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ABSTRACT

A Study on Deep Reinforcement Learning for Energy Conservation
in IoT Tracking Applications

Salman Md Sultan

Advisor: Prof. Jae-Young Pyun

Dept. Information and Communication

Engineering

Graduate School of Chosun University

The Internet of Things (IoT) based target tracking system is required for

applications such as smart farm, smart factory and smart city where many

sensor devices are jointly connected to collect the moving target positions.

Each sensor device continuously runs on battery-operated power, consuming

energy while perceiving target information in a particular environment. To reduce

sensor device energy consumption in real-time IoT tracking applications, many

traditional methods such as clustering, information-driven, and other approaches

have previously been utilized to select the best sensor. However, applying

machine learning methods, particularly deep reinforcement learning (Deep RL),

to address the problem of sensor selection in tracking applications is quite

demanding because of the limited sensor node battery lifetime. In this study,

the proposed system utilized a long short-term memory deep Q-network (DQN)

based Deep RL target tracking model to overcome the problem of energy

consumption in IoT target applications. The simulation results show favorable

features in terms of the best sensor selection and energy consumption.
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한글요약

IoT트래킹응용에서에너지절약을위한강화학습에관한연구

술탄살만엠디

지도교수:변재영

정보통신공학과

조선대학교대학원

사물 인터넷 (IoT) 기반 표적 추적 시스템은 움직이는 표적 위치를 수집하기

위해많은센서디바이스가공동으로연결된스마트팜,스마트팩토리,스마트

시티와 같은 애플리케이션에서 필요하다. 각 센서 디바이스는 배터리로 작동

하되지속적으로실행되며,디바이스가위치한환경에서목표정보를인식하는

과정으로에너지를소비한다.기존의실시간 IoT추적애플리케이션에서는센

서디바이스의에너지소비를줄이기위해클러스터링,정보기반및기타접근

방식과같은많은방법을사용하여최상의센서디바이스를선택했다.그러나

추적애플래케이션에서센서선택문제를해결하기위해기계학습방법,특히

심층 강화 학습 (Deep RL)을 적용하는 것은 센서 노드의 배터리 수명 제한으

로매우까다롭다.본연구에서제안된시스템은 IoT타켓애플리케이션에서는

에너지소비문제를극복하기위해 Deep Q-Network기반심층강화학습모델

을활용하였다.시뮬레이션결과는최상의센서선택및에너지소비측면에서

유리한기능을보여주고있다.

vi



I. INTRODUCTION

In a 5G sensor network, a massive amount of data is handled via sensor devices

in a large area. International Data Corporation (IDC) research states that 70% of

companies will drive to use 1.2 billion devices for the connectivity management

solution by 5G services worldwide [1]. The Internet of Things (IoT) is the

future of massive connectivity under 5G sensor networks. Currently, the IoT is

performing a vital role in collecting a large amount of data via numerous sensors

in real-time applications [2]. Kevin Ashton initially coined the IoT concept in

1999 [1], [3]. Sensor-based IoT devices can provide various types of services,

such as health, traffic congestion control, robotics, and data analysis, which play

a significant role in daily life assistance [4], [5]. Target tracking is another critical

area where the sensors can be utilized to collect the target real-time position

and report it to a server with its relevant information. The practice of tracking

one or multiple targets has vast applications in different research areas, such as

detecting gas leakage, border monitoring to prevent illegal crossing, or battlefield

surveillance.

A. Motivation

In target-tracking scenarios, tracking single or multiple targets can be realized

using one or more sensors. However, it is impractical to utilize a single sensor

for collecting the target position information owing to an extended area and will

take increased time with high energy consumption. Therefore, it is pertinent to

use multiple sensors, particularly in tracking applications. Energy consumption

in sensor applications is a key task because of the sensor battery lifetime [6], [7].

With these issues, it is essential to efficiently reduce energy consumption

because energy conservation leads to an increased battery lifespan. There are

various energy consumption reduction methods used in recent years (e.g.,
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information-driven clustering and support vector machine approaches) [8], [9].

However, these methods require substantial time, computational complexity, and

resources for large-scale practical application.

Reinforcement learning (RL) is a machine-learning subfield that solves

a problem without any predefined model. The use of RL comprises two

main elements: action and reward. In any dynamic environment, a precisely

selected action will provide the best reward. The RL system is exceptionally

effective with minimal resources by offering a better solution in real-time

decision-based applications. Thus, providing the best outcome, based on current

observations after acquiring a good reward in a real-time environment [10]. Deep

reinforcement learning (Deep RL) is an extended version of the conventional

RL algorithm (i.e., tabular Q-learning). Deep RL is embedded with a deep neural

network as a Q-approximator, which can reduce the overall system computational

complexity and energy consumption [11]. Moreover, the dense and long short-

term memory (LSTM)-based Q-approximators are frequently utilized to increase

energy efficiency in time-series environments [12], [13]. Note that the LSTM

Q-approximator is more suitable than the dense Q-approximator because of long-

term dependencies in a real-time environment [14]

B. Contributions

In this study, a novel Deep RL method based on LSTM deep Q-network (LSTM-

DQN) was introduced to solve the energy constraints of IoT tracking applications.

1. The study utilizes LSTM as a Q-approximator to determine the best sensor

as an action from a discrete action space while tracking the target. The best

sensor is defined by the minimum distance function, which leads to lower

energy consumption.
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2. The different action selection strategies (i.e., epsilon-greedy and softmax)

also study, which are used in target tracking applications [15].

3. However, the epsilon-greedy method has faster improvement and

convergence ability than the softmax method in the proposed action space.

4. Therefore, the study proposes an LSTM-DQN-epsilon-greedy method

and compare it with LSTM-DQN-softmax, Dense-DQN-epsilon-greedy,

and Dense-DQN-softmax approaches in terms of average cumulative

rewards, loss convergence, average sensor selection accuracy, and average

cumulative energy consumption.

C. Thesis Layout

The remainder of this paper is organized as follows. A description of the

background related works is provided in Section II and III, respectively.

Sections IV and V show the proposed LSTM-DQN-epsilon-greedy algorithm and

numerical results, respectively, for a detailed comparison. Finally, the conclusion

summarizes future research work.
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II. Background

A. Reinforcement Learning (RL)

The RL agent is used as a decision-maker to take the best action (at) from the set

of possible actions over the current state (st). The RL agent does not learn with

the labeled training dataset, but learns from its experience with environmental

interaction. During environmental interaction at a particular time, the agent

receives an immediate reward (rt) and jumps to the next state (st+1). The entire

process continues until the agent reaches the final state and begins a new episode

after resetting the environment. Figure 1 represents the basic architecture of

reinforcement learning.

Agent Environment
Next State,

𝑆𝑡+1

Action, 𝑎𝑡

Initial 

State, 𝑆𝑡

Figure 1: Basic reinforcement learning architecture.

B. Tabular Q-Learning

Tabular Q-learning (TQL) is a common model-free RL approach that is

considered an off-policy algorithm because the Q-function learns from the

interactive environment by taking random actions during exploration time [16].

Taking action with the help of exploration is essential because initially, the

agent has no idea about the new state in an environment; therefore, the agent

4



needs to explore the environment. After acquiring environmental experience by

exploration, the agent can easily exploit the environment by utilizing the greedy

strategy. The exploration and exploitation technique is also called the epsilon-

greedy technique [10]. Because the TQL is a value-based method, the agent

learning policy is utilized through the value function (Q-value) of state-action

pairs. In TQL, the Q-value Q(st , at) of an individual action of a particular state

is stored in a matrix called the Q-table, which is updated in each time step in (1),

Q(st , at) = Q(st−1, at−1)+ ∂ (rt + γ max(Q(st+1,at+1))−Q(st−1,at−1)) ,

(1)

where ∂ and γ ∈ [0,1] represent the learning rate and discount factor, respectively.

However, TQL has difficulty in extending the Q-table to a large environment,

as it is only appropriate for a small environment. To extend the method to a large

environment it is necessary for an agent to learn the value function with a Q-

approximator instead of saving all values into a Q-table.

C. Deep-Q-Network

The DQN was introduced by Mnih et al. in [17] based on the Deep RL method

with the help of a deep neural network, which is known as a Q-approximator.

The Q-values of different actions are predicted by utilizing the Q-approximator

in a particular state. Figure 2 illustrates the basic DQN architecture where the

Q-approximator predicts Q-values of different actions after taking state input.

5



State

Action-1

Action-2

Action-N

Q-approximator

Figure 2: Basic DQN architecture.

In DQN, there is a possibility of a significant correlation between the data,

forming the Q-approximator instability during the training period. Because of

the extreme correlation between state and actions, it is quite challenging to

converge the Q-approximate appropriately. To overcome these difficulties, two

techniques: 1) Experience Replay Memory with Mini-Batch and 2) Separate

Target Q-approximator are used frequently.

1. Experience Replay Memory

Experience replay memory and mini-batch techniques are utilized to obtain a

stable Q-approximator. Experience replay memory (E) stores the experience

(st , at , rt , st+1) in each time step to re-utilize previous experiences multiple

times. After storing each experience, the DQN uses the mini-batch technique

to randomly sample data from the experience replay memory to reduce the

correlation between the samples. Figure 3 shows prototype of experience replay

memory with mini-batch technique.
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Experience Replay Memory, E

E-1

E-2

E-N

Mini-Batch DQN

Figure 3: Experience replay memory with mini-batch prototype.

2. Seperate Target Q-approximator

To estimate the predicted and target Q-values with two different Q-approximators

θ and θ ′, to overcome the divergence of the Q-approximator. If the Q-

approximator convergences more, the learning performance of the agent will be

more improved. The Q-approximator loss L(θ) is described as,

L(θ) = (rt + γ max(Q(st+1,at+1;θ
′))−Q(st ,at ;θ))2. (2)

D. Long Short-Term Memory (LSTM)

In the proposed system, the LSTM utilizes as a Q-approximator to select the best

sensor. The LSTM is a specific type of recurrent neural network (RNN) with the

ability to learn long-term dependencies that can memorize and connect related

patterns over a time-series input [14]. The LSTM consists of four gates: forget

(Fst), input (Xst), cell (Cst), and output (Ost) states. These four gates store the

combined information of the previously hidden (ht−1) and the current input layer

(xt) and apply the “sigmoid” operation to all gates except the cell state that is

finally activated by “tanh” operation, as shown in Figure 4.
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In the LSTM mechanism, when the forget state output is near 1, it keeps

the data and transfers it to multiply with the previous cell state value (Ct−1).

The input and cell state gates receive the same information as the forget state

gate. After separately applying “sigmoid” and “tanh” operations to input and cell

state gate, the outputs are multiplied with each other and added to the forget

state output multiplying of the previous cell state value for acquiring a new cell

state (Ct). Finally, the output of the new cell state and output state gate after

the sigmoid operation multiply with each other to obtain the new hidden state

(ht). The reason behind deploying LSTM for the designed system is that it works

flawlessly in a dynamic environment because it depends on the gate operation.

The gates regulate the information flow and can also decide which information

should be stored or removed.

𝑥𝑡 𝐹𝑠𝑡 𝑥𝑠𝑡 𝐶𝑠𝑡 𝑂𝑠𝑡

ℎ𝑡−1

𝐶𝑡−1

ℎ𝑡

𝐶𝑡

Addition Multiply Sigmoid tanh

Figure 4: LSTM architecture.

8



E. Activation Function

The activation function is an essential task while designing the Q-approximator to

improve the agent’s outcome. The activation function transforms different output

signal value ranges into a finite range [18]. There are different types of activation

functions available. In this section, the activation functions are described below.

1. Rectifier Linear Unit (ReLU)

The ReLU is used frequently in the deep neural network, particularly in the

hidden layer, because of its efficient computation ability. The ReLU is used to

obtain the unbounded positive outcome by neglecting any hidden layer’s negative

weighted sum values during the training.

2. Sigmoid

Generally, the sigmoid activation function works at the output layer of any Q-

approximator. The main advatage of this kind of activation function is that it is

bounded the value between 0 and 1. Figure 5 shows the output of ReLU and

sigmoid activation of function according to different input values.

9
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Figure 5: ReLU vs Sigmoid.

F. Kalman Filter

In the proposed system, it is imperative to estimate the distance between the

moving target and the sensors to get the best sensor. A sensor with the minimum

distance to the target location was selected. For the stated goal, the Kalman

filter [19] was used to localize the target position.

The Kalman filter estimates the current system state from a series of noisy

measurements, which is useful in tracking applications [19]. The Kalman filter

10



is a recursive estimator that can compute the target position along with the

uncertainty. The system has two significant steps: prediction and updating.

Various essential Kalman filter parameters are listed in Table 1.

The initial state matrix α0 indicates the early stage target observation and

consists of four key information pieces such as the x- (x) and y-axis (y) positions,

velocity along the x- (vx) and y-axis (vy). In general, the covariance process

measures the variation in random variables. The covariance for the four random

variables is defined as follows:

σ (x,y,vx,vy) =
1

n−1

n

∑
i=1

(xi− x̄)(yi− ȳ)(x′i− v̄x)(y′i− v̄y), (3)

where n is the number of samples, and the covariance matrix is defined as

σ (x,y,vx,vy)T .

Table 1: Kalman filter parameters.

Symbols Description

α0 Initial state matrix
P0 Initial process covariance matrix

αk−1 Previous state matrix
Mk Measurement input
G Kalman gain

Acck Control variable matrix
Pk−1 Previous process covariance matrix
Nkα Predicted noise matrix
Nkp Process noise matrix

X ,Y,Z Transition matrix
Me Measurement error covariance matrix
H, I Identity matrix

The initial state α0 and process covariance matrices P0 are expressed as,

11



α0 =


x

y

vx

vy

 (4)

P0 =


σ2x σxσy σxσvx σxσvy

σyσx σ2y σyσvx σyσvy

σvxσx σvxσy σ2vx σvxσvy

σvyσx σvyσy σvyσvx σ2vy

 . (5)

1. Prediction Step

In the Kalman filter, the prediction step estimates the current predicted state αk

and the process error covariance matrix Pk, which are expressed as,

αk = Xαk−1 +YAcck +Nkα , (6)

Pk = X(Pk−1XT )+YAcck +Nkp , (7)

where αk−1 and Pk−1 denote the previous state and process error covariance

matrices, respectively. The variable X represents the state transition matrix for

the previous state αk−1, and Y is the input transition matrix for the control vector.

The Acck in (8) shows the acceleration of the moving target, given as,

YAcck =
[

1
2∆T 2ax 1

2∆T 2ay ∆Tax ∆Tay
]T

, (8)

where ∆T represents the time for one cycle, while ax and ay are the acceleration

control variables.
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2. Updated Step

In the updated step, it is time to estimate a new measurement Mk for state

prediction at time step k. The Kalman gain, G, shows the prediction accuracy

at time step k compared to the input value measurement. The new measurement

Mk and gain G are described as follows:

Mk = Z−Hαk, (9)

G =
(PkHT )

H.(PkHT )+Me
, (10)

where Z, H, and Me represent the transition, identity matrix, and measurement

error covariance matrix, respectively. After estimating the Kalman gain G, the

predicted state αk and error covariance matrix Pk are updated in (11) and (12),

respectively:

αk = Xαk +GMk, (11)

Pk = [(I− (GH))+Pk]. (12)
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III. Related Works

In recent years, researchers have been working and investing much of their

time to solve the problem of excessive energy consumption in tracking-based

applications. Below, applications based on the respective techniques from

background studies are presented.

A. Tracking Application based on Information-driven

Approaches

Information-driven is a collaborative sensing technique for various target tracking

applications, where each deployed sensor is responsible for collaborating with

other deployed sensors to collect moving target information [20]. Information-

driven methods were first proposed in terms of collaborative sensor selection via

the information utility function [21]. In this information-driven sensor selection

method, the authors considered different Bayesian estimation problems (e.g.,

entropy and Mahalanobis distance-based utility measurements) to determine

which sensor would track the moving target. Wei et al. [22] proposed a dual-

sensor control technique based on the information utility function in a multi-

target tracking application. In this work, the authors used the posterior distance

between sensor and targets (PDST) function to minimize the distance between

sensors and targets, which helped the sensors directly drive the targets. Ping et

el. in [23] used a partially observed Markov decision process (POMDP) to select

sub-optimal sensors for tracking multiple targets. The POMDP sensor selection

approach is implemented by maximizing the information gain via a probability

hypothesis density (PHD)-based Bayesian framework. Although the techniques

proposed in [21]–[23] illustrated good tracking results, there is a limitation in

choosing an energy-efficient sensor to make their model work in an intelligent

manner to reduce the computational complexity.
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B. Machine Learning based Techniques for Tracking

Application

Machine learning is an excellent technique to overcome the computational

complexity issue in any complicated engineering problem because it is a self-

learner, and it does not need to be reprogrammed [24]–[26]. Based on background

studies, there are three types of machine learning approaches (i.e., supervised,

unsupervised, and reinforcement learning), which have been intelligently utilized

for energy optimization. The study of supervised learning techniques is beyond

the scope of this research.

1. Unsupervised Learning based Clustering Approaches

To address the energy consumption problem, Hosseini and Mirvaziri in [27]

introduced a dynamic K-means clustering-based approach to minimize the target

tracking error and energy consumption in wireless sensor networks (WSNs). The

proposed technique used a tube-shaped layering method for the sensor nodes to

reduce energy dissipation during target tracking. In addition, Tengyue et al. [28]

employed a clustering algorithm to control the sensor energy, which detected the

target in a real-time mobile sensor network. They used the k-means++ algorithm

to separate the sensor nodes into sub-groups. The k-means++ separated the

sensor nodes, which carried a higher weighted probability for target detection,

and the remaining unnecessary sensors remained in sleep mode to save energy

consumption. Juan and Hongwei in [29] proposed another clustering approach to

balance energy in terms of multisensory distributed scheduling. Their work used

the energy-balance technique to control the activation and deactivation modes of

communication modules. They employed a multi-hop coordination strategy to

decrease energy consumption. However, these types of unsupervised techniques

are time-consuming to address because of the lack of available prior data labeling
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[24].

2. Reinforcement Learning Approaches

Sensor scheduling is a promising approach for reducing energy consumption in

many tracking applications. Muhidul et al. in [30] proposed a cooperative RL

to schedule the task of each node based on the current tracking environment

observation. The proposed method helped the deployed sensor nodes cooperate

by sharing the adjacent node information during tracking. They applied a

weighted reward function that combined both energy consumption and tracking

quality matrices to improve the sensor node task scheduling at a particular

time. Moreover, transmission scheduling is another necessary task in which

Deep RL can be applied. Jiang et al. in [31] proposed an approximation

technique for transmitting packets in a scheduling manner for cognitive IoT

networks. Their DQN model utilized two parameters (i.e., the power for packet

sending via multiple channels and packet dropping) to enhance the system

capacity in throughput terms. They used a stacked auto-encoder as a Q-function

approximator that mapped the policy to maximize system performance via

a utility-based reward technique. However, they exploited the action using a

comprehensive index evaluation method in a single relay to sync transmission.

To reduce IoT device energy consumption, Mehdi et al. [32] employed a

Deep RL technique to learn an optimal policy for indoor localization problems

in IoT-based smart city services. They deployed a semi-supervised technique to

classify unlabeled data and integrated classified data with label data. They used

iBeacons to provide a received signal strength indicator (RSSI) as an input for

a semi-supervised Deep RL model, which consists of a variational autoencoder

neural network Q-learning technique to enhance indoor localization performance.

In [15], the authors used two Deep RL methods (e.g., DQN and DDPG)
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to adjust the activation area radius so the system can minimize the average

energy consumption in terms of vehicle-to-infrastructure (V2I) technology-

based tracking applications. They also used two action selection strategies (e.g.,

epsilon-greedy and softmax) to determine the activation area radius.

The Deep RL method has not been widely applied for energy saving in

IoT target tracking applications, particularly in energy-efficient sensor selection

approaches. Intelligently selecting the appropriate sensor to track the target

is challenging because the target position varies over time, creating tracking

environment uncertainty. In this case, the DQN-based Deep RL is a sophisticated

method because it has the best learning capability when interacting with an

uncertain dynamic environment. In DQN, selecting a Q-approximator for the

tracking environment is vital for obtaining improved learning performance.

Therefore, the LSTM Q-approximator utilized to predict the sub-optimal

decisions (i.e., sensor selection) based on sequential information (i.e., target

position) with the assistance of different gate operations.

The study is based on a discrete action space, which means that the proposed

LSTM Q-approximator selects the most energy-efficient sensor among a finite

set of sensors. [15] showed epsilon-greedy and softmax-based action selection

methods for the discrete action space. The epsilon-greedy-based sensor-selection

technique presented improved efficiency compared to the softmax technique in

the simulation results. Thus, the LSTM-DQN method proposed with epsilon-

greedy action selection (described as LSTM-DQN-epsilon-greedy in this paper)

in a target tracking environment to select the best sensor for maximum energy

conservation.
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IV. System Overview and Best Sensor Selection

A. System Overview

Figure 6 illustrates the tracking environment where multiple sensor devices

represented as S={ S1,S2, .....,SD } are deployed at different positions to observe

the moving targets, T ={ T1,T2, .....,TL}, where L is the number of targets moving

in the test area. The area consists of subareas X={X1,X2, .....,XN}, where N is the

number of subareas.

In this study, the proposed LSTM-DQN-epsilon-greedy scheme allows one

sensor to track a single target at time t in a particular area, which eventually leads

to tracking T targets in N subareas. For instance, the selected sensors shown in

green detect the targets, as shown in Figure 6. The remaining sensors remained

unselected to minimize energy consumption.

Deep RL 

Agent

Target State 

Initialized

Action

(Select Best 

Sensor)

Reward

Target Next 

State

Environment

Target Detection Selected
Sensor

Unselected
Sensor

Area(𝑿𝟏) Area (𝑿𝟐)

Area (𝑿𝟑) Area (𝑿𝟒)

Figure 6: Deployed sensors for tracking target based environment.

For optimal sensor selection, the proposed LSTM-DQN-epsilon-greedy-

based IoT tracking system tracks more than one target simultaneously in four

subareas X1, X2, X3, and X4, as shown in Figure 6, thus allowing the system to

track all T targets in the first attempt. If a single DQN algorithm applies for

all N subareas, there is a possibility of not achieving the required goal because
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when the system interacts with a large area, the sensor selection space is more

complicated to utilize the algorithm for effective simultaneous tracking more than

one target.

B. Best Sensor Selection

The designed LSTM-DQN-epsilon-greedy system uses multiple sensors to track

the target position. The system operates in such a manner that it does not

allow all sensors to simultaneously track the target. If all the sensors work

simultaneously, it leads to high energy consumption. Therefore, the system

intelligently adjudicates to select the best sensor at a particular time. The

sensor with low energy consumption is considered to be the best sensor and

is apportioned to acquire target position information. In the example shown in

Figure 6, if the energy consumption of the four sensors (i.e., S1, S2, S3, and S4)

are 6J, 5J, 7J, and 8J, respectively, then sensor S2 is selected to track the target.
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V. The Proposed LSTM-DQN-epsilon-greedy

Method

A. State Space

The proposed LSTM-DQN-epsilon-greedy model acts as an agent that takes

the current state as the input. Estimated minimum distance leads to low energy

consumption at a specific time. The sensor with the minimum distance and energy

consumption is considered to be the best sensor for an individual area. Therefore,

the organized state includes individual distances (i.e., dS1 ,dS2, ...,dSD) between

the target and sensors. The distance is measured at each time step by using the

Euclidean distance formula:

dSD(t) =
√
(Ptarget xcord−PxcordSD

)2(t)+ (Ptarget ycord−PycordSD
)2(t), (13)

where PxcordSD
, pycordSD

, Ptarget xcord , and ptarget ycord are the positions of all

the deployed sensors and the moving target in the two dimensional x-y plane.

Furthermore, the position of any target is computed using the Kalman filter.

B. Preprocess State

The state has different distance value ranges, which can create instability for

the Q-approximator. Therefore, it is necessary to preprocess the state value by

normalization before sending it to the LSTM Q-approximator [33]. The mini-

max normalization method is used, which is represented as statenormalized(t) =
(st−min(st))

max(st)−min(st)
to scale the state between 0 and 1 to enhance the state quality before

sending it to the proposed LSTM Q-approximator.
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C. Action Space

The discrete action space (A = {AS1,AS2 , ...,ASD}) represents all the allocated

sensors (i.e., S1, S2,..., SD), respectively, in a defined area. The epsilon-greedy

is used as an action-selection strategy in the designed system because it is

suitable for the discrete action space. In the epsilon-greedy approach, initially,

the agent takes a random action to explore the environment through the epsilon

method. There are three key parameters: maximum-epsilon (εmax), minimum-

epsilon (εmin), and epsilon-decay (εdecay) that are considered to fix the epsilon

period. First, it begins with the maximum-epsilon value and then decays with an

absolute epsilon-decay value at each time step. The epsilon period is completed

when the value of epsilon reaches the minimum-epsilon. Subsequently, the agent

greedily exploits the environment to take sub-optimal action with the proposed

LSTM Q-approximator, as shown in Figure 7. The rectified linear unit (ReLU)

is used in the first three layers, whereas the sigmoid activation function works

at the output layer. Moreover, the LSTM Q-approximator predicts the Q-values

for all possible actions, which are defined in the action space. Finally, the agent

selects the suboptimal action with the highest action-Q value that is obtained by

argmax(statenormalizedt ,at ;θ ).
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Figure 7: Proposed LSTM Q-approximator.

D. Energy Consumption Model

The proposed agent selects the best sensor as an action that consumes minimum

energy during target tracking. The energy consumption (EconSD
) of each sensor

at time step (t) is estimated using (14), where dSD , powSensor, and ttrack indicate

the distance value between a particular sensor (SD) and the target, the working

mode sensor power and time to track the target in a single area, respectively.

Similarly, the energy consumption measured for the other N areas. Note that

the energy consumption of all sensors is stored in an array as (Econall ) in (15).
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Furthermore, the selected sensor energy consumption (Econact ) and minimum

energy consumption (Econmin) are obtained from (16) and (17). Finally, the

total energy consumption (Econtotal ) and energy savings estimated in a particular

observation using (18) and (19), respectively:

EconSD
(t) = dSD(t)× powsensor(t)× ttrack(t) (14)

Econall(t) = EconSD:1∼D
(t), (15)

Econact (t) = Econall [ASD ](t) (16)

Econmin(t) = min(Econall(t)) (17)

Econtotal(t) =
D

∑
SD=1

EconSD
(t), (18)

Esave(t) = Econtotal(t)−Econaction(t). (19)

E. Binary Based Reward Space

The primary goal of the proposed system is to maximize the cumulative rewards

after a certain number of steps; therefore, it needs to generate a suitable reward

mechanism to improve the agent action. The binary reward function is used in the

proposed system design as follows:

rt =

1 if Econaction = Econmin

0 if Econaction 6= Econmin,
(20)
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where rt is the reward at time t; further, if the energy Econaction is equal to Econmin ,

it returns 1; otherwise, the output will be 0. The proposed LSTM-DQN-epsilon-

greedy system architecture and algorithm are shown in Figure 8 and Algorithm 1,

respectively.
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Figure 8: Proposed LSTM-DQN-epsilon-greedy system architecture.
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Algorithm 1: The proposed LSTM-DQN-epsilon-greedy algorithm.
Input : Distance between sensor and target position
Output: Best sensor selection accuracy and energy consumption
initialization() . Total number of episodes eptotal , Total number of steps
steptotal , Environment and Training Hyperparameters

for (Episode 1 to eptotal) do
st = reset environment() . Get the initial state using (13)
Cumulative rewards, cr = 0
for (time-step, t = 1 to steptotal) do

Preprocess st as statenormalizedt . Mini-Max normalization
rand = random.uniform(0,1)
ε = max(εmin, ε)
if (rand < ε) then

take action randomly . Exploration
ε = ε× εdecay

else
action = argmax(statenormalizedt ,at ;θ )) . Exploitation

end
Calculate EconSD:1∼D and Econaction . From (14), (16)
Calculate Econmin . From (17)
Calculate Econtotal and Esave . From (18) and (19)
Predict next target kalman state using Kalman Filter
Calculate st+1 . From (13)
Normalize st+1 as statenormalizedt+1
Calculate rt
cr = cr + rt . Calculate cumulative rewards
Store all expereinces into experience replay memory E
Perform random mini-batch sampling from E

target =
{

rt if rt = 0
rt + γ max(Q(statenormalizedt+1,at+1;θ ′)) if rt = 1

Perform gradient descent of (target−Q(st ,at ;θ))2 to update θ

st = st+1
end

end
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VI. Simulation and Results

A. Environment Setup and Hyper Parameters

To evaluate our proposed system, a simulation platform with moving target

observation of 16 sensor devices is considered with four subareas, where each

subarea consists of 200m× 200m. Four sensors are allocated in each subarea,

and each sensor can cover an area of up to 50m×50m. Thus, 16 sensors cover a

total area of 800m× 800m. Furthermore, the distance between each sensor was

the same in each subarea. one target assumes in a particular subarea and extend

it to four targets in four different subareas at a specific time. The environmental

details are listed in Table 2.

Table 2: Details of proposed environment.

Parameters Value

Total number of subareas (N) 4
Size of a subarea (XN) 200m×200m

Number of sensors in a subarea (XN) 4
Total number of sensors in 4 subareas 16

Each sensor tracking range 50m×50m
Power of sensor in working mode (powsensor) 5 watts

Tracking time of sensor per meter (ttrack) 2 s
Number of target (each subarea) 1

Total number of targets in 4 subareas 4
Targets initial positions [0, 0]-[200, 200]-[400, 400]-[600, 600]
Target initial velocity [0.1 m/s, 0.2 m/s]

Target initial acceleration [5 m/s2, 5 m/s2]

During our simulation, the total number of episodes was 500, where each

episode consisted of 100-time steps. In each time step, the target positions are

updated using the Kalman filter method. Thus, 100 different states utilize for the

proposed LSTM-DQN-epsilon-greedy system in one episode. Figure 9 shows a
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sample of different state values in one area after applying the normalization (i.e.,

mini-max normalization, which was described in section V.B) at the time of the

experiment. Here, d1, d2, d3, and d4 represent the normalized distance values

between the four sensors and the target. The normalized state was near zero

when the moving target passed near a particular sensor. Conversely, the particular

distance values were greater than 0 and gradually increased to 1 when the target

moved far behind the sensor. The figure clearly shows that the initial value of

d1 (i.e., the distance between the first sensor and the target) is zero as the target

moves very close to the first sensor. The same is true for the other sensor distance

values during the simulation period.

Note that the system restarts each episode when the number of steps reaches

100, and targets again start moving from the initial position. Moreover, some

useful hyperparameters were set during the training session, as presented in

Table 3. These parameters are used to tune the proposed LSTM-DQN-epsilon-

greedy scheme to achieve a more stable output. These hyperparameter values

were chosen by a trial and error process. The simulations performed using Python

3.7.7 [34]. TensorFlow 2.0.0 and Keras 2.3.1 were used to implement the LSTM

Q-approximator [35], [36]. The source code of our proposed system is given in

the Appendix section.
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Figure 9: Normalized State value for each time step during the experiment.

Table 3: Hyperparameters for LSTM-DQN-epsilon-greedy during training.

Hyperparameter Value

Optimizer adam
Loss categorical crossentropy

Batch Size 16
Size of experience replay memory (E) 50

Learning rate (∂ ) 0.001
Discount factor (γ) 0.9

Maximum epsilon (εmax) 1
Minimum epsilon (εmin) 0.01
Epsilon decay (εdecay) 0.995
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B. Results

1. Cumulative Rewards

In our proposed LSTM-DQN-epsilon-greedy method, the cumulative rewards

(cr) measure in (21) for each episode.

cr =
101

∑
t=1

rt . (21)

The estimation of the cumulative reward is important because it indicates

the agent’s learning performance during interaction with the target tracking

environment. The proposed agent receives a reward of 1 when the agent

successfully selects the best sensor, as discussed briefly in Sections V.C and

V.E. In Figure 10, the cumulative reward is shown per episode for each subarea.

It shows that the cumulative reward is less than 35 for each subarea and does

not reach the highest value in the first two episodes (200 steps), as it initially

explores the environment. In general, the exploration duration depends on the

epsilon parameter values (i.e., εmax, εmin, and εdecay) given in Table 2.

Following the exploration stage, the proposed agent starts exploiting the

environment through a greedy approach for selecting the best sensor to track

the target. In this case, the agent selects the suboptimal action based on the

maximum predicted action-Q value. During the greedy process, the cumulative

reward gradually increased after the second episode for all subareas. With the

proposed method, the highest cumulative reward of up to 100 was achieved before

reaching 100 episodes for all subareas showing outstanding performance while

selecting the best sensor.
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Figure 10: Cumulative rewards for each area.

2. Best Sensor Selection Accuracy

Because sensors have a limited battery lifetime, it is essential to reduce energy

consumption as much as possible. In the proposed scheme, the system selects

the four best sensors at a particular time within an area of 800m×800m divided

into Areas 1, 2, 3, and 4, as shown in Figure 6. The accuracy of selecting the

best sensor affects energy consumption during the tracking target because the

best sensor selection is based on the minimum energy consumption described

in Section V.D. Figure 11 shows the best sensor selection accuracy for the 16
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sensors. This demonstrates that the proposed LSTM-DQN-epsilon-greedy system

has a significant accuracy of approximately 99% for Sensors 1, 8, 12, 14, and 16.

Similarly, the system achieved an accuracy of 98% for Sensors 4, 5, 6, and 10.

Moreover, the proposed system provides more than 90% accuracy in the case of

all other sensors, leading to promising results.

(a) (b)

(c) (d)

Figure 11: Best sensor selection accuracy: (a) Sensor selection accuracy for Area 1; (b)
Sensor selection accuracy for Area 2; (c) Sensor selection accuracy for Area 3; (d) Sensor
selection accuracy for Area 4.
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C. Comparative Analysis

The proposed LSTM-DQN-epsilon-greedy system is also compared with three

benchmark schemes: LSTM-DQN-softmax, Dense-DQN-epsilon-greedy, and

Dense-DQN-softmax in terms of average cumulative reward, loss convergence,

average best sensor selection accuracy, and cumulative energy consumption. In

DQN, the LSTM and density-based Q-approximator are used frequently for the

dynamic environment. However, LSTM exhibits better performance in handling

such an environment because of memory features. The different action-selection

strategies (e.g., epsilon-greedy and softmax) also utilized and compared with

each other.

Table 4: Overall performance analysis

Methods Loss convergence Overall
rewards

Overall energy
consumption

LSTM-DQN-epsilon-
greedy (proposed)

fast and highly
stable

97.71 23457.90 J

LSTM-DQN-softmax fast but highly
stable

97.13 23614.98 J

Dense-DQN-epsilon-
greedy

slow and highly
unstable

93.44 27235.31 J

Dense-DQN-softmax slow and less
stable

88.15 28210.15 J

1. Average Cumulative Reward

The key designed method deployment objective is to increase the average

cumulative reward to measure the agent’s performance. The average cumulative

reward (avgcr) is obtained in (22), where ep denotes the episode and X1, X2, X3,
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and X4 are four system subareas.

avgcr =
501

∑
ep=1

crX1
(ep)+ crX2

(ep)+ crX3
(ep)+ crX4

(ep)

4
. (22)

Figure 12 shows the average cumulative reward per episode for the four DQN-

based schemes. The figure shows that our proposed model and the LSTM-DQN-

softmax model both achieved the highest average cumulative reward, which was

up to 100 during the simulation period. However, LSTM-DQN-epsilon-greedy

reached achievedthe highest value faster in 63 episodes compared to the LSTM-

DQN-softmax, which reached that level in 115 episodes.

The efficiency of our proposed system is that the epsilon-greedy action

selection strategy directly learns from the action-Q-value function, which is

suitable for discrete action space. Furthermore, the comparison has been extended

to the other two Dense-DQN-based schemes: Dense-DQN-epsilon-greedy and

Dense-DQN-softmax. The performance of both LSTM-DQN-based approaches

is better than that of Dense-DQN methods because of the long-term memory

dependencies described in Section II.D. Therefore, both the Dense-DQN-epsilon-

greedy and Dense-DQN-softmax schemes are unable to reach the highest average

cumulative reward over the entire 500 episodes, and the average cumulative

reward increase of both methods is much slower than the proposed LSTM-DQN-

epsilon-greedy scheme.
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Figure 12: Average cumulative rewards per episode.

2. Loss Convergence

The loss convergence depreciation to the minimum level is also vital, along

with the system stability. The proposed LSTM-DQN-epsilon-greedy system

signifies good convergence behavior around 200,000 epochs and is more stable,

as illustrated in Figure 13. Moreover, the LSTM-DQN-softmax convergence

also appeared around 200,000 epochs, but was less stable than our proposed

scheme. Furthermore, Dense-DQN-epsilon-greedy and Dense-DQN-softmax

methods show unstable behavior and converge at 500,000 epochs, which is time-

consuming. Therefore, the proposed LSTM-DQN-epsilon-greedy algorithm is
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efficient and stable, leading to promising results.

(a) (b)

(d)(c)

Figure 13: Loss convergence per epoch during training: (a) Loss convergence for
proposed epsilon-greedy-LSTM-DQN; (b) Loss convergence for softmax-LSTM-DQN;
(c) Loss convergence for epsilon-greedy-Dense-DQN; (d) Loss convergence for softmax-
Dense-DQN.

3. Average Best Sensor Selection Accuracy

In this section, the comparison of the average best sensor selection accuracy of

the proposed system with that of the other three DQN methods, as presented

in Figure 14. In our study, the agent selects the best sensor that has minimum
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Figure 14: Average best sensor selection accuracy.

energy consumption when the target moves in any particular area. The critical

task is to significantly enhance the best sensor selection accuracy to reduce

the average energy consumption. As shown in Figure 14, the proposed system

agent selects the best sensor with a slightly higher average accuracy than LSTM-

DQN-softmax. Furthermore, the proposed LSTM-DQN-epsilon-greedy scheme

achieved significantly higher best sensor selection accuracy than the Dense-

DQN-epsilon-greedy and Dense-DQN-softmax methods.

4. Average Cumulative Energy Consumption

Our designed system was also utilized to reduce the average cumulative energy

consumption while tracking the target. The study has already mentioned in

Sections VI.C.1 and VI.C.3, that a higher average cumulative reward effectively
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enhances the best sensor selection accuracy and reduces the average cumulative

energy consumption. The average cumulative energy consumption (avgEcon) is

obtained using (23).

avgEcon =
501

∑
ep=1

EconactX1
(ep)+EconactX2

(ep)+EconactX3
(ep)+EconactX4

(ep)

4
. (23)

Figure 15 shows the average cumulative energy consumption in 500

episodes. It can be observed from the figure that the average cumulative energy

consumption for each method is higher, particularly in the first 100 episodes. The

reason behind it is that initially, the agent has no experience with the environment.

However, as the number of episodes increases, the average cumulative energy

consumption decreases significantly for both LSTM-DQN and Dense-DQN

based schemes.
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Figure 15: Average cumulative energy consumption.
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In contrast, both LSTM-DQN-epsilon-greedy and LSTM-DQN-softmax

methods have much lower average cumulative energy consumption compared

to Dense-DQN-epsilon-greedy and Dense-DQN-softmax because the LSTM Q-

approximator can regulate the information flow in memory in the long and

short term. Furthermore, both the LSTM-DQN-epsilon-greedy and LSTM-DQN-

softmax schemes approximately reduce the same average cumulative energy

consumption in each episode except 1 to 200. However, the proposed LSTM-

DQN-epsilon-greedy method shows a faster and better reduction of the average

cumulative energy consumption than LSTM-DQN-softmax, particularly in the

first 100 episodes. Thus, our designed LSTM-DQN-epsilon-greedy method

significantly reduced the average cumulative energy consumption compared to

the other three methods by selecting the best energy-efficient sensor in our

designed target tracking environment. The Table 4 shows the overall performance

analysis for each schemes, where our proposed system has been achieved

significant outcome with low energy consumption compared to other three

schemes.
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VII. Conclusion and Future Directions

Sensors are widely used in IoT applications (e.g., tracking and attaining target

location information). In such scenarios, energy consumption optimization is

a critical challenge because of the sensor battery lifespan. For this reason, an

adequate learning method with Deep RL has been proposed to overcome the

problem of energy consumption. The proposed idea is based on selecting the best

sensor with minimum energy using the proposed Deep RL agent at a particular

time to collect the target location information. The Kalman filter and LSTM-

DQN-epsilon-greedy algorithms have been utilized to predict the target position

and best sensor selection, respectively. Furthermore, The proposed LSTM-

DQN-epsilon-greedy system compared with the other three benchmark schemes:

LSTM-DQN-softmax, Dense-DQN-epsilon-greedy, and Dense-DQN-softmax. A

comparative analysis was performed in terms of average cumulative reward,

loss convergence, average best sensor selection accuracy, and cumulative energy

consumption. The proposed LSTM-DQN-epsilon-greedy method addresses the

problem of best sensor selection and converges the energy consumption issue

efficiently, which is significantly improved in the proposed tracking environment

than the other three methods.
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