
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

August 2021 
Doctoral Degree Thesis 

Evolutionary Synthesis of 
Reliable Digital Circuits 

 
 

Graduate School of Chosun University 

 
Department of Computer Engineering 

 
Umar Afzaal 

  

[UCI]I804:24011-200000509001[UCI]I804:24011-200000509001



 

Evolutionary Synthesis of 
Reliable Digital Circuits 

 
진화기반 신뢰성 높은 회로 합성 연구 

 
 
 
 

August 27, 2021 

 
 
 

 
 

Graduate School of Chosun University 

 
Department of Computer Engineering 

 
Umar Afzaal 

  



 

Evolutionary Synthesis of 
Reliable Digital Circuits 

 
Advisor: Prof. Lee, Jeong-A 

 
 

A thesis submitted in partial fulfillment of the 
requirements for a Doctoral degree 

 
 

April 2021 

 
 
 
 

Graduate School of Chosun University 

 
Department of Computer Engineering 

 
Umar Afzaal 

 





Dedicated to parents who love unconditionally.



ACKNOWLEDGEMENTS

All praise is due to the Lord of the Worlds alone. This thesis made possible,

my heartfelt regard for the constant reassurance and prayer of my parents

who words cannot describe the level of patience with which they persevere

my absence. The exceptional guidance and support from Professor Lee, my

supervisor during the course of this degree. In sincere acknowledgement, the

outstanding companionship of the Muslim community, and in gratefulness,

especially the generous hospitality, Mr. Muhammad Adnan, Miss Zobia Irshad,

Mr. Zahid Hussain, Mr. Abdus Sami Hassan and Mr. Usman Afzaal. Thank you

everyone.



TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS iii

ABSTRACT vii

한글요약 ix

I. INTRODUCTION 1

A. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

B. Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 3

II. RELATED WORK 4

A. Error-masking Schema . . . . . . . . . . . . . . . . . . . . . . 4

B. Shared-logic Redundancy . . . . . . . . . . . . . . . . . . . . . 7

C. Platform-specific . . . . . . . . . . . . . . . . . . . . . . . . . 8

III. FAULT-RESILIENCE 11

A. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B. Need for Fault-resilience . . . . . . . . . . . . . . . . . . . . . 13

IV. PROPOSED METHODOLOGY 16

A. Circuit Encoding in the Chromosome . . . . . . . . . . . . . . . 16

B. Constraining the Cartesian Graph . . . . . . . . . . . . . . . . . 19

1. Population Initialization . . . . . . . . . . . . . . . . . 21

C. Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 22

D. Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



V. EXPERIMENTAL RESULTS 26

A. Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . . . 27

1. Overall Comparison . . . . . . . . . . . . . . . . . . . . 28

2. Effect of the Proposed Graph Constraints . . . . . . . . 29

B. Scaling SYFR . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C. Building Larger Arithmetic Circuits . . . . . . . . . . . . . . . 32

D. Data-Aware Synthesis . . . . . . . . . . . . . . . . . . . . . . . 33

E. Effect of Pf ault on Circuit Reliability . . . . . . . . . . . . . . . 39

VI. ReCkt: A Library of Reliable Adders and Multipliers 41

VII. SUMMARY AND CONCLUSIONS 42

PUBLICATIONS 44

BIBLIOGRAPHY 45

APPENDIX A: ReCkt Library 51

ii



LIST OF ABBREVIATIONS AND ACRONYMS

CMOS Complementary metal–oxide–semiconductor
SEU Single-event upset
SET Single-event transient
PO Primary output
TMR Triple modular redundancy
ATMR Approximate triple modular redundancy
FATMR Full approximate triple modular redundancy
DWC Duplication with comparison
TSC Totally self-checking circuits
CED Concurrent error detection
SOP Sum of products
POS Products of sum
FPGA Field-programmable gate arrays
FMR Fault masking ratio
Pf ault Fault-observation probability
CLB Configurable logic blocks
PE Processing element
LUT Look-up table
CNN Convolutional neural network
CGP Cartesian genetic programming
CS Cuckoo search
CS-GRN Cuckoo search with genetic replacement of abandoned nests
CNF Conjunctive normal form
SAT Satisfiability
PDP Power-delay product
EP Error probability

iii



LIST OF FIGURES

1 The ATMR configuration uses explicitly redundant modules ,i.e.,

without logic sharing. . . . . . . . . . . . . . . . . . . . . . . . 6

2 (a) Half adder circuit implemented using XOR and AND gates.

(b) The reduced fault-set for the half adder circuit from Fig. 2(a). 12

3 (a) Half adder circuit implemented using XOR, NAND and AND

gates. (b) The reduced fault-set for the half adder circuit from Fig.

3(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 A configuration of the CNN architecture LeNet-5. . . . . . . . . 13

5 Performance of the network for 100 injected faults. (a) Baseline

adder (Berkely-ABC) and (b) Fault-resilient adder (SYFR). . . . 15

6 Design flow for the proposed SYFR approach. . . . . . . . . . . 17

7 A Full adder represented in a Cartesian graph with parameters

G={AND0,OR1,XOR2,NOT3}, na = 2, ni = 3, no = 2, nc = 7,

nr = 1.

The chromosome with underlined node functions and highlighted

outputs: (2,0,2)(0,0,1)(2,1,3)(0,2,3)(1,4,6)(3,7,5)(1,8,7)(5,7) . . 18

8 Cascading additional circuitry to enhance the fault-masking

property of the baseline. The auxiliary circuit acts as a wire and

does not change the intended logic function g. . . . . . . . . . . 21

9 Pf ault spread of the evolved solutions for addr4u, addr8u and

mult4u at different values of nc. . . . . . . . . . . . . . . . . . . 27

10 Pf ault curves of the test circuits: addr4u, addr8u and mult4u. . . 28

11 Overall comparison: Mean Pf ault curves for different nc values.

Mean calculated for addr4u, addr8u and mult4u. . . . . . . . . . 29

iv



12 Pf ault curves of the test circuits: addr4u, addr8u and mult4u.

The evolution was carried out in absence of the graph contraints

proposed in IV-B. . . . . . . . . . . . . . . . . . . . . . . . . . 29

13 Pf ault curves of the test circuits: c432, c1355 and c880. . . . . . 31

14 (a) Mean Pf ault curves for 50 000 vectors. (b) Improvement EP

as a function of area overhead and (c) Relationship between

improvements in EP and Pf ault . . . . . . . . . . . . . . . . . . 31

15 (a) Sample 8-bit grayscale image to be sharpened. (b) Filtered

version of the same image and (c) the sharper image obtained by

adding the original image to its filtered version. . . . . . . . . . 34

16 Percentage of occurence of the 8-bit pixel values for the images

contained in the dataset. Note that the input images were scaled

to range (0-127) to get 8-bit sum at adder outputs. . . . . . . . . 35

17 Pf ault trace plots of addr8u for data-aware synthesis. . . . . . . . 36

18 Number of images processed erroneously by the adders. . . . . . 37

19 Pixel values processed incorrectly by the adders. The color

intensity represents the error magnitude. . . . . . . . . . . . . . 38

20 Reliability curves for an arbitrary circuit at different values of Pf ault . 39

21 Pareto-optimal addr4u circuits with respect to (i) Pf ault and (ii)

area, power, delay and PDP. . . . . . . . . . . . . . . . . . . . . 51

22 Pareto-optimal addr8u circuits with respect to (i) Pf ault and (ii)

area, power, delay and PDP. . . . . . . . . . . . . . . . . . . . . 52

23 Pareto-optimal addr8s circuits with respect to (i) Pf ault and (ii)

area, power, delay and PDP. . . . . . . . . . . . . . . . . . . . . 53

24 Pareto-optimal mult4u circuits with respect to (i) Pf ault and (ii)

area, power, delay and PDP. . . . . . . . . . . . . . . . . . . . . 54

v



LIST OF TABLES

1 Comparison with related works. . . . . . . . . . . . . . . . . . 9

2 Distribution of the faults detectable by all test cases for the half

adder circuit from Fig. 2(a). . . . . . . . . . . . . . . . . . . . . 12

3 Distribution of the faults detectable by all test cases for the half

adder circuit from Fig. 3(a). . . . . . . . . . . . . . . . . . . . . 12

4 Adder Profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Algorithm and fitness function parameters. . . . . . . . . . . . . 24

6 Test circuits profiles. . . . . . . . . . . . . . . . . . . . . . . . 26

7 Pf ault improvement [%] of the best evolved circuits compared to

the baseline at various Cartesian graph columns nc (higher is better) 27

8 Pf ault values of the 8-bit ripple-carry adders and their constituent

4-bit adders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



ABSTRACT

Evolutionary Synthesis of Reliable Digital Circuits

Umar Afzaal

Advisor: Prof. Lee, Jeong A

Department of Computer Engineering

Graduate School of Chosun University

In the event of an upset, fault-resilient circuits maintain correct functionality

allowing the system to remain fully operational or at least operate with a graceful

degradation. Every circuit has a certain level of inherent resilience to faults. Often

times, this inherent resilience to faults is insufficient for the given application.

This is because conventional synthesis tools generally only focus on optimizing

a circuit with respect to area, power or timing budgets. There is a wide range of

applications where faulty circuit behavior can lead to fatal results. Fault injection

analyses are reported and show that even a single fault can be critical to the

desired circuit operation in such applications.

To which end, in this thesis, we present SYFR, an evolutionary method for

automated synthesis of increased fault-resilience digital circuits suitable for fine-

grained use. Tests results for synthesis of up to 60 input circuits with SYFR are

reported. SYFR can be repeatedly applied to a circuit to obtain various design

tradeoffs between fault- resilience and implementation costs. SYFR can also be

flexibly applied to build circuits which are selectively fault-resilient, i.e., their

tolerance to faults is workload-aware. In addition, a novel population seeding

mechanism to reduce the design space is introduced and experimentally validated.

vii



In summary, it is shown that SYFR can be considered a competitive synthesis

methodology for constructing fault-resilient circuits.
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한글요약

진화기반신뢰성높은회로합성연구

아프잘우마

지도교수:이정아

컴퓨터공학과

대학원,조선대학교

신뢰성높은회로는,오류가발생한경우에도회로의올바른기능을유지하

여 시스템이 정상적인 작동 상태를 유지하거나 최소한의 단계별 오류 조치로

작동할 수 있게 한다. 모든 회로에는 회로 고유의 오류 허용 내결함성이 있다.

그러나 이러한 오류에 대한 회로 고유의 복원력은 주어진 응용분야에 대부분

충분하지 않다. 이는 기존 회로 합성 도구가 면적, 전력소모, 실행시간을 고려

한회로최적화에초점을일반적으로맞추고있기때문이다.오류에의한회로

동작이치명적인결과로이어질수있는응용분야는다양하다.이러한응용분

야에서는,오류모사입력에의한분석을통하여,하나의오류인경우에도회로

작동에매우심각한영향을끼칠수있음을보일수있다.

본논문에서,신뢰성높은회로를자동적으로합성하는방법론으로,소규모

단위의로직변환을고려하는진화기반의 SYFR (SYnthesis of Fault-Resilient

circuits) 방법론을 제안한다. 본 방법을 이용하여 신뢰성 높은 회로를 직접적

으로 합성한 결과는 60개까지의 로직 입력을 가질 수 있음을 보였다. SYFR

기법은,분할된회로에반복적으로적용하는방식을통하여,대형회로에적용

할수있는데,회로의신뢰도와회로구현비용조율을통하여다양한설계공간

탐색이가능하다.그리고, SYFR방법론은오류발생시고장복원력이있는,신

뢰성 높은 설계 회로 합성에 워크로드 기반으로 선택적으로 유연하게 적용할

ix



수있다.본논문에서신뢰성높은회로의설계공간을줄이기위한모집단씨앗

메커니즘을새롭게제안하였으며,실험결과로이의효용성을보였다.본논문

은 SYFR방법론이신뢰성높은회로를합성하기위한경쟁력있는방법론으로

간주될수있음을보여준다.
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I. INTRODUCTION

The pursuit of performance at lower power consumption has translated into an

almost never ending quest for very deep sub-micron circuits. CMOS scaling is the

modern approach for operating circuits at higher frequencies, but with a reduced

energy consumption [Khoshavi, Ashraf, and DeMara, 2014]. Unfortunately, this

has risen circuit reliability concerns since technology scaling accelerates the

transistor wearout process degrading the circuit reliability. Nano-scale circuits

due to their internal capacitances, and small noise margins resulting from reduced

voltage supplies are easily susceptible to environmental radiation, and electrical,

electromagnetic, and other noise in general [Lala, 2001]. This means that the

probability of a fault occuring in such circuits is higher than ever. Thus, not only

mission-critical applications (such as in space or avionics) which already enforce

the use of fault-tolerance strategies, but other reliability-oriented applications

(e.g., self-driving cars, banking etc.) implemented at modern technology nodes

may also require some form of fault-mitigation.

Taxonomically, a soft error is known as a single-event upset (SEU) if it occurs

as a transient voltage perturbation at a memory element due to charge transferred

by high-energy particles. Otherwise, an upset which causes a transient pulse in

combinatorial logic paths is known as a single-event transient (or SET). If an

SET is registered at a memory element, it can indirectly manifest as an SEU.

Alternatively, in pure combinatorial logic, it is possible that an SET propagates

all the way to the primary outputs (POs) causing output errors. Thus, these soft-

errors are synonymous with functional errors. For a reliabile operation, soft errors

must be mitigated through appropriate fault-mitigation techniques.

Soft errors can be mitigated through the use of masking effects. These include
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timing masking, electrical masking or logical masking. The most common

forms of soft error mitigation are based on logical masking through hardware

redundancy. Triple modular redundancy (TMR) and Duplication with comparison

(DWC) are prime examples of logic masking. Theoretically, these techniques

guarantee 100 % error-masking or detection capability. However, the incurred

area overheads could be more than 200 %. In practice, not all applications require

full protection and there is a need for flexible design approaches to find an

optimal balance between performance requirements and hardware costs [Polian

and Hayes, 2010].

TMR and related redundancy schemes cannot be easily inserted at

intermediate nodes for fine-grained fault-tolerance. For intermediate usage, logic

masking enabled through shared-logic redundancy is most suitable. The current

state of literature on fault-resilient circuits for intermediate use suggests the

lack of a flexible approach for building such circuits in a scalable manner.

Accordingly, the main contributions of this article are as follows:

A. Contributions

1. We present SYFR (SYnthesis of Fault-Resilient Circuits) for gate-level

evolutionary synthesis of fault-resilient digital circuits that are suitable for

protection of critical intermediate nodes. SYFR is based on the principles

of evolutionary optimization. It is able to exploit a given circuit to create

a multitude of increased fault-resilience variants of it at various tradeoffs

between fault-resilience and hardware costs.

2. We present a technique for reducing the search space of the optimization

problem which significantly enhances the synthesis process’s effectiveness.

2



3. We successfully demonstrate scalability of the proposed SYFR as we report

synthesis of up to 60 input fault-resilient circuits.

4. For arithmetic circuits specifically, we show that it is possible to use smaller

fault-resilient circuits built with SYFR as building blocks to create larger

circuits which are also fault-resilient.

5. We demonstrate the fine-grained use of fault-tolerant circuits produced

with SYFR in two examples on neural networks and cryptography.

B. Thesis Organization

The rest of this thesis is organized as follows. In chapter II, we review

related literature on fault-resilient circuits and build motivation for the proposed

method. In chapter III, we introduce profiling of circuits for fault-resilience and

demonstrate the need for fault-resilient circuits in certain applications. Then,

key elements and our implementation of the proposed approach are thoroughly

discussed in chapter IV. In chapter V, the experimental framework and relevant

results are presented. In addition, a library of fault-resilient circuits collected from

the experiments performed in this thesis is introduced in chapter VI. Finally, a

brief summary and our conclusions on this work are given in chapter VII.

3



II. RELATED WORK

Fault-resilient circuits can be broadly categorized into two types according

to fundamentals of their design: (i) Those which require a higher-level entity or

explicit redundancy without logic sharing, and (ii) those which are based on the

principle of logic sharing. Consequently, the applicability of these circuits also

differ. In this chapter, we review related work from the literature in the context of

the aforementioned classification.

A. Error-masking Schema

Of course, adding fault-tolerance capabilities to a circuit requires additional

circuitry. The most easily implemented fault-tolerance methods are the classical

passive redundancy architectures, such as the well-known TMR [Afzaal and Lee,

2018] which works by comparing three copies of a circuit and produces outputs

via consensus voting. TMR is easy to implement, is very reliable, and able to

provide a near 100 % fault-mitigation. However, the two major drawbacks which

discourage a user from selecting TMR are: (i) it has a high implementation cost,

and (ii) it cannot be applied at intermediate nodes since it creates a single point

of failure at the consensus junction and therefore TMR must be applied at system

level, i.e., the entire system must be replicated.

We will leave out duplication with comparison [Quinn et al., 2016],

totally self-checking (TSC) circuits [Garvie and Husbands, 2019] and related

redundancy-based methods from our discussion since they primarily belong to

the class of concurrent error detection (CED) methods, i.e., the circuit becomes

fault-aware but not necessarily fault-resilient. Here, we must mention that some

works exist in the literature where a CED method is used to notify the system

4



of a fault condition which then uses this notification to activate some fault-

mitigation mechanism. For example, S. Ostanin et. al. [Ostanin, Kirienko, and

Lavrov, 2015] proposed a fault-tolerance scheme based on TSC circuits where

one of the modules is self-checking while the other one is a simplex module. The

system then switches over to the spare module if the TSC module reports itself

as faulty. A similar work on hybrid fault-tolerance architectures (based on CED)

is also reported in [Afzaal and Lee, 2020].

Sánchez-Clemente et. al., Arifeen et. al and a few others have reported works

on approximate TMR (or ATMR) [Sanchez-Clemente et al., 2016; Sanchez-

Clemente, Entrena, and Garcı́a-Valderas, 2014; Arifeen et al., 2018; Hassan et

al., 2018; Gomes et al., 2015]. The idea of ATMR is to trade full coverage

offered by TMR with hardware costs. ATMR is a fairly new paradigm for logic

masking using approximate logic circuits. If a logic circuit Q implements a logic

function g, its approximation Q́ is a logic circuit that implements a slightly

different logic function ǵ. Then, Q́ can be used for masking or detecting errors

wherever it overlaps Q in the input space. Based on this principle, an ATMR

can be constructed by populating the higher-level entity or error-masking schema

with the original circuit Q and the two approximate circuits Q1 and Q2. Similar

to TMR, an ATMR requires forming consensus between the three copies through

the use of a voter. The error-masking schema of ATMR is shown in Fig. 1.

For a circuit Q, Sánchez-Clemente et. al. [Sanchez-Clemente et al., 2016]

presented three techniques for generating the under- and over-approximate

versions Q1 and Q2. The approximations are generated from a unate description

of Q using either of the following: i) line-testability estimations, ii) dynamic

probability propagation and iii) evolutionary design. Except for the evolutionary

design, scalability was demonstrated for both the line-testing and probability-
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Figure 1: The ATMR configuration uses explicitly redundant modules ,i.e., without logic
sharing.

based approaches. However, the evolutionary approach could provide radically

different solutions that were hard to explore by the other two methods.

In contrast, Arifeen et. al. [Hassan et al., 2018] developed what is known

as a full ATMR or FATMR where all three modules are approximate. The

approximations are performed through logic optimization by means of prime

implicant expansion and reduction. The result are three approximate modules

suitable for use in a FATMR configuration. In [Arifeen et al., 2018], the authors

noticed that the entire input space is not equally important as some portion of

the input space is more vulnerable to errors. This allowed to drastically reduce

the search space for generating approximate modules. The works of Arifeen et.

al. [Arifeen et al., 2018; Hassan et al., 2018; Arifeen et al., 2016] and Sánchez-

Clemente et. al. [Sanchez-Clemente et al., 2016; Sanchez-Clemente et al., 2012;

Sanchez-Clemente, Entrena, and Garcı́a-Valderas, 2014] are the state-of-the-art

in ATMR methodologies. An in-depth survey on the current state of ATMR is

available in [Arifeen, Hassan, and Lee, 2020].

The works reported in this section require the use of an error-masking schema

which makes them infeasible for intermediate usage. For example, if TMR (or

6



ATMR) is applied fine-grained, it must be applied as a multiple partition where

the voters are kept decentralized until the POs (see Fig. 1 in [Afzaal and Lee,

2018]). Finally, consensus can be formed using a voting circuit made out of

reliable components. Alternatively, if only a critical intermediate node requires

fault-tolerance, then TMR must use hardened voting circuits [Afzaal and Lee,

2018; Arifeen, Hassan, and Lee, 2019]. This is infeasible if the circuit has

multiple output lines because each output line will require a separate hardened

voter. This introduces complexity and defeats the purpose of a partial TMR which

is to reduce hardware overheads.

B. Shared-logic Redundancy

Inserting fault-resilient circuits at intermediate nodes incurs reduced hardware

costs. It is an attractive option when it is known what nodes of a system

are fault-critical and/or fault-susceptible. Fault-resilient circuits for such fine-

grained use cases are based on shared logic redundancy. P. Balasubramanian et.

al. [Balasubramanian and Naayagi, 2017] address the topic of inserting shared

redundant logic to improve the fault-resilience of combinational circuits. The

method starts with an SOP (sum of products) or POS (product of sums) form

of a combinational circuit which is implemented using a standard cell library.

The resulting circuit which is composed of simple and complex logic gates is

then analyzed to build truth-cum-fault enumeration tables for all the internal

nodes. The tables reveal the faulty combinations of input vectors and faults, i.e., a

combination of a fault which causes a primary output error and the corresponding

input vector.

Based on such faulty and non-faulty combinations, a metric called fault

7



masking ratio or FMR is calculated where a higher FMR means the circuit has

better fault-tolerance. To improve FMR of the circuit, each node is then analyzed

and an appropriate gate is inserted such that the native functionality of the circuit

is maintained. Since the new circuit is different, the truth-cum-fault enumeration

tables need to be rebuild and FMR calculated again. This effectively makes

the problem an optimization problem. Nevertheless, the methodology was only

demonstrated for a single 4-input simple combinational circuit and its scalability

was not established. Since it is a node-by-node circuit analysis approach, it will

be difficult to apply it to large circuits. Only 4 variants of the logic function under

test were designed and no data was presented to determine how many circuits

with varying degrees of FMR can be designed with the method. A population-

based search algorithm will be more suited to synthesize circuits with varying

degrees of fault-tolerance to create a high-quality pareto-front. This means more

tradeoffs between fault-tolerance and hardware costs will be available to the user.

C. Platform-specific

Other than the works mentioned above, various technology-specific fault-

mitigation strategies have been proposed, such as, for field-programmable

gate arrays (FPGAs) (see survey [Cheatham, Emmert, and Baumgart, 2006]).

Sánchez-Clemente et. al. proposed the use of ATMR in FPGAs using the line-

substitution method mentioned before [Sánchez-Clemente, Entrena, and Garcı́a-

Valderas, 2016]. The approach was tested extensively for the B13 benchmark

from the ITC’99 set. In the context of evolutionary approaches, the authors

in [Garvie and Thompson, 2004] proposed an evolutionary repair method for

TMR implemented in FPGAs. In the event of damage to one of the modules,

8



Table 1: Comparison with related works.

Feature TMR P.Bala et. al. S.Ostanin et. al. Arifeen et. al.
Sánchez-Clemente et. al. This work

(Evolutionary optimization)Line-testability Probability-based Evolutionary design
Platform-independent X X X X X X X X
Workload-aware fault-tolerance × X X X X X X X
Scalable X × × X X X × X
High-quality pareto front × × × × × × X X
No error-masking schema × X × × × × × X
Intermediate nodes × X × × × × × X

the remaining two modules are used as sources of golden data for the fitness

function. For small benchmark circuits, a significant improvement in reliability

was reported. Salvador et. al. [Salvador et al., 2011] presented an evolvable

hardware system for fault-tolerance in FPGAs. The proposed system combines

an evolutionary algorithm with the runtime partial dynamic reconfiguration

capability offered by modern FPGAs. For testing purposes, fault models were

used at two levels of abstraction: i) configuration logic blocks (CLB) and ii)

processing elements (PE) or look-up tables (LUT). Since most of the features

required by the proposed system are already available on FPGAs, the overhead

incurred for self-healing was very low.

Given the scope of this work, we are particulary interested in platform-

independent fault-tolerance methods because of their wider applicability. In

summary, a methodology for building fault-resilient circuits that offers the

following features is desired.

• It should be platform independent.

• It should offer capability for synthesis of circuits whose tolerance to faults

targets a typical workload if available.

• It should be scalable.

• It should be able to produce a high-quality pareto front.

9



• It should avoid the use of an error-masking schema for logic masking in

order for the circuits to be replacable at intermediate nodes.

In the context of these desirable, a comparison of the proposed method with

related works from the literature is carried out in Table 1.
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III. FAULT-RESILIENCE

A. Preliminaries

For fault-resilience profiling of circuits, we must first develop an appropriate

definition. In simple terms, the fault-resilience of a circuit can be defined as: The

ability of a circuit to mitigate the effects of faults. Specifically, we characterize a

circuit for fault-resilience according to the following definitions:

Definition 1 Given a circuit and prescribed input vector and fault sets, the ratio

of the number of faults observable at the primary outputs to the cardinality of the

fault set called fault probability denoted by Pf ault gives, in the event of a fault

occuring in the circuit, the probability of the fault propagating to the primary

outputs.

Definition 2 Circuit A is said to be more fault-resilient than B if, A has a lower

Pf ault than B.

In the following, we illustrate the calculation of Pf ault for the half adder

circuit shown in Fig. 2a. For comparing the fault-tolerance of two circuits in

terms of Pf ault , it is sufficient to use a collapsed fault-set. The collapsed fault-

set for the half adder circuit is also given in Fig. 2b. Fault-collapsing [Agrawal,

Prasad, and Atre, 2003] is a technique which selects a single fault for a number

of equivalent faults and subsequently only the dominating faults from these

equivalence collapsed faults. As a result, the total number of faults to process

is reduced and, for our purposes, Pf ault can be computed more quickly. In this

case, the faults (A→ C /0) and (B→ C /0) are redundant and therefore not

considered. Note that the fault (A /0) is to be read as the node A stuck-at 0.
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Figure 2: (a) Half adder circuit implemented using XOR and AND gates. (b) The reduced
fault-set for the half adder circuit from Fig. 2(a).
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Figure 3: (a) Half adder circuit implemented using XOR, NAND and AND gates. (b) The
reduced fault-set for the half adder circuit from Fig. 3(a).

Table 2: Distribution of the faults detectable by all test cases for the half adder circuit
from Fig. 2(a).

A B C /0 C /1 A→C /1 B→C /1 A /0 A /1 B /0 B /1 S /0 A→S /0 B→S /0 S /1 A→S /1 B→S /1 Count
0 0 * * * * * * 6
0 1 * * * * * * * 7
1 0 * * * * * * * 7
1 1 * * * * * * 6

Table 3: Distribution of the faults detectable by all test cases for the half adder circuit
from Fig. 3(a).

A B S→S PO /0 S→S PO /1 S /0 S /1 A→S /0 A→S /1 B /0 B /1 A /0 A /1 C /0 C /1 N /1 A→C /1 A→N /1 S→N /1 Count
0 0 * * * * * * * 7
0 1 * * * * * * * 7
1 0 * * * * * * * 7
1 1 * * * * * * * 7

Table 2 lists the distribution of the faults detectable by all possible test cases

for the half adder circuit of Fig. 2. We can see that all 14 faults are detectable

considering the four test cases. Pf ault is therefore computed as: (14
14 = 1.0). Figure

3 shows an alternate implementation of the half adder along with its collapsed

fault-set. Table 3 lists the distribution of the faults detectable for this half adder
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Figure 4: A configuration of the CNN architecture LeNet-5.

circuit. We see that the fault (A → N /1) is logically masked such that it is

not detected by any of the four tests. The Pf ault for this circuit is computed as:

(15
16 = 0.937) which is lower compared to Pf ault of the previous circuit. Thus,

the half adder circuit of Fig. 3 is more fault-resilient compared to the half adder

shown in Fig. 2. The utility of Pf ault definition will be recognized in the following

section (III-B) and later in chapter V.

B. Need for Fault-resilience

In this section, we highlight the impact of critical faults and that even a single

fault can result in considerable output error unacceptable for the application at

hand.

Figure 4 shows a configuration of the classic CNN architecture LeNet-5

[LeCun et al., 2015]. We trained the CNN on the MNIST dataset [Deng, 2012] for

its 60 000 training images to derive the weights. We then performed a sensitivity

analysis of the network through first-order Taylor expansion of the cost function.

This allows us to rank the filters in each layer according to how much they

contribute to the output. Expansive details on our sensitivity analysis of the

LeNet-5 are available in [Hassan, Arifeen, and Lee, 2020]. The analysis showed
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Table 4: Adder Profiles.

Circuit Synthesis PI PO Pfault Area Level Gates Delay (ns) Power (uW)
signed 8-bit adder Berkely-ABC 16 9 1.0 53.66 15 39 16.8 235.1
signed 8-bit adder SYFR 16 9 0.524 114.46 19 76 35.2 642.6

that one of the six filters implementing the first 6@28x28 convolution layer ranks

as the most critical. We then implemented the 8-bit signed addition operation of

this filter with an adder synthesized using the open verilog synthesis suite Yosys

[Wolf, Glaser, and Kepler, 2013] and Berkely-ABC [Brayton and Mishchenko,

2010] for a library of all the basic 2-input gates. The profile of the baseline adder

is listed in Table 4.

When tested with MNIST database’s test data consisting of 10 000 images,

the accuracy of the network implementing the accurate adder was 98.65 %.

We then injected the baseline adder with a single fault. When tested again, the

accuracy of the network dropped to an unacceptable 51.39 %. This is the same

CNN in which it is possible to even prune multiple adders from low-ranking

filters without any considerable drop in the classification accuracy. However, here

is a portion of the CNN which cannot tolerate faulty operation even in the capacity

of a single fault. Such critical nodes are good candidates for fine-grained fault-

resilient circuits.

We evaluated the performance of the baseline adder against a fault-resilient

adder generated by SYFR through fault-injection tests. Note that the adder

constructed with SYFR was selected ad-hoc. It is also listed in Table 4. For the

evaluation, all the filters were implemented with the adder under test. A filter was

selected arbitrarily and a fault was injected in the adder at a random node. The

CNN was then tested with the 10 000 test images. The network output accuracy

was recorded and the whole process was repeated 100 times. The results of this
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Figure 5: Performance of the network for 100 injected faults. (a) Baseline adder (Berkely-
ABC) and (b) Fault-resilient adder (SYFR).

evaluation are shown in Fig. 5. It is clear from these plots that the adder with

better Pf ault has lower accuracy drops since its plot is less rocky. This gives

credibility to the Pf ault definition used by SYFR.

In conclusion, this example clearly stresses the need for fault-resilient circuits

which are easily usable at intermediate nodes without creating any single points

of failures unlike TMR which when applied intermediately creates a single point

of failure during consensus.
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IV. PROPOSED METHODOLOGY

The SYFR design flow as divided into several steps is shown in Fig. 6. In this

chapter, we explain key elements of the proposed SYFR approach. In particular,

we describe the circuit representation used, the underlying search algorithm for

automatic synthesis, and formulate a fast fitness function for our problem. We

also describe our proposal on how to tune the search process for reducing the

search space size of our problem and therefore improve the speed and efficiency

of SYFR. Lastly, we will describe our implementation of the proposed SYFR and

what tools were used at each step.

A. Circuit Encoding in the Chromosome

The choice of circuit abstraction are the digital logic gates which have also been

adopted in multiple works on synthesis of boolean logic [Vasicek and Sekanina,

2014; Kazarlis, Kalomiros, and Kalaitzis, 2016; Venkataramani et al., 2012;

Venkataramani, Roy, and Raghunathan, 2013; Scarabottolo, Ansaloni, and Pozzi,

2018; Schlachter et al., 2017; Arifeen et al., 2016; Arifeen et al., 2018; Hassan et

al., 2018; Gomes et al., 2015; Sanchez-Clemente, Entrena, and Garcı́a-Valderas,

2014; Sanchez-Clemente et al., 2012]. Our choice is based on the convenience of

working with this level of abstraction and because it can also be easily related to

the low-level circuit implementation. To which end, instead of using the number

of gates as a metric to estimate area, we will use relative areas of gates from the

following dictionary (BUFF 0.0, NOT 0.67, NAND 1.0, NOR 1.0, AND 1.33,

OR 1.33, XOR 2.0, XNOR 1.66) calculated by [Vasicek and Sekanina, 2014] for

MCNC library [Sentovich et al., 1992], Vdd = 5 V and 20 MHz relative to that

of a single NAND gate. Thus, in the following text, the area of a circuit will be
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Figure 6: Design flow for the proposed SYFR approach.

given by the sum of the relative areas of gates of the circuit.

Cartesian graph representation from the popular Cartesian genetic

programming or CGP [Miller and Harding, 2008] is used in this work for

candidate circuit representation. In this representation, an array of nc columns

x nr rows of programmable nodes models an ni-input, no-output combinational

circuit. The gate library G contains the available na-input node functions. The

primary inputs and all the nodes of the graph are uniquely numbered starting

from 0. Another parameter l controls the levels-back connectivity of the encoded

graph. Setting l=1 allows a node to get its inputs from a node in the column

immdediately preceeding it. If l=nc is set, a node can get its inputs from any

nodes in the columns to its left. Varying the parameters nc,nr and l therefore

results in various graph topologies.

For processing purposes, the circuits represented in a Cartesian graph are

encoded as an ordered list of integers known as a chromosome. Given the arity

na = 2, the chromosome contains nc.nr triplets (φ ,N1,N2) for a node Ni where

φ is a processing element from G while N1 and N2 are na addresses of nodes
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Figure 7: A Full adder represented in a Cartesian graph with parameters
G={AND0,OR1,XOR2,NOT3}, na = 2, ni = 3, no = 2, nc = 7, nr = 1.
The chromosome with underlined node functions and highlighted outputs:
(2,0,2)(0,0,1)(2,1,3)(0,2,3)(1,4,6)(3,7,5)(1,8,7)(5,7)

from which the node Ni gets its inputs. The tail of the chromosome contains no

integers which specify the nodes to which the POs are connected. Then, the total

number of integers in the chromosome are given by nc.nr(na +1)+no. Note that

we fixed the graph shape at ncx1 because this shape allows all the different circuit

topologies possible under the given graph constraints. For example, it is possible

to encode a a 2x2 circuit topology in a 4x1 grid.

An example of a full adder circuit encoded in a Cartesian graph is shown in

Fig. 7. We note that the NOT gate does not obey the arity constraint na = 2 and

therefore during the decoding process, out of the two node inputs N1 and N2,

the input N2 is simply ignored. Finally, note that it is also possible to include

complex gates such as AOI21 and OAI21 in the gate library G. We however did

not consider complex gates for two reasons: (i) The fault simulator HOPE that we

are using cannot directly process complex gates (albeit a workaround is possible)

and, (ii) to be comparable to similar works on gate-level automatic synthesis of

digital circuits such as [Vasicek and Sekanina, 2014] and [Kazarlis, Kalomiros,

and Kalaitzis, 2016] which did not use complex gates.
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B. Constraining the Cartesian Graph

The evolutionary design of non-trivial circuits such as w-bit multipliers is very

difficult since their fitness landscapes are quite rugged [Miller, Job, and Vassilev,

2000]. And then to search for a circuit which is not only functionally correct

but also exhibits an improved Pf ault over the baseline is even more challenging.

Therefore, the initial population must be seeded appropriately (evolutionary

optimization). Here, the baseline is defined as: the target circuit synthesized by

conventional synthesis tools. The intention is to synthesize circuits functionally-

equivalent to the baseline but more fault-resilient ,i.e., circuits with a lower Pf ault

than baseline.

The most straightforward way of seeding the initial population is to simply

add the baseline to the population as nth member. Since the seeded circuit

(baseline) will be functionally-correct, it will be sorted to the top and from there,

the evolutionary search operators will disseminate the baseline’s genetic material

to the rest of the population. There is, however, another way of approaching this

problem where the fact that we are only looking for functionally-correct circuits

can serve as an advantage. This is explained in the following paragraphs.

In most cases, if a circuit A has lower Pf ault than another circuit B, A will also

incur a higher implementation cost (e.g., area, power etc.). Thus, an improvement

in fault-resilience comes at the cost of an increase in the hardware resources. With

this understanding, and with the premise that seeking increased fault-resilience

is of prime importance to the designer, we are not attempting to build circuits

that are both more fault-resilient and cost-efficient compared to the baseline.

And to that end, the genetic material of the baseline is seeded in all members

of the population and kept intact. This is achieved through enforcing additional

19



constraints on the Cartesian graph.

If gbaseline gives the gate count of the baseline and therefore the minimum

number of nodes required to encode the baseline, then the nodes occupied by

the baseline from N0 to Ngbaseline−1 given nc.nr > gbaseline are designated as non-

programmable. While, the remaining nodes from Ngbaseline to Nnc.nr−1 are made

available to the search process for improving Pf ault . This results in an auxiliary

circuit which cascades to the baseline and improves Pf ault of the final circuit. If

the baseline implements the logic function g(x) = y, then the auxiliary circuit

logically acts as a wire or a buffer h(y) = y as shown in Fig. 8. Thus, the desired

logic function remains unchanged. Consider the full adder encoded in a 7x1

shaped Cartesian graph from Fig. 7. Under the idea mentioned above

1. Only the colorless nodes (8 and 9) are programmable, i.e. the search

process is only allowed to modify the logic function of and/or connections

to these nodes.

2. The graph outputs can either be taken from the programmable nodes (8 and

9) or from the colored nodes with dotted boundaries which are supposed to

be the POs of the seed (nodes 5 and 7 for the encoded full adder in Fig. 7).

3. This last constraint applies to connections amongst the nodes. The input

connections to the colored nodes (3,4,5,6 and 7) as encoded cannot change.

The outgoing connections from the solid colored nodes (3,4 and 6) also

cannot change. Inputs to a programmable node can be taken from either

the colored nodes with dotted boundaries (5 and 7) or from another

programmable node while also maintaining the levels-back l and no-

feedback constraints mentioned in IV-A.
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Figure 8: Cascading additional circuitry to enhance the fault-masking property of the
baseline. The auxiliary circuit acts as a wire and does not change the intended logic
function g.

These graph constraints then serve two purposes: (i) Since the genetic

material of the baseline remains intact in all members of the population,

it becomes easy to meet the functional-equivalency objective, and (ii) a

considerable reduction in the size of the search space is achieved. Since SYFR

only has to focus on finding the best auxiliary circuits for logic-masking, the

design space exploration becomes easier.

1. Population Initialization

The first generation of population is initialized as follows. The graph size is

selected such that the condition nc.nr > gbaseline is satisfied and each member

of the population is seeded with the baseline. The nodes from N0 to Ngbaseline−1

encode genes of the baseline while the rest of the nodes from Ngbaseline to Nnc.nr−1

are randomly initialized. The graph POs are connected to the POs of the baseline

and thus all members of the initial population are actually fully working solutions.

The population is evolved under the graph constraints introduced above. The

evolutionary process is not allowed to modify genes of the baseline. Instead, the

process focuses on the programmable nodes in search of suitable auxiliary logic

that helps improve Pf ault of the final circuit while maintaining the intended logic

function.

21



C. Search Algorithm

The search is conducted using an advanced variant of the Cuckoo Search (CS)

algorithm [Yang and Deb, 2009] known as Cuckoo Search with Genetically

Replaced Nests (Cuckoo-GRN) [Oliveira, Oliveira, and Affonso, 2018]. Cuckoo-

GRN combines the benefits of genetic algorithms (GA) into the CS algorithm.

In Cuckoo-GRN, instead of replacing the worst nests with randomly generated

nests, the worst nests are genetically replaced. We applied it to our problem as

follows

1. An initial population of size n is created according to IV-B1.

2. The fitness function f is called for each candidate circuit.

3. h genes (or integers) of a circuit selected at random undergo point

mutations without violating the constraints defined in IV-B. The random

step length h is drawn from a Lévy distribution: Lévy∼ h = t−λ ,(1 < λ ≤

3). If the mutated circuit exhibits better fitness than its parent, it replaces its

parent in the population. The process is repeated n.pa times, (0 < pa <1).

4. The population is sorted in ascending order of fitness values.

5. n.pa number of worst candidate circuits are replaced by new circuits

created using crossover and mutation. It is a single-point crossover where

one of the parents is always the current best candidate while the other

parent is selected using a 3-way tournament from the rest of the population.

The crossover also maintains the graph constraints (IV-B). The children are

further mutated using Lévy flight. Finally, the children replace the worst

circuits in the population.
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6. Steps 3–5 are repeated until the termination criteria is satisfied.

D. Fitness Function

We intend to achieve two objectives: (i) to synthesize circuits functionally

equivalent to the baseline, and (ii) improve their Pf ault as much as possible. Thus,

it is a dual-objective optimization problem. We use a consolidated fast fitness

function formed by the weighted sum of the individual objective values. The

fitness is defined as a function to be minimized as

f = α(SAT )+(1−α)(Pf ault) (1)

In this definition, SAT represents the functional equivalence objective. SAT

is a boolean variable as it can only take two values (0 or 1). SAT = 0 means

the candidate circuit is functionally equivalent to the baseline and vice versa.

Pf ault represents the fault-resilience objective whereas α controls the weight

distribution between the two objectives. A successful candidate will have SAT =

0 in addition to a lower value of Pf ault compared to the baseline.

E. Implementation

In this section, we describe our implementation of SYFR and choice of tools

thereof. With reference to Fig. 6, we start with a gate-level decription of the target

circuit synthesized with conventional synthesis tools, the Yosys synthesis suite

[Wolf, Glaser, and Kepler, 2013] and Berkely-ABC [Brayton and Mishchenko,

2010]. This circuit serves as the baseline and is also used to initialize the

population. The software is written in the python programming language. We also
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Table 5: Algorithm and fitness function parameters.

Parameter Value
n 20
p 0.3
kmax 100 000
α 0.99

use the PyEDA python package [Drake, 2015] for some of the boolean algebra

in our implementation. The CS algorithm parameter values used in our setup are

listed in Table 5. These values are used as recommended in the literature [Yang

and Deb, 2009]. The fitness function parameter α is set at 0.99 so as to very

heavily favor the functional-correctness objective.

It is important to be able to calculate the fitness function in as little time as

possible. The first objective SAT is obtained by creating a miter circuit from the

candidate and reference circuits for formal equivalence checking. The miter is

converted to its conjunctive normal form (CNF) using Tseitin’s transformation

formulas from [Manich and Figueras, 1997] and the resulting CNF formula

is passed as a DIMACS CNF [Prestwich, 2009] to a SAT-solver (precosat

[PrecoSAT]). This Boolean satisfiability- based equivalence checking approach

for formal verification of circuits powered by modern SAT solvers can deliver

results quickly including large circuits. More information on the said technique

can be found in [Vasicek and Sekanina, 2012] where it is described in greater

detail.

Next, we require a tool to process and extract the faults list of the given

circuit. The tool should also give the fault observability counts at the POs

which are required for calculating Pf ault . For this purpose, we used the parallel

fault simulator HOPE [Lee and Ha, 1996] which proved sufficiently fast to be

24



incorporated into the search process. During the simulation, we collect and store

all the unique functionally-correct circuits. Actually, two circuits can have the

same values of Pf ault but different hardware costs (due to different hardware

configurations) and vice versa. Accordingly, to detect circuits with unique

hardware configurations, we distinguish circuits based on three parameters:

Pf ault , relative area (IV-A) and, the number of logic levels. This allows us to

collect a larger spread of circuits.

After the search algorithm terminates at the given criteria, we process all

of the circuits collected for power consumption, delay and PDP. The delay is

calculated using Berkely-ABC for the MCNC library. For power consumption,

we use the SIS software [Sentovich et al., 1992] which has provision for

estimating the dynamic power consumption of a circuit valid for the MCNC

library at Vdd = 5 V and 20 MHz. We then process all the circuits collected

for pareto-optimality with respect to two objectives: (i) Pf ault and (ii) area,

power, delay or PDP. For non-dominated sorting, we used the pareto.py program

available from [Woodruff and Herman, 2013] which performs an epsilon-

nondominated sort [Deb, Mohan, and Mishra, 2005] on the input circuits for

the given objectives. Note that all the computations described in this work were

performed on a desktop-class Linux machine equipped with an Intel i5-9500 @

3.00GHz (6 cores) processor and 16GB of RAM.
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V. EXPERIMENTAL RESULTS

The test circuits consist of 7 circuits whose hardware profiles are listed in

Table 6. All of these circuits were synthesized by conventional synthesis tools

(Yosys, Berkely-ABC) and serve as the baseline for SYFR. Of the 7 circuits, the

performance of SYFR is studied extensively for addr4u, addr8u and mult4u in

V-A. The circuits c432, c1355 and c880 belong to the ISCAS set. They are used

to demonstrate the technique’s scalability in V-B. Finally, addr4ur is used for a

demonstrative purpose in V-C.

The goal of SYFR is to produce functionally-correct circuits showing the

lowest possible Pf ault for a given graph size. SYFR was applied to addr4u, addr8u

and mult4u for four graph sizes or the number of columns nc: (1.25)gbaselinex1,

(1.5)gbaselinex1, (1.75)gbaselinex1 and (2.0)gbaselinex1. At each graph size, 3

independent SYFR runs were conducted, and in total, 12 independent SYFR runs

were conducted for each circuit. The search algorithm stops when the predefined

number of generations kmax is reached. From the description of SYFR in IV-B,

it is clear that the best solution in any generation will always be functionally-

correct. Thus, instead of reporting fitness values, we only report Pf ault values in

the following.

Table 6: Test circuits profiles.

Circuit Description PI PO Pfault Area Level Gates Delay (ns) Power (uW)
addr4u unsigned 4-bit adder 8 5 1.0 24.33 7 18 7.9 97.0
addr4ur unsigned 4-bit adder (carry-in) 9 5 1.0 28.0 9 20 9.9 122.5
addr8u unsigned 8-bit adder 16 9 1.0 54.65 15 45 15.9 282.2
mult4u unsigned 4-bit multiplier 8 8 0.996 89.98 17 75 22.8 524.0
c432 27-channel interrupt controller 36 7 0.995 161.76 27 171 31.2 782.5
c1355 32-bit SEC circuit 41 32 1.0 295.63 12 191 17.7 1231.2
c880 8-bit ALU 60 26 0.999 329.68 21 317 23.6 1576.8
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Figure 9: Pf ault spread of the evolved solutions for addr4u, addr8u and mult4u at different
values of nc.

A. Synthesis Results

Figure 9 shows the Pf ault values of all the evolved circuits in all runs at the end

of evolution. All of the evolved circuits reported are functionally-correct. The

baseline is also shown in these figures. Figure 9 shows that the Pf ault spread

becomes larger as the number of components available to SYFR increase. In other

words, the number of circuits generated by SYFR increases. The spreads are also

dense and connected indicating that SYFR produced circuits at all different levels

of Pf ault from the baseline to the best evolved.

Table 7 lists the best, worst and mean improvements in Pf ault for the best

evolved circuits for all runs at each graph size tested. As nc is increased, SYFR

reports more improvement in Pf ault . On average, Pf ault improved by 73.6 % when

the number of columns nc increased from (1.25)gbaseline to (1.5)gbaseline, 32.25

%, from (1.5)gbaseline to (1.75)gbaseline, and only 11 %, from (1.75)gbaseline to

Table 7: Pf ault improvement [%] of the best evolved circuits compared to the baseline at
various Cartesian graph columns nc (higher is better)

nc = (1.25)gbaseline nc = (1.5)gbaseline nc = (1.75)gbaseline nc = (2.0)gbaseline
best worst mean best worst mean best worst mean best worst mean

addr4u 18.8 15.7 16.7 ± 1.5 32.3 28.9 30.0 ± 1.6 45.1 43.7 44.6 ± 0.7 51.1 44.2 48.2 ± 2.9
addr8u 22.0 18.4 19.9 ± 1.5 34.9 32.0 33.7 ± 1.3 45.6 42.7 44.0 ± 1.2 50.5 46.4 48.7 ± 1.7
mult4u 25.5 19.5 23.1 ± 2.6 41.7 38.5 39.7 ± 1.4 47.7 45.2 46.7 ± 1.1 54.6 51.2 53.4 ± 1.6
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Figure 10: Pf ault curves of the test circuits: addr4u, addr8u and mult4u.

(2.0)gbaseline. Thus, as the graph size is increased, the gains in Pf ault improvement

start to reach the point of diminishing returns. This is also observed in the

decreasing slope of the dotted line (red) connecting the best evolved circuits in

Fig. 9.

The Pf ault convergence curves are plotted in Fig. 10. Almost all of the runs

report a steep decrease in Pf ault . This means that SYFR has a fast convergence

rate. We also observe that the bulk of reduction in Pf ault was achieved before 50k

generations. Furthermore, for the same number of columns nc, the Pf ault curves

converge to very close values. This is also indicated by the standard deviations

reported in Table 7. This is valuable for practice because it means that a single

SYFR run almost always provides an optimal-quality solution.

1. Overall Comparison

The curves for mean improvement in Pf ault for the test results of addr4u, addr8u

and mult4u are shown in Fig. 11. Again, for all the number of columns nc tested,

there is a quick improvement in Pf ault . The curves then taper off and remain

quite stable until kmax is exhausted. It is reasonable to conclude that typically

kmax = 50000 generations should be enough to obtain high-quality solutions for
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Figure 11: Overall comparison: Mean Pf ault curves for different nc values. Mean
calculated for addr4u, addr8u and mult4u.

most circuits. Given nc and a target Pf ault , the data presented in Fig. 11 can be

used to roughly estimate the number of generations required to reach the target

Pf ault .

2. Effect of the Proposed Graph Constraints

The effect of the Cartesian graph constraints proposed in IV-B was studied.

A population initialization different to the one described in IV-B1 was tested

as follows. The baseline was simply added to the initial population as the nth

Figure 12: Pf ault curves of the test circuits: addr4u, addr8u and mult4u. The evolution
was carried out in absence of the graph contraints proposed in IV-B.
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member and the proposed graph constraints (IV-B) were lifted. The rest of the

setup was kept the same as described in V-A. The convergence curves for the

objective Pf ault are shown in Fig. 12.

By comparing Fig. 12 to Fig. 10, one can clearly observe degradation in

Pf ault curves for the corresponding number of columns nc. It is also clear that the

best evolved circuits have worse Pf ault compared to Fig. 10. This confirms the

reduction in search space created by the technique proposed in IV-B. As SYFR

only focuses on finding the auxiliary circuit for fault-masking, the task of design

space exploration is made easy.

B. Scaling SYFR

In the experiments above (V-A), Pf ault of a circuit was calculated for all of

the input space. However, to scale SYFR, a random set of test vectors must

be used for Pf ault estimation during synthesis. This is synonymous to the use

of 10 000 random test vectors for estimating line testabilities in the line-

approximation method for generating approximate circuits by Sánchez-Clemente

et. al. [Sanchez-Clemente et al., 2016]. To qualify the error-masking schemas

constructed, the authors designed a metric called the error probability. For an

error-masking schema under test, a fault simulation with 50 000 randomly

generated test vectors was performed by means of the fault simulator HOPE [Lee

and Ha, 1996]. The fault list used was the same list previously used for line-

testability analysis. All the faults contained in the fault list were tested for each

input vector. Considering all the faults equally likely, the total error probability

(EP) was then computed as the average number of faults detected per input vector,

divided by the size of the fault list.
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Figure 13: Pf ault curves of the test circuits: c432, c1355 and c880.

(a) (b) (c)

Figure 14: (a) Mean Pf ault curves for 50 000 vectors. (b) Improvement EP as a function
of area overhead and (c) Relationship between improvements in EP and Pf ault

We also chose to use 10 000 randomly generated test vectors to estimate

Pf ault during evolution. At the end of the evolution, the best evolved circuits

were tested extensively to qualify our choice. This approach for scaling SYFR

was tested for the c432, c1355 and c880 test circuits listed in Table 6. In V-

A, we observed that SYFR performs consistently and that a single evolutionary

run should be sufficient. Moreover, the best tradeoffs between hardware costs

and fault-tolerance were achieved at nc = (1.75)gbaseline. Therefore we decided

to apply SYFR to the test circuits at nc = (1.75)gbaseline for kmax = 50000

as suggested in V-A1. The Pf ault convergence curves are shown in Figure 13.

Clearly, the reduction in Pf ault achieved at the end of the run compares with the

results presented for the smaller test circuits in V-A (Fig. 10).
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After the evolution, the Pf ault of the best evolved circuits (c432) was

recalculated as follows. For each evolved circuit, 100 Pf ault values were

calculated by means of fault simulation with HOPE. Each time 50 000 new

random test vectors were generated for the fault simulation. The final Pf ault was

given as the average of the 100 Pf ault values. Figure 14(a) shows almost no

difference in the Pf ault values calculated during evolution and the recalculated

ones. Thus, the use of 10 000 random test vectors during evolution should be

reasonable.

For the best evolved circuits (c432), we also calculated the EP metric defined

in Sánchez-Clemente et. al. [Sanchez-Clemente et al., 2016]. The improvements

in EP as a function of area overhead are presented in Fig. 14(b). The relationship

between the two is almost linear. The improvement in EP as a function of

improvement in Pf ault is plotted in Fig. 14(c). The relationship between these two

metrics is also linear. In conclusion, this fault-resilient analysis in terms of EP in

addition to the Pf ault metric used in SYFR gives credibility to the logic-masking

abilities of the circuits evolved with SYFR.

C. Building Larger Arithmetic Circuits

Smaller adders and multipliers can be used as building blocks for implementing

larger adders and multipliers. In this section, we test the hypothesis that whether

the larger circuit also exhibits improved Pf ault if its constituent circuits are fault-

resilient. Since it is possible to implement an 8-bit ripple-carry adder simply

by concatenating two 4-bit adders, we ad-hoc selected multiple addr4u and

addr4ru adders with varying Pf ault values and concatenated them. The circuit

addr4ru (Table 6) is also a 4-bit adder but with a carry-in which is required for
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Table 8: Pf ault values of the 8-bit ripple-carry adders and their constituent 4-bit adders.

addr4u addr4ru addr8u
0.949 0.945 0.947
0.902 0.909 0.905
0.849 0.844 0.845
0.802 0.806 0.802
0.754 0.750 0.750
0.706 0.703 0.702
0.654 0.650 0.650
0.601 0.606 0.601

concatenation. The Pf ault values of the 4-bit adders used for concatenation and the

resulting 8-bit adders are listed in Table 8. Indeed from Table 8, we observe that

the 8-bit adders implemented have Pf ault values comparable to their constituent

adders. Thus, a combination of fault-resilient circuits will also produce a fault-

resilient circuit.

D. Data-Aware Synthesis

With the proposed SYFR, it is also possible to selectively strengthen a circuit

according to a typical workload. That is to say, when calculating Pf ault of the

circuit, only select input vectors which are deemed important are considered.

Here, this idea is demonstrated via an image sharpening example. Consider an

application where images of MRI scans of the brain classified as positive or

negative for Alzheimer’s disease are to be used for training a classifier. The

images however need to be sharpened before being processed by the classifier.

The sharpening process includes the application of a high pass filter to the image.

The kernel for a high pass filter used in our example is given below
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K =


−1 −1 −1

−1 8 −1

−1 −1 −1


We obtain the sharpened image Q(i, j) as: Q(i, j) = P1(i, j)+P2(i, j), where,

P1(i, j) is the original image and P2(i, j) is the filtered image obtained from

convolving P1(i, j) with the kernel K. Figure 15 shows an example case where

the original image and its filtered version are added to produce a sharper image.

The 8-bit adder performing this addition is our circuit of interest here. We tried

three different adder circuits for these image additions: the baseline unsigned 8-

bit addr8u from Table 6, an unsigned fault-resilient 8-bit adder synthesized using

SYFR (for all 216 inputs) and an unsigned selectively fault-resilient 8-bit adder

synthesized for a typical workload (select vectors).

The dataset used was obtained from kaggle [https://www.kaggle.com/

navoneel/; Online; accessed 27-January-2021] and it contains 253 images of MRI

scans of the brain. For data-aware synthesis, different approaches to analyze the

(a) (b) (c)

Figure 15: (a) Sample 8-bit grayscale image to be sharpened. (b) Filtered version of the
same image and (c) the sharper image obtained by adding the original image to its filtered
version.
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Figure 16: Percentage of occurence of the 8-bit pixel values for the images contained in
the dataset. Note that the input images were scaled to range (0-127) to get 8-bit sum at
adder outputs.

data to process can be taken. However, it is important to be able to collect the

information required for data-aware synthesis in a fast manner since the whole

point of data-aware synthesis is to reduce time to synthesis. In our case, we

focused on what operands (pixel values) were most likely to be processed by

the adder. This is a relatively straight forward approach but very fast to process

and effective. First, we analyzed the frequency of occurence of pixel values (i and

j) for all the P1 and P2 images to be added. The percentage of occurence plot of

the operands for these 8-bit grayscale images is shown in Fig. 16.

Based on the percentage of occurence plot, we selected operands with more

than 1 % percentage of occurence as important (the horizontal red line in Fig.

16). Then, all input patterns containing these select operands were considered

important. This translated into 15,360 input patterns out of the total 216 for

the 8-bit addition which is a 77 % reduction in the input space. Thus, we only

considered these 15,360 vectors for calculating Pf ault of the adder circuits during

synthesis with SYFR.
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(a)

Figure 17: Pf ault trace plots of addr8u for data-aware synthesis.

The above mentioned process only took us about 15 seconds and we can

safely assume that even if the dataset contained a large number of such 8-bit

grayscale images, e.g., 10 000, it would still only take less than 10 minutes to

obtain the occurence frequencies of the pixel values. In case the data to process is

unknown, one could analyze a sufficient amount of dataflow at the adder inputs

to confidently estimate the likelihood of each operand and then decide on what

operands should be selected. Note that for the same circuit, Pf ault value will vary

if the prescribed test vectors are different. For example, the baseline addr8u from

Table 6 has a Pf ault value of 0.995 instead of the listed 1.0 when considering these

select input vectors.

SYFR was applied with the selected input patterns for addr8u. This is done

by passing only the selected patterns to the fault simulator which then returns

fault detectability counts for the patterns provided. We are primarily looking to

improve time to synthesis. The Pf ault curves in Fig. 17 show a faster convergence

compared to the curves in Fig. 10 for corresponding values of nc.
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(a) (b)

Figure 18: Number of images processed erroneously by the adders.

Next, to assess the quality of data-aware synthesis, we performed fault-

injection tests and evaluated the performance of two 8-bit adders both of which

had a Pf ault value of 0.70 (arbitrary selection) where one of them was synthesized

for all 216 vectors while the other was picked out of the circuits collected from

the data-aware synthesis runs. For each image, we added it to its filtered version

100 times using the adder under test while the adder was injected with a fault at

a randomly selected node. We then compared the sharpened output image with

the reference image. If there was any difference between the pixel values of the

two images, we counted it as an error. For example, image #1 was processed

incorrectly 6 times out of 100 by addr8u. Thus, we obtained these error counts

for all 253 images of the dataset which are plotted in Fig. 18.

From these plots, we can clearly observe lower error counts in case of these 30

% more fault-resilient adders (red) establishing their better performance. We also

see that both adders perform comparably for the given dataset, but the data-aware

adder is slightly better and has the lower time to synthesis advantage. In total,

the baseline addr8u processed 4 011 images incorrectly while the adders from
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Figure 19: Pixel values processed incorrectly by the adders. The color intensity represents
the error magnitude.

general and data-aware synthesis processed 3,130 and 2,860 images incorrectly,

respectively.

Figure 18 only reveals information about the number of erroneous images

and not anything about the number of erroneous pixels overall. The output pixel

values of all the operands that were processed by each of the three adders were

checked against the reference value and the results are shown in the form of

heatmaps in Fig. 19. For an operand combination, its erroneous count is divided

by its occurence count. In the case of addr8u for example, the pixel combination

(i, j) = (128,128) appeared 1,900 times (occurence count) and it was processed

incorrectly 510 times due to the faults injected in the adder. Therefore, 510

divided by 1,900 gives 0.27 and this is what the color intensities in Fig. 19

represent.

In Fig. 19, we see that the heatmaps of the two fault-resilient adders

have clearly lighter color intensities with the data-aware fault-tolerant adder

(rightmost) being arguably better than the other fault-tolerant adder (middle). The

operands beyond 128 were emitted from these figures since they are absent in the

dataset under test as Fig. 16 shows. Similarly, the white spaces in these heatmaps

are also operand combinations which are absent in the images processed.
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Figure 20: Reliability curves for an arbitrary circuit at different values of Pf ault .

E. Effect of Pf ault on Circuit Reliability

Reliability-oriented applications require reliable systems and a reliable system

is built from reliable components. SYFR enables synthesis of reliable circuits

which can be used to implement reliable systems and subsystems. In this section,

we will observe the trends in circuit reliability at different values of Pf ault through

a simple example.

The reliability R(t) of a single module is given by exponential failure law

[Dubrova, 2008] as e−λ t . When Pf ault is accounted for, the reliability of a

circuit is given by e−Pf aultλ t on the assumption that Pf ault and the failure rate

λ are constant. The estimation of λ depends upon the type of technology being

used, the circuit size, and some other factors (e.g., environmental). Assuming an

arbitrary value of λ = 0.001 for a circuit, the reliability curves for different values

of Pf ault against time t are presented in Fig. 20.

From Fig. 20, it is clear that a circuit with a lower value of Pf ault is more

reliable. We observe that the gap between the different reliability curves is greater

initially which then reduces with time i.e., the reliability of all systems decreases

with time. Eventually, a fault-resilient circuit will not be more reliable than a
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non-fault-resilient circuit as its reliability reaches zero. Thus, with Pf ault being

considered in the reliability model, a user can estimate as to what Pf ault value

will be required to maintain the reliability of a given circuit within the required

bounds until mission duration.
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VI. ReCkt: A Library of Reliable Adders and

Multipliers

For benchmarking purposes, all the non-dominated adders and multipliers

collected from the synthesis runs (V.A) are available online under the MIT

license. The library ReCkt [Afzaal, 2021] contains all these circuits in Verilog

HDL format. Each file contains the verilog netlist of the circuit along with

a description of its hardware costs and Pf ault values. The file name identifies

the type of arithmetic circuit and its bit-width. The circuits available are non-

dominated with respect to Pf ault and area, power, delay, or PDP, the scatter plots

of which are attached in Appendix A.
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VII. SUMMARY AND CONCLUSIONS

The results presented in this paper certainly place the proposed approach

as a competitive methodology for designing fault-resilient circuits. SYFR is a

complete systematic method for automated synthesis of fault-resilient circuits

at the gate-level without considering technology-specifics. Since SYFR is based

on evolutionary computation, it is able to provide a multitude of tradeoffs in

comparison to the conventional synthesis tools. The circuits evolved can easily

be inserted at intermediate nodes without creating any single points of failure.

The superior performance of fault-resilient circuits at intermediate nodes was

demonstrated through an application on artificial neural networks. Results give

credibility to the fault-resilience metric Pf ault used by SYFR to characterize

a circuit’s tolerance to faults. The majority of SYFR’s synthesis success is

attributed to the proposed strategy for constraining the Cartesian graph. The graph

constraints made the evolution much easier as confirmed by experimental results.

It was also demonstrated that smaller fault-resilient arithmetic circuits can be

stacked to build large adders and multipliers which are also fault-resilient.

Another benefit of SYFR was that it does not require any special

computational resources to execute. A modern desktop-class computer can easily

implement SYFR since all of our experiments were conducted on a desktop-class

machine.

For future research, we plan to investigate ways to utilize circuits from ReCkt

library to build larger arithmetic circuits in an optimal way. We also intend to

investigate the evolutionary synthesis of error-resilient circuits. That is to say,

there are different error metrics which are application-oriented. For example,

PSNR is a metric which is used to gauge the quality of an image. Our goal
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would be to apply evolutionary circuit synthesis in such a way that the circuits

are evolved for improved PSNR performance in fault conditions.
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APPENDIX A: ReCkt Library

From the ReCkt library of reliable adders and multipliers [Afzaal, 2021].

(a)

(b)

Figure 21: Pareto-optimal addr4u circuits with respect to (i) Pf ault and (ii) area, power,
delay and PDP.
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From the ReCkt library of reliable adders and multipliers [Afzaal, 2021].

(a)

(b)

Figure 22: Pareto-optimal addr8u circuits with respect to (i) Pf ault and (ii) area, power,
delay and PDP.
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From the ReCkt library of reliable adders and multipliers [Afzaal, 2021].

(a)

(b)

Figure 23: Pareto-optimal addr8s circuits with respect to (i) Pf ault and (ii) area, power,
delay and PDP.
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From the ReCkt library of reliable adders and multipliers [Afzaal, 2021].

(a)

(b)

Figure 24: Pareto-optimal mult4u circuits with respect to (i) Pf ault and (ii) area, power,
delay and PDP.
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