorch library [46], so the computing time is negligible.

5.2 Results and Discussions

Our proposed PW-NN, MB-NN, and (PW+MB)-NN is used to recover the

stability of the simulation and speed up time integration using large time
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step by predicting the effective forces. The effectiveness of our PW-NN, MB-

NN, and (PW+MB)-NN is evaluated on gas+solid regions at kBT/J = 0.27,

gas+liquid regions at kBT/J = 0.47, and gas regions at kBT/J = 0.71 with

various densities ρ = 0.1, 0.14, 0.2, 0.27, and 0.38 in the phase diagram of

Lennard-Jones systems. γ = 1, 000 independent configurations are generated

for use as test data sets at each temperature. The velosity-verlet algorithm

is used for all experiments.

5.2.1 Accumulate Function of Time

When two particles interacting with the LJ potential are nearly overlapping,

the forces can compute the artificially large value. To check the stability of

the simulation at large time step, we find the threshold distance qthrsh using

the minimum distance about all samples and set the threshold force fthrsh

by instituting qthrsh for the force on LJ potential formula in Eq. (5.16).

fthrsh = −4

(
(−12)

1

q13
thrsh

− (−6)
1

q7
thrsh

)
(5.16)

A number of unstable configurations that have more than threshold force

fthrsh over time are counted. We set the qthrsh = 0.7259, causing the large

force calculation. The force fk on the k-th particle for all pairs has compo-

nents fkx, fky. The magnitude of force per particle is calculated as | f′k| =

| fk|
n . k=1,...,n, n is the number of particles. The number of the unstable con-

figurations that have the maximum value f
′
0 = max(|f′k|) of n particles more

than fthrsh are accumulated over time t for a maximum time of tmax = 1000
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at kBT/J = 0.27, 0.47, and 0.71 as shown in figure 5.8.

Figure 5.8: Accumulate function of time for a maximum time of tmax = 1000
at a, kBT/J = 0.27 on gas+solid regions, b, kBT/J = 0.47, on gas+liquid
regions, and c, kBT/J = 0.71 on gas regions with various densities ρ.

The maximum of a number of configurations from instability of simulation is

1000 as the test data sets. Overall, the MD simulations at τ = 0.025 (black)

and τ = 0.02 (green) show that a number of the unstable configurations are

accumulated with a various density near critical temperature and at high

temperature. On the gas region at high temperature, the particles move fast

and easily come much closer together. At time step tau 0.025, the unstable

configurations are accumulated early with a various density and also accu-

mulated at tau=0.02. The Deep Learning results at τ = 0.1 for PW-NN,

56



CHAPTER 5. DEEP LEARNING APPROACH TO MOLECULAR
DYNAMICS

MB-NN, and (PW+MB)-NN show the stability of simulation. The configu-

rations is not accumulated over time at each temperature with various den-

sities.

5.2.2 Distance Metric

To evaluate the accuracy of the simulation results, the mean square error

between two trajectories is investigated by comparing with highly accurate

molecular dynamics trajectory (qτα
′
(t),pτα

′
(t)) performed with τ

′
= 10−4.

τ
′

= 10−4 is used as the reference time step. Let qτi,α(t) = (qτi,x,α(t), qτi,y,α(t))

and pτi,α(t) = (pτi,x,α(t), pτi,y,α(t)) be the αth trajectory of i-th particle inte-

grated over time step τ . i = 1 · · ·n, n is the number of particles. For com-

paring two integration schemes with time steps τ and τ ′, the mean square

error between two trajectories is defined as follows.

∆τ,τ ′
α (t) =

1

n

n∑
i

(
qτi,α(t)− qτ

′
i,α(t)

)2
+

1

n

n∑
i

(
pτi,α(t)− pτ

′
i,α(t)

)2
(5.17)

We estimate the mean of the γ = 1000 mean square error between two tra-

jectories as function of time at each temperature.

Figure 5.9 shows that the mean of mean square error between two tra-

jectories ∆̄τ,τ ′(t) over time t for a maximum time of tmax = 1000 at kBT/J =

0.27, 0.47, and 0.71. Each figure shows the mean square error results at dif-

ferent temperature with various densities. The MD simulation at time step

τ = 0.01 (black) shows that the mean square error at low temperature is

lower than higher temperature with various densities. The results of PW-NN
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Figure 5.9: The mean of correlation values ∆̄τ,τ ′(t) for a maximum time of
tmax = 1000 at a, kBT/J = 0.27, b, kBT/J = 0.47, and c, kBT/J = 0.71
with various densities.

(red) show that the mean square error is similar results with MD results at

time step τ = 0.01 at each temperature with various densities than other

NNs methods. the PW-NN with time step τ = 0.1 are similar accuracy as

the MD simulation with time step τ = 0.01.

5.2.3 Conservation of Energy

We investigate the conservation of energy by calculating the total energy as

function of time. To calculate the mean of energy over time about the all

samples, energy of the initial configurations are shifted to zero. because the
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starting configurations across samples are different. Eq. (5.18) show how we

shift the energy eα(t) per α sample at each time step t. Here, γ represents

the number of samples at each temperature.

ẽα(t) = eα(t)− eα(0) α = 1, . . . , γ. (5.18)

With the shifting of energy, we compute the mean of energy per particle

µẽ(t) over independent samples.

Figure 5.10: Energy conservations for a maximum time of tmax = 1000 at
a, kBT/J = 0.27, b, kBT/J = 0.47, and c, kBT/J = 0.71 with various densi-
ties.

Figure 5.10 shows the mean of energy results at different temperature

with various densities. Overall, for MD simulation with time steps τ = 0.01,

59



CHAPTER 5. DEEP LEARNING APPROACH TO MOLECULAR
DYNAMICS

conservation of energy is good compared with the Deep Learning results.

The results of PW-NN show that the mean of energy is lower than other

NN methods over time. Our Deep Learning models are still training and

have not reached convergence yet so if they train more, the results will show

that the conservation of energy is recovered.
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Conclusion

Our results have demonstrated that the deep learning corrections enhance

the time integration step of the symplectic method. In spin dynamic simu-

lations, our DL method has achieved ∼ 10 times computational speed up

while maintaining accuracy compared to the original Suzuki-Trotter decom-

position method. The natural of local nearest neighbours interactions in the

lattice means that convolutional structure of the Deep Neural Network is

a nature choice of network architecture. Since convolution is translationally

invariant, the effect of lattice size on training our U-Net is not a major con-

cern. For example, between L = 4 and L = 8 lattices, the time required

for training the U-Net parameters increases by about 4 times, which is sub-

linear with respect to the number of lattice sites. Our Deep Learning was

trained on simulation data at τ = 10−3, however, its accuracy performance

is equivalent to simulation data at τ = 10−2. This shows that our Deep
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Learning training has not reached its theoretical limit of a perfect predic-

tion. This theoretical limit can be achieved exactly if we train on an infinite

amount of data for an infinite capacity. In practice, Deep Learning methods

can not be perfect because the amount of data and the capacity of U-Net

are finite. The main source of inaccuracies in our Deep Learning method

is that U-Net’s output does not fit exactly the labeled data generated at

τ = 10−3 and that even if U-Net is able to fit the data it has through train-

ing, it may not predict perfectly on the data it has never seen in training. In

the study of molecular dynamic simulations, Our results using PW-NN have

demonstrated that the effective force obtained by using Deep Learning with

large time step τ = 0.1 recovers the stability of simulation and produces

similar accuracy as the MD simulation with integration time step τ = 0.01.

With other NN methods, MB-NN and (PW+MB)-NN, training more longer

to reach convergence, our Deep Learning simulations will show that about

10x speed up of the simulation. We can apply the Deep Learning driven MD

simulations to the study of protein simulations (protein-protein interactions,

protein-ligand interactions, etc) that it takes long time.
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