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I . Introduction and Main Results

For a d-dimensional polytope P, let f,=f,(P) denote the number of i—
dimensional faces of P. Then the f-vector of P is defined to be
(fo(P),f1(P),....fy  (P)),

and it satisfies the well-known Euler—Poincaré equation given by

d—1
Y1 (P) == (=1)).
i=0

In particular, the f-vector of 3-polytope P satisfies

fo(P)= £ (P)+ £, (P)=2.

Due to Steinitz, the characterization for the set F; of f-vectors of all
3-polytope is complete and well-known (see [11]). More precisely, an
integer vector (f,f,.f,) is the f-vector of a 3-polytope if and only if it
satisfies the following:

(D) fo—fi+[y=2.

(2) fy =2f,—4 and the equality holds only for simplicial 3-polytopes.

(3) fy =2f,—4 and the equality holds only for simple 3-polytopes.

Contrary to the complete characterization of 3—-polytopes, it is true that

our understanding of the set F, of the f-vectors of all 4-polytopes is

very Insufficient and incomplete. But the 2-dimensional coordinate

projections H@']»(IE‘ZL) of the set F, of 4-polytopes to the coordinate

planes are complete determined by Griinbaum, and Barnette and Reay in
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[2] and [6]. To be more precise, it follows from a result of Griinbaum
in [2] that the set of f-vector pairs (f,.f;) of 4-polytopes satisfies

5< fy < %fg(fg—?,), 5<fy < %fo(fo—?)).

Moreover, the set of f-vector pairs (f,.f,) of 4-polytopes satisfies

10 =2f, = f; g%fo(fo_l)

except for the cases of (6,12),(7,14),(8,17),(10,20). The case for the set
of f-vector pairs (fl,fQ) of 4-polytopes i1s more complicated but its

characterization is complete (see [2] for more details).

Another useful combinatorial invariant for convex polytopes, called the
flag vector, is a less well-known generalization of the concept of f
-vectors. That is, for S<{0, ...,d—1}, let f4=f4(P) denote the number
of chains

FCFc--CF_|,CF,

of faces of P with

{dimF} dimF, .. dimF }=S.
(P)

instead of fy, 1 (P) for any subset {ijiy...i;} of {0,1,2,..d—1}. For

For the sake of simplicity, from now on we use the notation f

tyly ... T,

instance, fy(P) will mean fy,,(P). The f-vector of P is then

(fo.f1. .. fa—1), and the flag vector of P is (fg)gcg...q1-

For any two subsets S, and S, of {0,1,2,...,d—1}, a pair (fSl(P),fSQ(P)), or

simply (fg.fy), of flag numbers of P will be called a flag vector pair.

_2_
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More generally, for any k, not necessarily mutually disjoint, subsets

S.,8,....8, of {0,1,2,...,d—1}, a k-tuple
o (Pfy (P o (P)
or simply (fsl,fsz,.,,,fsk), of flag numbers of P will be called a flag

vector k-tuple.

As in the f-vectors, let us denote by IIy ¢ o the projection of the flag
vector  (fg)sc (o, a1y oOnto its coordinates fq.,fg,...fg. We call
(fsl’fs;---’fsk> a polytopal flag vector k-tuple if (fsl,fsz,..,,fsk) belongs to

the image of the set of all flag vectors of d-dimensional polytopes

under the projection map HSI,S?...,Sk’ that is, if there is a d-polytope P

such that
(£ (P (Pl fs (PN = (oo gt

Our main concern of this thesis is 4-dimensional polytopes, and, in

particular, we want to answer the following important question:
Question 1.1 Is there a constant c¢, independently of 4-polytopes, so
that all 4-polytopes P satisfy inequality

f1( )+f2 <C<fo +f3 P))?

For this question, we first define the fatness function ¢, :F,—R given

by
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f1(P)+£,(P)

a )= T, )

of a 4-polytope P. Similarly, for 3-polytopes P we define the fatness

function ¢,(P) by

£ (P)

%)= o )

There are some known results for the values of the fatness function ¢,

or ¢,. For example, the 4-simplex has fatness 2, while the 4-cube and

56 7 ) .
the 4-cross polytope have fatness ﬂ=§. More generally, if P 1is

simple, then by using the Dehn-Sommerville relations
f2(P)= f1(P)+ f3(P)—= f,(P),
£1(P)=2£,(P)

we can obtain the formula for fatness, as follows.

_ﬂ@wmm_mwwmm<
AP +£(P) (P + £, (P)

¢, (P)

Since every 4-polytope and its dual have the same fatness, the same

upper bound holds for simplicial 4-polytopes.

On the other hand, it is known that the neighborly cubical 4-polytopes
defined by Joswig and Ziegler in [8] have f-vectors
(4,2n,3n—6,n—2) x 2" 2

Hence we can obtain the fatness
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which converges to 5 as n goes to co. In fact, by a result of Eppstein,
Kuperberg, and Ziegler in [5], it is known that there is convex 4

-polytope P whose ¢,(P) is greater than 5.048.

Our main aim of this thesis is to review and also prove the upper and

lower bounds for the fatness function ¢, as well as ¢;. More precisely,

we first review the proofs of the following results (Theorems 1.1 and

1,2) in [9].

Theorem 1.1 Let P be a convex 3-polytope with f,;(P)>6, Then we

have

1
§<¢3(P)<2.

Theorem 1.2 Let P be a convex 4-polytope with f,(P)>10. Then we

have the following inequalities:

4 () > (3f,+3+ \/13+4«/1+8f1)>1
T B -1 1E8S) '

As before, let P be a d-dimensional convex polytope. Then, in general,

f1 and f, satisfy the inequality

fo): folfo—1)

fo=

fo

So, if f, happens to be less than o then there should be at least one

pair of vertices v,v, of P whose does not form an edge. We call such
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a pair of vertices wv,v, a non-edge. In particular, any facet of 4

-polytope P which is not a simplex should contain at least one
non—-edge. This i1s because the only 3-polytope in which every two

vertices form an edge is the 3-simplex.

Next, we prove new upper and lower bounds for the fatness function

¢,, as follows.

Theorem 1.3 Let P be a convex 4-polytope with only two non-edges.
Then we have the following inequalities.

1< ¢,(P)<3.

Theorem 1.4 Let P be a 4-polytope with exactly three non-edges.
Then we have he following inequalities.

1< ¢,(P)<3.

This thesis is structured, as follows.

In Chapter II, we review some important facts and theorems necessary

for the proofs of our main results given in Chapter 3.

In Chapter IlI, we provide the proofs of Theorems 1.1, 1.2, 1.3, and 1.4.
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II. Preliminaries

In this chapter, we outline some of the important theorems needed to
prove the main results in the next three chapters, and setsup the

notation and definitions used later.

The convex hull of a set of finite points is a convex polytope and a
convex polyhedron P is an intersection of finitely many half-spaces in R™:
P={z€R": (,z)=>—a,i=1,..,m}
where ZZE(R”)*, dual space of R", are some linear functions and
¢,€R,i=1,..m. A (convex) polytope is a bounded convex polyhedron,
complete determined by [3] and [2, Chapter 1]. Let P be a convex d

-polytope, and let f(P) denote the f-vector of P defined by
FP)=(f,(P), f,(P), - f,_, (P)),

where f;(P) means the number of all i-dimensional faces of P. In other

words, the f-vector of a cellulation X, denoted f(P)=(fy,f; ...), counts

the number of cells in each dimension: f,(P) is the number of vertices,

fi (P) is the number of edges, and so on.
Next, we collect a few well-known facts for convex d-polytopes which
are necessary for the proofs of our main results given in Chapter 3.

First, we recall the following theorem of Sjoberg and Ziegler in [10].

Theorem 2.1 Flag vector pair (fy,f,;;) for 4-polytopes satisfies the
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following relation:

H0703(F4): {(f,(P), fo3(P)) EZXZ | P is a 4-polytopes}.

Note that Theorem 2.1 describes the number of possible vertex—facet

occurrences of a 4-polytope with a fixed number of vertices, which

. . /i
gives the average number of possible facets =% of the vertex plot for

fo

a given number of vertices f, (see the paper Sjoberg and Ziegler, [10]).

Theorem 2.2 (Generalized Dehn-Sommerville equation, [4, Theorem
2.11) Let P be a d-polytope, and let Sc<{0,1,2,---,d—1}. Let
{i,k}= SU{—1,d} such that i<k—1 and there is no jE8 such that

1 <j<k. Then, we have

S gy (P = £ P — (1)),

j=i+1

This theorem is a generalization of the well-known Euler's equation for

convex polytopes.

Theorem 2.3 (Bayer, [3, Theorem 1.3 and 1.4]). The flag vector of
every 4-polytope satisfies the inequalities

This theorem, in particular, plays important roles in the proofs of the
main results given in [9], among which [9, Theorem 1.5] is used in

Chapter 3.
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III. Proofs of Main Results

The purpose of Chapter III is to review and also give the proofs of our

main Theorems 1.1, 1.2, 1.3, and 1.4.
To do so, we start with the following theorem for convex 3-polytopes.

Theorem 3.1 Let P be a convex 3-polytope with f,(P)>6, The we

have

1
5<¢3(P)<2.

Proof. For the proof, note first that

f1=Ff,+f,—2 (Euler's equation),

%fo < f, < 3f,—6 (Steinitz),

[y =2fy—4, and f, <2f,—4 (or f, = %fo""Q)-

By using these facts above, we have
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3

f 2/
¢3(P>: : =
fotfe  fot)s
3 1
Efo B 3f B 5(6fo_8>+4
T 3f,—4 6f,—8  6f,—8
_1, 4
2 6f,—8
1 2 1
“ots, a2 9
On the other hand, we also have
f 3f,—6 6f, —12
¢3<P>:f+1f§ 3 _3})+4
072 fot5/fot2 0
_ 2(3fy+4)—20
T 3f,t4
20
=2— < 2. —
3f0+4 @
Therefore, by @ and @ we have
1
which was to be demonstrated. L]

If Pis a convex 4-polytope, recall that we have defined its fatness as

AP+ 5P

)= )

In case of simple 4-polytope P, we have

_10_
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fQ(P>:f1(P>+f3(P>_f0(P>a
J1(P)=2f,(P).
Thus, we have

CAPEAP) 3P+ £(P)
W) = BT AP P AP

On the other hand, it is known in the paper of Joswig and Ziegler that

there are convex 4-polytopes P, with f-vectors
f(P)=(4,2n,3n—6,n—2)2" %

Thus,

In fact, it turns out that there are convex 4-polytopes P with

¢,(P)>5.048 (see the paper by Eppstein, Kuperberg, and Ziegler in [5]).

Recall that our concern of this paper is to answer whether or not there
1s a constant C, independent of all convex 4-polytopes, such that any

convex 4-polytopes P satisfy the inequality

¢4(P>SC, Le., (f1( >+f2 <C(f() +f3 ))

Now, we provide the proof of a lower bound for ¢, given in [9], as

follows.

_11_
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Theorem 3.2 Let P be a convex 4-polytope with f,(P)>10 Then, we

have the following inequalities:

5 () > (3f,+3+ \/13+4«/1+8f1)>1
T B -1 1+8f)

Proof. Recall
fo—Ffi+fo—fs=1—(=1)"=0 (Euler's equation).

Thus, we have

f1(P)+£,(P)

“P) =5 B )

_ f1+<_f0+f1+f3>
fot /s

_ —fot2fi
Fotls

Since f,3 = 4f5, we have
—f0+2f1+f3 f0+2f1+f3
- >
fot s fo+ o

¢4(P>:

Now, recall that the flag vector pair (f,, fo3) = (f,(P), f3(P)) of

non-neighborly 4-polytope P satisfies the following inequalities [9,

Theorem 1.5]
foz = 4f; —2(1+ /1+8f,).
Thus,

fo"'%fo:z Sfo"'fl_%(l"' 1+8f1>-
- 12 -
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Note also that f; =2f, (refer to [6, Theorem. 10.4.2] or [10, Theorem.
2.2]). Hence

3

CYAREE

¢,(P) = 3 1 .
5f1—5(1+2 1+87,)

-

By [10, Theorem. 2.1] or [6, Theorem. 10.4.1] we have

fo = %fg(.fg_:;)-

That is,
I3 —3f3—2f, = 0.
Thus,
3+ 0787,
foz 5

It is also true as in [10, Theorem. 2.2] or [6, Theorem 10.4.2] that

£y = 3 holfo-1).

That is,
. 1+ /1+8f,
fo—fo—2f =0, ie., f, = —
Consequently, we have
3+ 1/9+8f,
5= 5
3+ 9+4+4,/1+8f,
- 2
34+ /13+4/1+8,
_ 5 .
- 13 -
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By @), we now have

1
(%f1+%+5\/13+4\/1+8f1)
>

94(P) = 3 1 1
Shm5 5 VIT8A
(3f, +3+ /13+4/1+8f,) )
= > ,
3f,—1— /1+8f,
which was to be demonstrated. L]
Remark:
(3x+3+ V13+4v1+8z)
, = 10.

fl@)= (B3x—1—V1+8z)

Then f is a decreasing function, and satisfies

1<f(x)§2, x > 10.
Let P be a convex d-polytope. As mentioned above, if there is a pair
of vertices of P which does not form an edge, then such an edge is

called a non—edge.

Let P be a convex 4-polytope with only one non—-edge. Then we have

1<¢,(P)<3 (see [9, Theorem 7.5]).

Next, we deal with 4-polytopes with exactly two non-edges.

Lemma 3.3 Let P be a 4-polytope with exactly two non—-edges, and let

F be a 3-dimensional facet of P. Then we have f,(F)=4 or 5.

_14_
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Proof. By assumption, F' has at most two non-edges. Thus, in this case

we have

(fo (F)

ez < 0 < 37,6

This implies that 4 < f,(F) <5. Namely, we have f,(F) equal to 4 or 5.

[

Corollary 3.4 Let P be a 4-polytope with exactly two non-edges.
Assume that P is not simplicial. Then either there are exactly two
bipyramids over a triangle as facets such that each bipyramid contains
exactly one non-edge, or there are exactly two square pyramids as

facets such that two apices are connected by an edge.

Proof. For the proof, it suffices to note that the only 3-dimensional
polytope with five vertices is either a bipyramid over a triangle or a

square pyramid. L]
Now we ready to state and prove one of our main results, as follows.
Theorem 3.3 Let P be a 4-polytope with only two non—edges. Then we

have the following inequalities:

1< ¢,(P)<3.

Proof. 1) Assume first that P is simplicial. Let t denote the number of

all tetrahedral facets of P. Then it is easy to obtain

_15_
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fg(P> = tan(P> = 2taf()3(P> :4taf1(P> :f()(P> +t.
Indeed, it follows from the identity

Ffoo(P) = —=2f,(P) + 2f,(P) + fo3(P) (Theorem 2.2) and
f02<P) = 3f2(P) = 6t

that we have

6t = —2f,(P) + 2f,(P) + 4t. thus, f,(P) = f,(P)+t.
Note that f,(P)>5 and t > 5.

Hence, we have

H(P)+ f,(P) fy(P)+ 3t

t=alP)= fo(P)+ f3(P) — fy(P)+1
2t 2t
= 1+W < 1+m < 3.

2) Assume next that P is not simplicial. Then, since P is assumed to

have only two non-edges, exactly one of the following two cases holds:

(i) there are exactly two bi-pyramids as facets such that each

bi-pyramid contains exactly one non—edge.

(i) there are exactly two square pyramids as facets such that two

apices ate connected by one edge.

For the case of (1), P is a 4-polytope with exactly two bi-pyramid
facets and other remaining tetrahedral facets. Hence, we have

fo(P)=t+2,f,(P)=2t+6, f,(P) = 4t + 10.

By the formula

_16_
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Joo(P) = =2f(P) + 2f,(P) + f5(P)
we have
Ffoa(P) =6t + 18 = —2f,(P) + 2f,(P) + 4t +10.
Thus,
f1(P) = f,(P) +t+4.
Hence, it is easy to obtain
At S fyt3t+10
fot/fs  fott+2

2 + 8 2t + 8
=1+ <1+
TR t+7

1< ¢,(P)

6
—3—m<3.

For the case of (ii), P is a 4-polytope with exactly two square pyramid
facets and other remaining tetrahedral facets. Note also that we have
f3(P) =t +2, f,(P) =2t + 4, f,(P) = 4t + 10.
Thus,
oo (P) =6t +12 = —=2f,(P) + 2f,(P) + fo3(P) and so f,(P) = f,(P) +t+1.
Therefore, it is easy to show

fit+ 71 foT3t+5

1< ¢,(P)= =
Z fot+fe  fott+2
2t + 3 11
< =3—- —
=1+ t+7 3 t+7 <3
This completes the proof of Theorem 3.3. L]

Finally, we deal with 4-polytopes with exactly three non-edges.

_17_
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Theorem 3.4 Let P be a 4-polytope with exactly three non-—edges.
Then we have
1<¢,(P)<3.

For the proof, we first begin with the following lemma.

Lemma 3.7 Let P be a 4-polytope with exactly three non-edges, and

let F be a 3-dimensional facet of P. Then we have f,(F)=4, 5, or 6.

Proof. By assumption, F has at most three non-edges. Thus we should

have
fo(F)
( 02 _3§f1(F)§3fo(F)_6-
This implies that 4 < f,(F) < 6.  That is, f,(F) =4, 5, or 6. ]

Corollary 3.8 Let P be a 4-polytope with exactly three non-edges.
Assume that P is not simplicial. Then, one of the following statements

holds;

(1) There is a 3-dimensional facet F with f,(F) =6 and f,(F) = 12 such

that F contains three non-edges. In this case, there are only two
combinatorially different 3-polytopes F which are both simplicial, as In

Figure 3.1.

_18_
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Figure 3.1.

(2) There are exactly three bi-pyramids over a triangle such that each

bi—-pyramid contains exactly one non—edge.

(3) There are exactly two square pyramids and one bi-pyramid over a
triangle such that two apices of two square pyramids are connected by
an edge and such that two squares of two square pyramids meet

together (see Figure 3.2).

Figure 3.2

_19_
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Proof of Theorem 3.4. Let F be a 3-dimensional facet of P. Then it
follows from Lemma 3.7 that f,(F)=4, 5 or 6. The case (1)

corresponds to the case that a non-tetrahedral facet F with f,(F) =6

exists, while two cases (2) and (3) correspond to those that three

non-tetrahedral facets with f,(F) =5 exist.

Let ¢t denote the number of tetrahedral facets of P, and let
Sy 1= fg(P>a fo = f2(-P>a fi1= f1(P)a fo = f()(-P>a

as above.

Case (1):
fo=t+1,f,=2t+4,f,=4+6.
Thus,
Joo= —2f0 T 2/1 t fos
32t +4) = fo, = —2f, +2f, + 4t +6,
Sy =fy 3
Hence, we have

Lt fe fot3tET
 fotfs  fotttl

1< ¢,(P)

246 _ . 2+6
fott+1 — " t+6

=1+

Case (2):

_20_
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fa=t+3.f,=20+9, foy =4t + 15.

Thus,
32t+9)=3f, = foo = —2f, +2f, +4t + 15, ie.,

20 = 2f, +2A+12 S f, = fy+t+6.

Hence, we have
+ +3t+ 15
L<opy = D 1
Jot [s Jott+3

2 + 12
=14 = "=
T3
2% + 12
t+8

<1+

4
=3———= <3

t+8

Case (3):
Famt+3,fy =2 +7, fo, = 4t +15.

Thus,
3t +7) =3f, = foo

= =2f,+2f1 + fus

= —2f,+2f, +4t + 15, i.e,
fi=f,Ht+8

Hence, we have

_21_
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fit+ /s fot3t+15

1< a(P) = fotfe  fott+3
2t + 12
=1 [
+ fott+3
2 + 12 4
<1+ =3—- —— < 3.
t+8 t+8

This completes the proof of Theorem 3.4.

_22_
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