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I . Introduction

A d-dimensional polytope (or simply d-polytope) P is the convex hull
of finitely many points in the Euclidean space R?. For a d-dimensional
polytope P, let f;=f,(P) denote the number of i—dimensional faces of

P for 0<i<d—1. Faces of dimension 0, 1, and d—1 are -called
vertices, edges, and facets, respectively. The f-vector f(P) of P is
defined to be

FP)=(fo(P).f1(P),.... f4-1 (P)).

In fact, we can generalize the concept of f-vectors in various ways.
For example, for S {0,1,2,....d—2} let fq=fs(P) denote the number of
chains

F CF,c--CF _,CF

of faces of P with

{dimF,, ...dimF,}=S.
For the sake of simplicity, we shall use the notation f;; ...kapik(P) instead
of f{ipizwiwik}(P) for any subset {ipiy...i;} of {0,1,2,..d—2,d—1}. For
example, fy,(P) will mean f,,,(P). The flag vector (or extended f
-vector) of P is defined to be

<fS)S§{O,1,,,,,d72,d71}'
Let P be the dual d-polytope of P. The f-vector of P* is given by

FP)=(fy i (P)s s 1(P), £ (P)).
Similarly, the flag vector component fS(P*) of P* is given by
fs(P) = f(P),

where T={d—1—s]|sES}.

We shall denote by F? the set of all f-vectors of d-dimensional

polytopes. Clearly F? will be a subset of Z% Let H@']»(Fd) denote the

_1_
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(3

projection of f-vectors of PEF? onto the coordinates f, and f;. Then
(n,m)EHM(Fd) is called a polytopal pair such that there is a d-polytope
P with f,(P) =n and fj(P) = m.

For the moment curve in R? defined by

a:R>RE > (4,42 -t L)
and for any n>d, the standard d-th cyclic polytope with n vertices,
denoted by C,(t;,ty ts-t,), is defined as the convex hull in R% of n
different points «a(t,), a(t,), -, a(t,_,),a(t,) on the moment curve a such
that ¢, <t, < - <t,. Cyclic polytopes C,;(n) are defined to be d
-polytopes which are combinatorially equivalent to the standard cyclic
polytopes (see [3] for more details). For (n,m)EHO7d,1(F’I), it is
well-known that these pairs satisfy the following upper bound theorem
saying

m < f,_(Cy(n), n<f,,(Cm)),
([4]1, [6] and [9, section 8.4]).

As in the case of the f-vectors of polytopes, for any two subsets S
and S, of {0, 1, ---,d—2,d—1}, a pair (fsl(P)’fSQ(P)) of flag numbers of P

1s called a flag vector pair. More generally, for any k subsets
51;52; "'aSkfp Sk of {Oa ]-a ad_2ad_1}’ a k_tuDle <fSI<P)’ ""fSk,1<‘P)’fSk<P))

of flag numbers of P is called a flag vector k—tuple.

One of the important problems Iin convex geometry is to completely

characterize the f-vectors or flag vectors of polytopes. This problem

has been solved completely only up to dimension 3. In particular, in [3]

Steinitz showed that the set of f-vectors of 3-polytopes is given by
{<f0,f0+f2_2af2)|4§f0 =2f,—4, 3=/, S2fo_4}-

In [1], Bayer and Billera showed that the flag numbers of 3-polytopes

satisfy the following restrictions
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Jo =Ffe = =21 =2/ t2f,—4 foa =4/,
Further, Griinbaum, Barnette, and Reay determined the 2-dimensional
coordinate projections HM(F“) of the set of f-vectors of 4-polytopes

(see [8] for more details).

Recently, in [8] Sjoberg and Ziegler has given a complete

characterization of the flag vector pair (f,, fy;) of any 4-dimensional

polytopes. To be precise, they proved the following result.

Theorem 1.1 [8, Theorem 2.5] There exists a 4-polytope P with
foP)=f, and fy3(P)=f, if and only if the following two conditions
hold:
(1) f, and fy; are integers satisfying
20 < 4f) < fo3 = 2f,(f,—3),

and fo; #2f,(f,—3)—k, kE{1,2,3,5,6,9,13}.
(2) (fo,fog) 1s not one of the following 18 exceptional pairs

(6,24), (6,25), (6,28),

(7,28), (7,30), (7,31), (7,33), (7,34), (7,37), (7,40),

(8,33), (8,34), (8,37), (8, 40)

(9,37), (9,40), (10,40), (10,43).

In [2], Kim an Park has proved some bounds for the flag vector pairs
(Forfoa)s Fomfos)s (Fisfos)s (fisfes) of any 4-dimensional polytopes. In
particular, they have shown some bounds for the fatness functions ¢,

and ¢, of 3-polytopes and 4-polytopes defined by

__h At
fotfl TH fot Sy
respectively. It turns out that for any 3-polytopes and 4-polytopes they

s

satisfy the following inequalities

3
ZS Py <2,

_3_
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and

N 2(3f,+3+ \/13+4«/1+8f1)>

7f,—3(1+ /1+8F,)

)
4 7 .
Recall that a convex polytope P is called neighborly (or 2-neighborly) if
any pair of vertices of P is connected by an edge, forming a complete
graph. So any non-neighborly polytope P should have at least one pair
of vertices of P which do not form an edge. We call such a pair of vert
ices a non-edge. In particular, any facet of a 4-polytope which is not a
simplex should contain at least one non-edge. This is because the only

3-polytope in which every two vertices form an edge is the 3-simplex.

In [2], Kim and Park also proved some inequalities for any
non-neighborly 4-polytopes and 4-polytopes with exactly one non-edge.
After the paper [2] of Kim and Park, in [7] Shin extended the results

of Kim and Park to any 4-polytopes with exactly two non-edges.

Following the papers of Sjoberg and Ziegler, Kim and Park, and Shin,
we consider a new fatness function 54 of 4-dimension polytopes P, as

follows.

Definition 1.1 The new fatness function ¢(P) of a 4-dimensional

polytope P is defined by the following relation:

_ nPene)
¢, (P) = RGETADE

Our main results of this thesis can be summarized as follows.

Theorem 1.2 Let P be a convex 4-polytope. Then the following

inequalities hold:
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1 -~ 7
§<¢4(P)<5.

Theorem 1.3 Let P be a convex non—neighborly 4-polytope. Then the
following inequality holds:

%< ,(P) < 3.

Theorem 1.4 Let be P a 4-polytope with a unique non-edge. Then the

following inequalities hold:

0< ¢,(P) <3.

Theorem 1.5 Let P be a 4-polytope with exactly two non—edges. Then

the following inequalities hold:

0< ¢,(P) <3.
The detailed proofs of the above results will be given in Chapter 3.
This thesis is organized as follows.

In Chapter 2, we first summarize some basic definitions, notation, and

useful facts necessary for later chapters.

In Chapter 3, we state and prove some new bounds for the fatness of
4-dimension polytopes for the cases of any 4-polytopes, non—neighborly
4-polytopes, and 4-polytopes with a unique non—edge or exactly two

non—edges.
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II. Preliminaries

This chapter reviews the important theorems needed to demonstrate our
main results given in Chapter 3. In addition, in this chapter we set up

some notation and definitions for later use.

The convex polytopes are the simplest kind of polytopes, and form the
basis for several different generalizations of the concept of polytopes.
As mentioned before, a convex polytope is the convex hull of a finite
set of points in d-dimensional affine Euclidean space RY (see [4,
Definition 1.1]). For example, 2-polytope are polygons, while

3-polytopes are polyhedra. More precisely, for i=1,2, ...,m let [

(3

describe a linear functional in R? and let ¢, &R. Then a convex

polyhedron P is an intersection of finitely many half-spaces in R? given
by
P= {$€Rd | dyxy=—a,1=1,2, ,,,,m—l,m}.

In this paper, we also need the notion of a non-edge for a given

polytope P. In order explain it, recall first that f,(P) is the number of
vertices, f,(P) is the number of edges, fy(P) is the number of faces
that make up the vertex, and fy;(P) is the number of facets that make

up the vertex. Then f,(P) and f,(P) satisfy the inequality

(P)
f(pP) < (f 02 .
P
If f,(P)< (fo; )) —1, then there must have at least one vertex pair of P

that does not form an edge. We shall call such a pair of vertices a

non-edge. Similarly, if fl(P)g(foém

two non-edges. Some simple examples which show the above properties

)—2, then there must be at least

can be seen in Figure 2.1.
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Non-edge

Figure 2.1. The picture on the left is one non—-edge (bipyramid) and The

picture on the left is two non—edge (square pyramid).

Next we review some previous results for some flag vector pairs of
4-polytopes which are needed in the proofs of our main results In
Chapter 3.

Theorem 2.1 [3, Theorem 10.4.1] The set of f—vector pairs (fy, f;) of

4-polytopes is equal to

Iy 5 (FY ={(fy. f5) E22|5<fo< —f3(f3=3), 5= f;3 < fo<fo—3>}-

Theorem 2.2 [3, Theorem 10.4.2] The set of f—vector pairs (f, f;) of
4-polytopes is equal to
H01 F4 {Qfo’f} EZQ | 10<2f0 <f1 = fo(fo_l)}
- {(6,12), (7,14), (8,17), (10,20)}.

Theorem 2.3 [8, Theorem 2.5] There exists a 4-polytope P with
foP)=f, and fy3(P)=f, if and only if the following two conditions

hold:
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(1) f, and f,; are integers satisfying
20 < 4fy < foy = 2o (f,—3),
and fy, = 2f,(f,—3)—k, kE1{1,2,3,5,6,9,13}
(2) (fo,fog) 1s not one of the following 18 exceptional pairs
(6,24), (6,25), (6,28),
(7,28), (7,30), (7,31), (7,33), (7,34), (7,37), (7,40),
(8,33), (8,34), (8,37), (8, 40)
(9,37), (9,40), (10,40), (10,43).

2.1 Flag vector pairs (fy, f,)

The following well-known Dehn-Sommerville equation holds.

Theorem 2.4 [1, Theorem 2.1] Let P be a d-polytope, and let S be a
subset of {0,1,..,d—1}. Let {i,k} be a subset of SU{—1,d} such that
i1 <k—1 and such that there does not exist an integer j&S with

i < j<k. Then the following equation holds.
k—1

Y T g (PY=fs(P)A— (1)),

j=i+1
The following lemma follows immediately from Theorem 2.4.

Lemma 2.5 The flag vector of a 4-polytope P satisfies the following
identity

2fo(P)=2f,(P)+ fo, (P) = fy3 (P) = 0.

Proof. For the proof, if we set S={0}, i=0, and k=4 in Theorem 2.4,

then it i1s easy to obtain the equality, as desired. L]

We also need the following result (see [2, Lemma 3.5]).
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Lemma 2.6 Let P be a 4-polytope with a unique non-edge and let ¢ be
the number of all tetrahedral facets of P. Then the following statements
hold:

(1) If the polytope P is not simplicial, then P is a polytope with one

bipyramid facet and remaining tetrahedral facets, and f,, satisfies
Sfoo =6t+9
(2) If the polytope P is simplicial, then f, satisfies
Jop =01

Proof. (1) The first statement follows immediately from the fact that
among all the 3-polytope with five vertices only the bipyramid over a
triangle contains a unique non—edge. Since in this case every
2-dimensional face of P is a triangle, it is easy to see that

4t+6
fr=—y =23, [y =3[, =6t+9

(2) On the other hand, if the polytope P is simplicial, clearly we have

fo=2t, and thus fy, satisfies f,, =6t. Hence we are done. O
2.2 Flag vector pairs (f,, fy)

In proving our main results given in Chapter 3, the following inequalities
in [2] play a crucial role. Here a 4-polytope P is called 2-simple if
each edge of the polytope P is contained in 3 facets of P, while a
polytope is called neighborly if any pair of vertices of P is connected
by an edge, forming a complete graph. More generally, a d-polytope P
is called h-simple if each (d—1—h)-face of P is contained in h+1
facets of P. Hence any d-polytope P is (d—1)-simple if each vertex
of P is contained in d facets of P, and any (d—1)-simple d-polytope
i1s called just a simple polytope.

Theorem 2.7 The flag vector pair (f}, fo3)=(f1(P), f3(P)) of a

Collection @ chosun



4-polytope P satisfies the following inequalities
fiH14+ J14+8f < fou < 5f,—3(1+/1+8f,)
where the lower (resp. upper) bound of f, can be achieved by

2-simple (resp. neighborly) 4-polytopes.
Proof. This theorem has been proved in [2, Theorem 6.1]. ]

Theorem 2.8 The flag vector pair (f}fe)=(f1(P),fo3(P)) of a non-
neighborly 4-polytope P satisfies the following inequality
fiH1+VIH8f < fos < Af,—2(1+ /1+8f,)

Proof. This theorem has been proved in [2, Theorem 6.2]. ]

Note that for any f, =10 which is always true for any 4-polytopes, we
have

4f, —2(1+ 1+8F,) < 5f, —3(1+ /1+8f,).
Therefore, for any non-neighborly 4-polytopes P (f, = 11) Theorem 2.8
gives better upper bound for f,; in terms of f, than those given in
Theorem 2.7

Finally, we give a definition of a new fatness function ¢(P) which is our
main concern of this thesis. For this, first note that by the well-known
Euler-Poincare equation, we have
fo(P)= f1(P)+ f,(P)— f3(P)=0.
Thus it i1s straightforward to find the ratio
[1(P)+ f5(P)
foP)+f,(P)”
which is exactly equal to 1. On the other hand, it is not clear how to
find the upper and lower bounds for other ratios such as
f1(P)+f,(P) [ (P)+ f4(P)
AR A IR R AT

_10_
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In [2] and [7], the authors considered the ratio @(P)ZM as
fo(P)+f3(P)

a fatness function for a given 4-polytope P, and gave some non-trivial

upper and lower bounds for the fatness function ¢, in certain cases.

f2(P)+ f4(P)

fo(P)+ f,(P)

However, the upper and lower bounds for the ratio seem

to be unknown so far.

In view of these contexts, in this thesis we define the ratio
f2(P)+ f5(P)
fo(P)+f,(P)

some non-trivial upper and lower bounds for &54.

as a new fatness function &54 for 4-polytopes, and give

For later use, we state the definition of our new fatness function ¢, for

4-polytopes, as follows.

Definition 2.9 The new fatness ¢,(P) of 4-dimensional polytopes P is
defined to be
f>(P)+ f4(P)

¢4(P>:m.

_11_
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III. Main results

In this chapter, we prove our main results for our new fatness of
4-dimensional polytopes for the —cases of any 4-polytopes,
non-neighborly 4-polytopes, 4-polytopes with a unique non-edge or

exactly two non—edges.

Theorem 3.1 Let P be a convex 4-polytope. Then the following
inequality holds:
1

Proof. For the proof, first note that by Euler—-Poincare equation we have
f2 :_fo+f1+f3-
Thus the fatness function qi satisfies

(3.1) Ge fotls _ Hitfs—fotls _ Lit2f— 1
' Yo foth fot /i fotfi

. 1 . .
Since f, =2f,, we have f, S;fl, Therefore, the preceding expression

. 3
is calculated to be f,+/f, = Efl. Hence,

R e LN L (AT
5.2 SR R VO PR T
271 271
On the other hand, it follows from [3, Theorem 10.4.1] or Theorems
2.1 and 2.2 that we have

f3—3fs—2f, =0 and fi—f,—2f, =0,

which implies

3+ /9+8 1+ /148
(3.3) fy = #fo and f, = %

_12_
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Therefore, f; satisfies

3+ /134+4/1+8f
(3.4) Sy = v 5 —
By combining (3.2) with (3.4), we can obtain
~ fiH6+213+4 /1487, 1 6+2/13+4/1+8F, 1
b= =+ > .
3/, 3 3/, 3

[

Theorem 3.2 Let P be a convex 4-polytope. Then the following
inequality holds:

CIEN

6,(P) <

Proof. For the proof, we can use (3.1).
(g: f2+f3: f1+2f3_f0
Yo fot fot/fi

By using (3.3), we can obtain

1+ 4/1+8f
- f1+2f3_f0 f1+2f3_f1
(3.5) o= <
Jfot /i 14+ /1+8f,
f—i— 1

By using the inequality fy; <5f, —3(1+ 4/1+8f,) from Theorem 2.7 with

1 . .
/3 < Zfog from Theorem 2.3 (1). it is easy to obtain

(3.6) fs < %(5f1—3(1+ 14+87,)).
By combining (3.5) with (3.6)
1+ ,/1+8
Ft 6, -s0 TR ) - — N
7= 1+ /148,
2 T
- 13 -
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(7f,—4)—4/1+8f,

_ £ =10,
(2f, +1)+ /1+8f, 4
Let g(xz) be a function given by
—44/1
ola)= (tr—4)—aVitse o

2r+1)+ V1+8x

Then ¢ is an increasing function and satisfies ¢(10)=1 and
7 . .
1<g(x)< 3= 3.5 (refer to Figure 3.1). To be more precise, we can

show that ¢ is an increasing function, as follows. To do so, it is easy
to see that ¢'(z) is given by
, A

g (@)= 2z +1+ v1+8z )

Here A is equal to

16 4
A= (T——= )20 +1+ V1+8z)—
( V1+8x \/1+8x

15+ 60
1524151 80— — 00 5, 1010602

V1 vV1+8x

This for any >0, we have g (x) > (0. That is, the function ¢ is indeed

———)(Tz—4—4+/1+8z)

an increasing function.

Figure 3.1

_14_
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Consequently, we have @(P)ﬁg(fl)<%. This completes the proof

Theorem 3.2. L]

Theorem 3.3 Let P be a convex 4-polytope. Then the following
inequalities hold:
1

—~ 7
3< ¢4(P)<5.

Proof. Combining Theorem 3.1 and Theorem 3.2 proves the result. L]

Theorem 3.4 Let P be a convex non—neighborly 4-polytope. Then the

following inequality holds:

]_ —_
S<alP) <3,
) ~ 1 . .
Proof. i) ¢4(P)>§2 The proof of Theorem 3.4 is identical to that of

Theorem 3.1
ii) ¢,(P)<3: The proof of Theorem 3.4 is very similar to that of
Theorem 3.2 with the inequality
fog = 4f,—2(1+ /1+8f,),
stated in Theorem 2.8. Calculate similarly to the Theorem 3.2. Then we

have

1+ /1487,

f1+%(4f1—2(1+ 1+8/,)) —

Oy= 2
1+ 118/,
2 th
(6f, —3)—3,/1+8f
=1 ., =10.

2f, +1)+ /1+8f,

Let h(z) be a function given by

_15_

Collection @ chosun



hz) = (62—3) 3\/1+8x
(2z+1)+ V1+8z

Then h is an increasing function and satisfies h(10)=1 and 1< h(z)<3

z > 10.

(refer to Figure 3.2). More precisely, let us show that h is an
increasing function. Note that h'(z) is given by

B
2z+1+ V1+8z)?

h(x)=

Here B is equal to

12 4
m}@x—i—l—i— \/1+8x)—(2+m)(6x—3—3\/1+8x)

_ 48r 12+48x
=122+12v/14+8x — =12z > 0.
V1 \/ + 8z

Thus for any z>0, we have A’ (x) > 0. Namely, the function h(z) is an

increasing function for any x> 0.

B= (6—

4u

30

Figure 3.2

Therefore, we have @(P)Sh(f1)<3. This completes the proof of
Theorem 3.4. []

Theorem 3.5 Let P be a 4-polytope with a unique non-edge. Then the
following inequalities hold:

_16_
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0< ¢,(P) < 3.

Proof. For the proof, we make use of the fact from Lemma 2.6 that if
P is not simplicial, then P should be a 4-polytope with only one
bipyramid facet and remaining tetrahedron facets. As before, let ¢
denote the number of all tetrahedral facets of P.
Assume first that P is not simplicial. Then we have
f(P)=1+t, f,(P)=2t+3, f,,(P)=5+4t.
Thus it follows from the relation
6t+9 = f (P)==2f,(P)+2f,(P)+ fy3(P)
=—2f,(P)+2f,(P)+5+4t
that we have
f1(P)= f,(P)+t+2.

Hence, since f, =5 and t=5 by Theorem 2.1, it is straightforward to

show that
~ v Sotfs o 243414t 3t+4
0<¢,(P)= Fot fi fo@Ff,P)r2+t  2f,(P)+t+2
S 2f et

Assume next that P is simplicial. Then, it is easy to obtain
fg(P):ta fQ(P):Qta fog(P):4ta f1(P):f0(P>+t-

Thus, since f, =5 and t =5, once again we have

~ f2 +f3 3t _6f0
0<¢,(P)= = =3+ < 3.
Z fot /i 2fy+t 2f,+t
This complete the proof of Theorem 3.5. L]

Theorem 3.6 Let P be a 4-polytope with two non-edge. Then the

following inequalities hold:

0< ¢,(P) <3.

_17_
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Proof. 1) Assume first that P is simplicial. Let ¢t denote the number of

all tetrahedral facets of P. Then it is easy to obtain
fs(P)=t, f,(P)=2t, fo,(P)=4t, f (P)=f,(P)+t.
Indeed, if follows from the identity
foo(P)==2f,(P)+2f,(P)+ fy,(P)
and f,(P)=3f,(P)=6t that we have 6t=—2f,(P)+2f,(P)+4t. Thus, we
have f,(P)=f,(P)+t. Note that f, =5 and t>5. Hence we have

~ _f2+f3_ 3t =6/,
R N R Vit R T

<3.

2) Assume next that P is not simplicial. Then, since P is assumed to

have only two non—-edge, we have two cases to consider:

D There are exactly two bipyramids as facets such that each bipyramid

contains exactly one non—edge.

@ There are exactly two square pyramids as facets such that two

apices are connected. by one edge.

In case of @O, P is a 4-polytope with exactly two bipyramid facets and
other remaining tetrahedral facets. Hence, we have
f3(P)=t+2, f,(P)=2t+6, fo;(P)=4t+10.
By the formula fy,(P)=—2f,(P)+2f,(P)+f,;(P), we have
foo(P)=3F,(p) =6t +18 =—2f,(P)+2f, (P)+4t + 10.
Thus f,(P)=f,(P)+t+4. Hence, it is easy to obtain

~ v fotfs  246+t+2
0<¢,(P)= Fot fi foP)+fo(P)+i+4
3t+8 —6f,—4

3.

= =3+ <
2fy(P)+t+4 2f, +t+4
In case of @, P is a 4-polytope with exactly two square pyramid facets

and other tetrahedral facets. Note also that we have
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f4(P)=t+2, f,(P)=2t+4, f,,(P)=4t+10,
foo(P)=6t+12=—2f,(P)+2f,(P)+4t+10, and also f,(P)=f,(P)+t+1.

Therefore, it is easy to show

~ v Sotfs 2t 4d44t+2
0<¢,(P)= For fr o fo(P) i1
3t+6 —6f,+3

= =3+ <3.
2fy(P)+t+1 2f, Ft+1

This completes the proof of Theorem 3.6.
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