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국문초록

4차원 다면체의 새로운 비만도에 관한 연구

고 희 청

지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

  

Sjöberg와 Ziegler는 2018년에 4차원 다면체의 플래그벡터 순서쌍 ( )의 

범위를 완벽하게 결정하는 연구결과를 발표하였다. 그 후, Kim과 Park은 2019

년에 4차원 다면체의 플래그벡터 순서쌍  ,  ,  ,  

의 새로운 범위를 증명하였다. 또한 Kim과 Park은 이 새로운 범위의 응용으로 

4차원 다면체의 비만도 라는 개념을 정의하고 의 범위를 각각 일반적인 4

차원 다면체, non-edge가 한 개인 4차원 다면체, 그리고 non-neighborly 조건

을 만족하는 4차원 다면체의 경우에 증명하였다. 이에 본 논문은 Kim과 Park 

그리고 Shin의 결과를 바탕으로 새로운 비만도 를  

 
으로 정의하고, 새

롭게 정의된 비만도 의 범위를 각각 일반적인 4차원 다면체, non-edge가 한 

개 또는 두 개인 4차원 다면체, 그리고 non-neighborly 조건에 만족하는 4차

원 다면체의 경우에 증명하였다.
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Ⅰ. Introduction

A -dimensional polytope (or simply -polytope)  is the convex hull 

of finitely many points in the Euclidean space . For a -dimensional 

polytope , let    denote the number of dimensional faces of 

 for  ≤  ≤ . Faces of dimension , , and  are called 

vertices, edges, and facets, respectively. The -vector  of  is 

defined to be

  … .

In fact, we can generalize the concept of -vectors in various ways. 

For example, for  ⊂ … let    denote the number of 

chains 

 ⊂  ⊂⋯⊂    ⊂ 

of faces of  with 

dim … dim .

For the sake of simplicity, we shall use the notation  …
 instead 

of …  
 for any subset … of … . For 

example,  will mean . The flag vector (or extended 

-vector) of  is defined to be

 ⊆  …   .

Let   be the dual -polytope of . The -vector of  ∗ is given by

     …  .

Similarly, the flag vector component   of  is given by

   ,

where     ∈.

We shall denote by   the set of all -vectors of -dimensional 

polytopes. Clearly   will be a subset of . Let 
 denote the 
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projection of -vectors of ∈  onto the coordinates  and . Then 

∈
 is called a polytopal pair such that there is a -polytope 

 with    and   .

For the moment curve in  defined by

   → ,   ↦   ⋯   

and for any    the standard -th cyclic polytope with  vertices, 

denoted by   ⋯, is defined as the convex hull in  of 

different points   ⋯    on the moment curve  such 

that     ⋯  . Cyclic polytopes  are defined to be 

-polytopes which are combinatorially equivalent to the standard cyclic 

polytopes (see [3] for more details). For ∈  , it is 

well-known that these pairs satisfy the following upper bound theorem 

saying

≤  ,  ≤  ,

([4], [6] and [9, section 8.4]). 

As in the case of the -vectors of polytopes, for any two subsets 

and  of   ⋯, a pair 
 

 of flag numbers of 

is called a flag vector pair. More generally, for any  subsets 

  ⋯    of   ⋯, a -tuple 
 … 

 


of flag numbers of  is called a flag vector -tuple.

One of the important problems in convex geometry is to completely 

characterize the -vectors or flag vectors of polytopes. This problem 

has been solved completely only up to dimension . In particular, in [3] 

Steinitz showed that the set of -vectors of -polytopes is given by

       ≤  ≤    ≤  ≤  .

In [1], Bayer and Billera showed that the flag numbers of -polytopes 

satisfy the following restrictions
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             

Further, Grünbaum, Barnette, and Reay determined the -dimensional 

coordinate projections 
 of the set of -vectors of -polytopes 

(see [8] for more details).

Recently, in [8] Sjöberg and Ziegler has given a complete 

characterization of the flag vector pair   of any 4-dimensional 

polytopes. To be precise, they proved the following result.

Theorem 1.1 [8, Theorem 2.5] There exists a 4-polytope  with 

   and    if and only if the following two conditions 

hold:

(1)  and  are integers satisfying

 ≤  ≤  ≤  ,

and  ≠ , ∈.

(2)  is not one of the following 18 exceptional pairs

      (6,24), (6,25), (6,28),

      (7,28), (7,30), (7,31), (7,33), (7,34), (7,37), (7,40),

      (8,33), (8,34), (8,37), (8, 40)

      (9,37), (9,40), (10,40), (10,43).

In [2], Kim an Park has proved some bounds for the flag vector pairs 

, , ,  of any 4-dimensional polytopes. In 

particular, they have shown some bounds for the fatness functions 

and  of -polytopes and -polytopes defined by

  


   

 
,

respectively. It turns out that for any -polytopes and -polytopes they 

satisfy the following inequalities




≤   ,
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and

 ≥
  

  
 


.  

Recall that a convex polytope  is called neighborly (or -neighborly) if

any pair of vertices of  is connected by an edge, forming a complete 

graph. So any non-neighborly polytope  should have at least one pair 

of vertices of  which do not form an edge. We call such a pair of vert

ices a non-edge. In particular, any facet of a 4-polytope which is not a 

simplex should contain at least one non-edge. This is because the only 

3-polytope in which every two vertices form an edge is the 3-simplex.

In [2], Kim and Park also proved some inequalities for any 

non-neighborly -polytopes and -polytopes with exactly one non-edge. 

After the paper [2] of Kim and Park, in [7] Shin extended the results 

of Kim and Park to any -polytopes with exactly two non-edges.

Following the papers of Sjöberg and Ziegler, Kim and Park, and Shin, 

we consider a new fatness function  of 4-dimension polytopes , as 

follows.

Definition 1.1 The new fatness function  of a 4-dimensional 

polytope  is defined by the following relation:

 


.

Our main results of this thesis can be summarized as follows.

Theorem 1.2 Let  be a convex 4-polytope. Then the following 

inequalities hold:
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


  


.

Theorem 1.3 Let  be a convex non-neighborly 4-polytope. Then the 

following inequality holds:




  .

Theorem 1.4 Let be  a 4-polytope with a unique non-edge. Then the 

following inequalities hold:

   .

Theorem 1.5 Let  be a 4-polytope with exactly two non-edges. Then 

the following inequalities hold:

   .

The detailed proofs of the above results will be given in Chapter 3.

This thesis is organized as follows.

In Chapter 2, we first summarize some basic definitions, notation, and 

useful facts necessary for later chapters.

In Chapter 3, we state and prove some new bounds for the fatness of 

4-dimension polytopes for the cases of any 4-polytopes, non-neighborly 

-polytopes, and -polytopes with a unique non-edge or exactly two 

non-edges.
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Ⅱ. Preliminaries

This chapter reviews the important theorems needed to demonstrate our 

main results given in Chapter 3. In addition, in this chapter we set up 

some notation and definitions for later use.

The convex polytopes are the simplest kind of polytopes, and form the 

basis for several different generalizations of the concept of polytopes. 

As mentioned before, a convex polytope is the convex hull of a finite 

set of points in -dimensional affine Euclidean space  (see [4, 

Definition 1.1]). For example, 2-polytope are polygons, while 

3-polytopes are polyhedra. More precisely, for     …  let 

describe a linear functional in  and let ∈. Then a convex 

polyhedron  is an intersection of finitely many half-spaces in  given 

by

  ∈ 〈 〉≥    …  .

In this paper, we also need the notion of a non-edge for a given 

polytope . In order explain it, recall first that  is the number of 

vertices,  is the number of edges,  is the number of faces 

that make up the vertex, and  is the number of facets that make 

up the vertex. Then  and  satisfy the inequality

 ≤ 

  .

If  ≤ 

  , then there must have at least one vertex pair of 

that does not form an edge. We shall call such a pair of vertices a 

non-edge. Similarly, if  ≤ 

  , then there must be at least 

two non-edges. Some simple examples which show the above properties 

can be seen in Figure 2.1.
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Figure 2.1. The picture on the left is one non-edge (bipyramid) and The 

picture on the left is two non-edge (square pyramid).

Next we review some previous results for some flag vector pairs of 

4-polytopes which are needed in the proofs of our main results in 

Chapter 3.

Theorem 2.1 [3, Theorem 10.4.1] The set of vector pairs   of 

4-polytopes is equal to

   ∈   ≤  ≤ 


   ≤  ≤ 


 .

Theorem 2.2 [3, Theorem 10.4.2] The set of vector pairs   of 

4-polytopes is equal to

   ∈∣ ≤  ≤  ≤ 


 

    - {(6,12), (7,14), (8,17), (10,20)}.

Theorem 2.3 [8, Theorem 2.5] There exists a 4-polytope P with 

   and    if and only if the following two conditions 

hold:
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(1)  and  are integers satisfying

 ≤  ≤  ≤  ,

and  ≠ , ∈

(2)  is not one of the following 18 exceptional pairs

      (6,24), (6,25), (6,28),

      (7,28), (7,30), (7,31), (7,33), (7,34), (7,37), (7,40),

      (8,33), (8,34), (8,37), (8, 40)

      (9,37), (9,40), (10,40), (10,43).

2.1 Flag vector pairs  

The following well-known Dehn-Sommerville equation holds.

Theorem 2.4 [1, Theorem 2.1] Let  be a d-polytope, and let  be a 

subset of …. Let  be a subset of ∪ such that 

   and such that there does not exist an integer ∈ with 

    . Then the following equation holds.


  

 

  ∪    .

The following lemma follows immediately from Theorem 2.4.

Lemma 2.5 The flag vector of a 4-polytope  satisfies the following 

identity

  .

Proof. For the proof, if we set   ,   , and    in Theorem 2.4, 

then it is easy to obtain the equality, as desired.                      □

We also need the following result (see [2, Lemma 3.5]).
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Lemma 2.6 Let  be a 4-polytope with a unique non-edge and let  be 

the number of all tetrahedral facets of . Then the following statements 

hold:

(1) If the polytope  is not simplicial, then  is a polytope with one 

bipyramid facet and remaining tetrahedral facets, and  satisfies

  

(2) If the polytope  is simplicial, then   satisfies

  

Proof. (1) The first statement follows immediately from the fact that 

among all the 3-polytope with five vertices only the bipyramid over a 

triangle contains a unique non-edge. Since in this case every 

2-dimensional face of  is a triangle, it is easy to see that 

 


 ,     

(2) On the other hand, if the polytope  is simplicial, clearly we have 

  , and thus  satisfies   . Hence we are done.             □  

                                            

2.2 Flag vector pairs  

In proving our main results given in Chapter 3, the following inequalities 

in [2] play a crucial role. Here a 4-polytope  is called 2-simple if 

each edge of the polytope  is contained in 3 facets of , while a 

polytope is called neighborly if any pair of vertices of  is connected 

by an edge, forming a complete graph. More generally, a -polytope 

is called -simple if each -face of  is contained in 

facets of . Hence any -polytope  is -simple if each vertex 

of  is contained in  facets of , and any -simple -polytope 

is called just a simple polytope.

Theorem 2.7 The flag vector pair      of a 
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4-polytope  satisfies the following inequalities

  ≤  ≤   

where the lower (resp. upper) bound of  can be achieved by 

2-simple (resp. neighborly) 4-polytopes.

Proof. This theorem has been proved in [2, Theorem 6.1].            □

Theorem 2.8 The flag vector pair     of a non- 

neighborly 4-polytope  satisfies the following inequality

  ≤  ≤   

Proof. This theorem has been proved in [2, Theorem 6.2].            □

Note that for any  ≥  which is always true for any 4-polytopes, we 

have

   ≤   .

Therefore, for any non-neighborly 4-polytopes  ( ≥ ) Theorem 2.8 

gives better upper bound for  in terms of  than those given in 

Theorem 2.7

Finally, we give a definition of a new fatness function  which is our 

main concern of this thesis. For this, first note that by the well-known 

Euler-Poincare equation, we have

  

Thus it is straightforward to find the ratio




,

which is exactly equal to . On the other hand, it is not clear how to 

find the upper and lower bounds for other ratios such as




and 


.
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In [2] and [7], the authors considered the ratio  


as 

a fatness function for a given -polytope , and gave some non-trivial 

upper and lower bounds for the fatness function  in certain cases. 

However, the upper and lower bounds for the ratio 


seem 

to be unknown so far. 

In view of these contexts, in this thesis we define the ratio 




as a new fatness function  for -polytopes, and give 

some non-trivial upper and lower bounds for .

For later use, we state the definition of our new fatness function  for 

-polytopes, as follows.

Definition 2.9 The new fatness  of 4-dimensional polytopes  is 

defined to be

 


.
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Ⅲ. Main results  

In this chapter, we prove our main results for our new fatness of 

4-dimensional polytopes for the cases of any 4-polytopes, 

non-neighborly -polytopes, -polytopes with a unique non-edge or 

exactly two non-edges.

Theorem 3.1 Let  be a convex 4-polytope. Then the following 

inequality holds:

  


.

Proof. For the proof, first note that by Euler-Poincare equation we have

   .

Thus the fatness function  satisfies

(3.1)               

 
 

   
 

  
.

Since  ≥ , we have  ≤ 


, Therefore, the preceding expression 

is calculated to be   ≤ 


. Hence, 

(3.2)          

  
≥






   














 



 
.

On the other hand, it follows from [3, Theorem 10.4.1] or Theorems 

2.1 and 2.2 that we have


   ≥  and 

   ≥ ,

which implies

(3.3)  ≥


and  ≥


.
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Therefore,  satisfies

(3.4)  ≥


.

By combining (3.2) with (3.4), we can obtain

≥

 
 





 


.

                                                                      □ 

Theorem 3.2 Let  be a convex 4-polytope. Then the following 

inequality holds:

  


.

Proof. For the proof, we can use (3.1). 

 

 
 

  
.

By using (3.3), we can obtain

(3.5)  

  
≤






  



.

By using the inequality  ≤    from Theorem 2.7 with 

 ≤ 


 from Theorem 2.3 (1). it is easy to obtain

(3.6)  ≤ 


  .

By combining (3.5) with (3.6)

≤






  


  


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                      

 
,  ≥ .

Let  be a function given by

                    


,  ≥ .

Then  is an increasing function and satisfies    and 

 ≤   


  (refer to Figure 3.1). To be more precise, we can 

show that  is an increasing function, as follows. To do so, it is easy 

to see that ′ is given by 

′  


. 

Here  is equal to

  


 


 

        


 


 .

This for any   , we have ′  . That is, the function  is indeed 

an increasing function.

Figure 3.1
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Consequently, we have  ≤   


. This completes the proof 

Theorem 3.2.                                                          □

Theorem 3.3 Let  be a convex 4-polytope. Then the following 

inequalities hold:




  


.

Proof. Combining Theorem 3.1 and Theorem 3.2 proves the result.    □

Theorem 3.4 Let  be a convex non-neighborly 4-polytope. Then the 

following inequality holds:




  .

Proof. ⅰ)   


: The proof of Theorem 3.4 is identical to that of 

Theorem 3.1

ⅱ)   : The proof of Theorem 3.4 is very similar to that of 

Theorem 3.2 with the inequality 

 ≤   ,

stated in Theorem 2.8. Calculate similarly to the Theorem 3.2. Then we 

have

≤






  


  



                      

 
,  ≥ .

Let  be a function given by
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                   


,  ≥ .

Then  is an increasing function and satisfies    and  ≤   

(refer to Figure 3.2). More precisely, let us show that  is an 

increasing function. Note that ′ is given by

′ 


.

Here  is equal to

  





 

        


 


 .

Thus for any   , we have ′  . Namely, the function  is an 

increasing function for any   .

Figure 3.2

Therefore, we have  ≤   . This completes the proof of 

Theorem 3.4.                                                          □

Theorem 3.5 Let  be a 4-polytope with a unique non-edge. Then the 

following inequalities hold:
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   .

Proof. For the proof, we make use of the fact from Lemma 2.6 that if 

 is not simplicial, then  should be a 4-polytope with only one 

bipyramid facet and remaining tetrahedron facets. As before, let 

denote the number of all tetrahedral facets of .

Assume first that  is not simplicial. Then we have

        .

Thus it follows from the relation

   

                       

that we have

  .

Hence, since  ≥  and  ≥  by Theorem 2.1, it is straightforward to 

show that

   

 







                             


 .

Assume next that  is simplicial. Then, it is easy to obtain

           .

Thus, since  ≥  and  ≥ , once again we have

   

 
 


  


 .

This complete the proof of Theorem 3.5.                              □

Theorem 3.6 Let  be a 4-polytope with two non-edge. Then the 

following inequalities hold:

   .
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Proof. 1) Assume first that  is simplicial. Let  denote the number of 

all tetrahedral facets of . Then it is easy to obtain

           .

Indeed, if follows from the identity 

 

and      that we have  . Thus, we 

have   . Note that  ≥  and  ≥ . Hence we have

   

 
 


  


 .

2) Assume next that  is not simplicial. Then, since  is assumed to 

have only two non-edge, we have two cases to consider:

① There are exactly two bipyramids as facets such that each bipyramid 

contains exactly one non-edge. 

② There are exactly two square pyramids as facets such that two 

apices are connected. by one edge.

In case of ①,  is a 4-polytope with exactly two bipyramid facets and 

other remaining tetrahedral facets. Hence, we have

        .

By the formula  , we have

     .

Thus   . Hence, it is easy to obtain

   

 




                          


  

 
 .

In case of ②,  is a 4-polytope with exactly two square pyramid facets 

and other tetrahedral facets. Note also that we have
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        ,

   , and also   .

Therefore, it is easy to show

   

 




                          


  

 
 .

This completes the proof of Theorem 3.6.                             □
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