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ABSTRACT

Reinforcement Learning-based User Association for
Cloud Radio Access Networks

Rehenuma Tasnim Rodoshi

Advisor: Prof. Wooyeol Choi, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

Cloud radio access network (C-RAN) is a promising architecture for the

5G mobile communication system that provides seamless connectivity to the

users while satisfying the ever-increasing user demand. In C-RAN, the base

station functionality is divided into baseband unit (BBU) and remote radio

head (RRH), then the BBUs from multiple sites are centralized and virtualized

using cloud computing and virtualization techniques. All the data processing and

controlling are performed inside the BBU pool and RRHs are responsible for

radio functionalities. According to the requirements of 5G, the short-range small

cell-based RRHs are densely deployed in an overlapping manner. The mobility

of users has a significant impact on their association with RRHs when a user

moves within the coverage of multiple RRHs. The traditional handover schemes

mostly rely on the signal strengths a user receives from an RRH which will cause

a large number of unnecessary and frequent handovers. So, it is necessary to

optimize handover control parameters before the handover occurs for a user and

re-associate the user to an RRH that reduces the unnecessary handovers in the

viii



network. This paper investigates the handover in C-RAN by carefully optimizing

the handover control parameter with fuzzy logic and selecting the target RRH

for handover with a reinforcement learning (RL) algorithm. A key ingredient

of the proposed RL-based scheme is to use an acceleration technique for faster

convergence of the algorithm. Our main goal is to re-associate users with an

RRH in a way such that the association after the handover remains as long as

possible while maintaining the quality of service (QoS) requirements of the users.

Numerical results show that the proposed scheme can significantly reduce the

number of handovers while ensuring the QoS requirements.
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한글요약

클라우드무선접속네트워크를위한강화학습기반사용자접속기술연구

레헤누마타스님로도시

지도교수:최우열

컴퓨터공학과

대학원,조선대학교

클라우드무선액세스네트워크(C-RAN)는끊임없이증가하는사용자수요를

충족시키면서 사용자에게 원활한 연결을 제공하는 5G 이동통신 시스템 아키

텍처이다. C-RAN에서 기지국 기능은 BBU(Base Band Unit)와 RRH(Remote

Radio Head)로 구분되며, 그 다음 여러 사이트의 BBU는 클라우드 컴퓨팅 및

가상화기술을사용하여중앙집중화되고가상화된다.모든데이터처리및제

어는 BBU pool 내에서 수행되며 RRH는 무선 송수신 기능을 담당한다. 5G의

요구사항에따라,단거리소형셀기반RRH가중복배치된다.사용자의이동성

은사용자가여러개의 RRH범위내에서이동할때 RRH와의연결에상당한영

향을 미친다. 기존의 핸드오버 방식은 대부분 사용자가 RRH로부터 수신하는

신호강도에의존하여,불필요하고빈번한핸드오버를유발한다.따라서사용

자가핸드오버를수행하기전에핸드오버제어매개변수를최적화하고,사용

자를 네트워크에서 불필요한 핸드오버를 줄이는 RRH에 다시 연결해야 한다.

본논문은 fuzzy logic을이용하여핸드오버제어매개변수를신중하게최적화

하고, 강화학습 알고리즘을 사용하여 핸드오버를 위한 대상 RRH를 선택하여

C-RAN에서의핸드오버를수행한다.제안된강화학습기반사용자선택방법

의핵심요소는알고리즘의빠른수렴을위해가속기술을활용한다.본연구의

주요목표는사용자의서비스품질(QoS)요구사항을유지하면서핸드오버후

x



연결성이 최대한 오래 유지되도록 사용자를 RRH와 다시 연결하는 것입니다.

다양한환경에서의시뮬레이션결과는제안된방법이 QoS요구사항을보장하

면서핸드오버횟수를크게줄일수있음을보여준다.
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I. INTRODUCTION

A. Overview

Due to the growing number of mobile and internet of things (IoT) devices,

one of the critical challenges facing by mobile communication network is that

of satisfying the increasing traffic demands such as high data rate and better

quality of service (QoS) with low latency [1]. Fifth-generation (5G) mobile

network is envisioned to provide a high data rate with massive connectivity

and mobility support exploiting the millimeter wave (mmWave) band for

communication. However, mmWave communication suffers from significant

sensitivity to blockage and a high penetration loss due to the short wavelength

[2]. In order to overcome these challenges in mmWave, small cell technology is

introduced in 5G which has a shorter coverage range. MmWave communication

can be provided within the range of small cells so as to avoid obstacles and reduce

signals to get easily blocked. 5G supports small cells of different coverage ranges

(microcell, picocell, femtocell) deployed in an overlapping manner that co-exists

with the existing LTE macro cell [3]. By increasing the number of small cells, a

higher data rate, and massive connectivity for the exponentially rising number of

devices can be provided.

One of the promising mobile network architectures that match the core

features of 5G for enhancing network capacity with seamless connectivity is

the cloud radio access network (C-RAN) [4]. The architecture of C-RAN for

5G communication scenario is given in Figure 1. In C-RAN, the base station is

divided into baseband unit (BBU) and remote radio head (RRH), and then the

BBUs from multiple sites are centralized and virtualized using cloud computing

and virtualization techniques [5]. The centralized and virtualized architecture of

1



C-RAN gives the advantages of adapting to dynamic traffic fluctuation achieving

load balancing, cost reduction, and interference minimization. In C-RAN, RRHs

are connected to the BBU pool through the fronthaul link. The inter-RRH

interference is mitigated by joint coordination through the centralized cooperative

processing in the BBU pool [6]. However, the number of users one RRH can

support at a certain time is restricted due to the limited fronthaul capacity.

Figure 1: The architecture of C-RAN with virtualized BBU pool and small cell-based
RRH for 5G communication
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B. Research objective

As expected in 5G, the RRHs of C-RAN are densely deployed in an overlapping

manner, and users are moving at different speeds. While the dense deployment

of RRHs enhances the data rate and connectivity, it will lead to more frequent

switching of user association from one RRH to another. This procedure of

switching user association between RRHs or re-association of users is known

as handover. User mobility has a significant impact on the number of handovers

because it may result in frequent handovers as users move from the coverage

of one RHH to another within a short time. In a certain location, a user can

be in the coverage of more than one RRH and it may receive a high signal

from multiple RRHs. Traditional cellular network handover policy is based

on the received signal strength which is not suitable for small cell-based C-

RAN in 5G. In that case, the user association may be changed frequently

causing unnecessary handovers in the network. Frequent handovers lead to

heavy signaling overhead, low energy efficiency, and reduced throughput in the

network. Along with the received signal, many other control parameters need

to be considered to develop an efficient handover mechanism. It is necessary to

execute the handover effectively so that the connection with the serving RRH

does not change frequently as well as during handover user gets connected to an

RRH for which the connection remains longer.

Various techniques have been proposed in the literature for effective handover

management and successful re-association of users to RRH. In this regard,

different parameters have been used to reduce the number of handovers in the

network. According to 3GPP [7], six handover events and two handover control

parameters have been defined. Considering different events, the handover control

3



parameters are adjusted to control the handover trigger condition. Along with

the received signal strength, considering distance, velocity, direction has shown

better performance for handover management. Furthermore, the association of

users with a suitable base station (RRH) has been optimized by considering

various parameters based on the objective of the studies.

Although handover control parameter optimization and suitable RRH

selection have been studied in the literature, it is necessary to integrate both

optimizations in a single study to maintain network efficiency. Moreover, the

parameter selection for optimizing the handover trigger condition is very crucial.

The parameters must reflect the objective of reducing the number of handovers

while maintaining the connection with the minimum data rate. Due to the

mobility of users, a user may lose the connection at the next time-stamp even

if the received signal is strong at the current time. So, the parameters have to

be chosen in a way so that the possible location at the next time can be known.

Furthermore, the candidate RRHs selection for association with a user during

handover has to be performed properly. The target RRH to which the user will

be connected is selected from the set of candidate RRHs. Rather than performing

a short-sighted RRH selection for user association, it has to be done in a way so

that the selected RRH maintains the connection for a longer duration in order to

reduce the overall number of handovers.

C. Contributions

In this study, we investigate the user re-association problem in C-RAN and

provide a solution to minimize the number of frequent handovers while

maintaining the QoS requirement of users. Our proposed scheme consists of two

4



parts. First, we determine the handover trigger condition and optimize a handover

control parameter called time-to-trigger (TTT). TTT is the duration for which the

connection between a user and RRH remains after the received signal strength

becomes less than a threshold value. In order to initiate a handover, along with

the received signal strength of the user, we have considered the velocity of user

and the distance between user and RRH. The handover triggering condition is

optimized using these parameters with the fuzzy logic process. Based on the

decision of fuzzy logic, when the condition is satisfied, an RRH is chosen for the

user for association. We have utilized an RL-based algorithm to select the RRH

in a way such that the connection will remain longer. In order to make the RL

algorithm converge faster, we have proposed a prediction-based virtual reward

creation and mapping of virtual reward with the actual reward. The novelty of

this work lies in optimizing both the handover triggering and RRH selection

during handover for re-association. Moreover, in order to accelerate the learning

of the RL algorithm for user association, we utilize a prediction-based virtual

reward updating. This acceleration technique helps in faster convergence with

performance improvement.

The contribution of this study can be summarized as follows:

• The user re-association with RRH is investigated with an objective to minimize

the number of frequent and unnecessary handovers in the network while

satisfying the QoS of users. In this regard, the handover triggering and RRH

selection for user association have been optimized.

• The handover triggering condition is optimized by adjusting the time-to-trigger

(TTT) values using fuzzy logic considering the received signal, distance,

and velocity of the user. This ensures that no early handover occurs in the

5



network while maintaining the connection. Also, the candidate RRH selection

is performed in a way to reduce the ping-pong handovers.

• After the handover trigger condition is met, an RL algorithm is used to choose

the target RRH for users, aiming to keep the user-RRH association for as

long as possible. The state space is constructed based on the user and RRH

information, the action is to select the RRH for association and the reward

function reflects the objective of our work.

• In order to accelerate the convergence of the RL algorithm, we have proposed a

prediction-based virtual reward creation along with the actual reward in certain

conditions. The exploration-exploitation strategy of RL is designed to take

advantage of the acceleration technique.

• To evaluate the performance of the proposed scheme, a simulation is done

for the C-RAN environment. We verify both the fuzzy logic-based handover

parameter optimization and RL-based RRH selection with acceleration

technique (FLRL ac). According to our evaluation results, the proposed

FLRL ac technique outperforms the conventional scheme in terms of the

number of handovers per user and average connection remaining time for the

user-RRH association

D. Thesis layout

The rest of the thesis is organized as follows:

In Chapter 2, the related works are reviewed and discussed along with the

limitation of the existing studies. Chapter 3 provides the system model of the

proposed scheme including the assumptions made in this study. In Chapter

6



4, the handover framework is given at first describing the optimization of

handover trigger condition with fuzzy logic. Then, the user association scheme

with RL-based RRH selection is described. The state, action, and reward of

the RL algorithm are defined and the prediction-based virtual reward creation

procedure is also discussed. In Chapter 5, the performance of the proposed

method is evaluated and compared with other user association schemes. Finally,

the conclusion is given in Chapter 6.

7



II. RELATED WORKS

While handover management and user association have been investigated widely

in literature, very few studies have optimized both handover control parameter

and user association simultaneously. Moreover, none of the related studies

considered solely the C-RAN architecture, although centralized controller or

software-defined networking (SDN)-based handover or user association has been

investigated in a few of the works. This section first discusses the related studies

on handover parameter optimization and user association schemes separately.

Then, the research gap in the literature and our main contributions for filling

up the gap are highlighted.

A. Handover parameter optimization

Due to the dense deployment of small cells in 5G, handover control parameter

optimization has become of great concern. Many researchers proposed different

methods for adjusting handover parameters to initiate handover with different

objectives such as minimizing handover failure ratio, handover delay, average

number of handovers, ping-pong handovers (user is handed over back and

forth from the serving RRH and the target RRH over a short period), and

frequent handovers. Most of the research works related to handover parameter

optimization are proposed based on LTE communication [8], [9]. These methods

are not suitable for 5G communication due to the integration of small cells in

5G. For the literature review, we discuss the handover parameter optimization

schemes based on 5G or centralized network architecture, which are more related

to the objective of our study.

In [10]–[12], handover management has been discussed and different types

of optimization techniques have been proposed with different objectives. The

8



parameters considered for handover management are also different based on the

objectives. A weighted fuzzy self-optimization scheme has been proposed in [10]

to optimize two handover control parameters: handover margin and TTT using

the value of SINR, the traffic load of serving, and target base station, and user

velocity. Their objective was to lower the rates of ping pong handovers, and radio

link failure.

Enhancing the work in [10], the authors in [11] proposed a distributed

velocity-aware algorithm to optimize the two handover control parameters

handover margin and TTT. The value of RSRP and user velocity is measured with

a threshold value to make the handover decision. The main performance metrics

considered were handover probability and ping pong handovers. Although these

studies optimized two handover control parameters, the target base station is

optimized only based on the traffic load. Other parameters such as distance and

direction between user-RRH are necessary to select the target base station so as

to determine the possible connection duration. A target base station with a low

traffic load can provide a high data rate at that time, but it does not provide any

view of how long the user will be connected. Moreover, the optimization does

not consider reducing frequent handovers or unnecessary handovers.

The authors in [12] proposed a fuzzy logic-based method to minimize ping

pong handovers and handover failure ratio in dense small cell networks. They

took into consideration user velocity, RSRP, and RSRQ to get a value of RSRP

as output for initiating the handover. However, the target base station selection is

not optimized in this work. Also, the proposed method does consider the amount

of time the user may stay under the serving or a target RRH.

9



B. User association for reducing handover

Several studies have been performed for associating a user to a base station or

RRH with an objective to reduce the number of handovers in the network. We

discuss the base station selection or user association schemes to reduce handover

proposed in the literature.

In [13], a user association strategy in the mmWave ultra-dense network has

been proposed to select the optimal base station that maximizes the user-BS

association duration. An offline double deep reinforcement learning has been

utilized to make the handover decision by mapping SNR values to the UE

trajectory. The main objective was to reduce the number of handovers considering

HO cost and increase the system throughput to mitigate the adverse QoS.

Considering only the SNR values for selecting the target base station does not

ensure the longest connection duration.

Some studies have been done to optimize handover with the help of

a centralized controller [14], [15]. The controller observes the user and

necessary measurements, thus select an optimal base station or time of handover

occurrence, similar to C-RAN. In [14], an optimal user association scheme

for uplink data transmission in C-RAN is proposed to reduce handover while

balancing load between base stations. The association solution is reusable,

which means the same association can be repeated if no changes occur in the

network topology. Although this study reduces the number of handovers while

performing load balancing, this does not ensure selecting the RRH with the

longest connection duration.

Fang et al. utilized a dynamic particle swarm optimization-based algorithm

in the central controller for handover management in [15]. Their main objective

10



was to optimize the overall quality of experience (QoE) of users and minimize

the proportion of users with extremely low QoE. Bilen et al. in [15] investigated

the handover management for SDN-based ultra-dense 5G network to reduce

handover delay. The mobile node mobility and available resource in base stations

are estimated using the Markov chain. Using the estimated values, the optimal

base stations are chosen and assigned to the mobile nodes virtually prior to the

need for an actual connection.

RL-based user association in 5G communication for reducing handover

has been proposed in [16], [17], which is more related to our proposed

mechanism. However, none of the works consider the specific properties of

C-RAN architecture. In [16], the handover trigger condition is determined by

considering the data rate of users using a threshold value. No other parameters

such as distance, velocity are used for optimizing handover trigger condition.

Moreover, the design of the RL algorithm is different in SMART than in our

work.

Similarly, the RL-based base station selection algorithm in [17] does not

optimize the handover trigger condition, although the optimization objective is

the same for target base station selection. An acceleration technique for faster

convergence of RL has also been proposed in this work. But the virtual reward

may not be accurate as the exact association duration cannot be known. So, a

prediction of the duration and providing a virtual reward based on the prediction

can be effective.

Unlike the above-mentioned techniques, we aim to reduce the number of

handovers while maintaining the QoS of users by optimizing both handover

trigger condition and target RRH selection for the user. The main goal is to

associate the user with an RRH in which the user will stay for a long duration
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while getting the minimum required data rate. None of the above-mentioned

works performed handover parameter optimization and target RRH selection

simultaneously. Also, the RL-based RRH selection algorithms are not proposed

for specifically C-RAN architecture, in which the BBU pool carries out the

user association algorithm. Moreover, along with the total number of handovers

per user as evaluation metrics in our study, the average user-RRH association

duration is also considered, which more directly reflects the quality of the

handover decision.
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III. SYSTEM MODEL

In this chapter, we discuss the assumptions, initial user association, propagation

model, and QoS model. The symbols and notations used in this study are given

in Table 1

We consider a C-RAN architecture consisting of m mmWave small RRHs

densely deployed in the network. RRHs are distributed in an overlapping manner

that increases the overall network capacity while minimizing out-of-service areas.

The set of RRHs can be denoted by M where M = {1,2, . . . ,m}. The dense

deployment of RRHs and mmWave communication links are the requirements

of 5G. There are total n users in the network that moves freely with a certain

probability. The set of users is N where N = {1,2, . . . ,n}. All the RRHs are

connected to the BBU pool by the fronthaul link. The BBU pool controls the

user-RRH association with the information received from users each time-stamp.

We consider a time period T , uniformly divided into time slots t, which can

be represented as T = 1,2, . . .T . Each User position changes at each time slot.

The location co-ordinates of a user can be represented by (xi,yi) for for i ∈ N.

The location of an RRH can be denoted by (x j,y j) for j ∈M.

Table 1: Symbols and notations

m Number of RRH

n Number of user

M Set of RRH

N Set of user

(xi,yi) Location of user i

(x j,y j) Location of RRH j

R RRH coverage range
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σi, j Association indicator of user i and RRH j

Di, j Distance between user i and RRH j

PL(D) path loss

α,β ,χ,o2 path loss co-efficients

δ
j

i SNR received by user i from RRH j

Pj Transmit power of RRH j

Ω Antenna gain

Pn Noise power

θ Angle of departure

U User capacity of RRH

τ
j

i Data rate of user i connected to RRH j

δth SNR threshold

t Per unit time

µ(z) Fuzzy membership function

∆T TTT value

Fq Fuzzy rule

q Number of rules

k Index of candidate RRH

Ak Set of candiate RRH

T Total time

S State space

A Action space

Θi, j Angle between user i and RRH j

ϒi, j Direction between user i and RRH j

xi, j Association features

st
j,xi, j

/ st State at time t
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at Action at time t

Xi, j Association feature set

rt Reward at time t

e Explored actions

p,q Lagrange data points

ρ Radius of expected region

Oe,h Overlapping region between circles Ce and Ch

Pi, j Proximity between user i and RRH j

Λi, j Directional displacement between user i and RRH j

rk
t,v Virtual reward at time t

A. Assumptions

Several assumptions are made for the CRAN and users. We carefully considered

the standard assumptions made in related works while making the assumptions.

The assumptions are given below:

1. Assumptions for RRHs

The transmission range of all the mmWave small RRHs are assumed to be the

same and the coverage area can be depicted by a circle with a radius R. The

mmWave RRHs are equipped with a directional antenna which is necessary to

provide beamforming for the mmWave system. However, the number of users an

RRH can support at a certain time is limited according to the capacity of that

RRH.
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2. Assumptions for the BBU controller

The BBU controller exists in the BBU pool which has all information about the

network. The network information is periodically updated based on the reporting

of the users through the associated RRHs. The location coordinates and coverage

region of all the RRHs are also known to the controller. The BBU controller runs

the algorithms for carrying out handover and association decision, which is then

sent to the RRHs.

3. Assumptions for user connection

Each user is assumed to be equipped with a single antenna device. It means one

user can be associated to only one RRH in the network at a particular time t. The

users move in the network using a modified random walk mobility model. The

user is assumed to be equipped with some location service (e.g. GPS) and when

a certain condition is met, the user reports its information to the serving RRH.

B. Initial user association

The association indicator between user and RRH can be denoted by σi, j which

represents whether user i is associated to RRH j or not

σi, j =

1 if user i is associated with RRH j; ∀ j ∈M

0 otherwise,
(1)

Initially, the users will be associated to an RRH based on proximity. To be

specific, a user will be associated to the RRH which is in the closest distance to

the user. The distance between user i and RRH j can be denoted by Di, j, which
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can be calculated using Euclidean distance formula as indicated below:

Di, j =

√
(xi− x j)

2 +(yi− y j)
2, (2)

When the user arrives in the network, it may get signal from multiple RRHs. So,

initially it is associated to the RRH which has the least distance with the user.

C. Propagation model

We assume that the channel of a mmWave RRH is based on the 3GPP standard

LOS model [17]. LOS model determines that a line-of-sight mmWave link exists

between the user and RRH. We have not considered the NLOS connection in the

dense mmWave network with overlapping RRH based on the explanation given

in [17]. According to [16], [18], the path loss model can be written as:

PL(D) = α +10β log10(D)+χ, χ ∼N (0,o2), (3)

where D is the distance between user and RRH measured in meters, α is the

floating intercept in dB, β is the linear slope over the measured distance, and

o2 is the log-normal shadowing variance. However, in mmWave band, inter-user

interference can be ignored for a specific user i [16], [17]. So, we can model the

signal-to-noise ratio (SNR) of the signal received by user i from RRH j as:

δi, j =
Pj×Ω×PL(D)−1

Pn
, (4)

where Pj is the transmit power of RRH j, Pn is the noise power, and Ω is the

antenna gain. According our assumptions, RRHs are equipped with directional
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antennas and users are equipped with omnidirectional antennas. So, the antenna

gain Ω is a function of the angle of departure θ from the RRH to the user [17],

that can be given as:

Ω(θ) =

Ωmax if|θ | ≤ θb

Ωmin otherwise,
(5)

where Ωmax is the antenna gain from main lobe, Ωmin is the antenna gain from the

side lobe, and θb is the width of the antenna main lobe. Beam tracking is assumed

to be perfectly used for maintaining the mmWave connection between user and

RRH [16]. Thus, the user can achieve a high antenna gain staying always in the

main lobe.

The number of users an RRH can serve in a single time period t is limited

to the capacity of that RRH. We assume that RRH j can serve U users

simultaneously. All the users associated to RRH j is allocated the bandwidth

resources evenly. So, according to Shannon capacity formula, the data rate

achieved by user i connected to RRH j can be calculated by:

τi, j =
BWj

U j
log2(1+δi, j), (6)

where BWj is the bandwidth of RRH j and U j is the number of users served by

RRH j.

D. QoS model

In order to maintain the QoS requirement of the user with the serving RRH, we

use two metrics: SNR threshold δth, and time-to-trigger (TTT) denoted by ∆T .

δth is the minimum SNR required to maintain the user-RRH connection. ∆T is
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the duration for which the user will maintain its connection while getting SNR

less than or equal to the threshold value. The user waits till ∆T becomes zero

before sending the measurement report to the serving RRH. It can be said that the

QoS requirement of user i is satisfied when the following condition holds

∃t ∈ [Tc,Tc′−∆T ],s.t. δi, j(t)> δth; ∀Tc,Tc′ ∈T , (7)

where Tc and Tc′ are the time of two consecutive handovers. t is the duration

for which the user gets SNR greater than the threshold value, reflecting the QoS

satisfaction of user.
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IV. PROPOSED HANDOVER

MINIMIZATION AND USER

ASSOCIATION SCHEME

In this chapter, we present the handover trigger condition and user-RRH

association for the proposed framework. We first describe the handover parameter

optimization method to trigger handover based on fuzzy logic. Then, we use an

RL-based scheme to choose the RRH for a user during handover, which is the

proposed user association scheme. According to 3GPP [7], six handover initiation

events are given for cellular networks. Our main goal is to perform handover to an

RRH, avoiding a short-sighted decision of choosing RRH with the highest SNR

based or proximity, so that the user-RRH connection remains for a long time, thus

reducing the total number of handovers.

A. Fuzzy logic-based handover parameter optimization

We implement a fuzzy logic-based method in this work for optimization of the

parameter for handover triggering. The proposed method is discussed in this

subsection.

1. Handover trigger condition

We consider the event A2 defined in 3GPP (Serving becomes worse than the

threshold) which means when the serving RRH SNR value becomes less than the

threshold SNR value. The trigger condition can be expressed as:

Serving SNR < threshold−HOM, (8)
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where HOM is a handover margin added for reducing ping-pong handover.

Optimizing the value for HOM is another interesting research issue, but it is out

of the scope of this paper. So we set it to be zero for simplicity.

In the traditional handover scheme, the handover event occurs when the

condition of equation 8 satisfies for a predefined amount of time called TTT.

Once the handover event is triggered, the user device monitors the received SNR

from the serving RRH. If the received SNR does not become higher than the

threshold SNR for the TTT amount of time, the user sends a measurement report

to the serving RRH. The frequency of measurement report sending by the user is

set by network operators [8]. The handover control parameter, TTT is necessary

for minimizing early handover and late handover. High values of TTT cause too

late handover, while low values of TTT lead to too early handover. So, TTT

should be adjusted in a way so that the connection continues without radio link

failure. In order to adjust the value of TTT, we apply fuzzy logic in this work.

TTT optimization reflects the objective of our work which is maintaining the

connection for as long as possible. In this part of our work, we try to maintain

the connection with the current serving RRH of the user for an optimized TTT

amount of time.

2. TTT optimization with Fuzzy Logic

Fuzzy logic is an inference method that maps a set of control inputs to a set

of control outputs through fuzzy rules [19]. The whole process consists of

three steps: fuzzification of all input values into membership functions, fuzzy

reasoning based on a set of rules, and defuzzification of the output functions. The

fuzzy inputs are associated with some linguistic variables. Using these linguistic
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variables for each of the inputs, the rules are generated. The inference engine

selects the best rule for updating the output parameter. The output determines a

conclusion for each of the rules.

The main goal of using fuzzy logic here is to adjust the value of TTT when the

SNR received by a user from its serving RRH becomes less than threshold SNR

δth. Although, most of the handover schemes considered performing handover

based on the received SNR it may lead to unnecessary and frequent handover

in a small RRH-based C-RAN scenario. The RRHs are placed in a way that

the coverage of some RRHs is overlapped with each other. So, a user can get

SNR from multiple RRH simultaneously. It may cause ping-pong handover if

the user is associated to an RRH only based on SNR. The user may get back to

the previous RRH if the serving SNR becomes low at the next time period. By

considering the distance of the user from its serving RRH and its velocity, we

can make an approximate decision about how long the user will be inside the

coverage of its serving RRH.

We fuzzify two inputs namely velocity vi and distance Di, j. Three linguistic

variables are assigned for each of the fuzzified inputs with triangular membership

functions. The triangular membership function µ(z) can be defined by a lower

bound a, upper bound b, and a value m, where a < m < b. Each element of input

x is mapped to a value between 0 and 1.

µ(z) =



0, z≤ a

z−a
m−a , a < x≤ m

b−z
b−m , m < x < b

0, z≥ b,

(9)
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The set of fuzzy rules contains all possible relationships among the two input

values and one output value. Since each of the inputs has three linguistic

variables, a total number of (32) = 9 rules are generated with all the combinations

of input variables. We keep the number of linguistic variables to three as the

number of linguistic variables determines the number of fuzzy rules. More fuzzy

rules result in more memory requirements as well as more computation time

while less number of fuzzy rules may cause inaccurate inference [20]. The output

of the fuzzy process is the TTT value denoted by ∆T . The fuzzy logic-based TTT

optimization scheme is illustrated in figure 2.

Figure 2: Fuzzy logic-based TTT optimization process

Figure 3 represents the linguistic variables of inputs with the corresponding

degree of membership function as given in equation 9. As seen in the figure,

velocity vi is divided into {slow, average, and fast} and distance Di, j is

categorized by {close, medium, and far}. We selected the core width and
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boundary regions of the membership functions with a trial and error approach.

It is necessary to choose the intersecting area of adjacent linguistic variables

properly as more intersection causes frequent activation of multiple rules. On

the other hand, less overlapping weakens the flexibility and smoothness [21]. The

Mamdani-type inference method [22] is used for mapping the inputs to the output

of the fuzzy system which is the value of TTT. For the TTT values, we use five

sets of triangular membership functions to achieve reasonable granularity in the

output: {very low, low, medium, high, and very high}. The fuzzy logic-based TTT

optimization procedure is given in Algorithm 1. Initially, ∆T is set to zero and user

mobility begins. When a user meets the handover trigger condition, which means

that the received SNR δi, j of user i from RRH j becomes less than or equal to

the predefined threshold SNR value δth, the fuzzy rule process is called. The TTT

value is updated using fuzzy rules. The TTT keeps decreasing till it becomes zero

and the user keeps moving in the network with the same connection. After the end

of TTT, if the received SNR condition remains, the handover event is initialized.

If the received SNR becomes greater than the threshold during the time of TTT,

the user is not considered for handover.

Figure 3: Membership functions of the inputs: Distance and Velocity and output: TTT
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Algorithm 1 TTT optimization with fuzzy logic

1: Initialize SNR threshold δth, fuzzy rules, and ∆T = 0;
2: for time t = 1,2, . . .T ∈T do
3: for user i connected to RRH j, ∀i do
4: if δi, j ≤ δth and ∆T = 0 then
5: Check vi and Di, j;
6: Update ∆T with fuzzy inference;
7: else if ∆T > 0 then
8: ∆T = ∆T −1;
9: if ∆T = 0 and δi, j ≤ δth then

10: Handover event occurs;
11: end if
12: if δi, j > δth then
13: ∆T = 0;
14: end if
15: end if
16: User moves with vi;
17: end for
18: end for

3. Candidate RRH selection

After the end of TTT, a suitable RRH is needed to be selected for the user. For user

i sending the measurement report to the BBU pool, the BBU controller selects

the candidate RRHs based on the SNR values user is receiving from the nearby

RRHs. So the target RRH will be selected from only those RRHs that are selected

as candidate RRHs. Let Ak be the set of available RRHs when user handover event

occurs for user i at time t,

Ak(t) = {k|δi,k(t)> δth,∀k ∈ Ak,Ak ⊆M}, (10)
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where k denotes the index of candidate RRHs. Our goal is to associate the user i

to an RRH from set Ak for which the user-RRH connection remains longer. When

the handover event occurs, the agent has to select one RRH from the candidate

RRH set Ak aiming to minimize the number of handovers.

B. RL-based User Association

The RRH selection framework for user re-association is described in this

subsection. When a user sends MR to the serving RRH after the end of TTT,

the BBU controller chooses the appropriate RRH for the user according to the

RL algorithm. The Figure 4 shows the flowchart of the fuzzy logic-based TTT

optimization and RL-based RRH selection procedure.

1. Proposed RL framework

We design our RRH selection mechanism as a reinforcement learning (RL)

framework. RL algorithms [23] involve an agent to learn by interacting with

the environment. The agent takes an action at ∈ A at each decision time t ∈ T

observing a state st ∈S , then moves to next state st+1 ∈S and receives a reward

rt as a feedback mechanism. The reward represents the objective of the problem

and the aim of the agent is to maximize the overall reward. We denote the policy

π(s) : S →A that maps states into actions. The goal of the agent is to learn the

optimal policy π∗ that maximizes the cumulative reward.

Most of the RL algorithms such as Q-learning [24] consider the reward at

each iteration as a discounted reward based on the next consecutive steps. This

is limited in our case as, during each handover event, future rewards do not have

any impact on the current action. In our algorithm, every state is independent of
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Figure 4: Flowchart of the proposed scheme

each other, and rewards received are only related to the executed action. So, the

agent learns the action that often yields the best reward. This algorithm is similar

to a contextual bandit framework [17]. Contextual bandits are a subset of RL

algorithms that are simpler: there is only one step before the outcome is observed.

The contextual bandit is an extension of the multi-armed bandit approach [25]

where we factor in the context or state information. Unlike multi-armed bandit,
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the state affects how a reward is associated with each action, so as states change,

the model should learn to adapt its action choice. The reward is conditional to

the state of the environment. To be specific, the reward is different for the same

action taken at different states. The algorithm observes a context (state), takes an

action from a number of available actions, and observes the outcome (reward) of

that action.

In our algorithm, the candidate RRHs k ∈ Ak(t) at each decision time t are the

available actions at any particular state. When a handover event triggers following

algorithm 1, the RL agent in the centralized BBU controller observes the state that

includes user-RRH association information and selects an RRH by exploration

or exploitation, and gets an immediate reward. Our main goal is to re-associate

the user to an RRH to which the user can maintain connectivity for a longer

time while satisfying the QoS requirements of the user. RL agent will learn the

association of a user to an RRH based on its velocity, direction, moving angle,

and distance from its associated RRH.

2. State construction

When a handover event triggers, the agent identifies the serving RRH and its

association features which constructs the state of the RL agent. The state-space S

contains four elements: serving RRH index, distance between user-RRH, angle

between user-RRH, and direction of user towards RRH. At any particular state st

at time t, the agent learns the user-RRH association information from which the

handover event is triggered. So, the elements of the state can be represented by

{ j,Di, j,Θi, j,ϒi, j}. Here, j is the serving RRH index, Di, j is the distance between

user i and RRH j, Θi, j is the angle between the user i with RRH j, and ϒi, j is the
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moving direction of i towards j.

If we combine the association features together, we can write it as xi, j such

that xi, j = (Di, j,Θi, j,ϒi, j) for any user i and RRH j. Here, x is the features of

association between user i and the RRH j. xi, j ∈ Xi, j denotes xth association

feature in the total feature set. We can define the state associated with RRH

j ∈ M for any handover event requested by user i at time t denoted by st
j,xi, j

For simplicity, we will use the notation of state at time t as st .

The elements of association features are continuous values. If we take all the

values for these parameters, the state space may become infinite and the agent

may never be able to learn the features. RL algorithms require the state space

to be discrete to operate in an environment. So, it is necessary to have discrete

values of the elements in the state space.

The distance Di, j between user and RRH is divided into five chunks such that

Di, j ∈ {1,2,3,4,5}. The smaller the values, the closer the distance between user

and RRH. Di, j = 1 means the user is in the closest distance with RRH and Di, j = 5

is in the furthest distance with RRH. The value of angle Θi, j in the association

feature of the user with the RRH is divided into eight categories, which can be

given as Θi, j ∈ {1,2,3,4,5,6,7,8} where −180◦ ≤Θi, j ≤ 180◦.

The direction ϒi, j of i towards j is parted into two groups namely inward

direction and outward direction. ϒi, j can be calculated from the difference

between the distance at time t and the distance at time t−1. At time t, the distance

between user i and RRH j can be denoted as Dt
i, j. Similarly, at time t − 1, the

distance is Dt−1
i, j . If Dt

i, j > Dt−1
i, j , it indicates that the distance of the user and RRH

is increased. In that case, it can be said that the user is moving in the outward

direction from the RRH. Similarly, Dt
i, j < Dt−1

i, j indicates that the user is moving

in the inward direction from the RRH as the distance at the current time is less
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than the distance at the previous time. DT
i, j = DT−1

i, j means that their is no change

in user movement or direction towards RRH.

3. Action

The RL agent chooses an RRH from the candidate RRH set Ak. We can denote

the action at time t as at ∈ Ak which is the selected RRH. The number of possible

actions in the state st at time t is the number of available RRHs k. The exploration-

exploitation policy for selecting an action is described later in Subsection 5. .

4. Reward

The reward function of the RL agent is designed to motivate the agent for taking

actions that would maximize the cumulative reward. Since the objective of our

work is to choose an RRH for a user which will maintain the association for the

longest time, we try to design the reward to reflect our objective. In this regard,

we define our reward function in state st for taking action at at time t as:

rt = T ′c −Tc, (11)

where Tc is the time when the handover occurs and the user connects to the target

RRH selected by action at and T ′c is the next handover time. Here, t represents

the iteration counter time as seconds. Tc and T ′c are assumed as the beginning and

ending counter of a handover. The time unit is the same, but we use Tc and T ′c

here for the convenience of representing the connection duration. So, the reward

contains the duration for which the user-RRH connection remains. Maximizing

the reward means the duration of connection is also maximized, thus minimizing

the total number of handovers. We do not get rt immediately after taking the
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action here because we cannot calculate this until the next handover occurs.

5. Exploration-Exploitation Strategy

So, when a handover event occurs at time t, the policy is to select the RRH k∗

from the candidate RRH set Ak(t) satisfying

k∗ = argmax
k

∑
t∈T

rt(k), (12)

Algorithm 2 shows the overall RL-based RRH selection procedure. The

algorithm is called when a handover event is triggered after the end of TTT.

As described earlier, the current time is recorded as Tc. The agent observes the

state st and checks all the available RRHs for re-association from the candidate

RRH set Ak. For the ε-greedy policy, a random variable is used to determine

exploration or exploitation. During exploration, the agent chooses a random

RRH from the candidate RRH set and the reward is calculated. When the next

handover event occurs, the time T ′c is recorded, and the total connection duration

is calculated, which is the reward agent receives for taking the particular action.

The exploitation procedure in this work is modified and divided into three parts

based on the exploration of a state and the number of actions explored in a state.

During the exploitation phase, a virtual reward is calculated to choose the

best action in two cases: the state was not explored before, and some actions of

the state are explored. When the agent gets in a state which was not explored

before such that st /∈S or the agent gets in a state for which only some actions

e ∈ Ak were explored, the virtual reward is calculated. It is calculated for all the

available actions k in a state st based on a future location prediction mechanism.

This mechanism is used for faster convergence of the algorithm which is called
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the acceleration technique in this work.

When the first condition satisfies such that the state st is a new state, the agent

takes the action which has the maximum virtual reward defined as rk
t,v. In the

second case, the agent calculates the virtual reward for all the available actions

similarly. Then, a bias value b is calculated using the actual reward and virtual

reward for the explored actions e ∈ Ak in state st . After that, for all the explored

actions, the new reward re′
t is calculated for the unexplored actions ∀e′ ∈ Ae′ ,

by multiplying the bias value with the virtual reward values. Then for all the

explored and unexplored actions, the action with the highest reward is selected

by the agent. Here, reward means both the actual reward for explored actions re
t

and the new calculated reward re′
t . Lastly, if all the available actions in a state st

are explored before, the agent selects the action with the maximum reward.
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Algorithm 2 RL-based RRH selection algorithm
1: Initialize ε , total simulation time T
2: while Handover event occurs according to Algorithm 1 do
3: Record the current time Tc ∈T
4: Observe the state st
5: Check all the available actions k where k ∈ Ak;Ak ⊆M
6: if Rand(0,1) < ε /**Exploration**/ then
7: Select a random action at ∈ Ak
8: Observe the reward rt according to Equation 11 when the next

handover occurs at T ′c ∈T
9: else /**Exploitation**/

10: if st /∈S then
11: Calculate the virtual reward rk

t,v, ∀k ∈ Ak

12: Select action at = argmaxk rk
t,v

13: else if Some actions e ∈ Ak are explored then
14: Calculate the virtual reward rk

t,v, ∀k ∈ Ak

15: Calculate bias b =
re
t

re
t,v
, ∀e ∈ Ak

16: Calculate the new reward re′
t = b ∗ re′

t,v, ∀e′ ∈ Ae′ where Ae′ =
Ak\{e},∀e

17: Select action at = argmaxe,e′(re
t ∪ re′

t ), ∀e,e′ ∈ Ak
18: else
19: Select action at = argmaxat (rt)
20: end if
21: end if
22: end while

6. Acceleration technique

In order to calculate the virtual reward, we use a prediction method with

Lagrange-based extrapolation using the past trajectory of the user. Then, we

utilize the approximated future location of the user to create an overlapping

region with the RRHs. The future overlapping region reflects how long the user

may stay under the coverage of a certain RRH. So, the agent updates the virtual
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reward for the corresponding state-action pair based on the overlapping region

values and other two parameters namely proximity and direction.

• Future location prediction

Lagrange polynomial is a useful method for producing an approximation for an

arbitrary function [26]. The location is calculated in a two-dimensional space

with respect to time. Using the past location coordinates of a user from few

consecutive time stamps, we utilize the extrapolation capability of the Lagrange

method to get the future location of the next timestamp. At time t, the location

of user i with respect to time can be denoted by (Xi,t ,Yi,t). We determine the

location co-ordinates of the user for n+ 1 number of data points for degree n,

where n = 1,2, . . . , t − 1. We can generate the X-axis and Y -axis value with

respect to time separately, and then determine the future location of a user

through the extrapolated values. The future location of user i at time t ′ for

degree n with X-axis value Xi,t ′ and Y -axis value Yi,t ′ can be calculated by the

following

Xi,t ′ =
n

∑
p=1

[
Xp

n

∏
q=1
q 6=p

t ′− tq
tp− tq

]
, (13)

and

Yi,t ′ =
n

∑
p=1

[
Yp

n

∏
q=1
q6=p

t ′− tq
tp− tq

]
, (14)

where p and q are the values of the data points in consecutive time stamps. t ′

is the time for which the future location of the user will be approximated. The
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future location of user i for the next time stamp t ′ can be denoted by (Xi,t ′,Yi,t ′).

• Overlapping region creation

From the predicted location (Xi,t ′,Yi,t ′), we have created an expected region

based on the velocity of the user. The expected region is a circle Ce which

includes all the possible locations the user can be in the few consecutive future

time stamps. The expected region circle Ce is created for user i centering

the future location (Xi,t ′,Yi,t ′) with radius ρ which can be calculated by the

predicted displacement of the user given as:

ρ =

√
(Xi,t ′−Xi,t)

2 +(Yi,t ′−Yi,t)
2, (15)

where t ′ is the future time stamp for when the location is approximated, and

t is the current time stamp. We calculate the overlapping region between the

expected region circle and the RRH coverage range circle. The overlapping

region between a user and an RRH determines how long the user may stay

under the coverage of that RRH.
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Figure 5: (a) Expected region creation with the predicted location (b) Overlapping region
between the expected region circle and RRH coverage circle

To get the overlapping region between two circles Ce and Ch denoted by Oe,h

such that Oe,h = Area(Ce)∩Area(Ch) , we need the radius of both circles and

the distance between the centre of two circles denoted by dc.

We can calculate the overlapping region Oe,h by the following equation

Oe,h =
ρ2(Φρ − sinΦρ)+R2(ΦR− sinΦR)

2
, (16)

where 0 ≤ Oe,h ≤ 1, and the values of Φρ and ΦR can be calculated by the

following formulas

Φρ = 2cos−1
(

d2
c +ρ2−R2

2ρdc

)
, (17)

and

ΦR = 2cos−1
(

d2
c +R2−ρ2

2Rdc

)
, (18)

where ρ is the radius of the expected region circle Ce and R is the radius of the
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RRH coverage range circle Ch. As Ce <Ch, it may occur that Ce is completely

inside Ch. In such case, the overlapping area will be equal to Area(Ce) which

can be calculated by

Area(Ce) = πρ
2, (19)

where ρ is the radius of circle Ce.

• Virtual reward calculation

Maximizing the overlapping region Oe,h between the expected region of user i

and coverage range of RRH j at time t is equivalent to maximizing the duration

of the user-RRH association. This overlapping region is used for calculating

the virtual reward rk
t,v for all the available actions k at time t when a certain

condition of exploitation occurs. Along with that, we include the proximity of

user i and RRH j, and the directional displacement of the user in the virtual

reward function. The proximity can be calculated by

Pi, j =
Di, j

R
, (20)

where Di, j is the distance between user i and RRH j, and R is the RRH coverage

range. This proximity determines how close user i is with the RRH j, which

means higher proximity indicates the user is closer to an RRH. The directional

displacement here is related to the direction ϒi, j calculated in the state space in

Subsection 2. . The directional displacement of user i towards RRH j can be

calculated by

Λi, j =
Dt−1

i, j −Dt
i, j

vi
, (21)

where vi is the velocity of user i. The positive value of Λi, j indicates that the
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user i is moving towards RRH j, and the negative value indicates the user

is moving in the outward direction. Maximizing the value of proximity and

moving direction along with the overlapping region ensures that the user has

more possibility to stay under that RRH for a longer time.

So, at every decision time t, the virtual reward for each candidate RRH can be

calculated by

rk
t,v =

−1 if Ot
e,h == 0, ∀k ∈ Ak

Ot
e,h +Pi, j +Λi, j otherwise.

(22)

This virtual reward is mapped with the actual reward to calculate a bias value

b. The bias is used to calculate the new reward for certain exploitation phases

as given in Algorithm 2.
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V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed fuzzy logic-based handover triggering

and RL-based user association scheme with acceleration technique (FLRL ac)

in various scenarios. Theoretically, the cumulative reward is the common metric

to evaluate an RL algorithm. However, in our case, the optimal RRH selection

decision is difficult to compute due to the large scale of the problem. Therefore,

in order to evaluate the performance of our proposed scheme, we compare it

with the traditional SNR-based handover (SBH) scheme. In addition to that, we

also verify the performance of FL-based TTT-optimization and the acceleration

technique of RL separately. In this regard, we implemented two schemes namely

RL ac without FL and FLRL without ac.

The SBH selects the RRH for user association based on the highest SNR.

We kept the handover trigger condition the same as that of our work. RL ac is the

RL-based RRH selection with acceleration technique without the fuzzy logic. The

TTT is not optimized in RL ac. In FLRL without ac, the acceleration technique is

not used for RL-based RRH selection. The fuzzy logic-based TTT optimization

is used here same as the FLRL ac.

A. Simulation Environment

We consider a C-RAN environment that covers a 1000(m) X 1000 (m) square

region and consists of a certain number of small RRHs randomly deployed. The

coverage range of all the RRHs is same and overlaps with other neighboring

RRHs, each represented by a circular area. The number of RRHs is set to 50 by

default. The transmit power of RRH is set to 30 dBm and the noise power is

-77 dBm. The parameters for path-loss calculation in Equation 3 are similar to

[18] corresponding to a carrier frequency of 28 GHz and LOS communication.
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The bandwidth allocated to RRH is set as 500 MHz. The users are randomly

distributed in the simulation area move in the network with a modified random

walk model. The default number of users and user velocity are 200 and 6(m/s).

The simulation parameters used in this work are summarized in Table 2.

Table 2: Simulation parameters

Parameters Values

Size of network area (1000 X 1000) m
RRH transmit power 30 dBm
Noise power - 77 dBm
Bandwidth 500 MHz
Parameters for path loss α = 61.4, β = 2
RRH coverage range 150 m
Number of RRH 50 (default)
Number of user 200 (default)
User capacity of RRH 10
Number of iterations 10000
Epsilon (ε) [1, 0.1, 0.99]

The layout of the network is depicted in Figure 6 with 40 RRHs and 200 users.

The black lines indicate the coverage range of each RRH and red circles represent

the users in the network. The straight blue lines indicate the walking path of the

user. We have assumed that the user can move only through the straight lines with

a modified random walk.
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Figure 6: The layout of the network with 40 RRHs and 200 users

B. Numerical Results and Discussions

The performance of our proposed scheme is evaluated by varying different

parameters. This subsection discusses the evaluation results with different

parameters in terms of the number of handovers per user and average reward

by comparing with different schemes. Average reward represents the average

connection remaining time for the user-RRH association. As our objective is to

maintain the connection duration longer and reduce the number of handovers

while maintaining QoS, these two metrics can reflect the performance of our

proposed scheme over the compared schemes.
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1. Convergence evaluation

We start by analyzing the convergence of FLRL ac with only FLRL without

acceleration technique. The main reason is to show the benefit of using the

proposed acceleration technique. To do so, we show the total number of

handovers and average reward with the increasing number of episodes. We kept

the default network parameters and run the two schemes for 100,000 iterations

for the simulation.

Figure 7 shows the converge of the RL algorithms with the total number

of handovers per 10,000 episodes. It can be observed that both algorithms

reach convergence by 50,000 episodes. Although both of them converged, the

performance of the FLRL ac in terms of the total number of handovers per user

is better than that of FLRL without ac.

Figure 7: Performances on convergence of the RL algorithm with number of handovers

The performance comparison on the convergence of the RL algorithm in

terms of the average reward is shown in Figure 7. The average reward is the

average duration of the user-RRH association. It can be seen from the figure that
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FLRL ac outperformed FLRL without ac in terms of average reward.

Figure 8: Performances on convergence of the RL algorithm with average reward

2. Varying density of RRHs

We choose eight values for the number of RRH: 30, 40, 50, 60, 70, 80, 90, and 100

and run 10000 iterations (time unit) for each instance. We examine the number

of handovers per user while keeping the number of users and user velocity as

default. The results are shown in Figure 9.
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Figure 9: Performance on the number of handovers with varying number of RRHs

From the figure, it can be seen that the number of handovers for FLRL ac is

significantly smaller than that of the FLRL without ac, RL ac without FL, and

SBH. The benefit of using both the Fuzzy logic-based TTT optimization and

acceleration technique can be realized from this result. The number of handovers

is the lowest when the number of RRH is 50 and it increases slightly when the

density becomes higher than 50 to 90 in our C-RAN environment. The density

of RRH has an impact on the number of handovers, because in the same region

when a certain number of RRHs are deployed, the RL agent has more options to

choose the best RRH to reduce the overall number of handovers.

We keep the RRH density and other parameters the same and compare the

average user-RRH association duration of our proposed scheme. The result is

shown in Figure 10.
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Figure 10: Performance on the average user-RRH association duration with varying
number of RRHs

It can be found that FLRL ac outperforms all the other compared schemes

in terms of average user-RRH association duration. When the number of RRHs

increases from 30 to 50, the duration increases and it again decreases with

increasing the number of RRHs. This is because, when there are 30 RRHs, the

user moves under the coverage of less number of RRHs and the agent may select

an RRH for that user may not stay longer. Again, the duration starts decreasing

for more than 50 RRHs due to the exploration period of the agent, when the agent

chooses different RRHs and learns the reward. The candidate RRH set becomes

larger and the agent takes a longer time to converge to the best action.

3. Varying number of users

We vary the number of users in our C-RAN environment to verify the

performance of our algorithm in terms of the number of handovers and average

user-RRH association duration. We vary the number of users to 100, 150, 200,

250, 300, 350, and 400 in the default network setting.
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Figure 11: Performance on the number of handovers with varying number of users

The performance on the number of handovers is given in Figure 11. It can

be observed that FLRL ac outperformed other algorithms in terms of the number

of handovers per user with varying number of users. Although the number of

handovers for RL ac without FL was lower than that of FLRL without ac in the

beginning, when the number of users increases to 350, the number of handovers

slightly increases.
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Figure 12: Performance on the average user-RRH association duration with varying
number of users

The performance of the average user-RRH association is displayed in

Figure 12. FLRL ac outperforms all the other compared schemes and the average

duration is the highest in the default settings when the number of user is 200. The

performance decreases slightly with increasing the number of users to more than

200 in the network. The performance of FLRL and RL ac is almost similar with

varying number of users.

4. Varying user velocity

The velocity of the user has a significant impact on the performance of the

proposed method. The handover control parameter directly depends on the

velocity of the user. So, we investigate the performance of the proposed scheme

with different velocities of users.
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Figure 13: Performance on the number of handovers with varying user velocity

The result of the number of handovers per user is shown in Figure 13.

FLRL ac performs better than the other compared schemes in terms of the

number of handovers per user. The number of handovers for RL ac without

FL was less than that of FLRL without ac at the beginning. When the velocity

increases, the number of handovers increases for RL ac because it does not

directly consider the user velocity. Since handover triggering is performed with

FL based on user-RRH distance and user velocity, the TTT is optimized for both

FLRL ac and RL ac with the increasing velocity.
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Figure 14: Performance on the average user-RRH association duration with varying user
velocity

Figure 14 shows the average user-RRH association duration with varying

user velocity. It can be observed that the association duration decreases with

increasing user velocity. As the velocity increases, the user moves away from the

coverage region of an RRH very quickly. Also, the received SNR becomes low

very fast. So, the handover condition triggers and target RRH is selected by the

RL agent when all the conditions are satisfied. It can be observed that FLRL ac

outperforms all the other schemes because of TTT optimization and acceleration

techniques.
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VI. CONCLUSION

In this paper, we have studied the user re-association problem in small-RRH

based C-RAN for reducing the number of handovers while maintaining the

QoS requirements of users. In order to decrease frequent handovers, we have

optimized the handover trigger condition as well as RRH selection for the

users. At first, we have implemented a fuzzy logic-based solution for adjusting

the amount of time to maintain a connection with the serving RRH after a

certain threshold is met. When the handover event is triggered, an RL-based

algorithm is proposed for selecting an RRH such that the connection stays

longer. For faster convergence of the RL algorithm, an acceleration technique

is proposed based on the prediction of users’ future location. We have solved

the exploration-exploitation trade-off in RL by providing a virtual reward in

each RRH selection period. A mapping between the virtual reward and actual

reward is performed to take the RRH selection decision in uncertainty. It has

been shown that incorporating the virtual reward leads to faster convergence of

the RL algorithm. In the future, we plan to extend this work by incorporating

the load balancing between RRHs along with reducing the number of handovers

while maintaining user demand. Moreover, we will extend the network scenario

for user re-association in the heterogeneous C-RAN by including macro RRH.
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