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Abstract

ECG Recognition

Using Deep Recurrent Neural Networks

For Personal Identification

                                        Beom-Hun Kim

Advisor: Prof. Jae-Young Pyun, Ph.D.

Depart. of Info. and Comm. Eng.,

Graduate School of Chosun University

Securing personal authentication is a significant study in the security field.

Specifically, there are two methods as fingerprinting and face recognition for

personal authentication. But, these systems have some issues like fingerprinting

forgery or environmental obstacles. To solve the spoofing or forgery

identification trouble, various approaches have been taken into account involving

iris, electrocardiogram (ECG), and hybrid methods. Recently, ECG identification

has been widely studied in the field because of its unique character. For the

personal identification using ECG recognition, there are conventional several

methods such as linear discriminant analysis (LDA), principal component

analysis (PCA), support vector machine (SVM), deep neural network (DNN),

and recurrent neural network (RNN).

According to the particular studies, the best performance in ECG identification

is the RNN method as against the other methods. However, the these methods
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need a lengthy input signal for high classification accuracy. Therefore, these

methods may not be used in a real-time system.

This thesis shows the bidirectional long short-term memory (LSTM)-based

deep recurrent neural networks (DRNN) with the late-fusion technique for the

real-time ECG-based biometrics classification.

A preprocessing procedure for quick classification of ECG like noise removal

(or reduction), derivative filter, moving average filter, and normalization are

preproposed. The public dataset: MIT-BIH Normal Sinus Rhythm (NSRDB) and

MIT-BIH Arrhythmia (MITDB) are used for the experimental evaluation in the

proposed method.

The proposed method shows that in NSRDB, the overall precision 100%,

accuracy 100%, recall 100%, and F1-score 1. In the case of MITDB, the result

shows the overall precision 99.8%, accuracy 99.8%, recall 99.8%, and F1-score

0.99. This experiments prove that the proposed method accomplishes an overall

higher classification accuracy and efficiency against the conventional LSTM

approach.
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요 약

개인 식별을 위한

심층 순환 신경망 기반의 ECG 인식

김 범 훈

지도교수: 변 재 영

조선대학교 대학원 정보통신공학과

개인 인증 보안은 보안 분야에서 중요한 연구입니다. 특히 개인 인증에는 지

문과 얼굴 인식이 사용되고 있습니다. 그러나 이러한 시스템은 지문 위조 또는

환경 장애와 같은 특정 문제로 어려움을 겪습니다. 위조 또는 스푸핑 식별 문

제를 해결하기 위해 홍채, 심전도 (ECG), 및 하이브리드 방법과 관련된 다양한

접근 방식이 고려되었습니다.

최근 ECG 식별은 고유한 특성 때문에 널리 연구되고 있습니다. ECG 인식을

이용한 개인 식별을 위해 선형 판별 분석 (LDA), 주성분 분석 (PCA), 서포트

벡터 머신 (SVM), 심층 신경망 (DNN) 및 순환 신경망 (RNN)과 같은 기존의

여러 방법이 있습니다. 특정 연구에 따르면 RNN 모델은 다른 모델에 비해

ECG 식별에서 최고의 성능을 제공합니다. 그러나 이러한 방법은 높은 정확도

를 위해 긴 입력 신호가 필요합니다. 따라서 이러한 방법은 실시간 시스템에

적용되지 않을 수 있습니다.

본 논문에서는 심전도 기반 생체 인식 식별 및 분류를 위한 실시간 시스템을
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개발하기 위해 후기 융합을 통한 양방향 장단기 기억 셀 (LSTM) 기반 DRNN

(deep recurrent neural network)을 사용하는 것을 제안합니다. 잡음 제거(또는

감소), 미분 필터, 이동 평균 필터, 정규화와 같은 ECG의 빠른 식별을 위한 전

처리 절차를 제안합니다. MIT-BIH NSRDB (Normal Sinus Rhythm)와

MITDB (MIT-BIH Arrhythmia)의 두 가지 공개 데이터 세트를 사용하여 제안

된 방법을 실험적으로 평가했습니다.

제안된 LSTM 기반 DRNN 모델에 따르면 NSRDB에서 전체 정밀도는 100%,

정확도는 100%, 재현율은 100%, F1 점수는 1이었습니다. MITDB의 경우 전체

정밀도는 99.8 %, 정확도는 99.8%, 재현율은 99.8%, F1 점수는 0.99입니다. 실

험은 제안된 모델이 기존 LSTM 접근 방식과 비교하면 전반적으로 더 높은 분

류 정확도와 효율성을 달성한다는 것을 보여줍니다.
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Ⅰ Introduction

  1.1 Research background 

 In recent years, varied studies including various basic methods have been carried 

out in biometric systems, like a fingerprint, iris, face, voice, and electrocardiogram 

(ECG). However, fingerprint and face recognition systems have some disadvantages 

in the safety of personal authentication. Disadvantages are environmental obstacles, 

or forgery, such as hair, glass, or light. Presently, voice recognition systems take 

commonly advantage of carrying out simple tasks, like changing the TV channel, 

turning the lights off or on, or making a phone call. But, voice recognition systems 

are not enough elaborate to be taken into account as a dependable solution in the 

authentication system because of the danger of spoofing with a recorded voice in 

place of the lawful voice. Therefore, to consider forgery or spoofing identification 

problems, other approaches have to be addressed, ECG, as suggested in this thesis. 

ECG is to record after measuring the electrical signal of the heartbeat of humans. 

For ECG biometric systems, using linear discriminant analysis (LDA), principal 

component analysis (PCA), support vector machine (SVM), deep neural networks 

(DNN), and different analysis methods have been widely researched and used to 

medical disease diagnosis and personal identification systems [1-4]. The foregoing 

methods well-known as existing ECG identification procedures are needed the 

feature extraction to get high accuracy in the classification procedures. The latest 

deep learning methods do not use conventional feature extraction. In addition, to 

gain high accuracy, the deep learning methods need lengthy input data. The 

conventional personal authentication system exploiting ECG can be shown as shown 
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in Figure 1.

 Figure 1 presents the conventional personal authentication system exploiting ECG 

with a deep learning method. First of all, an ECG database of individuals is 

needed that includes all kinds of ECG signals. The ECG of the state of an 

individual means calmness, eating, sleeping, running, walking, and etc.

And then, a deep learning system is trained and tested using the individual ECG 

database; accordingly, an authentication server completed. For personal 

authentication, the ECG input data from the dashed box in Figure 1, which is not 

trained and tested in the training and testing procedure, is sent to the server of 

authentication. The input ECG data are classified by the deep learning system into 

a certain user; consequently, the authentication is successful. This system for 

authentication may be applied for different self-certification services, like bank 

vaults, vehicles, and automated door locks.

Figure 1. Conventional personal authentication system using ECG
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  1.2 Research objective 

  This thesis suggests the bidirectional long short-term memory (LSTM)-based deep 

recurrent neural networks (DRNN) to construct a system of ECG recognition for 

classifying the human ECG. The two public datasets from the Physionet database 

are used for the experimental evaluation using performance metrics in the proposed 

method [5]. The principal contributions of this thesis are as follows:

   ● The pre-processing procedures involving grouping the ECG signal of the 

short length, segmentation using a fixed segmentation time period, segmentation 

using R-peak detection, and non-feature extraction are proved. These procedures 

are taken into account authentication time for applying the real-time system.

   ● The bidirectional DRNN for ECG classification joined with the late-fusion 

technique is presented and performed. To the best of my belief, the proposed 

bidirectional DRNN model for personal classification has not been explained in 

the conventional literature.

  1.3 Thesis organization

 This thesis consist of as follows. Related analysis in the literature is reviewed in 

Chapter Ⅱ. The proposed pre-processing and proposed LSTM-based DRNN for 

ECG are explained in Chapter Ⅲ. Experimental results and concluding remarks are 

presented in Chapter Ⅳ and Ⅴ, respectively.
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Ⅱ Background and Related work

2.1 Electrocardiogram (ECG)

2.1.1 ECG Principle of occurrence

 The human heart is the central muscle organ of the circulatory system that 

circulate blood. It acts as a pump that supplies blood through the blood vessels to 

the entire body by repeated contraction and relaxation periodically. As shown in 

Figure 2, the heart consists of two atria (right atrium, left atrium), two ventricles 

(right ventricle, left ventricle), the sinoatrial node, atrioventricular node, bundle of 

His, bundle branch, Purkinje fibers, and cardiac muscle (atrial muscle; ventricular 

muscle). The atrium is responsible for accepting blood (the left atrium is from the 

lungs; the right atrium is from the upper and lower aorta). The right ventricle 

sends blood coming from the right atrium to the lungs through the pulmonary 

artery. The sinoatrial node can control the heartbeat according to the condition of 

the entire body, which means periodically transmitting electrical signals to regulate 

the contraction cycle of the heart. The sinoatrial node is situated on the upper wall 

of the right atrium. The heart voltage, which is created the fastest than other cells 

in the heart begins at the sinoatrial node. 

 The heart voltage spreads to both atria, contracting and relaxing the heart. It then 

reaches the atrioventricular node and takes approximately 0.1 seconds to pass 

through the atrioventricular node, which is delivered to the bundle of His. The 

electric current delivered to the bundle of His flows back to each branch, and the 

left and right branches are transmitted to the Purkinje fibers that are spread like a 

net throughout the left and right ventricular walls. The electric current spreads 



- 5 -

through the Purkinje fibers to the ventricular muscles. The electricity generated at 

this time is referred to as an electrocardiogram [6-9].

Figure 2. The structure of the heart and the construction of ECG cycle [10].
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2.1.2 ECG signal

 The measurement of the electrical signals of the heart was first attempted in 1903 

by Willem Einthoven, a Dutch physiologist; the term electrocardiogram (ECG) was 

first used then. ECG refers to a weak current generated when the heart beats to 

generate a potential distribution on the body surface;, this potential change is 

measured and recorded on the body surface [11, 12]. Since then, ECG has been 

used as a significant element in the diagnosis of heart disease, and in recent years, 

research has been actively conducted as a signal for personal authentication. 

 The current generated in the sinoatrial node contracts the atrium, passes through 

the atrioventricular nodule, reaches the Purkinje fibers of the ventricle, and causes 

ventricular contraction. When the ventricle is filled with blood and the next current 

arrives, the ventricle contracts again. The depolarization (systolic phase) and 

repolarization (recovery phase) are referred to as cardiac cycles and take about 0.8 

seconds.

Figure 3. The waveform of the ECG
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 The electrical activity of the ECG cardiac cycle is expressed as a waveform, and 

the waveform of the ECG is composed of P, QRS (same as QRS complex), and T 

waves as shown in Figure 3. 

 The P wave is the atrial depolarization that occurs when electrical stimulation 

from the sinoatrial node contracts the atrium and has a gentle and round shape. 

The P wave takes 0.05 to 0.12 seconds and signals with amplitudes as small as 

0.05 mV to 0.25 mV are measured. Particularly, the P-wave is associated with 

arrhythmia. 

 The P-R interval is from the starting point of the P wave to the starting point of 

the QRS complex and represents the time it takes for the electrical stimulation of 

the atrium to pass through the atrioventricular node to the bundle of His. The 

normal P-R interval is within 0.2 seconds. If the normal PR interval is delayed by 

more than 0.2 seconds, the conduction disturbance of the atrioventricular nodule is 

shorter than 0.12 seconds, which means that the contractile stimulation of the heart 

started in a place other than the sinoatrial node.

 The QRS complex represents a depolarization state in which the ventricle 

contracts, and as a reference signal when measuring the heart rate, has a narrow 

and large amplitude. The normal period is 0.06 to 0.12 seconds, and signals with 

amplitudes of 1.5 mV are measured.

 The Q-T interval is between the start point of the Q wave and endpoint of the T 

wave and represents the time from the start of ventricular depolarization to the end 

of repolarization. In the normal case, it takes 0.32 to 0.4 seconds.

 The T wave is the repolarization of the ventricle, which indicates the recovery 

phase after ventricular contraction and has an asymmetrical shape. It is a signal 

with an amplitude of 0.5mV or less, takes 0.1 to 0.25 seconds, and when 
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abnormal, it becomes flat or inverted. There are individual differences because the 

T wave that occurs in the heart muscle. Table 1 presents a summary of the ECG 

characteristics. Additionally, a detailed configuration of the ECG of two cycles is 

shown in Figure 4.

Table 1. A summary of the ECG characteristic

Type Definition
Duration

(second)

Amplitude

(mV)
Relation

P wave Atrial depolarization 0.05~0.12 0.05~0.25 Arrhythmia

QRS complex Ventricular depolarization 0.06~0.12 0.1~0.15 The standard of heart rate

T wave Ventricular repolarization 0.1~0.25 0~0.5 Individual variation

Figure 4. The detailed configuration from ECG of two cycles
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2.2 Measurement method 

2.2.1 Standard limb leads

 The standard limb leads is the most basic electrocardiogram recording method, 

which is a method of attaching electrodes to two specific body parts and recording 

the voltage difference between the electrodes using an electrocardiogram. As show 

in Figure 5, LEADⅠis the potential difference between the left hand (+) and right 

hand (-). LEAD Ⅱ is the potential difference between the left foot (+) and right 

hand (-). When LEAD Ⅲ is the potential difference between the left foot (+) and 

left hand (-), LEAD Ⅱ can be expressed as the vector sum of LEAD Ⅰ and 

LEAD Ⅲ according to Einthoven's equilateral triangle law. The standard limb 

induction method can measure the electrical signal of the longitudinal section of the 

heart.

 

Figure 5. The ECG measurement principle by limb leads method [13].
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 2.2.2 Precordial lead

 Chest leads represent the potential difference between the triangular electrical 

center electrode and the electrode mounted on the chest wall. As shown in Figure 

6, six electrodes are attached to the chest wall as if surrounding the left side of 

the heart. V1 and V2 are the points where the 4th intercostal and right margin of 

the sternum, and 4th intercostal and left margin of the sternum meet, respectively. 

V1 and V2 are referred to as septal leads, and when the left arm is set to 0°, 

components of 120° and 90° are detected, respectively. V3 is the midpoint of V2 

and V4, and V4 is the point where the 5th intercostal line and mid clavicle line 

meet; it is referred to as the anterior lead and detects components of 75° and 60°, 

respectively. V5 is located on the anterior axillary line at the same height as V4, 

and V6 is attached to the mid axillary line at the same height as V4. V5 and V6 

are referred to as lateral leads, measuring the directions of 30° and 0°, respectively, 

as well as the cross-section of the heart.

        

Figure 6. Electrode Location of precordial leads [13]
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2.3 Basic preprocessing 

2.3.1 Low and High pass filter

 Generally, the ECG signal is distorted because of the breathing and power supply 

devices for ECG measurement. The frequency band of the ECG is mostly formed 

in the low band from 0.05 Hz to 100 Hz, thus, it is significantly affected by the 

low-frequency noise caused by respiration and movement. Therefore, to remove low 

and high-frequency noise, low and high pass filters are utilized. Even when low 

and high pass filters are employed, the noise of the ECG signal cannot be 

completely removed. Thus, additional signal processing methods suitable for this 

purpose are required.

 In the case of a bandpass filter, it is used to detect the QRS complex of the 

ECG. Typically, a band of 2 ~ 58 Hz is set as the passband. The size of the 

passband is variably applied and used according to its purpose of use.

2.3.2 Moving Average

  Moving average is a useful method for analyzing trends across data by creating 

a series of averages for several subsets of the entire data set. If a moving average 

is applied to time series data with many data fluctuation, it can find out the 

approximate trend of fluctuations in the time series data can be determined. This is 

one of the simplest and most widely used FIR filters in signal processing. The 

present output is created using the average of the past, present, and future values 

of the data. The shape of the output signal is influenced by the size of the subset 

to be averaged, and the degree of smoothness is determined. Therefore, it is 
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possible to obtain the effect of reducing the noise of all the data by newly 

composing the data while sorting by the average of a given data subset. 

  The moving average equation can be expressed as (1) and (2).

                         (1)

                         (2)

    indicates the average of a total of  data from  th data to  th 

data. Based on (1) and (2), a moving average filter that calculates continuous 

values can be expressed as (3).

                              (3)
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2.4 Classifier

2.4.1 Principal Component Analysis (PCA) 

 The principal component analysis (PCA) method refers to a method of reducing 

the dimension by taking the entire data and projecting it linearly along the axes of 

several eigen directions with large variances [14]. Reducing the dimension of the 

input vector through PCA transformation has the effect of data compression by 

maintaining information on the overall distribution of the data and removing noise 

parts that do not affect the variance. Furthermore, PCA is designed to reduce 

dimensions efficiently while retaining the original characteristics of data, thus, it can 

be regarded as an optimal linear transformation in terms of the mean square error 

(MSE). Additionally, when it is difficult to interpret the correlation between various 

data, it is possible to extract and analyze several independent principal components 

by linearly transforming the correlated variables.

                 (a)                                    (b)

Figure 7. An example of principal component analysis
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  As shown in Figure 7, the direction with large variances, such as component 1 

is found, and component 2 that is orthogonal to component 1 is found. Component 

1 is the direction that contains the most information in the given data. In other 

words, the correlation of traits is the greatest direction. Component 2 is the 

direction with the most information among the directions perpendicular to 

component 1. The direction found through this process is referred to as the 

principal component because it is the direction of the main variance in the data. 

Consequently, the principal component analysis creates a new axis so that the 

variance represented by the data sample is maximized.
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2.4.2 Linear Discriminant Analysis (LDA) 

 Linear discriminant analysis (LDA) is an algorithm that analyzes the decision 

hyperplane minimizing the variance of data within the class and maximizing the 

variance between classes. LDA has the advantage of relatively accurately classifying 

feature vectors between classes by maximizing class separation [15, 16]. In other 

words, the LDA method maximizes the deviation outside the group and minimizes 

the deviation within the group so that the data can be easily divided, and the 

group can also be easily separated. Additionally, because the location of the input 

data does not change, the line is drawn so that the given class can be clearly 

distinguished, thus it can prevent overlap between groups, as shown in Figure 8.

Figure 8. An example of linear discriminant analysis
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2.4.3 Support Vector Machine (SVM) 

 The support vector machine (SVM) is an algorithm that creates a hyperplane with 

the maximum margin for each class to be classified from given data and classifies 

it based on the hyperplane when new data is given. The margin refers to the 

distance from the data closest to the decision boundary among the training data to 

the decision boundary. The data located closest to the decision boundary is the 

support vector. If the training data is fixed, the margin and support vector depend 

on the decision boundary. To reduce the generalization errors, maximizing the 

spacing between the two areas is recommended, so the decision boundary with the 

maximum margin is found. In the SVM, the linear crystal boundary with the 

maximum margin is referred to as a hyperplane, as shown in Figure 9. In this 

way, finding the maximum margin at the current dimension is referred to as linear 

SVM.

Figure 9. An example of Linear support vector machine classification
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 If the given data cannot be separated from the current dimension, it can be 

transformed to a higher dimension to create a fine hyperplane, as shown in Figure 

10. This is referred to as nonlinear SVM. Nonlinear SVM increases the amount of 

computation in dimensional transformation. To solve this problem, a function known 

as kernel trick can be used to significantly reduce the amount of computation and 

apply it.

 SVM has the advantage of classifying data probabilistically and most efficiently; 

however, if the estimation result is wrong, the next closest class cannot be known.

Figure 10. An example of nonlinear support vector machine classification
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2.4.4 K-Nearest Neighbor (KNN) 

 The k-nearest neighbor (KNN) is an algorithm proposed by Cover, Hart in 1968 

[17]. It is appended because it uses the k-nearest neighbors of the selected sample 

from a given sample set. It is an intuitive method to classify unlabeled samples by 

the distance between the data according to the similarity between the samples in 

the training data set. In other words, given a sample without a label, it finds the 

closest k-label samples in the training data set, and assigns the given sample to a 

group with a large number of frequencies to the set that appears when k is 

grouped. In the case of KNN's similarity measurement method, the result varies 

depending on the distance measurement method used based on the data flow and 

distribution. Table 2 lists examples of distance measurement methods. In most 

cases, the Euclidean distance is used to measure the degree of similarity. Since 

KNN is a nonparametric method, it can be used regardless of the distribution state 

of the sample.

Table 2. Distance function

Distance function Equation

Euclidean Distance  
Manhattan Distance  
Minkowski Distance   
Mahalanobis distance 
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 If the value of K is small, it is classified finely and the probability of occurrence 

of a classification error increases. Conversely, if the value of K is large, the 

overall flow can be determined, but subdivided classification may not be possible. 

Therefore, the K value must be appropriately selected according to the number of 

data and number of classes to be classified, as shown in Figure 11.

(a) KNN classifier when K =1

(b) KNN classifier when K =5

Figure 11. KNN classification Examples 
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2.4.5 Neural Network (NN) 

 Neural networks (NN) are made by imitating neurons in human brain structures 

shown in Figure 12. The human brain is connected by a number of neurons and 

receives external signals (visual, auditory, and tactile), which are sent out as output 

(cognitive and behavioral) signals. Therefore, a neural network is a model in which 

neurons are connected to form a network, and an optimal output value 

corresponding to the input value is determined through mathematical operation. 

Each neuron constituting a neural network plays a role independently, and a single 

neuron does not significantly affect the results, which are derived through the 

combination of several neurons [18].

Figure 12. Understanding the brain structure of the human neural network 

 In a neural network, as shown in Figure 13, one neuron is calculated after 

multiplying each weight value when several input signals come in. It then creates 

its own output value through the following activation function.
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Figure 13. An example of a linear neuron

 Neural networks can be classified by the data type, number of layers, output type, 

and activation function. It can be represented as a single-layer perceptron involving 

input and output layers as shown in Figure 13, and a multi-layer perceptron 

including input, hidden, and output layers as shown in Figure 14.

Figure 14. The structure of a multi-layer neural network
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 The activation function converts an incoming input value into a new output value. 

Representative activation functions are sigmoid and Rectified Linear Unit (ReLU). 

Sigmoid can be expressed by (4) and ReLU can be expressed as (5).


                           (4)

  max                           (5)

  indicates the sum of the product of the input value and the weight as shown in 

Figure 13. 

  The output value of sigmoid has a value between 0 and 1, as show in Figure 

15. The disadvantage of sigmoid is that the slope value converges to zero towards 

both ends. Therefore, the vanishing gradient phenomenon occurs in which the 

weights cannot be updated because the gradient decreases as it passes through 

several layers and cannot be propagated to the next layer.

Figure 15. Sigmoid function according to  
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 ReLU is used to solve the vanishing gradient. ReLU has a constant slope of 1 

when  is positive, solving the shortcomings of sigmoid as shown in Figure 16. 

Additionally, there is an advantage that the computational complexity is low, and 

the speed of convergence to learning is fast.

Figure 16. ReLU function according to  
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2.4.6 Deep Neural Network (DNN) 

 The deep neural network (DNN) is an advanced form of the neural network. 

DNN is a deep network structure that increases the number of hidden layers in the 

existing multi-layer perceptron structure, as shown in Figure 17. 

Figure 17. The structure of a deep neural network

 The classification method of DNN is a supervised learning method that compares 

the output value (predicted value) through the forward propagation of the DNN 

with the value of the actual target, calculates the error, and corrects the weight of 

the hidden layer through backpropagation. The error is expressed as an error 

function and can be expressed as (6). When the result of the error function E is 

closer to 0, the neural network correctly predicts the outcome.

                                (6)
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 Thus, the training data is used for learning by repeating the forward propagation 

and backpropagation processes, and the performance is determined by checking the 

classification results from the test data.
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2.5 Deep Learning

2.5.1 Convolutional Neural Network (CNN)

 Unlike RNN, CNN is a hierarchical model that repeatedly performs convolution 

and pooling operations on the input data of multi-dimension images and performs 

classification through a complete connection operation. The networks consist of 

input layers, convolutional layers, a fully connected layer, and a softmax layer in 

order. In [43], CNN was used by LeCun to recognize handwritten numbers from 0 

to 9. LeNet has three convolutional layers (C1, C3, C5), two minimum pooling 

layers (S2, S4), and a fully connected layer (F6) as shown in Figure 18.

 

Figure 18. The structure of LeNet

(1) Convolutional layer  

 The convolutional layer is a layer in which an input image is two-dimensionally 

filtered through a convolution operation and transmitted to the next layer. The 

features from the input image are extracted using a convolution kernel (or a filter). 

Before CNN was widely used, users designed filters to extract features for learning, 

and the learning performance significantly changed according to the number and 

features of the filters. To eliminate such pre-processing, the convolutional layer of 
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CNN uses a method of initializing the filter values to arbitrary values and then 

induces the filter values to be optimal through learning. In (7), an environment is 

expressed, in which the size of the -th convolutional layer is 

× when an × input image is connected to a 

convolutional layer and an × sized convolutional kernel is used.

        for             (7)

 where,  is the kernel connected to the -th node of the -th layer, and  is 

the bias. Figure 19 shows the convolution operation.

Figure 19. The example of convolution operation 

(2) Pooling layer

 The pooling layer is used to remove redundant feature values or highly correlated 

components of maps generated as a result of overlapping kernel operations of the 

convolutional layer. For example, if a 2×2 pooling patch is used, the number of 

nodes existing in the previous convolutional layer is reduced to 1/4 size and 

transferred to the next layer. Currently, the pooling layer used in CNN structures 
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includes a maximum pooling layer that delivers the maximum value of a node, an 

average pooling layer that delivers an average value, and a minimum pooling layer 

that delivers the minimum value. Figure 20 shows the max pooling operation.

Figure 20. The example of max pooling operation 

(3) Softmax layer

 The softmax layer is a method of calculating the loss value for the probability 

distribution of each class output from the last layer. CNN learns according to the 

change of the calculated loss value. The method expressed in (8) calculates the 

soft-max probability distribution for each class, and (9) is a method of calculating 

the loss value of the education distribution.

    
                                (8)

     log                         (9)

  is the number of all classes to be classified,   is the probability of the -th 

class output from the CNN, and   is the target value of the -th class.
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2.5.2 Recurrent Neural Network (RNN)

 An RNN model is neural network architecture using a single layer or multiple 

layers, consisting of circulation connections, commonly applied for learning the data 

of temporal or sequential, like voice, video, and string. This network model has the 

characteristic of memorizing the state of previous information, then applying it to 

the current input data. This mechanism of the RNN model has an advantage in 

learning the sequential data.

Figure 21. Schematic of an RNN node [44]

 As shown in Figure 21, an RNN node consists of the current input , output , 
previous hidden state   , and current hidden state . The current hidden state is 

determined as, 

                     (10)
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                        (11)

where  and  are the functions of activation, which output to hidden and 

output layer, respectively. ,  and   are weights of recurrent 

connection between the input-to-hidden, hidden-to-output, and hidden-to-hidden 

layers, respectively.  and  are the bias terms for the hidden state and 

output state, respectively. Here, the function of activation has element-wise linearity 

or non-linearity characteristic, selected from several existing functions such as the 

sigmoid, rectified linear unit, or hyperbolic tangent.
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2.5.3 Long Short-Term Memory (LSTM)

 In a conventional RNN model, it can be hard to train the lengthy sequential data 

because of divergence or vanishing gradient problems that disturb the ability of the 

network to backpropagate gradients like a long-term dependency problem [45]. The 

LSTM-based RNN model replaces the conventional RNN node with LSTM to solve 

the long-term dependency problem in the learning data. LSTM includes memory 

blocks withal memory cells called ‘gates’ on the repetitive hidden layer, as depicted 

in Figure 22. On the memory cells, the gates control the states of new information 

forgetting and updating the previous hidden states, and decision the output. The 

function of component of each cell is as follows:

   ● Input gate () controls the input activation of new information into the 

memory cell.

   ● Output gate () controls the output flow. 

   ● Forget gate () controls when to forget the internal state information.

   ● Input modulation gate () controls the main input to the memory cell.

   ● Internal state () controls the internal recurrence of cell.

   ● Hidden state () controls the information from the previous data sample 

within the context window:

                         (12)

                           (13)

                          (14)

                         (15)

                              (16)
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  tanh                            (17)

where the  and  terms are weight matrices and  terms are bias vectors. When 

the LSTM-RNN model trains a dataset for learning, that model focuses on learning 

the parameters , , and  of the cell gates, as expressed in (12)-(15).

Figure 22. Schematic of an LSTM memory cell structure with an inner recurrence  and 

an outer recurrence , , , , and .
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2.6 Performance Metrics

 To prove the performance of deep learning models, it used four evaluation metrics 

getting multi-class classification [46].

1. Precision: it calculates the number of identifications of the true person (person 

A, B, ... G) out of the positive classified classes. The average precision of each 

individual class (POC: the precision of each individual class) means to the 

overall precision (OP):

                            (18)

     ,                        (19)

  where  is the true positive rate of a person classification ( =1, 2,..., ),      

   is the false positive rate, and  is the number of classes in the dataset.

2. Recall (Sensitivity): it calculates the number of persons correctly classified out 

of the total samples in a class. The average recalls for each class (RFC: recalls 

for each class) means the overall recall (OR):

                          (20)

                             (21)

   where  is the false negative rate of a class .
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3. Accuracy: it calculates the proportion of correctly predicted labels (the label is 

the unique name of an object) about overall predictions. It means an overall 

accuracy (OA):  

                      (22)

   where,   is the overall true positive rate for a classifier on all       

   classes,   is the overall true negative rate,   is the overall  

   false positive rate, and   is the overall false negative rate. 

4. F1-score: it is the weighted average of precision and recall.

     ×              (23)

 where  is the number of samples in class  and     is the entire number 

of individual examples in a set of  classes.
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2.7 Related work

2.7.1 Feature extraction 

 For noise reduction and feature extraction in ECG biometrics, diverse approaches 

have been discussed in the literatures. Particularly, Odinaka, I. et al. categorizations 

based on features and classifiers [19]. First of all, the categorized the feature 

extraction of ECG includes a feature extraction algorithm using fiducial, 

non-fiducial, and hybrid features. For a fiducial-based algorithm, temporal, 

amplitude, angular, or morphology features are extracted from ECG characteristic 

points. The extracted ECG features involve specific characteristics information such 

as the interval of each ECG wave of P, QRS, and T wave [20]. For a 

non-fiducial-based algorithm different from the fiducial-based algorithm, the direct 

features are not used. The indirect features are used, such as autocorrelation and 

wavelet coefficients [21-23]. Because such the indirect features extraction disuses 

the method of using ECG characteristic point, for making the composition of a 

feature set like a heartbeat segmentation and alignment, most methods use the 

method of R-peak detection. A part of the remainder methods has to detect the 

major constituent of ECG wave, such as the start end of the P wave, the start end 

of the QRS complex, and the start end of the T wave. An approach combining 

with the fiducial and non-fiducial is used for a hybrid feature extraction method. In 

addition, a classifier is required for the categorization, such as LDA, SVM, KNN, 

generative model, match score classifier, and neural networks. Consequentially, a 

fiducial, non-fiducial, and hybrid (characteristic point, similarity, a combination of 

the fiducial and non-fiducial) algorithm of feature extraction can be used for 

classifying the ECG.
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2.7.2 Methodology

 In biometrics, there are two basic recognition methods. The one is the 

authentication method. This method works on the one-to-one comparison with 

observed bio-signal with a template signal stored in a database to verify if the 

one's signal is exactly right or not. The other one is the identification method. This 

method carries out the one-to-many comparison with a database trying to establish 

the identity of an unknown human. If the result of a comparison between the 

template of the database and a specific bio-signal sufficient the criteria at fiducial, 

the individual identifying will succeed [24].

 Various techniques have been proposed for ECG biometric systems using diverse 

ECG databases [25]. In [25], the authors have analyzed different studies in order to 

compare the authentication scenarios, identification equal error rates (EER), and 

averages of classification accuracy using pathological and normal signals ECG 

databases. According to their results, the overall EER was 0.92% in an 

authentication scenario, and the weighted average rate was 94.95% in an 

identification scenario. Their results in [25] revealed that the number of ECG leads 

used affects the recognition performance, and the choice of features influences the 

accuracy rate of identification. 

 In plenty of recent studies, ECG biometrics has applied deep learning methods to 

solve the problem [26-34]. In [30], it has been used for a convolutional neural 

network (CNN) to classify patient-specific ECG heartbeats. In [31], it designed a 

residual convolutional neural network (ResNet) applying a mechanism of attention 

for ECG authentication of humans. For a recurrent neural network (RNN), RNN 

has merit different from CNN when processing 1-D signals like ECG. Typically, 

CNN processes 2-D data including more than 2 × 2 signals or an image for object 

classification and identification. RNN processes continuous or sequential 1-D data, 

such as a sensor signal, voice, and text for classification and identification. For 

instance, RNN has been applied to classify the form of an ECG beat in [32]. 



- 37 -

However, because a conventional RNN occurs vanishing gradients, training the 

network is difficult using long-term sequences of data. To resolve this problem, a 

long short-term memory cell (LSTM) and gated recurrent units (GRU) have been 

studied and proposed (The GRU has improved LSTM in an aspect of training 

speed) [35,36]. Because of overcoming the vanishing gradients and representing 

good performance, the RNN model with LSTM has been widely applied in various 

applications, such as ECG biometrics, handwriting recognition, speech recognition, 

and etc [37,38]. Furthermore, the dropout technique can be utilized for reducing 

overfitting in the deep learning system [39]. Overfitting is verified if the model of 

deep learning carries out well while using its training dataset and it carries out 

badly while using its testing dataset. In [40], LSTM in ECG biometrics proved to 

be more appropriate than GRU for classification and identification. Therefore, the 

LSTM-based RNN model was applied to authenticate and identify problems using 

ECG data [40-42]; the techniques of deep learning have shown much stronger 

performance compared to other non-deep learning techniques. 
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2.7.3 Recent work

 As mentioned in Chapter 2. 7. 1 and 2. 7. 2, the ECG-based biometrics can be 

represented into two main applications based on classification, identification and 

authentication using the three feature extraction method. Although different 

techniques have been proposed for classification, identification, or authentication, it 

is difficult to compare and analyze the methods because of various datasets applied 

in their experiments. 

 R. Salloum et al. [40] evaluated the conventional RNN, LSTM-based RNN, and 

GRU-based RNN model using two publicly available datasets: ECG-ID Database 

(ECGID) and MIT-BIH Arrhythmia Database (MITDB). The experimental results of 

[40] showed that their LSTM-based RNN model with a unidirectional feature, 

resulted in a classification accuracy of 100%. However, when their input size was 

short (input sequence length is 3), the classification accuracy is decreased. A more 

recent paper  [29] evaluated GRU-based RNN methods using two publicly available 

datasets: ECGID and MITDB. The experimental results of [29] showed that their 

proposed model, the combination of GRU-based RNN with a bidirectional feature, 

resulted in a classification accuracy of 98.55%. 

 In the study by Ö. Yildirim [67], the author classified the five types of heartbeats 

in MITDB. The results of the proposed model experiments showed a recognition 

performance of 99.39%. In [33], the authors evaluated the identification rate of 

eight datasets using a proposed multiresolution CNN. Their results verified an 

average identification rate of 96.5% and 93.5% in normal and abnormal ECG 

datasets, respectively. Additionally, X.Zhang [66] evaluated conventional methods 

using a private dataset of recordings from 91 subjects. Further, they applied two 

types of input data using the ECG and ballistocardiogram (BCG) for identification 
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and authentication with RNN, LSTM, and GRU. When using BCG, the 

identification accuracy was 97.8%, whereas the accuracy of ECG was 98.9% for 

identification. For the ECG biometric, different deep learning techniques, because of 

high performance, are used in various applications, including handwriting 

recognition, phoneme classification, image recognition, voice recognition, automatic 

driving, etc.
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Ⅲ Proposed Deep RNN Method and 

Preprocessing Procedures

3.1 Experiment configuration and flow

 This thesis configured and performed ECG recognition experiments for the 

personal identification to improve the performance, as shown in Figure 23.

Figure 23. Flowchart of ECG recognition performance of experiment Using CNN and RNN
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 First, it prepared a public ECG dataset to be used in the experiment. A detailed 

description of the data set used in this thesis is given in Section 3.5. To improve 

ECG identification performance, the ECG training dataset was constructed by 

creating data to which the ECG preprocessing and data segmentation method were 

applied and training data without data segmentation. Subsequently, the CNN model, 

RNN model, and the proposed RNN model for ECG identification were designed, 

and training and testing were performed. The designed learning models compared 

the accuracy according to the learning while learning the data set to which the 

preprocessing process and data segmentation method were applied. When training is 

complete, the test data is used to verify the test accuracy. The performance of the 

model used in the experiment is accurately checked through performance metrics. 

Additionally, this thesis evaluated whether the proposed model has improved 

performance by comparison with the state-of-the-art model.
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3.2 Proposed Deep RNN Method

 Figure 24 showed a schematic in the ECG identification system using the 

proposed Deep RNN method. It carried out a direct mapping from personal ECG 

inputs to personal label classification. When classifying the personal labels uses a 

specific time window.

 The input is divided into a discrete sequence of equally spaced samples (, 
..., ), where each data point  is a vector of the personal ECG signal. The 

samples are passed to an LSTM-based RNN model after being segmented by the 

window of size T, consisting of  segmented ECG signal components with a 

period of P.

 The classification accuracy is low in the conventional RNN and LSTM-based 

RNN models if less than nine of the ECG groups are used for training and testing 

[40]. This thesis used three, six, and nine ECG groups ( = 3, 6, 9). The outputs 

receive a score by denoting the personal label prediction at each time step (  
..., ), where  ∈   is a vector of classification scores representing the given 

input group,  is for layer, and  is the number of person classes. The score is 

computed at each time step for the personal label at time t. The multi-prediction 

for the whole window T is obtained by sum all the scores into one prediction.

For classification, this thesis used a late-fusion technique, called ``sum rule’’, which 

is theoretically discussed in [47,48]. 
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Figure 24. Proposed ECG identification architecture using LSTM-based RNN Model. The 

inputs are preprocessed raw signals from datasets, segmented into ECG components with a 

window size of T, and trained at the LSTM-based RNN model.
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 To convert the prediction scores to probabilities, A softmax layer on  of the 

prediction score is applied.

                                (24)

 This thesis uses a bidirectional LSTM-based DRNN model for additional 

performance enhancement, as presented in Figure 25 [49].

It contains two parallel LSTM tracks: forward and backward loops for utilizing the 

context from the past and future of a specific time step to predict its label [42,50]. 

At each layer, there is a forward track () and backward track ( ). 
The two tracks read respectively the ECG input from left to right and from right 

to left:

                    (25)

                      (26)

where  and  are the output of the prediction,  and  are the output of 

the hidden layer, and  and  are respective the present output in the forward 

and backward layers (=1, 2, ..., ). The top layer  is the output of the sequence 

score from the forward LSTM and backward LSTM at each time step. Hence, the 

combined scores  ∈   represent the prediction score of a person label. In this 

particular case, the late-fusion is expressed as follows:

                             (24)

 To evaluate the performance of the proposed model, the experiments of ECG 
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classification with six RNN structures are carried out, as shown in Table 3. This 

thesis chooses Arch 6 as the best model through the experiments because it results 

in the best classification performance.

Figure 25. Bidirectional LSTM-based DRNN model consisting of an input layer, multiple 

hidden layers, and an output layer with forward  and backward   tracks 

[42].

 In detail, Arch 1, 2, and 3 consist of unidirectional networks. In Arch 1, 2, and 

3, the number of hidden layers is 1, 2, and 3, respectively. Moreover, Arch 4, 5, 

and 6 for the proposed networks model consist of bidirectional networks including 

the late-fusion layer, and the number of hidden layers is 1, 2, and 3, respectively.
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Table 3. conventional LSTM (LSTM) and proposed bidirectional LSTM (pLSTM) 

architectures.

Architectures Layers Type
Arch 1 LSTM-softmax
Arch 2 LSTM-LSTM-softmax
Arch 3 LSTM-LSTM-LSTM-softmax
Arch 4 pLSTM-late-fusion-softmax
Arch 5 pLSTM-pLSTM-late-fusion-softmax
Arch 6 pLSTM-pLSTM-pLSTM-late-fusion-softmax
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3.3 Proposed Preprocessing Procedure

 In this thesis, the ECG database used is obtained from the publicly available 

MIT-BIH Normal Sinus Rhythm (NSRDB) and MIT-BIH Arrhythmia datasets 

(MITDB), which are the portion of the Physionet database [51-53]. For the 

analysis, it carried out the preprocessing and segmentation of each dataset. Given 

an ECG recording, the proposed preprocessing procedure is applied in the first step.

 This procedure consists of applying the derivative filter, moving average filter, and 

amplitude normalization using (25) in the given order, as shown in Figure 26. The 

derivative filter is used to detect the more precise variation. For an average moving 

filter, it is used to reduce the noise resulting from the derivative filter. Then, the 

normalization is applied to learn more accurately in the training phase.

    maxmin                   (25)

where  is the -th value,  is the median value, max is the maximum 

value, and min is the minimum value of the input signal [54]. The next step is to 

segment the ECG recordings into ECG signal components with a period of P. The 

conventional segmentation technique uses an R peak as a marker from the 

segmented individual heartbeat waveforms: P wave, QRS complex, and T wave. For 

the NSRDB, 288 samples were trimmed and grouped, while for the MITDB, 444 

samples were trimmed and grouped.
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(a)

(b)
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(c)

(d)

Figure 26. ECG signal preprocessing before the segmentation for input data: (a) ECG raw 

signal; (b) signal obtained after derivative filter; (c) signal obtained after moving average 

filter; (d) signal obtained after normalization.
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3.4 Classification Procedure

 In the classification procedure, each ECG dataset is divided into a training and 

testing set. Each training or testing sequence is of one ×  size, where  is the 

number of samples in the ECG signal. After one-hot sequences encoding, the 

weight parameters of the bidirectional LSTM are determined using the training set 

[55]. Then, the softmax function is used to obtain a class probability (a set of the 

subject probability distribution). After the RNN training, the test sequence is fed to 

evaluate the RNN model. A classification decision for each test sequence is 

obtained by selecting the class with the highest probability in all classes.
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3.5 Dataset and Implementation

 The NSRDB contains 18 two-channel recordings obtained from 18 subjects (5 

males aged 26–45 and 13 females aged 20–50). Similarly, MITDB contains 48 

two-channel recordings obtained from 47 subjects (25 males and 22 females). One 

recording for each subject was used in the proposed deep learning system. The 

recordings of the NSRDB were digitized using 12 bits per sample. Moreover, the 

recordings of the MITDB were digitized using an 11-bit resolution over a 10 mV 

range.

 In the proposed method, the NSRDB and MITDB were applied in the 

segmentation process using the sampling frequency of the dataset. Here, the 

NSRDB and MITDB can be segmented using a fixed segmentation time-period or 

conventional R-peak detection owing to the irregular ECG waveform [56]. To apply 

the real-time system, it considered the smallest input data size concerning the 

minimum R-R interval. According to the clinical definition, the minimum R-R 

interval of 200 ms cannot exceed 300 bpm [57-59]. Thus, the selected NSRDB 

input size equals the time required for 288 samples (2.25 s), and the MITDB input 

size corresponds to the time required for 444 samples (1.23 s). Because it used the 

non-feature extraction method in the first and second experiment, the segmented 

data in NSRDB randomly included two to four heartbeats. The segmented data in 

MITDB randomly had zero to two heartbeats, as shown in Figure 27 (a). The third 

experiments used ECG signals segmented with R-peak detection, as shown in 

Figure 27 (b). After the R-peak detection, information on the ECG wave is 

obtained, such as the part of only including noise with the flow of time. 

Subsequently, based on R-peak, one ECG waveform consisting of 100 samples is 

extracted, including 50 samples to the left and 50 to the right. 
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(a)

(b)

Figure 27. ECG signal segmentation after the normalization: (a) a method using a fixed 

segmentation time period; (b) a method using R-peak detection.
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 For the ECG preprocessing, Matlab is used to manage the generation of training 

and testing data. The implementation, training, and testing of the RNN models were 

performed using TensorFlow [60]. The ECG identification system used the 

configuration and framework listed in Table 4. The tests were performed on the 

proposed model after the completion of every training epoch. The processed raw 

data is divided into two sets: 80% and 20% for the training and testing, 

respectively. The cost function used is the cross-entropy error during training, and 

the optimization method used is the Adam algorithm with a learning rate of 0.001 

[61]. Experiment 1 was performed with a batch size of 1000, whereas experiments 

2 and 3 were performed with a batch size of 100. The model parameters of the 

conventional and proposed LSTM are listed in Table 5. These parameters were 

selected through iterative experiments using these parameters. The different 

conditions of the evaluation were the number of layers, number of hidden units, 

and input sequence length. In terms of the learning time, 4, 8, and 16 h were 

required for the 1, 2, and 3 hidden layers, respectively.

Table 4. Server system configuration and framework

Category Tools

CPU Intel i7-6700k @ 4.00 GHz 

GPU NVIDIA GeForce GTX 1070 @ 8GB 

RAM DDR4 @24GB 

Operating System Windows 10 Enterprise 

Language Python 3.5 

Library
Google Tensorflow 1.6

CUDA Toolkit 9.0/NVIDIA cuDNN v7.0 
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Table 5. Model parameters of conventional and proposed LSTM.

Parameter Value

Loss Function Cross-entropy

Optimizer Adam

Dropout 1

Learning Rate 0.001

Number of hidden units 128 and 250

Mini-batch size 1000 and 100
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Ⅳ Experimental Results and Discussion

4.1 Experimental Results 

 This thesis found various conventional classification methods being used on 

NSRDB and MITDB datasets. For the NSRDB dataset, the reported classification 

accuracy ranged from 99.4% to 100% [62,63], while for the MITDB dataset, the 

reported accuracy ranged from 93.1% to 100% [29,33,40,61-67]. The RNN-based 

method outperforms the aforementioned methods on both datasets. Also, to evaluate 

the proposed architecture about the late-fusion technique, First of all, the 

experiment performed with the basic CNN and the modified CNN with the 

late-fusion technique using only the NSRDB dataset.

 For the NSRDB and MITDB datasets, the classification experiments were 

performed using one recording per subject; in the NSRDB experiment, ECG signal 

was segmented with a fixed segmentation time period, including 2-4 training and 

testing heartbeats per subject were used. Similarly, in the MITDB experiment, the 

unfixed group ECG including 0-2 training and testing heartbeats per subject were 

used. Moreover, ECG signals segmented with R-peak detection, including three, six, 

and nine training and testing heartbeats per subject were used. Because the 

sampling rate of the NSRDB and MITDB were different, the training and testing 

heartbeats per subject were set independently for a dataset. 
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4.1.1 Experimental Results of CNN

 The experiment with CNN translates from the 1-D ECG dataset to the 2-D ECG 

dataset. The 1-D ECG data consist of  1 × M. To use the CNN model, the input 

ECG data was converted by N × N after adding the zero value, as shown in 

Figure 28. The input size of the NSRDAB dataset is 1 × 288 in this experiment. 

If these data is converted by 2-D, tt is not represented by a square matrix. The 

translated data after adding the zero value is considered a square matrix without 

data distortion in the CNN model. This is because the CNN model does not 

extract the zero value. 

Figure 28. Example of ECG 2-D data convert 
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 Table 6 shows the Basic CNN (bCNN) and modified CNN (mCNN) architectures. 

In detail, bCNN 1, 2, and 3 consist of the convolutional and softmax layers, and 

the number of hidden layers is 1, 2, and 3, respectively. Moreover, mCNN 4, 5, 

and 6 for the modified networks model consist of the convolutional layer and 

late-fusion, and the number of hidden layers is 1, 2, and 3, respectively.

 Figure 29 shows the classification accuracy of the selected architectures and 

parameter conditions. In Figures 29, the number of hidden layers is 1, 2, 3, and a 

2-D converted ECG signal segmented with a fixed segmentation time period was 

used. The input data form is 17 × 17.

 The results of Figure 29 confirmed that the classification accuracy varied between 

96.29–99.88%; the results presented were for different hidden layers and zero 

dropout. Thus, the modified CNN networks did not perform better than the 

conventional CNNs for the same experimental conditions. Consequently, the type of 

CNN model did not significantly improve the performance over existing models, 

although the deep models or late-fusion techniques are applied. 

Figure 29. Classification accuracy for NSRDB. The input sequence length is 2-4 for the 

number of heartbeats, and input data form is 17 × 17.
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Table 6. Basic CNN and modified CNN architectures (Convolution layer consist convolution 

, ReLu, and Pooling. “conv” means a convolution layer. “fc” means fully-connected layer).

Architectures Layers Type
bCNN 1 conv-fc-softmax
bCNN 2 conv-conv-fc-softmax
bCNN 3 conv-conv-conv-fc-softmax
mCNN 4 conv-fc-late-fusion-softmax
mCNN 5 conv-conv-fc-late-fusion-softmax
mCNN 6 conv-conv-conv-fc-late-fusion-softmax
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4.1.2 Experimental Results of Proposed RNN

 Figures 30 and 31 show the classification accuracy for the selected architectures 

and parameter conditions. In Figures 30 (a) and 31 (a), the number of hidden units 

of hidden layer is 128, and an ECG signal segmented with a fixed segmentation 

time period was used. The results of Figures 30 (a) and 31 (a) confirm that the 

classification accuracy varied between 29.7–100% and 1.87–98.53%, respectively. 

Furthermore, in the case of Figures 30 (b) and 31 (b), the number of hidden units 

of hidden layer is 250. The results of Figures 30 (b) and 31 (b) confirm that the 

classification accuracy varied between 5.5–100% and 2.21–99.73%, respectively. 

In Figure 32, the number of hidden units of the hidden layer is 250, and the ECG 

signal segmented with a fixed segmentation time period was used. Figure 32 

confirms that the classification accuracy varied from 5.5–100% to 63.8–99.8%, 

respectively. Hence, the results presented are for different input sequence length, 

zero dropout, and number of hidden units. Thus, the proposed LSTM networks 

performed better than the conventional RNNs for the same experimental conditions. 

Furthermore, it can observe that a randomized decrease in the length of the input 

sequence—like the unfixed group ECG—improves the performance of the proposed 

LSTM networks and hyperparameter settings. In this experiments, the classification 

accuracy increased with a decrease in the number of hidden units and an increase 

in the number of hidden layers.

 In [40], an increase in the number of the hidden layers and units increased the 

classification accuracy. However, in this experiments, the randomized short input 

sequence size—like the unfixed group ECG—resulted in an increase in the number 

of hidden layers and units and a decrease in the classification accuracy. 

Furthermore, as shown in Figure 32, the classification accuracy and number of 
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hidden layers increased when the input sequence group size was long.

(a)

(b)

Figure 30. Classification accuracy for NSRDB using two selected parameters: the number of 

hidden unit of (a) is 128 and number of hidden unit of (b) is 250. The input sequence 

length is 2-4 for the number of heartbeats (Experiment 1).
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(a)

(b)

Figure 31. Classification accuracy for MITDB using two selected parameters: the number of 

hidden units of (a) is 128 and number of hidden units of (b) is 250. The input sequence 

length is 0-2 for the number of heartbeats (Experiment 2).
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Figure 32. Classification accuracy for MITDB using selected parameters of 250 hidden 

units. The input sequence length (ISL) is 3, 6, and 9 for the number of heartbeats 

(Experiment 3).
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Table 7. Performance summary of the proposed bidirectional LSTM in NSRDB analysis 1 

of Figure 30 (a).

Table 8. Performance summary of the proposed bidirectional LSTM in NSRDB analysis 2 

of Figure 30 (b).

Type of

Cell/Unit

Input Sequence Length

(in Number of Beats)

Number of 

Hidden Layer

Overall 

Accuracy

Overall 

Precision

Overall 

Recall
F1 score

LSTM 2-4 1 29.7% 24.13% 29.68% 0.2662

LSTM 2-4 2 98.6% 98.73% 98.67% 0.9870

LSTM 2-4 3 100% 100% 100% 1.0000

Proposed 

LSTM
2-4 1 99.93% 99.92% 99.96% 0.9994

Proposed 

LSTM
2-4 2 99.93% 99.92% 99.96% 0.9994

Proposed 

LSTM
2-4 3 99.93% 99.94% 99.93% 0.9993

Type of

Cell/Unit

Input Sequence Length

(in Number of Beats)

Number of 

Hidden Layer

Overall 

Accuracy

Overall 

Precision

Overall 

Recall
F1 score

LSTM 2-4 1 99.96 99.96 99.96 0.9996

LSTM 2-4 2 100 100 100 1.0000

LSTM 2-4 3 5.5 0.31 0.58 1.0000

Proposed 

LSTM
2-4 1 100 100 100 0.0058

Proposed 

LSTM
2-4 2 100 100 100 1.0000

Proposed 

LSTM
2-4 3 100 100 100 1.0000



- 64 -

Table 9. Performance summary of the proposed bidirectional LSTM in MITDB analysis 1 

of Figure 31 (a).

Table 10. Performance summary of the proposed bidirectional LSTM in MITDB analysis 2 

of Figure 31 (b).

Type of

Cell/Unit

Input Sequence Length

(in Number of Beats)

Number of 

Hidden Layer

Overall 

Accuracy

Overall 

Precision

Overall 

Recall
F1 score

LSTM 0-2 1 6.28% 7.40% 6.21% 0.0676

LSTM 0-2 2 38.80% 35.66% 38.83% 0.3717

LSTM 0-2 3 1.87% 0.06% 0.18% 0.0013

Proposed 

LSTM
0-2 1 81.70% 82.83% 81.68% 0.9780

Proposed 

LSTM
0-2 2 97.78% 97.77% 97.77% 0.9780

Proposed 

LSTM
0-2 3 98.53% 98.53% 98.53% 0.9855

Type of

Cell/Unit

Input Sequence Length

(in Number of Beats)

Number of 

Hidden Layer

Overall 

Accuracy

Overall 

Precision

Overall 

Recall
F1 score

LSTM 0-2 1 99.70% 97.92% 97.90% 0.9791

LSTM 0-2 2 99.00% 99.01% 99.00% 0.9900

LSTM 0-2 3 2.21% 0.04% 2.13% 0.0008

Proposed 

LSTM
0-2 1 98.04% 98.07% 98.04% 0.9806

Proposed 

LSTM
0-2 2 99.26% 99.28% 99.26% 0.9927

Proposed 

LSTM
0-2 3 99.73% 99.73% 99.73% 0.9973
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Table 11. Performance summary of the proposed bidirectional LSTM in MITDB analysis 3 

of Figure 32.

Type of

Cell/Unit

Input Sequence Length

(in Number of Beats)

Number of 

Hidden Layer

Overall 

Accuracy

Overall 

Precision

Overall 

Recall
F1 score

LSTM 3 1 98.65% 98.76% 98.85% 0.9981

LSTM 3 2 98.17% 98.42% 98.56% 0.9849

LSTM 3 3 98.55% 98.66% 98.86% 0.9876

LSTM 6 1 97.00% 97.37% 97.49% 0.9743

LSTM 6 2 96.85% 97.21% 97.61% 0.9741

LSTM 6 3 97.92% 98.16% 98.44% 0.9830

LSTM 9 1 97.50% 97.70% 98.07% 0.9788

LSTM 9 2 96.50% 96.69% 97.11% 0.9690

LSTM 9 3 96.49% 96.80% 97.22% 0.9701

Proposed 

LSTM
3 1 97.79% 98.10% 98.22% 0.9816

Proposed 

LSTM
3 2 99.37% 99.47% 99.52% 0.9949

Proposed 

LSTM
3 3 99.20% 99.30% 99.42% 0.9936

Proposed 

LSTM
6 1 98.71% 98.95% 99.06% 0.9901

Proposed 

LSTM
6 2 99.57% 99.68% 99.59% 0.9963

Proposed 

LSTM
6 3 99.71% 99.78% 99.72% 0.9975

Proposed 

LSTM
9 1 63.80% 67.31% 63.49% 0.6534

Proposed 

LSTM
9 2 99.10% 99.12% 99.31% 0.9921

Proposed 

LSTM
9 3 99.80% 99.82% 99.83% 0.9982
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Table 12. Performance comparison with state-of-the-art models.

Methods Dataset
Input Sequence Length

(Number of Beats)

Overall Accuracy 

(%)

Proposed model

(classification)
MITDB 3 99.73

9 99.80

H. M. Lynn et al. [29]

(classification)
MITDB 3 97.60

9 98.40

R. Salloum et al. [40]

(classification)
MITDB 3 98.20

9 100

Q.Zhang et al. [33]

(identification)
MITDB 1 91.10

X.Zhang [66]

(identification)
MITDB 8 97.80

12 98.90

 Ö. Yildirim [67]

(classification) 
MITDB 5 99.39
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4.2 Discussion 

 The performance results confirm that the ECG classification satisfies the LSTM 

and bidirectional LSTM in the NSRDB. Particularly, in the proposed model, the 

learning corresponded well and showed better classification results than that of the 

conventional LSTM model in MITDB. Tables 7 and 8 list the performance 

summary for the NSRDB dataset; Tables 9-11 list the performance summary for 

the MITDB dataset. Table 12 shows that the proposed model outperforms other 

state-of-the-art methods by obtaining 99.8% classification accuracy. Although it may 

seem that the proposed model does not perform better than the model proposed in 

[40], the proposed model of [40] uses longer input sequences. However, similar to 

the proposed model, when a short input sequence is used, the performance 

decreases to 98.2%, whilst the proposed model achieves 99.73%. Therefore, the 

proposed methodology yields enhanced performance, particularly with short 

sequences. 

 The primary reasons for the good performance of the proposed models for ECG 

classification are as follows: (1) sufficient number of deep layers enabled the model 

to extract personal features (2) the bidirectional model controlled the sequential and 

time dependencies within the personal ECG signals (3) the late-fusion technique can 

simplify the prediction score prior to the softmax layer step.



- 68 -

Ⅴ Conclusion

 A novel LSTM-based DRNN architecture for ECG recognition is proposed and 

experimental evaluation of the proposed model on two datasets is performed. The 

results confirm that the proposed model outperforms other conventional methods 

and demonstrates a higher efficiency. This improvement can be attributed to the 

ability of the model to extract more features of ECG using the deep layers of 

DRNN. The model can further control the temporal dependencies within the ECG 

signals. Furthermore, the effect of the input sequence length is evaluated and the 

relationship between the hidden unit and hidden layer is found. The segmentation 

and grouping of ECG using the preprocessing procedure can effectively impact a 

real-time system in the identification and authentication processes. The proposed 

model performs better with shorter sequences compared with the state-of-the-art 

methods. This characteristic is useful in real-time personal ECG identification 

systems that require quick results. This thesis confirms that the proposed 

bidirectional LSTM-based DRNN is promising for the applications of ECG based 

real-time biometric identification. The scale of samples in these experiments has 

lacked, and the results were affected by the hardware environments. In the future, a 

large-scale experimentation study will be conducted with ordinary human ECG 

signals: calmness, eating, sleeping, running, walking, etc. Further, the proposed 

bidirectional LSTM-based DRNN will be extensively evaluated with other ECG 

signals obtained from individuals of different age groups. The future extensive 

research studies will aim to prove the robustness and efficiency of the proposed 

model.
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