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국문초록

4차원 다면체의 비만도의 범위에 관한 연구

신 륜 진

지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

차원 다면체의 -벡터는  ≤  ≤  차원의 면의 개수를 라 할 때, 

   …  로 정의되며, -벡터보다 좀 더 자세한 정보를 얻을 수 

있는 개념으로 플래그벡터를 정의할 수도 있다. 본 논문에서는 4차원 다면

체 의 비만도인     의 범위에 관한 상계와 하계에 

관한 연구를 했다. 그 결과, 가 정확하게 두 개 또는 세 개의 비모서리

(non-edges)를 가진 4차원 다면체일 때, 다음과 같은 새로운 부등식이 성

립함을 보였다.
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Ⅰ. Introduction and Main Results

For a -dimensional polytope , let    denote the number of 

dimensional faces of . Then the -vector of  is defined to be

… ,

and it satisfies the well-known Euler-Poincaré equation given by


  

 

  .

In particular, the -vector of -polytope  satisfies

  .

Due to Steinitz, the characterization for the set  of -vectors of all 

3-polytope is complete and well-known (see [11]). More precisely, an 

integer vector  is the -vector of a -polytope if and only if it 

satisfies the following:

(1)     .

(2)  ≤   and the equality holds only for simplicial -polytopes.

(3)  ≤   and the equality holds only for simple -polytopes.

Contrary to the complete characterization of -polytopes, it is true that 

our understanding of the set  of the -vectors of all -polytopes is 

very insufficient and incomplete. But the -dimensional coordinate 

projections  of the set  of -polytopes to the coordinate 

planes are complete determined by Grünbaum, and Barnette and Reay in 
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[2] and [6]. To be more precise, it follows from a result of Grünbaum 

in [2] that the set of -vector pairs  of -polytopes satisfies

 ≤  ≤ 


   ≤  ≤ 


 .

Moreover, the set of -vector pairs  of -polytopes satisfies

 ≤  ≤  ≤ 


 

except for the cases of . The case for the set 

of -vector pairs  of -polytopes is more complicated but its 

characterization is complete (see [2] for more details).

Another useful combinatorial invariant for convex polytopes, called the 

flag vector, is a less well-known generalization of the concept of 

-vectors. That is, for  ⊆  … , let    denote the number 

of chains 

 ⊂  ⊂⋯⊂    ⊂ 

of faces of  with 

dim dim …  dim . 

For the sake of simplicity, from now on we use the notation … 


instead of … 
 for any subset … of … . For 

instance,  will mean . The -vector of  is then 

  ⋯   , and the flag vector of  is  ⊆ ⋯ . 

For any two subsets  and  of …, a pair 


, or 

simply 


, of flag numbers of  will be called a flag vector pair. 
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More generally, for any , not necessarily mutually disjoint, subsets 

… of …, a -tuple




…


or simply 


…
, of flag numbers of  will be called a flag 

vector -tuple.

As in the -vectors, let us denote by …
the projection of the flag 

vector  ⊆  …   onto its coordinates 


…
. We call 




…
 a polytopal flag vector -tuple if 


…

 belongs to 

the image of the set of all flag vectors of -dimensional polytopes 

under the projection map …
, that is, if there is a -polytope 

such that




…
  


…

.

Our main concern of this thesis is -dimensional polytopes, and, in 

particular, we want to answer the following important question:

Question 1.1 Is there a constant c, independently of -polytopes, so 

that all -polytopes  satisfy inequality

  ≤   ?

For this question, we first define the fatness function    →  given 

by
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of a -polytope . Similarly, for -polytopes  we define the fatness 

function  by

 


.

There are some known results for the values of the fatness function 

or . For example, the -simplex has fatness 2, while the -cube and 

the -cross polytope have fatness 


 


. More generally, if  is 

simple, then by using the Dehn-Sommerville relations

  

  

we can obtain the formula for fatness, as follows.

 





 

Since every -polytope and its dual have the same fatness, the same 

upper bound holds for simplicial -polytopes. 

On the other hand, it is known that the neighborly cubical -polytopes 

defined by Jöswig and Ziegler in [8] have -vectors

   × 

Hence we can obtain the fatness

 


,
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which converges to  as  goes to ∞. In fact, by a result of Eppstein, 

Kuperberg, and Ziegler in [5], it is known that there is convex 

-polytope  whose  is greater than 5.048. 

Our main aim of this thesis is to review and also prove the upper and 

lower bounds for the fatness function  as well as  . More precisely, 

we first review the proofs of the following results (Theorems 1.1 and 

1,2) in [9].

Theorem 1.1 Let  be a convex -polytope with  ≥ , Then we 

have




   .

Theorem 1.2 Let  be a convex -polytope with  ≥ . Then we 

have the following inequalities:

 ≥ 

  
 .

As before, let  be a -dimensional convex polytope. Then, in general, 

 and  satisfy the inequality 

 ≤  




 
.

So, if  happens to be less than  


, then there should be at least one 

pair of vertices  of  whose does not form an edge. We call such 
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a pair of vertices  a non-edge. In particular, any facet of 

-polytope  which is not a simplex should contain at least one 

non-edge. This is because the only -polytope in which every two 

vertices form an edge is the -simplex.

Next, we prove new upper and lower bounds for the fatness function 

, as follows.

Theorem 1.3 Let  be a convex -polytope with only two non-edges. 

Then we have the following inequalities.

    .

Theorem 1.4 Let  be a -polytope with exactly three non-edges. 

Then we have he following inequalities.

    .

This thesis is structured, as follows.

In Chapter II, we review some important facts and theorems necessary 

for the proofs of our main results given in Chapter 3.

In Chapter III, we provide the proofs of Theorems 1.1, 1.2, 1.3, and 1.4.
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Ⅱ. Preliminaries

In this chapter, we outline some of the important theorems needed to 

prove the main results in the next three chapters, and setsup the 

notation and definitions used later.

The convex hull of a set of finite points is a convex polytope and a 

convex polyhedron  is an intersection of finitely many half-spaces in  :

  ∈ 〈〉≥   …

where ∈, dual space of  , are some linear functions and 

∈   …. A (convex) polytope is a bounded convex polyhedron,  

complete determined by [3] and [2, Chapter 1]. Let  be a convex 

-polytope, and let  denote the -vector of  defined by

    ․ ․ ․   ,

where  means the number of all -dimensional faces of . In other 

words, the -vector of a cellulation X, denoted     …, counts 

the number of cells in each dimension:  is the number of vertices, 

 is the number of edges, and so on.

Next, we collect a few well-known facts for convex -polytopes which 

are necessary for the proofs of our main results given in Chapter 3. 

First, we recall the following theorem of Sjöberg and Ziegler in [10].

Theorem 2.1 Flag vector pair   for -polytopes satisfies the 
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following relation:

   { ∈×∣ is a -polytopes}.

Note that Theorem 2.1 describes the number of possible vertex-facet 

occurrences of a -polytope with a fixed number of vertices, which 

gives the average number of possible facets 


of the vertex plot for 

a given number of vertices  (see the paper Sjöberg and Ziegler, [10]).

Theorem 2.2 (Generalized Dehn-Sommerville equation, [4, Theorem 

2.1]) Let  be a -polytope, and let  ⊆ ⋯. Let

⊆ ∪ such that    and there is no ∈ such that 

    . Then, we have


  

 

  ∪    .

This theorem is a generalization of the well-known Euler's equation for 

convex polytopes.

Theorem 2.3 (Bayer, [3, Theorem 1.3 and 1.4]). The flag vector of 

every -polytope satisfies the inequalities 

     ≥  and    ≥ .

This theorem, in particular, plays important roles in the proofs of the 

main results given in [9], among which [9, Theorem 1.5] is used in 

Chapter 3.
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Ⅲ. Proofs of Main Results

The purpose of Chapter III is to review and also give the proofs of our 

main Theorems 1.1, 1.2, 1.3, and 1.4. 

To do so, we start with the following theorem for convex 3-polytopes.

Theorem 3.1 Let  be a convex -polytope with  ≥ , The we 

have




   .

Proof. For the proof, note first that

     (Euler's equation),




 ≤  ≤   (Steinitz),

 ≤  , and  ≤   (or  ≥ 


 ).

By using these facts above, we have
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≥ 






≥ 






 


 




 

 


 



 


 


 


 ①

On the other hand, we also have

  


≤

  


 

 
 

 

 

 

  


  ②

Therefore, by ① and ② we have




   ,

which was to be demonstrated.                                        □ 

If  is a convex -polytope, recall that we have defined its fatness as

 


.

In case of simple -polytope , we have
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Thus, we have

 





 

On the other hand, it is known in the paper of Jöswig and Ziegler that 

there are convex -polytopes  with -vectors

     ․  .

Thus, 

 






→ as  → ∞

In fact, it turns out that there are convex 4-polytopes  with 

   (see the paper by Eppstein, Kuperberg, and Ziegler in [5]).

Recall that our concern of this paper is to answer whether or not there 

is a constant C, independent of all convex -polytopes, such that any 

convex -polytopes  satisfy the inequality

 ≤ , i.e.,  ≤ .

Now, we provide the proof of a lower bound for  given in [9], as 

follows.
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Theorem 3.2 Let  be a convex 4-polytope with  ≥  Then, we 

have the following inequalities:

 ≥ 

  
 .

Proof. Recall

        (Euler's equation).

Thus, we have

 



 

   

 

  


Since  ≥ , we have

  

  
≥

  




  
.

Now, recall that the flag vector pair      of 

non-neighborly -polytope  satisfies the following inequalities [9, 

Theorem 1.5]

 ≤   .

Thus, 

  


 ≤    


 .
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Note also that  ≥  (refer to [6, Theorem. 10.4.2] or [10, Theorem. 

2.2]). Hence

 ≥




  


 




 

   - ③

By [10, Theorem. 2.1] or [6, Theorem. 10.4.1] we have

 ≤ 


 .

That is,


   ≥ .

Thus,

 ≥


.

It is also true as in [10, Theorem. 2.2] or [6, Theorem 10.4.2] that

 ≤ 


 .

That is, 


   ≥ , ie,  ≥


.

Consequently, we have

 ≥



≥
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By ③, we now have

 ≥




  


 







  


 


 


 

  
 

which was to be demonstrated.                                        □ 

Remark:

  

 
  ≥ 

Then  is a decreasing function, and satisfies

   ≤  ,  ≥ .

Let  be a convex -polytope. As mentioned above, if there is a pair 

of vertices of  which does not form an edge, then such an edge is 

called a non-edge.

Let  be a convex 4-polytope with only one non-edge. Then we have 

     (see [9, Theorem 7.5]).

Next, we deal with 4-polytopes with exactly two non-edges.

Lemma 3.3 Let  be a 4-polytope with exactly two non-edges, and let 

F be a 3-dimensional facet of . Then we have    or .
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Proof. By assumption,  has at most two non-edges. Thus, in this case 

we have



  ≤  ≤ 

This implies that  ≤  ≤ . Namely, we have   equal to  or .  

                                                                       □

Corollary 3.4 Let  be a 4-polytope with exactly two non-edges. 

Assume that  is not simplicial. Then either there are exactly two 

bipyramids over a triangle as facets such that each bipyramid contains 

exactly one non-edge, or there are exactly two square pyramids as 

facets such that two apices are connected by an edge.

Proof. For the proof, it suffices to note that the only 3-dimensional 

polytope with five vertices is either a bipyramid over a triangle or a 

square pyramid.                                                       □

Now we ready to state and prove one of our main results, as follows.

Theorem 3.3 Let  be a 4-polytope with only two non-edges. Then we 

have the following inequalities:

    .

Proof. 1) Assume first that  is simplicial. Let  denote the number of 

all tetrahedral facets of . Then it is easy to obtain
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              .

Indeed, it follows from the identity

       (Theorem 2.2) and

    

that we have

       thus,     

Note that  ≥  and  ≥ 

Hence, we have

     

  
  

  

    


≤    


 

2) Assume next that  is not simplicial. Then, since  is assumed to 

have only two non-edges, exactly one of the following two cases holds:

(i) there are exactly two bi-pyramids as facets such that each 

bi-pyramid contains exactly one non-edge.

(ii) there are exactly two square pyramids as facets such that two 

apices ate connected by one edge.

For the case of (i),  is a 4-polytope with exactly two bi-pyramid 

facets and other remaining tetrahedral facets. Hence, we have

              

By the formula
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we have

           

Thus, 

      

Hence, it is easy to obtain

     

  
    

    

    

  
≤    

  

    


 

For the case of (ii),  is a -polytope with exactly two square pyramid 

facets and other remaining tetrahedral facets. Note also that we have

             

Thus,

           and so      

Therefore, it is easy to show

     

  
    

   

≤    

  
    


 

This completes the proof of Theorem 3.3.                             □

Finally, we deal with 4-polytopes with exactly three non-edges.
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Theorem 3.4 Let  be a 4-polytope with exactly three non-edges. 

Then we have

    .

For the proof, we first begin with the following lemma.

Lemma 3.7 Let  be a 4-polytope with exactly three non-edges, and 

let  be a 3-dimensional facet of . Then we have  , , or .

Proof. By assumption,  has at most three non-edges. Thus we should 

have



    ≤  ≤   

This implies that  ≤  ≤     That is,   , , or .         □

Corollary 3.8 Let  be a -polytope with exactly three non-edges. 

Assume that  is not simplicial. Then, one of the following statements 

holds;

(1) There is a 3-dimensional facet  with    and    such 

that  contains three non-edges. In this case, there are only two 

combinatorially different -polytopes  which are both simplicial, as in 

Figure 3.1.
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Figure 3.1.

(2) There are exactly three bi-pyramids over a triangle such that each 

bi-pyramid contains exactly one non-edge.

(3) There are exactly two square pyramids and one bi-pyramid over a 

triangle such that two apices of two square pyramids are connected by 

an edge and such that two squares of two square pyramids meet 

together (see Figure 3.2).  

Figure 3.2 
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Proof of Theorem 3.4. Let  be a -dimensional facet of . Then it 

follows from Lemma 3.7 that   , 5, or 6. The case (1) 

corresponds to the case that a non-tetrahedral facet  with   

exists, while two cases (2) and (3) correspond to those that three 

non-tetrahedral facets with    exist.

Let  denote the number of tetrahedral facets of , and let

           

as above.

Case (1):

              

Thus, 

      

            

∴      

Hence, we have

     

  
   

    

      

  
≤    

  

    


 

Case (2):
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              .

Thus,

             ie 

       ∴      

Hence, we have

     

  
    

    

     

  

≤    

  

    


 

Case (3):

              .

Thus,

      

     

        ie 

      

Hence, we have
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≤    

  
    


 

This completes the proof of Theorem 3.4.                             □ 
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