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ABSTRACT

A Study on Deep Reinforcement Learning for Energy Conservation
in [oT Tracking Applications

Salman Md Sultan

Advisor: Prof. Jae-Young Pyun

Dept. Information and Communication

Engineering

Graduate School of Chosun University
The Internet of Things (IoT) based target tracking system is required for
applications such as smart farm, smart factory and smart city where many
sensor devices are jointly connected to collect the moving target positions.
Each sensor device continuously runs on battery-operated power, consuming
energy while perceiving target information in a particular environment. To reduce
sensor device energy consumption in real-time IoT tracking applications, many
traditional methods such as clustering, information-driven, and other approaches
have previously been utilized to select the best sensor. However, applying
machine learning methods, particularly deep reinforcement learning (Deep RL),
to address the problem of sensor selection in tracking applications is quite
demanding because of the limited sensor node battery lifetime. In this study,
the proposed system utilized a long short-term memory deep Q-network (DQN)
based Deep RL target tracking model to overcome the problem of energy
consumption in IoT target applications. The simulation results show favorable

features in terms of the best sensor selection and energy consumption.
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I. INTRODUCTION

In a 5G sensor network, a massive amount of data is handled via sensor devices
in a large area. International Data Corporation (IDC) research states that 70% of
companies will drive to use 1.2 billion devices for the connectivity management
solution by 5G services worldwide [1]. The Internet of Things (IoT) is the
future of massive connectivity under 5G sensor networks. Currently, the 10T is
performing a vital role in collecting a large amount of data via numerous sensors
in real-time applications [2]. Kevin Ashton initially coined the IoT concept in
1999 [1], [3]. Sensor-based 10T devices can provide various types of services,
such as health, traffic congestion control, robotics, and data analysis, which play
a significant role in daily life assistance [4], [5]. Target tracking is another critical
area where the sensors can be utilized to collect the target real-time position
and report it to a server with its relevant information. The practice of tracking
one or multiple targets has vast applications in different research areas, such as
detecting gas leakage, border monitoring to prevent illegal crossing, or battlefield

surveillance.

A. Motivation

In target-tracking scenarios, tracking single or multiple targets can be realized
using one or more sensors. However, it is impractical to utilize a single sensor
for collecting the target position information owing to an extended area and will
take increased time with high energy consumption. Therefore, it is pertinent to
use multiple sensors, particularly in tracking applications. Energy consumption
in sensor applications is a key task because of the sensor battery lifetime [6], [7].

With these issues, it is essential to efficiently reduce energy consumption
because energy conservation leads to an increased battery lifespan. There are

various energy consumption reduction methods used in recent years (e.g.,
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information-driven clustering and support vector machine approaches) [8], [9].
However, these methods require substantial time, computational complexity, and
resources for large-scale practical application.

Reinforcement learning (RL) is a machine-learning subfield that solves
a problem without any predefined model. The use of RL comprises two
main elements: action and reward. In any dynamic environment, a precisely
selected action will provide the best reward. The RL system is exceptionally
effective with minimal resources by offering a better solution in real-time
decision-based applications. Thus, providing the best outcome, based on current
observations after acquiring a good reward in a real-time environment [10]. Deep
reinforcement learning (Deep RL) is an extended version of the conventional
RL algorithm (i.e., tabular Q-learning). Deep RL is embedded with a deep neural
network as a Q-approximator, which can reduce the overall system computational
complexity and energy consumption [11]. Moreover, the dense and long short-
term memory (LSTM)-based Q-approximators are frequently utilized to increase
energy efficiency in time-series environments [12], [13]. Note that the LSTM
Q-approximator is more suitable than the dense Q-approximator because of long-

term dependencies in a real-time environment [14]

B. Contributions

In this study, a novel Deep RL method based on LSTM deep Q-network (LSTM-

DQN) was introduced to solve the energy constraints of 10T tracking applications.

1. The study utilizes LSTM as a Q-approximator to determine the best sensor
as an action from a discrete action space while tracking the target. The best
sensor is defined by the minimum distance function, which leads to lower

energy consumption.
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2. The different action selection strategies (i.e., epsilon-greedy and softmax)

also study, which are used in target tracking applications [15].

3. However, the epsilon-greedy method has faster improvement and

convergence ability than the softmax method in the proposed action space.

4. Therefore, the study proposes an LSTM-DQN-epsilon-greedy method
and compare it with LSTM-DQN-softmax, Dense-DQN-epsilon-greedy,
and Dense-DQN-softmax approaches in terms of average cumulative
rewards, loss convergence, average sensor selection accuracy, and average

cumulative energy consumption.

C. Thesis Layout

The remainder of this paper is organized as follows. A description of the
background related works is provided in Section II and III, respectively.
Sections IV and V show the proposed LSTM-DQN-epsilon-greedy algorithm and
numerical results, respectively, for a detailed comparison. Finally, the conclusion

summarizes future research work.
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II. Background

A. Reinforcement Learning (RL)

The RL agent is used as a decision-maker to take the best action (a;) from the set
of possible actions over the current state (s;). The RL agent does not learn with
the labeled training dataset, but learns from its experience with environmental
interaction. During environmental interaction at a particular time, the agent
receives an immediate reward (r;) and jumps to the next state (s;+1). The entire
process continues until the agent reaches the final state and begins a new episode
after resetting the environment. Figure 1 represents the basic architecture of

reinforcement learning.

BN Action, g, @ [E—

PEEE  ext State, -

Environment

St+1

Initial
State, S;

Figure 1: Basic reinforcement learning architecture.

B. Tabular Q-Learning

Tabular Q-learning (TQL) is a common model-free RL approach that is
considered an off-policy algorithm because the Q-function learns from the
interactive environment by taking random actions during exploration time [16].

Taking action with the help of exploration is essential because initially, the

agent has no idea about the new state in an environment; therefore, the agent

4
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needs to explore the environment. After acquiring environmental experience by
exploration, the agent can easily exploit the environment by utilizing the greedy
strategy. The exploration and exploitation technique is also called the epsilon-
greedy technique [10]. Because the TQL is a value-based method, the agent
learning policy is utilized through the value function (Q-value) of state-action
pairs. In TQL, the Q-value Q (s;, a;) of an individual action of a particular state

is stored in a matrix called the Q-table, which is updated in each time step in (1),

O (s, ar) = Q(si—1, ar—1) + 9 (rr+ ymax (Q (sr+1,ar+1)) — Q(sr-1,a1-1)),
(1
where d and y € [0, 1] represent the learning rate and discount factor, respectively.
However, TQL has difficulty in extending the Q-table to a large environment,
as it is only appropriate for a small environment. To extend the method to a large
environment it is necessary for an agent to learn the value function with a Q-

approximator instead of saving all values into a Q-table.

C. Deep-Q-Network

The DQN was introduced by Mnih et al. in [17] based on the Deep RL method
with the help of a deep neural network, which is known as a Q-approximator.
The Q-values of different actions are predicted by utilizing the Q-approximator
in a particular state. Figure 2 illustrates the basic DQN architecture where the

Q-approximator predicts Q-values of different actions after taking state input.
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A 4

Action-1

Action-2

A\ 4

State —

—>| Action-N

Q-approximator

Figure 2: Basic DQN architecture.

In DQN, there is a possibility of a significant correlation between the data,
forming the Q-approximator instability during the training period. Because of
the extreme correlation between state and actions, it is quite challenging to
converge the Q-approximate appropriately. To overcome these difficulties, two
techniques: 1) Experience Replay Memory with Mini-Batch and 2) Separate

Target Q-approximator are used frequently.

1. Experience Replay Memory

Experience replay memory and mini-batch techniques are utilized to obtain a
stable Q-approximator. Experience replay memory (E) stores the experience
(8¢, ar, 11, 5;,41) in each time step to re-utilize previous experiences multiple
times. After storing each experience, the DQN uses the mini-batch technique
to randomly sample data from the experience replay memory to reduce the
correlation between the samples. Figure 3 shows prototype of experience replay

memory with mini-batch technique.
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Experience Replay Memory, E
E-1

E-2

. mmm) Mini-Batch ) DON

E-N

Figure 3: Experience replay memory with mini-batch prototype.

2. Seperate Target Q-approximator

To estimate the predicted and target Q-values with two different Q-approximators
06 and 6', to overcome the divergence of the Q-approximator. If the Q-
approximator convergences more, the learning performance of the agent will be

more improved. The Q-approximator loss L(0) is described as,
L(6) = (r +ymax(Q(se+1,ar+1:6")) — Qls,a1:0)). 2)

D. Long Short-Term Memory (LSTM)

In the proposed system, the LSTM utilizes as a Q-approximator to select the best
sensor. The LSTM is a specific type of recurrent neural network (RNN) with the
ability to learn long-term dependencies that can memorize and connect related
patterns over a time-series input [14]. The LSTM consists of four gates: forget
(Fg), input (Xg), cell (Cy), and output (Oy) states. These four gates store the
combined information of the previously hidden (%) and the current input layer
(x;) and apply the “sigmoid” operation to all gates except the cell state that is

finally activated by “tanh” operation, as shown in Figure 4.
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In the LSTM mechanism, when the forget state output is near 1, it keeps
the data and transfers it to multiply with the previous cell state value (C;_1).
The input and cell state gates receive the same information as the forget state
gate. After separately applying “sigmoid” and “tanh” operations to input and cell
state gate, the outputs are multiplied with each other and added to the forget
state output multiplying of the previous cell state value for acquiring a new cell
state (C;). Finally, the output of the new cell state and output state gate after
the sigmoid operation multiply with each other to obtain the new hidden state
(hy). The reason behind deploying LSTM for the designed system is that it works
flawlessly in a dynamic environment because it depends on the gate operation.
The gates regulate the information flow and can also decide which information

should be stored or removed.

Addition GB Multiply ® Sigmoid tanh @

ht—l ht
D
N4
Xt Fge ™ Xst [ Cst ™ Ogt [ _'®

Cr_1 ——P @
|

Ce

Figure 4: LSTM architecture.
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E. Activation Function

The activation function is an essential task while designing the Q-approximator to
improve the agent’s outcome. The activation function transforms different output
signal value ranges into a finite range [18]. There are different types of activation

functions available. In this section, the activation functions are described below.

1. Rectifier Linear Unit (ReL.U)

The ReLU is used frequently in the deep neural network, particularly in the
hidden layer, because of its efficient computation ability. The ReLLU is used to
obtain the unbounded positive outcome by neglecting any hidden layer’s negative

weighted sum values during the training.

2. Sigmoid

Generally, the sigmoid activation function works at the output layer of any Q-
approximator. The main advatage of this kind of activation function is that it is
bounded the value between 0 and 1. Figure 5 shows the output of ReLU and

sigmoid activation of function according to different input values.
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— ReLU
— Sigmoid

Output

-10.0 -5 -5.0 -25 0.0 25 5.0 75
Input

Figure 5: ReLU vs Sigmoid.

F. Kalman Filter

In the proposed system, it is imperative to estimate the distance between the
moving target and the sensors to get the best sensor. A sensor with the minimum
distance to the target location was selected. For the stated goal, the Kalman
filter [19] was used to localize the target position.

The Kalman filter estimates the current system state from a series of noisy

measurements, which is useful in tracking applications [19]. The Kalman filter

10
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is a recursive estimator that can compute the target position along with the
uncertainty. The system has two significant steps: prediction and updating.
Various essential Kalman filter parameters are listed in Table 1.

The initial state matrix o indicates the early stage target observation and
consists of four key information pieces such as the x- (x) and y-axis (y) positions,
velocity along the x- (vx) and y-axis (vy). In general, the covariance process
measures the variation in random variables. The covariance for the four random

variables is defined as follows:

1
n—1

G(x,y,vx,vy)z Z(xl_X)(yl_y)(x;_v_x)(y;_v_y)v (3)
i=1

where n is the number of samples, and the covariance matrix is defined as

0- ('x7y7 vx7 Vy)T *

Table 1: Kalman filter parameters.

Symbols Description
(o) Initial state matrix
Py Initial process covariance matrix
O Previous state matrix
M;, Measurement input
G Kalman gain
Accy, Control variable matrix
P Previous process covariance matrix
Nio, Predicted noise matrix
Nip Process noise matrix
XY, Z Transition matrix
M, Measurement error covariance matrix
H,I Identity matrix

The initial state o and process covariance matrices Fy are expressed as,

11
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1. Prediction Step

In the Kalman filter, the prediction step estimates the current predicted state oy

and the process error covariance matrix P, which are expressed as,

oy = X041+ YAccy + Nia, (6)

Pe=X(P1X") +YAcci+ Ny (7)

where ;1 and P,_; denote the previous state and process error covariance
matrices, respectively. The variable X represents the state transition matrix for
the previous state a1, and Y is the input transition matrix for the control vector.

The Accy in (8) shows the acceleration of the moving target, given as,

T
YAccy = [ %ATzax %ATzay ATax ATay | , ()

where AT represents the time for one cycle, while ax and ay are the acceleration

control variables.

12
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2. Updated Step

In the updated step, it is time to estimate a new measurement M) for state
prediction at time step k. The Kalman gain, G, shows the prediction accuracy
at time step k compared to the input value measurement. The new measurement

M. and gain G are described as follows:
M, =Z—Hu, 9

(PHT)

G =
H.(P.HT)+M,

(10)

where Z, H, and M, represent the transition, identity matrix, and measurement
error covariance matrix, respectively. After estimating the Kalman gain G, the

predicted state oy and error covariance matrix P, are updated in (11) and (12),

respectively:
oy = X oy + GM,, (11)
P, = (I - (GH))+B{. (12)
13
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I11. Related Works

In recent years, researchers have been working and investing much of their
time to solve the problem of excessive energy consumption in tracking-based
applications. Below, applications based on the respective techniques from

background studies are presented.

A. Tracking Application based on Information-driven

Approaches

Information-driven is a collaborative sensing technique for various target tracking
applications, where each deployed sensor is responsible for collaborating with
other deployed sensors to collect moving target information [20]. Information-
driven methods were first proposed in terms of collaborative sensor selection via
the information utility function [21]. In this information-driven sensor selection
method, the authors considered different Bayesian estimation problems (e.g.,
entropy and Mahalanobis distance-based utility measurements) to determine
which sensor would track the moving target. Wei et al. [22] proposed a dual-
sensor control technique based on the information utility function in a multi-
target tracking application. In this work, the authors used the posterior distance
between sensor and targets (PDST) function to minimize the distance between
sensors and targets, which helped the sensors directly drive the targets. Ping et
el. in [23] used a partially observed Markov decision process (POMDP) to select
sub-optimal sensors for tracking multiple targets. The POMDP sensor selection
approach is implemented by maximizing the information gain via a probability
hypothesis density (PHD)-based Bayesian framework. Although the techniques
proposed in [21]-[23] illustrated good tracking results, there is a limitation in
choosing an energy-efficient sensor to make their model work in an intelligent

manner to reduce the computational complexity.

14
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B. Machine Learning based Techniques for Tracking

Application

Machine learning is an excellent technique to overcome the computational
complexity issue in any complicated engineering problem because it is a self-
learner, and it does not need to be reprogrammed [24]-[26]. Based on background
studies, there are three types of machine learning approaches (i.e., supervised,
unsupervised, and reinforcement learning), which have been intelligently utilized
for energy optimization. The study of supervised learning techniques is beyond

the scope of this research.

1. Unsupervised Learning based Clustering Approaches

To address the energy consumption problem, Hosseini and Mirvaziri in [27]
introduced a dynamic K-means clustering-based approach to minimize the target
tracking error and energy consumption in wireless sensor networks (WSNs). The
proposed technique used a tube-shaped layering method for the sensor nodes to
reduce energy dissipation during target tracking. In addition, Tengyue et al. [28]
employed a clustering algorithm to control the sensor energy, which detected the
target in a real-time mobile sensor network. They used the k-means++ algorithm
to separate the sensor nodes into sub-groups. The k-means++ separated the
sensor nodes, which carried a higher weighted probability for target detection,
and the remaining unnecessary sensors remained in sleep mode to save energy
consumption. Juan and Hongwei in [29] proposed another clustering approach to
balance energy in terms of multisensory distributed scheduling. Their work used
the energy-balance technique to control the activation and deactivation modes of
communication modules. They employed a multi-hop coordination strategy to
decrease energy consumption. However, these types of unsupervised techniques

are time-consuming to address because of the lack of available prior data labeling

15
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[24].

2. Reinforcement Learning Approaches

Sensor scheduling is a promising approach for reducing energy consumption in
many tracking applications. Muhidul et al. in [30] proposed a cooperative RL
to schedule the task of each node based on the current tracking environment
observation. The proposed method helped the deployed sensor nodes cooperate
by sharing the adjacent node information during tracking. They applied a
weighted reward function that combined both energy consumption and tracking
quality matrices to improve the sensor node task scheduling at a particular
time. Moreover, transmission scheduling is another necessary task in which
Deep RL can be applied. Jiang et al. in [31] proposed an approximation
technique for transmitting packets in a scheduling manner for cognitive IoT
networks. Their DQN model utilized two parameters (i.e., the power for packet
sending via multiple channels and packet dropping) to enhance the system
capacity in throughput terms. They used a stacked auto-encoder as a Q-function
approximator that mapped the policy to maximize system performance via
a utility-based reward technique. However, they exploited the action using a
comprehensive index evaluation method in a single relay to sync transmission.
To reduce IoT device energy consumption, Mehdi et al. [32] employed a
Deep RL technique to learn an optimal policy for indoor localization problems
in IoT-based smart city services. They deployed a semi-supervised technique to
classify unlabeled data and integrated classified data with label data. They used
iBeacons to provide a received signal strength indicator (RSSI) as an input for
a semi-supervised Deep RL model, which consists of a variational autoencoder
neural network Q-learning technique to enhance indoor localization performance.

In [15], the authors used two Deep RL methods (e.g., DQN and DDPG)

16
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to adjust the activation area radius so the system can minimize the average
energy consumption in terms of vehicle-to-infrastructure (V2I) technology-
based tracking applications. They also used two action selection strategies (e.g.,
epsilon-greedy and softmax) to determine the activation area radius.

The Deep RL method has not been widely applied for energy saving in
IoT target tracking applications, particularly in energy-efficient sensor selection
approaches. Intelligently selecting the appropriate sensor to track the target
is challenging because the target position varies over time, creating tracking
environment uncertainty. In this case, the DQN-based Deep RL is a sophisticated
method because it has the best learning capability when interacting with an
uncertain dynamic environment. In DQN, selecting a Q-approximator for the
tracking environment is vital for obtaining improved learning performance.
Therefore, the LSTM Q-approximator utilized to predict the sub-optimal
decisions (i.e., sensor selection) based on sequential information (i.e., target
position) with the assistance of different gate operations.

The study is based on a discrete action space, which means that the proposed
LSTM Q-approximator selects the most energy-efficient sensor among a finite
set of sensors. [15] showed epsilon-greedy and softmax-based action selection
methods for the discrete action space. The epsilon-greedy-based sensor-selection
technique presented improved efficiency compared to the softmax technique in
the simulation results. Thus, the LSTM-DQN method proposed with epsilon-
greedy action selection (described as LSTM-DQN-epsilon-greedy in this paper)
in a target tracking environment to select the best sensor for maximum energy

conservation.
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IV. System Overview and Best Sensor Selection

A. System Overview

Figure 6 illustrates the tracking environment where multiple sensor devices
represented as S={ S1,5,.....,Sp } are deployed at different positions to observe
the moving targets, T7={ 71, T2, ..... , 11}, where L is the number of targets moving
in the test area. The area consists of subareas X={X;,X5,.....,Xy }, where N is the
number of subareas.

In this study, the proposed LSTM-DQN-epsilon-greedy scheme allows one
sensor to track a single target at time 7 in a particular area, which eventually leads
to tracking T targets in N subareas. For instance, the selected sensors shown in
green detect the targets, as shown in Figure 6. The remaining sensors remained

unselected to minimize energy consumption.

» >>> ) o
Target Detection Selected Unselected

Sensor Sensor
Action N
(Select Best Area(X,) . Area (X,)
Sensor)
‘ ° A

°
LN
°

-

° ° ° Target Next
] State

Initialized

Area (X3) °

Environment

Figure 6: Deployed sensors for tracking target based environment.

For optimal sensor selection, the proposed LSTM-DQN-epsilon-greedy-
based IoT tracking system tracks more than one target simultaneously in four
subareas X1, X, X3, and X4, as shown in Figure 6, thus allowing the system to
track all 7 targets in the first attempt. If a single DQN algorithm applies for

all N subareas, there is a possibility of not achieving the required goal because
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when the system interacts with a large area, the sensor selection space is more
complicated to utilize the algorithm for effective simultaneous tracking more than

one target.

B. Best Sensor Selection

The designed LSTM-DQN-epsilon-greedy system uses multiple sensors to track
the target position. The system operates in such a manner that it does not
allow all sensors to simultaneously track the target. If all the sensors work
simultaneously, it leads to high energy consumption. Therefore, the system
intelligently adjudicates to select the best sensor at a particular time. The
sensor with low energy consumption is considered to be the best sensor and
is apportioned to acquire target position information. In the example shown in
Figure 6, if the energy consumption of the four sensors (i.e., Sy, S2, S3, and S4)

are 6J, 5J, 7J, and 8J, respectively, then sensor S, is selected to track the target.
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V. The Proposed LSTM-DQN-epsilon-greedy
Method

A. State Space

The proposed LSTM-DQN-epsilon-greedy model acts as an agent that takes
the current state as the input. Estimated minimum distance leads to low energy
consumption at a specific time. The sensor with the minimum distance and energy
consumption is considered to be the best sensor for an individual area. Therefore,
the organized state includes individual distances (i.e., ds,,ds,, ...,ds;) between
the target and sensors. The distance is measured at each time step by using the

Euclidean distance formula:

dSD (t) = \/(Ptargetxcord - chordSD )2(t) + (Ptarget,ycord - PycordSD )2(t)7 (13)

where P, xcords,, > pycordSD’ Ptargelxcord’ and Ptarget ycord arc the pOSitiOIlS of all
the deployed sensors and the moving target in the two dimensional x-y plane.

Furthermore, the position of any target is computed using the Kalman filter.

B. Preprocess State

The state has different distance value ranges, which can create instability for
the Q-approximator. Therefore, it is necessary to preprocess the state value by
normalization before sending it to the LSTM Q-approximator [33]. The mini-

max normalization method is used, which is represented as stare,ormaiized(t) =

(s,—min(s;))
max (s;)—min(s;)

sending it to the proposed LSTM Q-approximator.

to scale the state between 0 and 1 to enhance the state quality before
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C. Action Space

The discrete action space (A = {Ag,,As,,...,As,, }) represents all the allocated
sensors (i.e., S1, S2,..., Sp), respectively, in a defined area. The epsilon-greedy
is used as an action-selection strategy in the designed system because it is
suitable for the discrete action space. In the epsilon-greedy approach, initially,
the agent takes a random action to explore the environment through the epsilon
method. There are three key parameters: maximum-epsilon (&), minimum-
epsilon (&4,), and epsilon-decay (€4.¢4y) that are considered to fix the epsilon
period. First, it begins with the maximum-epsilon value and then decays with an
absolute epsilon-decay value at each time step. The epsilon period is completed
when the value of epsilon reaches the minimum-epsilon. Subsequently, the agent
greedily exploits the environment to take sub-optimal action with the proposed
LSTM Q-approximator, as shown in Figure 7. The rectified linear unit (ReLU)
is used in the first three layers, whereas the sigmoid activation function works
at the output layer. Moreover, the LSTM Q-approximator predicts the Q-values
for all possible actions, which are defined in the action space. Finally, the agent

selects the suboptimal action with the highest action-Q value that is obtained by

arg maX(Statenormalizedt ,a:;0 ) .
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Figure 7: Proposed LSTM Q-approximator.

D. Energy Consumption Model

The proposed agent selects the best sensor as an action that consumes minimum
energy during target tracking. The energy consumption (EconsD) of each sensor
at time step (¢) is estimated using (14), where ds,,, poWsensor, and t;,4¢ indicate
the distance value between a particular sensor (Sp) and the target, the working
mode sensor power and time to track the target in a single area, respectively.
Similarly, the energy consumption measured for the other N areas. Note that

the energy consumption of all sensors is stored in an array as (Ecoy,,) in (15).
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Furthermore, the selected sensor energy consumption (E¢,p,,) and minimum
energy consumption (E¢,,, ) are obtained from (16) and (17). Finally, the
total energy consumption (E,p,,,,) and energy savings estimated in a particular

observation using (18) and (19), respectively:

EconSD (t) = dSD (t) X powsensor(t) X ttrack(t) (14)
Econgy (t) = ECO”SD:IND (1), (15)
Econm (t) = Econa” [ASD](I) (16)
Econp, (t) = min(Econ,, (1)) (17)
D

Econya (1) = Y, Econg,, (1), (18)

Sp=1
Esave (t) = Econtotal (t) - Econaction (t) (19)

E. Binary Based Reward Space

The primary goal of the proposed system is to maximize the cumulative rewards
after a certain number of steps; therefore, it needs to generate a suitable reward
mechanism to improve the agent action. The binary reward function is used in the

proposed system design as follows:

1 ifE o =FE.on
= CONgcetion CONpmin (20)

0 if Econaction # Econmin ’
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where r; is the reward at time ¢; further, if the energy E. is equal to E¢op,,;,»

ONgction

it returns 1; otherwise, the output will be 0. The proposed LSTM-DQN-epsilon-

greedy system architecture and algorithm are shown in Figure 8 and Algorithm 1,

respectively.
Connector .
State
Initial Euclidian Distance Normalized If No LSTM Selected Best Calculate
Position Calculator -State Explore Q-approximator Sensor b Energy
Consumption
yes

Loss & Update
Weights

Reward Minibatch

*—

Next-State

Random Action
Step!

Previous Kalman Position
Position Predictor

Figure 8: Proposed LSTM-DQN-epsilon-greedy system architecture.
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Algorithm 1: The proposed LSTM-DQN-epsilon-greedy algorithm.

Input : Distance between sensor and target position

Output: Best sensor selection accuracy and energy consumption

initialization() ©> Total number of episodes ep;.rq;, Total number of steps
steproral, Environment and Training Hyperparameters

for (Episode 1 to ep;prq) do

s; = reset_environment() > Get the initial state using (13)

Cumulative rewards, ¢, =0

for (time-step, t = 1 to step;yrar) do

Preprocess s; as state,ormalized, > Mini-Max normalization

rand = random.uniform(0,1)

€ = max(&yin, €)

if (rand < €) then

take action randomly > Exploration
€ = € X Egecay
else
| action = argmax(state,ormalized, a,:0)) > Exploitation
end
Calculate ECO”SD:1~ pand Ecop, 0 > From (14), (16)
Calculate Ecop,,;, > From (17)
Calculate E,y,,,,, and Esqye > From (18) and (19)
Predict next target kalman state using Kalman Filter
Calculate s; 1 > From (13)

Normalize s;11 as state,ormaized, |

Calculate r;

cr=cp+r > Calculate cumulative rewards
Store all expereinces into experience replay memory E

Perform random mini-batch sampling from E

Tt ifrt:()

target = .
& {rt + ymaX(Q(Staten()rmalizedtﬂ yAr+15 6,)> if ry = 1
Perform gradient descent of (target — Q(s;,a;;0))? to update 6
St = St+1

end

end
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VI Simulation and Results

A. Environment Setup and Hyper Parameters

To evaluate our proposed system, a simulation platform with moving target
observation of 16 sensor devices is considered with four subareas, where each
subarea consists of 200m x 200m. Four sensors are allocated in each subarea,
and each sensor can cover an area of up to 50m x 50m. Thus, 16 sensors cover a
total area of 800m x 800m. Furthermore, the distance between each sensor was
the same in each subarea. one target assumes in a particular subarea and extend
it to four targets in four different subareas at a specific time. The environmental

details are listed in Table 2.

Table 2: Details of proposed environment.

Parameters Value
Total number of subareas (N) 4
Size of a subarea (Xy) 200m x 200m
Number of sensors in a subarea (Xy) 4
Total number of sensors in 4 subareas 16
Each sensor tracking range 50m x 50m
Power of sensor in working mode (powgensor) 5 watts
Tracking time of sensor per meter (¢;,4ck) 2s
Number of target (each subarea) 1
Total number of targets in 4 subareas 4
Targets initial positions [0, 0]-[200, 200]-[400, 400]-[600, 600]
Target initial velocity [0.1m/s,0.2 m/s]
Target initial acceleration [5m/s?, 5m/s’]

During our simulation, the total number of episodes was 500, where each
episode consisted of 100-time steps. In each time step, the target positions are
updated using the Kalman filter method. Thus, 100 different states utilize for the
proposed LSTM-DQN-epsilon-greedy system in one episode. Figure 9 shows a
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sample of different state values in one area after applying the normalization (i.e.,
mini-max normalization, which was described in section V.B) at the time of the
experiment. Here, d1, d2, d3, and d4 represent the normalized distance values
between the four sensors and the target. The normalized state was near zero
when the moving target passed near a particular sensor. Conversely, the particular
distance values were greater than 0 and gradually increased to 1 when the target
moved far behind the sensor. The figure clearly shows that the initial value of
d1 (i.e., the distance between the first sensor and the target) is zero as the target
moves very close to the first sensor. The same is true for the other sensor distance
values during the simulation period.

Note that the system restarts each episode when the number of steps reaches
100, and targets again start moving from the initial position. Moreover, some
useful hyperparameters were set during the training session, as presented in
Table 3. These parameters are used to tune the proposed LSTM-DQN-epsilon-
greedy scheme to achieve a more stable output. These hyperparameter values
were chosen by a trial and error process. The simulations performed using Python
3.7.7 [34]. TensorFlow 2.0.0 and Keras 2.3.1 were used to implement the LSTM
Q-approximator [35], [36]. The source code of our proposed system is given in

the Appendix section.
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Figure 9: Normalized State value for each time step during the experiment.

Table 3: Hyperparameters for LSTM-DQN-epsilon-greedy during training.

Hyperparameter Value
Optimizer adam
Loss categorical crossentropy
Batch Size 16
Size of experience replay memory (E) 50
Learning rate (d) 0.001
Discount factor () 0.9
Maximum epsilon (&) 1
Minimum epsilon (&) 0.01
Epsilon decay (€gecay) 0.995
28
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B. Results
1. Cumulative Rewards

In our proposed LSTM-DQN-epsilon-greedy method, the cumulative rewards

(cr) measure in (21) for each episode.

101

=3y n. (21)
t=1

The estimation of the cumulative reward is important because it indicates
the agent’s learning performance during interaction with the target tracking
environment. The proposed agent receives a reward of 1 when the agent
successfully selects the best sensor, as discussed briefly in Sections V.C and
V.E. In Figure 10, the cumulative reward is shown per episode for each subarea.
It shows that the cumulative reward is less than 35 for each subarea and does
not reach the highest value in the first two episodes (200 steps), as it initially
explores the environment. In general, the exploration duration depends on the
epsilon parameter values (i.€., Euax, Emin, ANA Egecqy) given in Table 2.

Following the exploration stage, the proposed agent starts exploiting the
environment through a greedy approach for selecting the best sensor to track
the target. In this case, the agent selects the suboptimal action based on the
maximum predicted action-Q value. During the greedy process, the cumulative
reward gradually increased after the second episode for all subareas. With the
proposed method, the highest cumulative reward of up to 100 was achieved before
reaching 100 episodes for all subareas showing outstanding performance while

selecting the best sensor.
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Figure 10: Cumulative rewards for each area.

2. Best Sensor Selection Accuracy

Because sensors have a limited battery lifetime, it is essential to reduce energy
consumption as much as possible. In the proposed scheme, the system selects
the four best sensors at a particular time within an area of 800m x 800m divided
into Areas 1, 2, 3, and 4, as shown in Figure 6. The accuracy of selecting the
best sensor affects energy consumption during the tracking target because the
best sensor selection is based on the minimum energy consumption described

in Section V.D. Figure 11 shows the best sensor selection accuracy for the 16
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sensors. This demonstrates that the proposed LSTM-DQN-epsilon-greedy system
has a significant accuracy of approximately 99% for Sensors 1, 8, 12, 14, and 16.
Similarly, the system achieved an accuracy of 98% for Sensors 4, 5, 6, and 10.
Moreover, the proposed system provides more than 90% accuracy in the case of

all other sensors, leading to promising results.

Sensor-1 Sensor-4 Sensor-5 Sensor-8

Sensor-2 Sensor-3 Sensor-6 Sensor-7

(a) (b)

Sensor-9 Sensor-12 Sensor-13 Sensor-16

Sensor-10

Sensor-11 Sensor-14 Sensor-15

(© (@)

Figure 11: Best sensor selection accuracy: (a) Sensor selection accuracy for Area 1; (b)
Sensor selection accuracy for Area 2; (¢) Sensor selection accuracy for Area 3; (d) Sensor
selection accuracy for Area 4.
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C. Comparative Analysis

The proposed LSTM-DQN-epsilon-greedy system is also compared with three
benchmark schemes: LSTM-DQN-softmax, Dense-DQN-epsilon-greedy, and

Dense-DQN-softmax in terms of average cumulative reward, loss convergence,

average best sensor selection accuracy, and cumulative energy consumption. In

DQN, the LSTM and density-based Q-approximator are used frequently for the

dynamic environment. However, LSTM exhibits better performance in handling

such an environment because of memory features. The different action-selection

strategies (e.g., epsilon-greedy and softmax) also utilized and compared with

each other.
Table 4: Overall performance analysis
Methods Loss convergence | Overall Overall energy
rewards consumption
LSTM-DQN-epsilon- fast and highly | 97.71 23457.901]
greedy (proposed) stable
LSTM-DQN-softmax fast but highly | 97.13 23614.98 )
stable
Dense-DQN-epsilon- slow and highly | 93.44 27235.311]
greedy unstable
Dense-DQN-softmax slow and less | 88.15 28210.157J

stable

1. Average Cumulative Reward

The key designed method deployment objective is to increase the average

cumulative reward to measure the agent’s performance. The average cumulative

reward (avg,,) is obtained in (22), where ep denotes the episode and Xi, X», X3,

Collection @ chosun
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and Xy are four system subareas.

O Cry, (ep) +eny, (ep) +cry (ep) +cry, (ep)

wge, = ¥, .

ep=1

(22)

Figure 12 shows the average cumulative reward per episode for the four DQN-
based schemes. The figure shows that our proposed model and the LSTM-DQN-
softmax model both achieved the highest average cumulative reward, which was
up to 100 during the simulation period. However, LSTM-DQN-epsilon-greedy
reached achievedthe highest value faster in 63 episodes compared to the LSTM-
DQN-softmax, which reached that level in 115 episodes.

The efficiency of our proposed system is that the epsilon-greedy action
selection strategy directly learns from the action-Q-value function, which is
suitable for discrete action space. Furthermore, the comparison has been extended
to the other two Dense-DQN-based schemes: Dense-DQN-epsilon-greedy and
Dense-DQN-softmax. The performance of both LSTM-DQN-based approaches
is better than that of Dense-DQN methods because of the long-term memory
dependencies described in Section I1.D. Therefore, both the Dense-DQN-epsilon-
greedy and Dense-DQN-softmax schemes are unable to reach the highest average
cumulative reward over the entire 500 episodes, and the average cumulative
reward increase of both methods is much slower than the proposed LSTM-DQN-

epsilon-greedy scheme.
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Figure 12: Average cumulative rewards per episode.

2. Loss Convergence

The loss convergence depreciation to the minimum level is also vital, along
with the system stability. The proposed LSTM-DQN-epsilon-greedy system
signifies good convergence behavior around 200,000 epochs and is more stable,
as illustrated in Figure 13. Moreover, the LSTM-DQN-softmax convergence
also appeared around 200,000 epochs, but was less stable than our proposed
scheme. Furthermore, Dense-DQN-epsilon-greedy and Dense-DQN-softmax
methods show unstable behavior and converge at 500,000 epochs, which is time-

consuming. Therefore, the proposed LSTM-DQN-epsilon-greedy algorithm is
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efficient and stable, leading to promising results.
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Figure 13: Loss convergence per epoch during training: (a) Loss convergence for
proposed epsilon-greedy-LSTM-DQN; (b) Loss convergence for softmax-LSTM-DQN;
(¢) Loss convergence for epsilon-greedy-Dense-DQN; (d) Loss convergence for softmax-
Dense-DQN.

3. Average Best Sensor Selection Accuracy

In this section, the comparison of the average best sensor selection accuracy of
the proposed system with that of the other three DQN methods, as presented

in Figure 14. In our study, the agent selects the best sensor that has minimum
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Figure 14: Average best sensor selection accuracy.

Average sensor selection accuracy [%]

energy consumption when the target moves in any particular area. The critical
task is to significantly enhance the best sensor selection accuracy to reduce
the average energy consumption. As shown in Figure 14, the proposed system
agent selects the best sensor with a slightly higher average accuracy than LSTM-
DQN-softmax. Furthermore, the proposed LSTM-DQN-epsilon-greedy scheme
achieved significantly higher best sensor selection accuracy than the Dense-

DQN-epsilon-greedy and Dense-DQN-softmax methods.

4. Average Cumulative Energy Consumption

Our designed system was also utilized to reduce the average cumulative energy
consumption while tracking the target. The study has already mentioned in

Sections VI.C.1 and VI.C.3, that a higher average cumulative reward effectively
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enhances the best sensor selection accuracy and reduces the average cumulative
energy consumption. The average cumulative energy consumption (avgg,,,) is

obtained using (23).

301 Econmxl (ep) + Econmx2 (ep) + EconmX3 (ep) + Econgery . (ep

)23
J . (23)

angcon =

ep=1

Figure 15 shows the average cumulative energy consumption in 500
episodes. It can be observed from the figure that the average cumulative energy
consumption for each method is higher, particularly in the first 100 episodes. The
reason behind it is that initially, the agent has no experience with the environment.
However, as the number of episodes increases, the average cumulative energy
consumption decreases significantly for both LSTM-DQN and Dense-DQN

based schemes.

Proposed LSTM-DQN-epsilon-greedy
LSTM-DQN-softmax
Dense-DQN-epsilon-greedy
Dense-DQN-softmax

32000
30000
28000
26000
24000
22000
20000

Eplsodc

34000

Average cumulative consumption [J]

Figure 15: Average cumulative energy consumption.
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In contrast, both LSTM-DQN-epsilon-greedy and LSTM-DQN-softmax
methods have much lower average cumulative energy consumption compared
to Dense-DQN-epsilon-greedy and Dense-DQN-softmax because the LSTM Q-
approximator can regulate the information flow in memory in the long and
short term. Furthermore, both the LSTM-DQN-epsilon-greedy and LSTM-DQN-
softmax schemes approximately reduce the same average cumulative energy
consumption in each episode except 1 to 200. However, the proposed LSTM-
DQN-epsilon-greedy method shows a faster and better reduction of the average
cumulative energy consumption than LSTM-DQN-softmax, particularly in the
first 100 episodes. Thus, our designed LSTM-DQN-epsilon-greedy method
significantly reduced the average cumulative energy consumption compared to
the other three methods by selecting the best energy-efficient sensor in our
designed target tracking environment. The Table 4 shows the overall performance
analysis for each schemes, where our proposed system has been achieved
significant outcome with low energy consumption compared to other three

schemes.
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VII. Conclusion and Future Directions

Sensors are widely used in IoT applications (e.g., tracking and attaining target
location information). In such scenarios, energy consumption optimization is
a critical challenge because of the sensor battery lifespan. For this reason, an
adequate learning method with Deep RL has been proposed to overcome the
problem of energy consumption. The proposed idea is based on selecting the best
sensor with minimum energy using the proposed Deep RL agent at a particular
time to collect the target location information. The Kalman filter and LSTM-
DQN-epsilon-greedy algorithms have been utilized to predict the target position
and best sensor selection, respectively. Furthermore, The proposed LSTM-
DQN-epsilon-greedy system compared with the other three benchmark schemes:
LSTM-DQN-softmax, Dense-DQN-epsilon-greedy, and Dense-DQN-softmax. A
comparative analysis was performed in terms of average cumulative reward,
loss convergence, average best sensor selection accuracy, and cumulative energy
consumption. The proposed LSTM-DQN-epsilon-greedy method addresses the
problem of best sensor selection and converges the energy consumption issue
efficiently, which is significantly improved in the proposed tracking environment

than the other three methods.
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