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ABSTRACT

Data Collection Scheme for Unmanned Aerial Vehicle-Aided
Wireless Sensor Networks

Rezoan Ahmed Nazib

Advisor: Prof. Sangman Moh, Ph.D.
Department of Computer Engineering
Graduate School of Chosun University

Energy-constrained sensor nodes are often deployed in remote, hilly, and
hard-to-reach areas for civilian and military purposes. In such wireless sensor
networks (WSNs), an unmanned aerial vehicle (UAV) can be used to collect
data from the sensor nodes. Low-altitude UAVs can be utilized to reduce the
energy consumption of WSNs by optimizing the data collection position. In
this study, we designed an energy-efficient and fast data collection (EFDC)
scheme in UAV-aided WSNss for hilly areas with the help ofa UAV as a data
mule. We introduced a joint optimization problem based on the EFDC scheme
and provided low-complexity solutions. First, we proposed a central bias
hybrid energy-efficient distributed clustering algorithm for grouping the
sensors. Then, we applied a modified tabu search algorithm to optimize the
UAYV position for collecting data from a cluster. To achieve fast data collection,
we developed the traveling salesman problem with the derived data collection
positions and solved it by applying a genetic algorithm. Based on our
simulation results, the proposed EFDC scheme outperforms the conventional
ones in terms of energy consumption, scalability, control overhead, delay, and

load balancing.
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I. INTRODUCTION

A. Overview

Wireless sensor networks (WSNs) are one of the most investigated research
topics in the last two decades. They are used in home and industry automation,
forest monitoring, scientific experiments, environmental observation, border
patrolling, machine and structure health monitoring, security enhancement,
plant monitoring, underwater world observation, air pollution examination,
water quality monitoring, natural disaster prevention, and landslide detection.
Because sensor nodes are mostly cheap and battery powered, they are highly
energy constrained [1]. Consequently, many studies have been devoted to
minimizing their energy consumption by using various techniques such as
clustering [2], efficient routing [3], optimizing the medium access control

(MAC) [4], and optimal sink placing [5].

WSNs are often deployed in hard-to-reach areas. Data collection from such
areas can be challenging due to the absence of any network communication
center (NCC). The major disadvantage of NCC or any other infrastructure-
based solutions are to build and maintain the infrastructures in such irregular
and inaccessible terrains [6]. Ground robot based mobile sink solution can be

used to collect WSN data from such region.

The mobile sink-based solutions have triggered the investigation of the
performance of unmanned aerial vehicles (UAVs) as a data mule. UAVs can
easily fly toward a guided direction owing to their three-dimensional (3D)
movement capability [7]. Compared to ground robots, UAVs can travel a
greater distance within a shorter period of time [8]. Using UAVs for data
collection in WSNs opens a new horizon of energy-efficient data collection

from remote and inaccessible terrains [9]. In UAV-aided WSNs (UWSN5s),

1
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interconnectivity is not as important as in the conventional paradigms. Higher
line of sight (LOS) can also be obtained by using the position optimization

capability of the UAV.

Multi-rotor and fixed-wing UAVs are the two popular kinds of UAVs. Multi-
rotor UAVs usually require a lesser bending angle for direction changing
compared to the fixed-wing UAVs. This type of UAVs can also float steadily
in the air. Thus, multi-rotor UAVs can be used to fine-tune the data collection

position from a group of sensors.

B. Research Objective

The deployment requirements of sensors do not confirm a uniform
distribution throughout the region of interest (ROI). Therefore, sensor
grouping by segmenting the geographic location is not a good strategy. A
better approach is to use a distributed clustering technique and allow the sensor
nodes to decide the group themselves. In an infrastructure-less environment,
the UAV does not get any prior information on the location of the CHs. In such
cases, if the clustering algorithm runs more than once, the UAV will have to
discover the CH’s location in every round. Furthermore, if a CH fails before
transmitting data to the UAV, then the data of cluster members (CMs) and CHs
will be lost. Thus, hierarchical data collection is not a suitable option for

infrastructure-less UWSNSs.

In this study, an energy-efficient and fast data collection (EFDC) scheme is
proposed for UWSNs deployed in hilly terrains. Figure. 1 shows the graphical
representation of the EFDC operation, where a multi-rotor UAV is deployed
to collect WSN data from a hilly terrain. The figure depicts the direct data

collection mechanism of the EFDC scheme from the sensor nodes to the UAV.
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The novelty of the proposed EFDC framework lies in the heart of its
infrastructure-less design. EFDC can operate without any prior information
about the WSN topology, so it does not need the presence of any NCC. In the
traditional schemes, data is transmitted from CMs to their CH and from CHs
to the sink.  In EFDC, the UAV collects the sensor’s data directly from the
nodes of a cluster. Using direct transmission from the sensor nodes to the UAV
reduces the transmission count. As a result, the workloads and energy
consumptions among the CH and CMs are also balanced. The clustering
algorithm in EFDC also takes place only once. As a result, the exchange of
control packets reduces significantly. In EFDC, the UAV acts as the searching
agent. In such a design, the UAV changes its position physically to examine
the received signal strength indicator (RSSI) value from the sensor nodes. The
UAV acting as a search agent is a well-known approach used for UAV
networks [10]. EFDC exploits 3D positioning capability of the multi-rotor
quadcopter and reduces the transmission distance in a cluster by applying the
tabu search mechanism. Reducing the energy consumption of sensor nodes by

exploiting 3D positioning capability is also a novel idea in our proposed EDC.

—— Data communication channel
@ Cluster head
4 Cluster member

Figure 1. Graphical representation of data collection in a UWSN.

3
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The contributions of this study can be summarized as follows:

» We propose a center-biased hybrid energy-efficient distributed (CBHEED)
clustering algorithm, in which the CHs are selected based on the central bias
of their geolocation. The central bias of a node is calculated by forming a
polygon with the help of the monotone chain convex hull algorithm. The
proposed CBHEED is a distributed clustering algorithm, which is especially
applicable for infrastructure-less area. The position of the elected CHs serves

as the initial position for the data collection position searching mechanism.

* We formulate an optimization problem for fine tuning the data collection
position in a cluster and propose a modified tabu search algorithm to find the
sub-optimal solution. The optimization problem focuses on maximizing the
RSSI value among all the cluster members as well as balancing the UAV-
sensor distance in a cluster. We modify the tabu search algorithm in order to
find out the sub optimal position for data collection within the minimum

number of iterations by searching the least number of spaces.

* Based on the derived data collection positions from the aforementioned tabu
search mechanism, we apply a modified genetic algorithm (GA) to determine
the optimized trajectory to minimize the UAV travel time. The applied GA
algorithm ensures the avoidance of premature convergences. Finding out the
UAV trajectory enables the UAV to collect sensor data within the minimum

amount of time.

* According to our evaluation, the proposed EFDC scheme outperforms the
conventional schemes in terms of energy consumption, scalability, control

overhead, delay, and load balancing.

C. Thesis Layout

Rest of the thesis is organized as follows:
4
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In Chapter 2, the related works are reviewed and discussed. The limitations
ofthe existing studies and the motivation behind our research are also provided
in Chapter 2. In Chapter 3, the system model of the EFDC scheme are
introduced. In Chapter 4, we describe the working procedure of the EFDC
scheme. Then, we elaborate and discuss the CBHEED clustering algorithm,
initialization phase of the EFDC scheme, CH finding algorithm, modified tabu
search algorithm, and outline of the modified GA representing the data
collection phase in Chapter 4. In Chapter 5, the performance of the proposed
scheme is evaluated and compared with the conventional schemes. Finally, the

conclusion is given in Chapter 6.
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II. RELATED WORKS

Ali et al. [1] derived that an optimized constant speed of a UAV in a fixed
altitude can reduce the data drop rate of WSN nodes. To formulate their design
theoretically, the authors used a tri-rotor UAV. However, the proposed model
is only applicable to linearly deployed wireless sensor nodes with minimum
width. The forward and backward movement depiction of the UAV can only
cover sensor nodes that are inside the radio range of the UAV. Though the
UAV-CH distance in this scenario will be lower than the CH-sink distance,
the CH transmission count will remain the same, resulting in an unbalanced
network. Liu and Zhu [2] proposed three different transmission modes, namely
waiting mode, sensor node—sink conventional transmission mode, and sensor
node-UAV transmission, to increase the energy performance of the WSN.
They utilized dynamic programming to obtain an optimal transmission policy
recursive random search algorithm to optimize the trajectory of the UAV. In
addition, they assumed a static infrastructure while trying to optimize the
energy consumption by utilizing the UAV. However, this data collection
scheme is not suitable for infrastructure-less scenarios whereas our proposed

EFDC is specially designed to be suitable for infrastructure-less scenarios.

Ebrahimi et al. [3] formulated a joint optimization problem by considering
node clustering and UAV trajectory optimization for dense and large networks.
The authors attempted to reduce the energy consumption by using a
compressive data gathering method to aggregate the sensed data, thus reducing
the number of required transmissions. According to their proposed solution, a
forwarding tree was constructed from the CMs to the CHs and the data were
aggregated in each level of the tree. However, by forming the tree, the
compressed data need to be retransmitted before reaching the CH. Based on

the sampling data, the performance of the proposed system varied greatly.

6
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However, the data aggregation scheme will cause some extra energy
consumption for WSNs but, in EFDC, the data aggregation duty is given to
UAV. Zhan et al. [4] also considered a joint optimization problem to optimize
the energy consumption of a network. The authors considered a wake-up
schedule for the sensor nodes and the UAV trajectory to define the joint
optimization problem. A block-fading channel was assumed to design the
ground—-UAV communication. Though the wake-up strategy in WSNs can

save energy but this architecture is infrastructure-dependent unlike EFDC.

Say et al. [5] proposed a new priority-based MAC protocol to reduce the
number of redundant transmissions. The priority-based frame selection
process takes the mobility characteristics of the UAV into consideration.
Based on the aforementioned MAC protocol, they also proposed a routing
protocol to minimize the routing distance between the UAV and the sensor
node. However, the fixed-wing UAV used in the design is not suitable for
accurate positioning and generally needs a higher altitude compared to the
rotary-wing UAV. Another MAC protocol for UWSNs was proposed in [6],
considering fast and energy-efficient data gathering for critical situations. A
survey on MAC protocols for UWSNs was proposed in [7]. However, our

research goal does not include optimizing the medium access usage.

Johansen et al. [8] applied particle swarm optimization to obtain the optimal
WSN topology and UAV trajectory for reducing energy consumption. The
proposed model was compared with a low-energy adaptive clustering
hierarchy (LEACH) protocol to evaluate its performance. Though the
framework considered a relatively flat terrain to model the radio
communication, the radio model used in the literature can also be useful to

design propagation models in other environments. Different from the other
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proposed models, the UAV is also utilized in this architecture to select the CH

from the ground sensor nodes.

In [9], a test-bed experiment was conducted at the Fundulea National
Research Institute under the Romanian project MUWI. This data collection
framework assumed that the sensor transmits its sensed data to the nearest base
station first. The base stations were considered as the waypoint for the UAV
to collect the sensed data. A heavily infrastructure-dependent mechanism was
shown, though the architecture utilized the UAV to minimize the data
collection energy consumption. You and Zhang [10] considered affecting
fading power of the propagated signal to model the UAV-WSN
communication channel. An obstacle-aware 3D trajectory model was derived
for the UAV’s mobility. The proposed model successfully maximized the least
data collection rate by calculating an effective outage probability. In [11], the
authors proposed a new K-means++ based WSN clustering approach. This
architecture assumed uneven and random deployment of sensor nodes in the
field of interest. Based on the remaining energy and storage capacity, the CH

was selected from the cluster with the help of fuzzy logic.

Chen et al. [12] proposed a data gathering mechanism for UWSNs, where
the target area was also divided in clusters. The CH was determined based on
the information value and the residual power in the sensor nodes. Direct future
prediction was used to design the optimal trajectory of the data collection
scheme. Pang et al. [13] also investigated the problem of data collection from
a harsh terrain. Besides WSN data collection, their architecture also considered

to recharge the sensor nodes while gathering data from them.

The optimal WSN CH selection technique is observed in many studies [14].

Some other studies investigated the optimal trajectory problem for collecting
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WSN data [15], [16], while some studies were performed to localize the sensor

nodes [17], [18].

Based on the aforementioned studies, even though UAVs are utilized as
mules for data collection, the superior positioning capability of quadcopters is
not utilized at all. One possible application for UAVs could be collecting data
from unreachable or hard-to-reach areas, if construction and maintenance of
static infrastructure in such areas are not feasible. Moreover, WSNs can be
deployed for a limited observation period, which is also inefficient in terms of
cost. Communication through cellular infrastructure is also not an energy-
efficient solution because the sensor nodes might need to transmit at longer
distances. The proposed EFDC scheme does not assume the presence of any
static infrastructure, which makes it applicable for harsh or hilly terrains. The
data collection position is redefined with a search mechanism to reduce the

transmission power of the sensor nodes.

In [28], Carlos et al. did an test-bed experiment for an ocean infrastructure
monitoring system. Where the sensors are installed inside buoys and UAV
searches and collects the data based on previous location. However, they did
not apply any optimization process to reduce energy consumption of the sensor
nodes. Besides, the protocol is not also suitable for a large number of nodes.
In [29], Dragana et al. proposed a surveillance system, combining WSN and
UAV. They proposed a new stochastic channel modeling scheme for UAV-
WSN communication. However, they did not consider UAV position
optimization, which is the main contribution in our proposed EFDC. In [30],
Bacco et al. used WSN and UAYV to establish a monitoring system for the
ancient buildings. However, the focus is given on 3D construction of the
structure, and no optimization is done from the networking or data

communication perspective. A UAV-based WSN border surveillance system

9
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is proposed in [31], but this architecture is also dependent on static
infrastructure and does not consider the energy issue of sensor nodes. A test-
bed of peat fire detection technique is given in [32] with the help of a WSN
and fixed-wing UAV. However, the fixed-wing UAV is not applicable for

position optimization. Besides, this technique is heavily dependent on the BS.

Because data collection for UWSNs is more suitable for remote areas, the
availability of infrastructure makes the scenario incompatible. Some proposed
techniques assume that the control center has prior knowledge of the WSN
topology. This can be a bottleneck in terms of random deployment of sensor
nodes in harsh environments. Random deployment is specifically used in most
of the studies for simulation purposes, which can be matched with the real-life
unequal distribution of WSN nodes. It is observed from the above discussion
that most of the proposed architectures have prior knowledge about the WSN
topology. In our EFDC scheme, however, the UAV does not need any prior
information from the infrastructures, which is different from the previous
studies. This scenario decreases the utilization of UAVs. Collecting data only
from the CH also reduces the utilization of the UAV while creating extra
burden for the CH sensor nodes. Even though some of the studies showed
trajectory optimization techniques, the altitude optimization technique is
particularly missing from the investigated literature. The altitude optimization
technique can lead to reduction in the distance between the nodes and the UAV,

resulting in an efficient energy consumption

10
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IHI. SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, the assumptions, communication model, and problem
formulation for the EFDC scheme are given. The assumptions are listed
separately for the application area, WSN, UAV, and MAC protocol. In the
communication model, the descriptions of the application area,
communication phases, corresponding jobs, and applied algorithms are
mentioned. The objective function is formulated by considering the two main
objectives of the proposed scheme, namely energy efficient data collection and
fast data collection. At the end of this section, the default mobility model of

the UAV is explained. The symbols and notations used in the study are given

in Table L.
Table 1. Symbols and notations
K Geo-position of sensor nodes
N Set of sensor nodes
em Transmission power required to transmit data from node m to
UAv
the UAV
C Set of clusters
I Bit number that a CM wants to transmit
Indicates whether the UAYV is taking the path from position o;
(poi,oj ..
to position o;
elec Energy consumption of a sensor node for transmitting one bit

11
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l/)fs

Transmitter amplifier model in a free space environment

Ymp Transmitter amplifier model serving a multipath model
l Number of bits in a specific transmission
Sih Threshold distance for data transmission
Eolec Circuitry energy consumption for transmitting one bit of data
Erx_eiecqy | Circuitry energy consumption for transmitting [ bit of data
Eyg Energy consumption due to aggregation
é Distance between two nodes
Energy consumption of the amplifier of a node to transmit [ bit]
Erx-amp(.8) :
of data to distance §
Eg,(D) Energy consumption for receiving [ bit of data
Epy_ciec | Energy consumption for receiving one bit of data
Fogr Neighboring nodes ID
Npory Number of nodes in the polygon
CHprop Probability of a node to be a CH
Pi Transmission range of node i
W Normalizing factor
Tmin Least probability of being a CH
Sap Geographical distance between position a and position b

12
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S Starting and exiting positions of the UAV in the ROI
Tcy List of final CH and tentative CH
KFngr List of geolocations of neighboring nodes
DAyav, LAy, Default and least altitude of the UAV
Sy Y-axis displacement of the S-path
Y-axis displacement based on the transmission range of the|
Ysensorssensor nodes
S, Y-axis displacement based on the transmission range of the|
UAV
Esenr Transmission radius of the sensor
Evavr Transmission radius of the UAV
b, Beaconing time
UAVI'%SY Effective ground transmission range
DVyav Default speed of the UAV
K :Zfl’" Set of geolocations of the polygon
Y Bit count of the largest number
Tomin Lowest probability value of being a CH
Niter Number of iterations of the clustering algorithm
CH,ycs List of CHs’ geolocations

Collection @ chosu
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Crnasxe» Cmin | Maximum and minimum co-ordinates of a cluster

Crange Range of a cluster

r Fraction co-efficient of co-ordinates ranges

UAV searching positions by adding and subtracting the step

UAVR, UAV?
sizes respectively
P, Transmitted power of a sensor
P. Received power of a sensor
o) Distance

YRsSI Threshold limit of RSSI

P,,s<(6) | Path loss at distance &

E; Energy consumption of node i
n Path loss exponent
Og Standard deviation of the energy consumption
UcE Mean value of the energy consumption of all nodes in a cluster

YRssI RSSI threshold limit

RSSIS List of RSSI values in a cluster at the initial position

init

isol Initial position for searching
R, Number of rounds
C Set of clusters

14
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0 Set of data collection position

£ Transmission delay

S Starting and final positions of the UAV in the ROI

A. Assumptions

The limitations and assumptions of the study are categorized for the
application area, WSN, UAV, and MAC protocol separately. While making
the assumptions, we carefully considered the standard assumptions in related

studies and the feasibility of implementation. The assumptions are given below:

1. Assumptions for Application Area

Hilly terrain: It is assumed that the ROI is not flat and some natural obstacles
are present in the environment such as trees, rocks, and uneven ground. These
obstacles can cause scattering, diffraction, and reflection on the ground

communication.

Absence of static infrastructure: It is assumed that the WSN is deployed in a
remote area, and any static infrastructure such as a static sink or any network
communication point is absent. For this given scenario, the sensor nodes are

unable to communicate with the NCC or outer world.

B. Assumptions for UAV
Non-constrained energy: The UAV has enough energy to complete a single
discovery or data collection round. Once the UAV comes back to the launching

station, it can be recharged for the next round of operation.

15
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UAV type: We utilized a quadcopter instead of a fixed-wing UAV. A
quadcopter can easily change its position with the least amount of bending

angle and can stay in a stationary position for an arbitrary amount of time.

Buffer capacity of UAV: It is assumed that the UAV is equipped with
sufficient memory that can receive and carry all the sensed data from the

sensor; thus, buffer overflow is not possible for the UAV.

Collision and obstacle free movement: It is assumed that the UAV does not

face any obstacle on its way of movement.

UAV-WSN communication model: The communication model between the
WSN and UAV is not considered as LOS communication. Depending on the
randomly deployed natural obstacle’s height, the RSSI value is derived based

on the log-normal shadowing effect.

RSSI calculation ability: The UAV can calculate the RSSI power of the

signal received from the ground sensor nodes.

Least flight height: We assumed that the UAV could detect the least-flying

height through an embedded sensor such as a sonar sensor or LDR sensor.

1. Assumptions for WSN

Location awareness: The sensor nodes are location aware. They are equipped
with a global positioning system (GPS). By utilizing the GPS module, a sensor

node can query about its latitude, longitude, and altitude values.

Static nodes: The nodes are static. Once deployed, the sensor nodes do not

change their positional values anymore.

Homogeneous nodes: The sensor nodes assumed in the experiment are

homogeneous, which means that they have equal computational power and
16
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energy and the same radio communication module with the same transmission

range.

Node characterization: The deployed sensor nodes can be categorized as
CMs or CHs. The role of a sensor node is selected through the clustering

algorithm, and no predetermined role is assumed.

Node deployment: The nodes are deployed in a completely random manner

over the ROL.

Energy constraints: Sensors are battery powered and the batteries are not

rechargeable.

Adaptive transmission power control: The sensor nodes have the ability to
control the transmission power. Transmission power is retuned after the data

collection position is obtained [19].

2. MAC Protocol

The EFDC scheme uses carrier-sense multiple access (CSMA) for hello
packet transmissions. For data packet transmission, it uses a time-division
multiple access (TDMA) protocol. We kept the MAC operation similar to the
MAC protocol proposed for UWSNs in [20]; however, different from that in

[20], we did not consider any priority for the nodes.

C. Communication Model

Sensor nodes are deployed randomly throughout the ROI. The assumed ROI
is a remote region. Hence, no infrastructure is available for the sensor nodes
to transmit their data directly to a sink node or to any NCC. Each sensor node
inset N = {1,2,3,...,|N|} has coordinates K = {kq, ky, ks, ..., k|y|}, Where,
Ky € R3*E
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In a conventional UWSN data collection scenario, the UAV collects data
from the CHs in the WSN [28], [38], [39], [40], [41], [45], [46], [47], [55]. In
the EFDC scheme, every sensor node directly transmits its data to the UAV.
The EFDC communication mechanism is divided into three phases:
initialization, discovery, and data collection. Table II presents the algorithms
used in the different phases of the proposed scheme along with their goals. In
the initialization phase, the CBHEED clustering algorithm constructs clusters
and elects CHs from the sensors. The positions of these CHs are used as initial
positions for the suboptimal position search algorithm for data collection.
Different from the conventional approaches, neither the NCC nor the UAV has
any prior knowledge about the CHs’ positions. In the discovery phase, the
UAYV determines the position of the CHs with the help of hello packets. All
sensor nodes keep listening for hello packets broadcasted from the UAV. After
receiving a hello packet, the sensor nodes send their corresponding CH
positions. In the discovery phase, the UAV follows the S-path mobility model.
The UAV keeps track of its distance to all CH positions. When a UAV reaches
the least distance from its path to a CH location, it visits the CH’s position
physically. After reaching the CH’s position, the UAV runs a modified tabu
search algorithm to find out a suboptimal position to collect data from the

cluster.

Table 2. Working procedure of EFDC scheme

Phase Work to do Algorithm
Initialization Grouping th.e sensors 1gto CBHEED clustering
ha clusters, electing a CH with a aleorithm

phase better position £0
Discovery L seans 1Ol ﬁnds Modified tabu search
suboptimal data collection .
phase . algorithm
positions
. UAV collects sensor data from
Data collection .. . .
the calculated position by Genetic algorithm
phase . . .
following optimized trajectory
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The optimization is done to reduce the energy consumption and to ensure a
balanced energy consumption of the sensors in the cluster. In the data
collection phase, the UAV follows the trajectory computed by a modified GA
based on the derived data collection positions. We assumed that the deployed
nodes are homogeneous, and in every round, the sensors have some data to
send. In our EFDC scheme, extra workload of the CHs is reduced by sending
the sensors data directly to the UAV. Because of this, the re-election of CH is
redundant here. A one-time clustering technique reduces the number of

exchanged control packets and decreases the CH energy consumption.

All the nodes store their data in their own buffer memory and transmit them
directly to the UAV. Therefore, the chances of memory overflow are also
minimized. Again, in the conventional methods, when the CHs are re-elected
in every round, the UAV would need to re-initialize the discovery phase.
Consequently, the energy consumption will increase along with the exchange

of more control packets.

D. EFDC Objective

The objective of this study is to minimize the total transmission power of the
sensor nodes and optimize the trajectory of the UAV. The total transmission
power is calculated by multiplying single-bit data transmission cost (power)
with the number of transmitted bits. Single-bit data transmission cost from a
sensor node m of a specific cluster to the UAV can be denoted with &Y, The
number of bits for node m can be denoted with [,,,. So, multiplying &/}, with
[, will reveal the energy cost for a single transmission for a single node. If we
iterate the transmission cost for all the nodes for all the clusters, we will get
the transmission cost for a single round transmission. Minimization of this

transmission cost will constitute the first goal of EFDC, which is stated as
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“energy-efficient data collection”. The mathematical expression of this

objective is as follows:

min ((Z Z L * E{}lAV)), (1)
UEC meu

To achieve the goal of the energy-efficient data collection, we apply the tabu
search algorithm for finding suboptimal positions of data collection. The
algorithm optimizes the transmission distance in all the clusters, resulting in

an energy efficient data collection.

EFDC tries to achieve fast data collection by optimizing the travelling
distance of UAV for data collection. We can calculate the trajectory by finding
out the data collection positions and adding the distances from one data
collection position to other positions. The mathematical expression of the

second objective of EFDC is as follows:

min (Z 80,0, <Poi,o,-)' (2)

where ®o,0; indicates whether the UAV is taking the path from position O; to
position O; and the value varies between 0 and 1; and 50i,0j refers to the

distance between position O; and position 0;.

We form the data collection position list O by appending all the designated
positions elected from all clusters by tabu search. After this step, we have the
data collection positions that will determine the value of ®o,0;- To ensure
shortest trajectory, we apply a modified version of the well-known GA to the
discovery procedure of the optimized trajectory by forming a TSP problem

with O.
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E. UAYV Mobility Model

This subsection describes the parameter of the S-path mobility model used
in this study. In the discovery phase of the EFDC scheme and in other cases
where the UAV does not know the CHSs’ locations, the UAV follows the S-
path mobility model. In the proposed scheme, the UAV starts searching for the
CHs from the initial position of the ROI:

0
0
DAyay

where the UAV’s initial position is denoted as UAV,,+ and the default

UAVstare = ’ 3)

altitude of the UAV is DAy 4y . The final or exiting position of the UAV after

completing the search can be denoted as

Rol,
UAVfinal = ROIY ’ (4)
DAUAV

where UAVfinq; 1s the final position, and Rol, and Rol,, are the maximum x-
axis and y-axis values of the ROI, respectively. When the UAV reaches the
boundary of the x-axis from the initial points, the UAV jumps an Sy amount
of space according to the y-axis. The value of Sy can be calculated as

SY — {SYSensors * 2' SYSensors = SYUAV' (5)

SYUAV * 2' SYUAV < SYSensors

where Sy, and Sy,,, are the y-axis displacements based on the
transmission range of the sensor nodes and the UAV, respectively. Sy,

can be derived based on the following formula:

2
SYSensors = \/€SENT2 - DAUAVZ' (6)
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where Eggyy is the transmission radius of the sensor. The value of Sy, , can

be calculated by

2
SYUAV = \/SUAVrZ - DAUAVZr (7)

where &4y, 1s the transmission radius of the UAV. The calculation of Sy is

illustrated in Figure. 2.

(b)

ﬁ]’ Sensor
Zec. UAV

UAV default altitude

<— Sensor transmission radius

<~— Y-axis distance for sensor transmission range
UAV transmission radius

«— Y-axis distance for UAV transmission range

Figure 2. Calculation of S-path y-axis difference based on (a)
sensor transmission range and (b) UAV transmission range.

The hello packet broadcast interval is set in a way that every sensor will be
inside the transmission range of the UAV for at least a single transmission. To

accomplish this task, we set the broadcast time as follows:

UAVRSY), ®)

where b; is the time of the previous hello packet, b, is the time of the next

packet, UAVI'?SY is the effective ground transmission range after Sy distance in
the y-axis, and DV, is the default speed of the UAV.
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IV. ENERGY-EFFICIENT AND FAST DATA
COLLECTION

This section describes the EFDC procedure according to the phases presented
in Table II. The CBHEED algorithm is shown as part of the initialization phase.
Discovery of the data collection positions is given to represent the discovery
phase. Discovering the CH position and deriving the suboptimal position for
the data collection mechanism are also given. As part of the data collection

phase, the outline of the GA is given.

A.  Clustering

The clustering algorithm is used in the EFDC scheme to group the underlying
WSN in a distributed manner. The CH positions are used as the initial positions
for the suboptimal position search algorithm for data collection. As there is no
infrastructure available to assist the sensor nodes to form the cluster, the
clustering technique has to be fully distributed for the application scenario.
The HEED [22] algorithm is a well-known algorithm owing to its energy-
efficient CH selection technique. We modified the original HEED algorithm
and proposed the CBHEED algorithm, which fulfills the clustering need for

our scenario.

In the EFDC scheme, the clustering process occurs only once. The UAV also
searches the suboptimal positions for data collection only once based on the
CH position. Hence, it is important for the clustering algorithm to determine
the node whose geographical position is superior compared to other
neighboring nodes. A node with a superior geographical position means that
its cumulative distance to all nodes in the cluster is minimal. Similar to the
original HEED clustering algorithm, the CBHEED algorithm also forms the

cluster in three steps. Algorithm 1 presents the outline of the proposed

24

Collection @ chosun



CBHEED algorithm. The working procedure of Algorithm 1 is elaborated in

the following subsections.

1. Initialization

In the initialization step, every node formulates its neighboring table by
broadcasting an initial hello message. Along with the node’s ID, this hello
message also contains the node’s geographical position. However, the RSSI
level plays the most important role here for calculating the neighboring list.
RSSI value must be within the threshold of the sensitivity level of a particular
node. To form the neighbor list the geo-location of a nod is not considered.
For example, in [23], it is mentioned that the sensitivity level of MICAz node
is -94 dBm, which uses CC2420 RF transceivers. With the help of the RSSI
value obtained from the hello messages, the receiving nodes formulate the
F,gr list, which contains the neighboring node IDs (line 1). Then, the sensor
nodes calculate their central bias based on the monotone chain convex hull

algorithm and the Paul Bourke’s equation for centroid calculation [24].

The outline of the monotone convex hull algorithm is given as Algorithm 2
(line 3). It should be mentioned that for calculating the polygon and the
centroid, we took only the x and y coordinates of the neighbors. As, the nodes,
having lower RSSI value will be automatically excluded in the neighboring
list formation process and do not participate in the subsequent calculation.
Even though the hilly areas have differences in the z axis value, the UAV
optimizes the data collection position in 3D space (Algorithm 4). Considering
3D space might be necessary if the CH is responsible for collecting data. In
EFDC, however, the responsibility for data collection is not given to the CH
but to the UAV. So, considering the 3D space while clustering is unnecessary
in EFDC. The monotone chain convex hull [25], [26] algorithm is used to form
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the polygon by considering the neighboring nodes and it returns a sorted array
of points of the polygon (line 3). The points are then fed into Paul Bourke’s

equation for calculating the exact centroid position of the polygon (line 5).

To determine the centroid, the area should be calculated first based on the
derived coordinates from the convex hull algorithm (line 4). The area can be

calculated using with the following equation:

Noyory—1
A= 22PN XY — XY, 9)

2 “~i=0

where A denotes the area of the polygon, X is the sorted x-axis list of the
sensor node’s geolocation on the edge of the polygon, Y contains the sorted y-
axis list of the sensor node’s geolocation on the edge of the polygon, and N,
is the number of nodes in the polygon. The x and y coordinates of the centroid

can be calculated based on the following (10) and (11), respectively.

. Npory—1
Centery = — > (g + Xy ) (Xi¥eyn = Xisa YD, (10)
i=0
and
. Npory—1
Center, = — z (Y; + Vi) ) (XY — Xiia V), (11)
i=0

where Center, and Center, represent the x and y coordinates of the polygon

center (line 5). The probability of a node to become a CH can be assigned

using the following equation:
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_ 5a,b
CHpyrop = max | (1 — 7 X ®), Tmin ), (12)

where CHy,.op, is the probability ofa node to become a CH (line 7), p indicates
the transmission range of a node, w is a normalizing factor on which the
number of iterations of the clustering algorithm is dependent, and t,,;,, is the
minimum value assigned in the nodes. When the central bias value becomes
lower than a certain threshold value, 7,,;, is assigned as the CH,,,.,;, 0f a node.
8, p Indicates the Euclidian distance between geographical positions a and b.
Here, positions a means the position of the examining node, where a = {ax, ay}
and b corresponds to the polygon’s center, where b = {bx, by} (line 6). &, is

calculated using the Euclidian distance formula as indicated below:

bap = (@ = b.)+ (ay —b,)" (13)

The cost of a node is determined by the number of adjacent nodes. Similar to
the original HEED algorithm, the node degree and cumulative distance of the
neighbors are taken into consideration for calculating the cost. Fig. 3 illustrates
an example of a centroid calculation after applying algorithm 2 and (13). Fig.
3(a) displays a greater distance, whereas Fig. 3(b) shows a lesser and better

example of §, 5.

The residual energy is not taken into consideration because the deployed
nodes are homogeneous. Initially, the energy level inside all the sensors is the

same. In the EFDC scheme, clustering is done only once. In contrast to the
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conventional clustering, the CH does not perform any extra work in the
proposed scheme. The energy consumption is the same for all nodes.
Depending on the CH,,,.,;, value, the nodes declare themselves as the tentative
CH denoted as
CH¢entative and initially, all the sensor’s CHyq; flags, that is, bool CHyipg

are set to false (line 8).

200 200 . 0
180 & 1soo» OO %
160 O o o 160 0o @) © o
140 (@) O @ 1401 @ N o
120 O /‘O O Oé 120f E O
100 X O 100F
80 Q\ 80+
60 N \ OO 60 0O el
o © ® o
40 ) 40 O e}
200 % 20+ o ®) @ o
O
% 50 100 150 20 % 50 100 150 200
(a) (b)
——— Polygon boundary

0 Examining node
#* Calculated centroid position
Relative distance between the centroid and examining nodes

Figure 3. Bias examples: (a) bad centroid bias and (b) good
centroid bias.

2. Iteration

The second step of the clustering algorithm is called the iteration step as
given in Algorithm 1. In this step, the nodes compare the cost of the
neighboring nodes with their own cost. The least cost node is selected as the
temporary CH, expressed as CHgpjpocteq from the Tey list. The sensor selects

its CH by receiving a final CH message from a CHy,gq; o1 the sensor claims

itself as a CHyjpgq; by its own (line 3). If a node finds itself having the least cost
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and the value of CH,,,p, is also 1, then the node sets its bool_CHyjyq; value to
true and broadcasts a CH final message to all neighbors. If the CHy,.p, is less
than 1, then the node claims itself as the CH;pp¢qtive and broadcasts a tentative
CH hello message to its neighbors (lines 3—11). The CHy;,q; flag of a sensor
becomes true only when the CHy,.,, value of the node is 1. The T¢y gets
updated every time a sensor node receives a new declaration of a node as a
CH¢entative O CHfing (lines 6, 9, 13, and 16). The operation can be expressed

by the following equation:

Tcy = {CHs instep (i — 1) U CHs in step (i)}. (14)

Every node having a CH,,,p, of 1 declares itself as CHf;pq; and broadcasts its
status to its neighbors (lines 12—14). Apart from the above cases, a node might
not have any CH in its vicinity. In such cases, the node declares itself as
CH¢entative based on a random value and broadcasts its status (lines 15-16).
In every iteration, the nodes increase the CH,,,p, value by multiplying with
two. If the CHpy,p, value becomes greater than 1, then the corresponding node
exits the iteration phase (lines 19-23). In the iteration phase, either the sensor

node selects a CH or it declares itself as the CH and quits the iteration round.

3. Finalization

In the finalization step, the nodes check if their bool_CHpipg is true or not.
If it is not, then they find the least cost CH, namely, CHgpjocteq from the Ty
list and send a cluster join request to the least cost CH (lines 1-4). Otherwise,
the nodes broadcast hello packets by setting their CHgigpys 10 CHiontative -
Upon receiving the cluster join request, the CHy;y,4; adds the requesting node
information in the CM table (lines 5-8). If the node itself'is a CHyjyq;, the node

sends a CH final hello message to further inform the neighboring nodes about
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the final CH status (line 9). Figure. 4 displays a graphical representation of the
outcome of the clustering algorithm. In the figure, the CHs and corresponding

CM connections are shown.

200

(b)

CH — CM connecting line
O ™M
X CH

Figure 4. Illustration of clustering results in an example WSN: (a) 3D view

of the clustering outcome and (b) top view of the clustering algorithm in 2D
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Algorithm 1: CBHEED

F . :
., K_"®" contains the geolocations of

Input:{KF"g’” | Kangr’ Kanr’ Kanr .

2 3 5 o

sensor node’s neighbors}
Output: CHyipng
Initialization
1. B4 < { Neighbor’s list based on RSSI value }
2. Broadcast cost to all nodes € Fy 4,
3. Forms polygon using algorithm 2 (Monotone chain convex hull algorithm)
4. Calculates the area of the polygon (4) using equation (9)
5. Calculates center, and Center, axis of the polygon using (10) and (11)

6. Calculates difference between node’s geo-position and polygon centroid

position (§,,) using (13)
7. Assigns CH,,,p value using (12)
8. bool_CHying < False

Iteration

1. while (True)

2. if (empty (T¢y) is not equal to True)

3. CHgelocteq < min_cost(Tey)

4. if (CHgppecteq-ID 1s equal to NID)

5. if (CHpyop 1s equal to 1)
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6. broadcast _ch info(NID, CHgtqtys
«— CHfinal: COSt)

7. bOOl_CHfinal < True
8. else
9. broadcast ch info(NID, CHgqtys <

CH¢entative, €OSY)
10. end if
1. end if
12, else if (CHp,p is equal to 1)
13. broadcast_ch_info(NID, CHgtg¢ys < CHying;, cost)
14. bool_CHfing < True
15.  else if (Rand(0,1) is less than or equal to CH,,p)
16. broadcast ch info(NID, CHgqtus < CHientative, €OSt)
17. end if
18.  CHprey < CHprop
19.  CHppop < min(CHprop X 2,1)
20. if (CHpyep is equal to 1)
21. break
22. endif
23. end while
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Finalization
1. if (bool_CHpipg is equal to False)

2. if (contain_Final_CH(T.y) is equal to True)

3. CHgelocteq < min_cost(Tey)

4. cluster join(CHgppocteq-ID, NID)

5. else

6. broadcast ch info(NID, CHgqtus < CHientative, €OSt)
7.  endif

8. else

9.  broadcast_ch_info(NID, CHstqtys < CHping, cost)

10. end if

4. Polygon Formulation

In the EFDC scheme, the monotone chain convex hull algorithm proposed in
[27] is used to form the polygon based on the neighboring nodes of an
examining node. The algorithm extends the Graham scan [26] by sorting the
selected data points. The algorithm is named as monotone chain because the
algorithm computes the lower and upper hulls of a monotone chain of points.

The pseudocode is given as Algorithm 2.

The algorithm first sorts the sensor nodes based on the geolocation values of
their neighboring nodes (line 1). K97 contains the values of the geolocations
of the neighboring nodes. Two lists, namely, U;;s; and L;;;, contain the points

of the upper and lower hulls (lines 2—4). For computing L;;s¢, a subset ¢ of the
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sorted Ko7 is taken with at least two nodes. All members of Ko are
iterated, and positions with the same directions are added. The added location
first gets deleted and the next node’s location gets inserted (lines 5-10).
Constructing U, is achieved in the same manner as for L;;5, (lines 12-16). A

concatenation operation is done on Uz and Lj; to produce the resulting

K :Zflr, which contains the geolocation of the formed polygon.

Algorithm 2: Monotone chain convex hull algorithm

F F F F . .
Input: {K™or | K. ™", K,"", K.,"", .., K,"¥" contains the geolocations of

sensor node’s neighbors}

Fugr  poF F Fng
. ngr ngr ngr ngr
Output: {K, . |K, .. K vtz K Kh ,n contains the geolocations

of sensor nodes, which took part in forming the convex hull}
1. sort (list K97 according to the x-axis, in case of a tie using the y-axis)
2. // the Uys and Ly will hold the upper and lower hulls accordingly
3. Upse < {}
4. Lyse < {3
5. For i « 1 to length (K*rar)
6. while (¢ € L5, where n(¢) is > 2
and

Kngr[i] does not make any counterclockwise turn with

the sequence of the last 2 points of L;;g;)

7. remove(L;;, [last element])
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8. append(Lyse [K™om [i]])

9.  end while

10. end for

11. for i = 1 to length (K™or)

12.  while (9 € Ujj, where n(9) > 2
and

Kngr[i] does not make any counterclockwise turn with

the sequence of the last 2 points of Uj;¢;)
13. remove(Uj;,; [last element])
14. append(Uys; [K™or [1]])
15. end while
16. end for
17. remove(Uj;s [last element])

18. remove(L,;s: [last _element])

F
19. K, = concat(Ly;s¢, Upise)

5. Runtime Complexity of the Clustering Process

The runtime of the CBHEED algorithm is similar to that of the original
HEED algorithm [22] except for the changes due to the first parameter
selection, that is, the central bias calculation. To calculate the central bias, we
used the monotone chain convex hull algorithm. This algorithm needs to sort

the coordinates of the sensors’ geolocations, which is the most expensive
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process in terms of runtime complexity. By implementing the radix sort, the
time complexity can be reduced to O(yn), where y is the bit count of the
largest number and n is the number of elements. For generating L;;5, and Uy,
the algorithm takes O(n) time. The function remove() takes O (1) time and
concat() needs O(n) time to finish. Other than the cost of finding CHpyop,
where the convex hull algorithm works, the remaining part of the initialization

step takes a maximum of O (n) time.

In the worst case, in the iteration step, a node will have CHy,op Of Ty .
However, in every iteration, the CH,,,), is doubled. The maximum number of

iterations can be calculated using

2Niter=1 x ¢, 00 > 1, (15)

and

! ] +1, (16)

Niter =< [1082 '
min

where Nj;., is the number of iterations in the iteration step of the clustering

algorithm and t,,;, is the minimum probability of being a CH. Thus, it is

evident that the iteration number is constant and N, = O(1). With a

maximum number of n CH, the runtime would be 0(1) X runtime of Nj;,,-.

As Njs, is constant, the runtime of an iteration step is also O(n). Inside the

iteration step, the other computations take only a constant amount of time.

In the finalization step, the time complexity is dependent on the number of
final CH found by the nodes. The cluster join() function completes its
operation within 0(1) time complexity. After the aforementioned analysis, it

can be concluded that the complexity of the entire clustering technique is O (n).
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B. Discovery of Data Collection Positon
In the EFDC scheme, the first round of the UAV is called the discovery phase.

This phase has two main goals:
1. discovering the CH locations and
2. finding the suboptimal data collection positions.

In discovering the CH locations, the UAV follows the S-path mobility model
and locates the CH locations. In the data collection position search algorithm,
a suboptimal position is obtained by the proposed modified tabu search

algorithm.

1. Discovering the CH Locations

For the discovery phase, we assumed that the UAV follows an S-path using
(3) and (4) as it’s initial and final positions, respectively. The working
procedure of this phase is given as Algorithm 3. The list CH;, s holds all the
discovered CH geolocations (line 1). The UAV broadcasts a CH finding hello
message to get a reply from the sensor nodes about their CH’s position (line
4). In reply to the hello message, the sensor nodes send their corresponding
CH positions back to the UAV using the CSMA protocol. The reply message
from the sensor nodes includes the CH’s ID and geolocation. The UAV then
adds the corresponding information to its buffer memory as discovered CHs

(lines 5-10).

Meanwhile, the UAV keeps searching for the minimal distance for a specific
CH, based on the track of the mobility model. With the help of
min_distance_to_a_CH() function, the UAV searches the relative distance
with the CHs (line 12). After reaching a specific position where the distance

of a corresponding CH is minimal, the UAV flies into the position (line 13)
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that saves the UAV flight time. The UAV requests for the cluster information
(line 14) using a request cluster information hello message. Upon receiving the
packet, the sensors reply the cluster information. This reply message contains
the CMs’ IDs and their geolocations (line 15). The UAV then finds the

suboptimal data collection place (line 16).

Algorithm 3: Discovering the CH locations

Output: {0 |0,,0,,0;,...,0/c| contains the suboptimal data gathering

positions}
Initialization:
1. CHypes, O—{}
Iteration:
2. while (True):
3. CHtempPos‘_{}
4.  broadcast CH search message()

5. if (receive(CHiyz,))

6. CH,, « discovered cluster head x-axis value
7. CH,, < discovered cluster head y-axis value
8. CH, < discovered cluster head z-axis value
9. CHtemppos< {CHy, CH,, CH,}

10. end if

11.  append(CHjocs) CHtemppos)
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12.

13.

14.

15.

16.

17.

18.

19. end while

if (min_distance to_a CH())

end if

UAV _acquires CH_position ()
UAV requests_cluster member information ()

CMinfo <

UAV receives cluster member information ()

Osingle = UAV_data_collection_position_search

(CMinfo)

append(O 5 Osingle)

2. Suboptimal Position Search Algorithm for Data Collection

To improve the quality of data collection position, we applied a modified
tabu search algorithm, which returns a moderate solution with a smaller

number of iterations. To apply this algorithm in our scenario, a selection

mechanism for neighbor positions is necessary.

To select the neighboring positions for the UAV in 3D space, the UAV

calculates the range of axis based on the upper and lower limits of the cluster

a) Neighbor Selection Mechanism

boundary according to the sensor nodes’ geolocations.

CmaxX CminX Crang ex

CmaxY - CminY = CrangeY

DAUAV LAUAV CrangeZ
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where Crangexs Crangey, aNd Crgngez are the corresponding ranges of the x —,
y —, and z — axis; Cpgxxand Cp,qxy are the maximum values of the x — axis
and y — axis of a cluster, respectively; DAy y is the default altitude of the
UAV; Cprinx and Cp,iny are the minimum x- and y —axis values of a cluster,
respectively; and LA,y indicates the least possible altitude of the UAV. The
transition step is calculated by taking a fraction of the ranges. The steps for the

corresponding axis are calculated based on the following equations:

CrangeX I, Stepy
CrangeY © I;/ = StepY] (18)
CrangeZ Fz StepZ

where I, I, and I, indicate the coefficient percentages of the range that
should be taken as the step for the corresponding axis. The number of iterations
depends on the values of I}, [}, and I7,. It can be observed that, with larger
values of I', the UAV will require a lesser number of steps, but will produce
relatively bad results. To keep a reasonable iteration number in finding a better
position, we used I, [}, and I; = 10% of the entire range. Finding the
optimal values of I, [}, and I}, is another research issue, which is out of the

scope of this present work.

The next position for iteration is calculated by adding and subtracting the
step sizes calculated in (19) and (20) corresponding to their axes. By adding
and subtracting the fractional value, the UAV will be able to explore all
possible places according to the axes line. Besides, the number of searching
spaces will be limited. In the meantime, Algorithm 4 will also prevent the

UAV to search in a repeated position.
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UAV,| [Stepy1 [UAW
UAV, [ + |Stepy | = |UAV|, (19)
UAV, Stepy UAV

where UAV*, UAV)', and UAV,® are the three possible UAV searching
positions from the previous positions UAV,, UAV,,, and UAV,. The other three

possible positions can be derived by the following equation:

UAV,] [Stepy1 [UAW
UAV, | — [Stepy = |UAV/|, (20)
UAV, Stepy UAV}

where UAVY, UAV}, and UAV;' are the other three possible searching spaces
for the UAV. All possible searching positions from a previous position matrix
are obtained by concatenating the above two matrices, which can be expressed

as

UAV] [UAV UAV UAV
concat | |UAV | [UAVH | = [UAV UAVY . 1)
UAV] luAV UAV* UAV,

Algorithm 4 (line 5) utilizes the matrix derived from (21). By following a
greedy process, the UAV selects the best position based on the evaluation of
the objective function. We cleverly proposed the testing positions by keeping
two objectives in mind. The first objective is to reduce the number of search

spaces and the second is to include the best state from all possible states.

b) Objective Function
We formed the objective function based on the RSSI values of the sensors
from the UAV. The RSSI value has been used as one of the key parameters in
many studies [60], [61], [62]. The UAV changes its position physically and
41

Collection @ chosun



detects the RSSI values of the sensors. We considered the log-distance
propagation model, which is an extension of the Friis free space model [31].
The simplest equation for calculating the RSSI value can be expressed as

follows [32]:

P =P, (%)" (22)

where B. is the power received, P; is power transmitted from the sender, §
denotes the distance, and 1 is the path loss exponent. The value of n differs
from 1.6 to 6 [33]. In [34], the authors have done a test-bed experiment and
found that, in near-ground communication, the value of n differs from 2.45 to
3.40 in an outdoor environment with obstacles. The authors in [34] used the
CC2420 transceiver to conduct the experiment. In our case, however, we can
safely assume that the value of 7 is 2 as the probability of LOS communication
between UAV and sensor nodes are high. In practice, the UAV will sense the
RSSI value and it will execute Algorithm 4 based on the value. By taking the
logarithm of both sides, we obtain [32]

10log P, = 10log P, — 10nlog?$d. (23)
If we express P, indB as RSS! and 107 1ogd as the path loss, the equation can

be rewritten as [35]

RSSI = P, — Pjys5(6) in dBm, (24)
where Py, denotes the path loss expressed in dBm. The log-distance path loss

can be described as [36]
1)
Ploss(5) = Ploss(5o) + 10 77108 <5_)' (25)
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where Py,s,(6) indicates the path loss at distance &, and P,,,,(8,) is the path
loss at a reference distance &,. Replacing the value of Py, (8), we can rewrite
(23) into
é
RSSI = P, — (Ploss(5o) + 107log (5—)). (26)
(o]
Usually, §, denotes one unit of distance. By updating the value of §, in (25),

the following equation can be obtained:

RSSI = P, — P;,s(8,) — 10 nlog(6). 27)
The power perceived by a receiver from a reference distance can be expressed

by

A = Py — Pis55(85), (28)

where A denotes the perceived power at a reference distance §,. Hence, the

RSSI equation can be rewritten as

RSSI = A — 10nlog(8). (29)

If the distance between the transmitter and the receiver increases, Py, (5)
increases and the RSSI value decreases. RSSI is a function of the position
constructed by the 3D position of the UAV. According to (41), the energy
consumption of the sensor nodes for data transmission depends on the distance.
Therefore, the objective function of the UAV searching procedure can be

written in the following format:
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|Cnl

f(x,y,z) = max z RSSI; and min o, (30)

i=1
where o expresses the standard deviation of the energy consumption of the
nodes in a cluster and |C, | denotes the number of sensor nodes in a cluster.
The objective function for finding the suboptimal position for data collection
is divided into two parts. The first portion of the function is formulated to find
a place where the value of RSSI is the maximum in a cluster. The second part
of the objective function states that the position should not only increase the
cumulative RSSI value but also minimize the standard deviation g of the
energy consumption for all nodes in a cluster. We assumed that the UAV can
measure the RSSI values and based on (40), it can also estimate the energy
consumption of the sensors nodes in a cluster. Maximizing the RSSI is the
main objective of the searching algorithm, whereas minimizing op works as a
tiebreaker, resulting in a better load balancing data collection mechanism. The

first portion of the objective function can be written as

Y RssI; = 314 — 10 71og(6)). (31)

As presented before, § represents the distance between the transmitter and the
receiver. In the EFDC scheme, we measure the RSSI value of the sensor nodes
from the UAV. Therefore, § can be expressed in terms of the Euclidian
distance between the UAV and the sensors nodes. Consequently, (31) can be

written as

J(xi_UAVx)+(yi—UAVy)+(Zi—UAVZ)

Il 4 — 10 nlog

=1

- SN €5)

and oy can be expressed as
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_|(Ei — pep)?
7 _,’ ICnl 7 33)

where E; is the energy consumed by a sensor node, and py is the mean value
of the energy consumption of all nodes in a cluster. y-z can be calculated

based on the following formula:

1 [Cnl
=— > E, (34)
UcE ICnI Z i
where the constraints are

RSSI; < Vrssi» (35)

CminX < UAVx < CmaxX' (36)

CminY < UAVy < CmaxY' (37)

and

LAyav < Zyay < DAyay. (38)

Constraint (35) states that for a single node, the RSSI value must not be less

than the threshold limit ygs;. The Yrss; can be expressed by the following

equation:
. Cn
Yrss: = min(RSSL™), (39)
where RSSI;’”‘“ is the list of initial RSSI values in cluster C,,. Constraint (36)

states that the UAV cannot select a position with UAV,, which is out of the
cluster’s x-axis boundary, that is, Cy,,;,x and Cy,qxx. Constraint (37) indicates
that the y-axis value UAV, must be inside the boundary expressed by
Ciny and Cpayy » and (38) requires that the zy,, value must be within

LAyay and DAy 4y
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3. Modified Tabu Search Algorithm

The tabu search algorithm searches the selected neighboring coordinates as
discussed above and chooses the best neighboring position greedily. The

pseudocode of the modified tabu search algorithm is given as Algorithm 4.

Algorithm 4: Suboptimal position search algorithm for data collection

Input: i;,; = selected CH position, iter;,,,, = max iteration number
Output: O,,; = best neighboring position

1. Opos < isor

2. count <0

3. locyisitea = {3

4. while (count is less than itery,,,,)

5. to_Visit Neighbor «— calculate neighboring co

ordinates(Op,s)
6. iter_besty,s < Opos

7. for j « 1till length(to Visit Neighbor)

8. Dsor<— to_Visit Neighbor(y)
0. if (locyisiteq does not contain pg,;)
10. set UAV_coordinates(p_sol);
11. UAV _broadcast beacon_request();
12. UAV _receive beacon();
13. if (f (Psor)
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is greater than or equal to f (iter_best,,;))

14. iter_besty,s < Psol
15. end if

16. append(locysitea Psot)

17. end if

18. end for

19. if (iter_besty,,s is equal to or less than Oy)

20. Break;
21. else
22. Opos < iter_besty,s

23. endif

24. count <—count+1

25. end while

The initial solution ig,; is selected as the initial position for the search
mechanism, which is the CH position of the corresponding cluster.
to_Visit_Neighbor is a queue that contains the calculated neighboring
coordinates with the help of the calculate neighboring coordinates() function
(line 5). This function selects the neighboring position based on the fractional
value Stepy, Stepy, and Step, given as (18). The UAV iterates through all
the neighboring positions and calculates the fitness function value by (30),
except for the positions that the UAV has already visited (line 9). This

technique is adopted from the core concept of the tabu search algorithm [37].
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In every designated neighboring position, the UAV broadcasts a request for
a beacon packet from specific cluster nodes (line 11). In reply, the sensor nodes
send beacon signals from which the UAV calculates the RSSI strength for that
specific position using (32). The visited positions are recorded after every
successful visit to the designated neighboring places and inserted into list
locyisitea (line 16). After comparing with all the neighboring values, the UAV
selects the best neighboring position as its next position (lines 13—15). The
best position is updated if any better solution is found (line 22); else, the loop
terminates (lines 19-21). The algorithm iterates until an exact number of

iterations or the local optimum is found.

4. Data Collection

In the data collection phase, the UAV first formulates the TSP problem based
on the derived sub-optimal data collection positions, denoted as O. The TSP is
a NP-complete problem and the runtime complexity for finding the shortest
trajectory based on the TSP problem is O(n!) , which is not a feasible option
for real life application. In order to minimize the time complexity of finding
shortest trajectory a modified GA [38] is applied. The expected runtime of GA
is O(nlogn) and good solutions can be found in O(logn) [39]. Superior
runtime complexity and the chances of getting good solutions in lower
iteration make GA a favorable option to solve the TSP. The UAV follows the
shortest trajectory for the rest of the data collection run. After computing the
trajectory, the UAV goes to each derived data collection position and collects
data from a specific cluster. In the discovery phase, Algorithm 3 produces a
list containing the optimized positions for data collection. Based on this list,
the UAV applies the modified GA from [38] and searches for the shortest

trajectory for data collection. Figure. 5 shows the optimized trajectory
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calculated using the GA. The modifications done in the different phases of GA

are described further in the following subsection.

GA: The GA tries to find the best solution of a fitness function by
implementing the metaphor “survival of the fittest.” The algorithm uses an
evolutionary technique to discard the low fit values and tries to incorporate the

best fit value inside the fixed size population.

The fitness function used to find the shortest trajectory can be given as:

[0]
9(0) = 5(5,01) + 5(0|0|'S) + Z 50i,0i+1 (40)
i=1

where, 8 o,y denotes the distance from the entering position S to the first data
collection position Ol. 5(o| oS) denotes the distance from the last data

collecting position to the exiting point. g(0) represents the entire distance that
the UAV will travel to collect data in the ROI. In the first step of the GA,
random solutions are being generated based on the suboptimal data collection
positions. The metaphor chromosome is used to represent a solution. The
major operations of the GE can be divided into crossover, mutation and

selection. Modifications in all three stages are given below:

Crossover: In the crossover operation, extended partial mapped crossover
(EPMX) policy is considered [38]. In this operation a pair of new
chromosomes (CR) are created by crossing two parents CR. EPMX operation
can be divided into five steps. At first, EPMX finds a crossover region by
taking an arbitrary position. After that, the chromosomes are divided into the
two parts namely, crossover region and match region. Then, the EPMX sorts
and scan the match region to find the non-identical data collection position.
the exchange policy is obtained from the non-identical corresponding positions.

Based on the exchange policy, data collection positions are changed in the
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crossover region and new chromosomes are created. Unlike [38], our initial

and final positions are not variable. A step by step example is given below:

Input: Taking two chromosomes for crossover operation
CR1: {og, 05, 03, 04, 04, 01, 0g, 09, 07, 019, Og, O }
CR2: {og, 07, 04,09, 03, 0g, 0¢, 01, 0, 05, 01, Os }
Step 1: Find a random crossover position
Crossover position: 6
Step 3: Divide each chromosome into match region and
crossover region based on crossover position.
Match region:
CR1:{os,0s,03,04,04,0,} CR2:{0g,0;,0,,0q,03, 05}
Crossover region:
CR1:{0g, 09, 07,019, 05,05} CR2:{04,0,,0,,0s,010,0s}
Step 3: Obtain the exchange policy
Matching operation:
CR1:{o,03,04,01,05,05} CR2:{0g, 05,04, 0;,0g,09}
Exchange policy: 1 & 7,2 < 8,59
Step 4: Apply the exchange policy into both of the chromosomes
crossover region.
Exchange policy applied:
CR1'={0s, 05, 03, 02, 04, 01, |04, 05, 01, 019, 0g, O}
CR2'={05, 07, 04, 09, 03, 0g, | 0g, 07, 0g, 09, 019, O}
Step 5: Exchange crossover region and new chromosomes are created
Crossover region exchanged:
CR1"={oy, 05, 03, 05, 04, 01, 06, 07, 0g, 09, 01, O }

I__
CR2""={0g, 07,04, 09, 03, 0g, 03, 05, 01, 019, Og, Og }
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Mutation: In this operation, the selected chromosomes are mutated by their
own and new chromosomes are created. The newly created chromosomes or
solutions are expected to perform better for the fitness function and prevent
the premature convergence. The mutation operation adopted in EFDC can be
divided into four steps. The first step is to generate a random position for
mutation. Then, a random element is taken from the chromosome in the second
step. In the third step, the randomly chosen element is inserted inside the
randomly chosen position. Lastly, the previous element inside the randomly
chosen position is taken and inserted in the location of randomly chosen

element. A step by step example is given as follows:

Input: Taking one chromosome for mutation operation.

CR1={05, 07, 04, 09, 03, 0g, 03, 05, 01, 019, 06, Os}

Step 1: Select a random position.
Random position: 10

Step 2: Select a random element from the chromosome.
Radom data collection position: og

Step 3: og is inserted into position 10 and o4, is stored
CR1={0s, 07,04, 09,03, 0g, 03, 05, 01, Og, O, Og }

Step 4: 04 is inserted in the previous position of og

CR1'={o0g, 07, 04, 09,03, 01, 03, 05, 01, Og, Og, Og }

Selection: The third stage of GA is called selection, where some
chromosomes are chosen from all the population for next round of evaluation.
To ensure population diversity, a discrete roulette operator is used to select
chromosomes as in [38]. In this mechanism, the percentage of selection
probability is magnified thus, the chances of getting selected for poor

performing chromosomes increases.

51

Collection @ chosun



The stopping criterion for the GA is fixed as the “stall iteration limit.” In this
mechanism, if the GA procedure is unable to produce any better solution for a

specific number of iterations, we stop the procedure and select the best

chromosome that occurred so far.

<X
o
0 50 100 150 200
(b)
UAV trajectory
Connection between CM and CH
CHs
CMs

Optimal data gathering position

<0 X

Figure 5. Illustration of the optimized trajectory: (a) 3D view of the trajectory
and (b) top view of the trajectory in 2D.
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V. PERFORMANCE EVALUATION

A. Simulation Environment
The performance of the proposed EFDC scheme was evaluated via an
extensive computer simulation using MATLAB. The parameters used are

summarized in Table I11.

Table 3. Simulation parameters

Parameters Estimated Value
Area 200%200-500%500 m*
Number of sensor nodes 100

Initial energy 1J

Data packet length 4 KB

Hello packet length 100 -150 B
Aggregation percentage 10%

Packet generation 10/round

UAV default flying

altitude om

Sensor’s altitude 0-3m

UAYV default speed 20 m/s

Sensor mobility Static

Carrier frequency 2.4 GHz
Antenna type Omnidirectional
MAC protocol CSMA, TDMA
Path loss exponent (77) 5

UAV esensor
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Path-loss exponent
2.45-3.40
(n)sensore>sensor

We compared our proposed scheme with two other data collection
mechanisms, namely LEACH [40] with UAV and the original HEED with
UAV. The compared mechanisms change their CHs in every round,
representing the common approaches adopted for UWSN data collection. As
assumed, our ROI is in a remote place where no static infrastructure is
available. Thus, the UAV needs to determine the CH’s location for the
compared schemes first. As a result, we cannot apply any shortest path tour to
optimize the data collection path in these schemes. We applied the S-path
pattern for the mobility of the UAV for these two schemes as well. The S-
pattern used in these schemes is the same as the mobility pattern we used in
the discovery phase of our proposed scheme. Most of the data collection
algorithms for UWSNs assume that they have prior knowledge about the CH
positions with the help of static infrastructure. This is the main difference of
our proposed scheme—the UAV cannot get any prior information about the
topology because of the unreachability of the ROI. As a result, our research is
not comparable with other studies in the field of UWSN data collection scheme,

even though they are also dealing with the topic of WSN energy efficiency.

B. Energy Consumption Model

We utilized the simplest energy transmission model for calculating the WSN
energy consumption. As shown in [41], the energy consumption of a WSN
node mainly depends on the energy consumed for transmitting and receiving
signals. The energy consumption for [ bit data transmission to distance § of a
sensor node represented as Er,(l,§) can be computed by the following

equation:
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ETx(l: 5) = ETx—elec(l) + ETx—amp(l,S)

L% Egroe + L ¥ Yy x 6%, 8 <6y, (41)
L% Egrec + 1%y ¥ 8% 8> 6

where E,,. represents the node’s circuitry energy consumption for
transmitting one bit data, Ezy_gjec(y the circuitry energy consumption for
transmitting [ bit data, and Ery_gmp,s) the energy consumption of the
amplifier of a node to transmit [ bit data to distanced. Pr; and Y, are
environment dependent variables. ¢; serves as the transmitter amplifier
model in the free space environment, whereas 1, is for the multipath model.
The use of s or Py, depends on the distance between the transmitter and

the receiver. The threshold distance &y, can be calculated using the following

equation:

(42)

If the actual distance between the transmitter and the receiver is greater than
Oth, then the multipath energy consumption model is used; otherwise, the free

space model is applied.

The energy consumption for receiving a message can be derived by the

following equation:

ERx(l) = ERx—elec * l' (43)
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where the equation simply shows the energy consumed due to [ bit data
receiving, denoted by Eg, (1). Egy—e1ec Stands for the energy consumption for

receiving one bit of data.

The energy consumption of the EFDC scheme is measured based on the data
transmission and data receiving by the sensor nodes in three phases, namely
initialization, discovery, and data collection. We calculated the energy
consumption for data transmission based on (41) and (43). For the energy
consumption analysis, the duration of the simulation depends on the
completion of the number of rounds and it varies for the three compared
schemes. It should be noted that we only considered the energy consumption
of the deployed sensor nodes. The UAV’s energy consumption is not taken
into consideration as it is rechargeable and can harvest energy through solar

power. The energy consumption is obtained using the following formula:

Rp

Z ZZ(Z Erx, +ZEin +ZEAQ), (44)

Th=1jEC i€)

where Er,, and Eg,, correspond to the energy consumption of node i due to
the transmission and receiving of signals, respectively. E,4 represents the
consumed energy due to data aggregation-based computation. The definitions
of E7,, and Eg,, are given by (41) and (43), respectively. C is the list of

clusters and R,, stands for the number of rounds taken into consideration for

the calculation.

C. Delay Model
The delay performance of the proposed EFDC scheme is derived based on

the following formula:
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jec iej

Rn 1 |ol
I R X PR )
T'nZ:l (DVUAV ( (5,01) + 01019 + L 01,01+1> + (45)

where DV »y is the default speed of the UAV, &y, o,,, represents the distance
between position O and next position O;4 1, 85,y is the distance between the
starting point S and the first data collection position 0;, and 5(0| o},s) Means the
distance between the final data collection position Ojp| and the starting and

exiting point S of the ROI. To simplify the equation, we considered the delay

for all transmissions to be equal and expressed it as £.

D. Simulation Results and Discussion
In this subsection, the simulation results of our EFDC scheme are presented
in performance graphs and comparatively discussed with the two conventional

schemes, 1.e., LEACH with UAV and HEED with UAV.

-8-HEED with UAV
o[ G 4-LEACH with UAV/
==EFDC

0 50 100 150 200 250 300 350 400 450 500
Rounds

Figure 6. Energy performance with linear S-path approach.

Figure. 6 depicts the energy consumption of the EFDC scheme compared
with those of the LEACH with UAV and HEED with UAV. The compared
approaches follow the linear data collection approach, in which the UAV
collects data from the shortest position according to its way of the S-path

mobility model and does not visit the CH’s position physically. The
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cumulative energy of the entire WSN is measured in joules and shown in the
vertical axis, whereas the number of rounds is indicated in the horizontal axis.
From the figure, it is evident that the energy consumption of our proposed
mechanism is less than those of the LEACH with UAV and HEED with UAV.
The lower energy consumption of the EFDC scheme is expected, because no
distance optimization is performed in the compared approaches. According to
our energy consumption model in (41), the transmission energy heavily
depends on the distance between the transmitter and the receiver; thus, the total
energy consumptions in the compared approaches are higher than that of our
proposed approach. As no static infrastructure is taken into consideration in
the EFDC approach, more energy is consumed for hello packet broadcasting
in the other two approaches to determine the positions of the CHs in every

round.

-&-HEED with UAV
90 ¢ LEACH with UAV
\\ ~EFDC

—t—e- G
0 50 100 150 200 250 300 350 400 450 500
Rounds

Figure 7. Energy performance with data collection approach from
the CH position.

Figure. 7 displays the energy consumption comparison between the EFDC
and the other two schemes. In this simulation, the UAV visits the CH’s
location to collect data from the clusters from its default altitude. Theoretically,

the energy consumption should decrease as the distance between the CH and
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the UAV is reduced. However, our simulation result does not show a
significant improvement for HEED with UAV, whereas the LEACH with
UAYV approach shows a slight improvement, and the WSN takes 50 rounds
more to become completely dry compared to that in Figure. 7. The energy
efficiency of our EFDC scheme does not only depend on the UAV visitation
to the CH’s position but also on other energy optimization factors such as
direct data collection from the sensors and suboptimal position search.

SHEED with UAY

90 -~ LEACH with UAV
“#EFDC

@
S

Number of dead nodes
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Figure 8. Number of dead nodes with linear S-path approach.

Figure. 8 presents the comparison of dead nodes per round among the
proposed EFDC and the compared schemes following the S-path linear
approach. The term dead node means that the node’s specific energy becomes
lower than the threshold value and the node becomes unable to transfer its
sensed data to the other nodes or the UAV. The graph shows that the number
of dead nodes in HEED with UAV is the highest, and EFDC shows the best
result among the compared schemes. The number of dead nodes per round also
indirectly indicates the lifetime of the WSN. In LEACH with UAV and HEED
with UAV approaches, all nodes become dead in approximately 340 rounds
whereas in EFDC, it took almost 500 rounds.

59

Collection @ chosun



100

“©-HEED with UAY

90 “-LEAGH with UAV
+*EFDC

80

70 -

60

50

40~

Number of dead nodes

30-
20

150 200 250 300 350 400 450 500
Rounds

Figure 9. Number of dead nodes with data collection approach from the CH
position.

Figure. 9 shows a comparison of the EFDC with the two approaches in terms
of the number of dead nodes, where the UAV visits the CH position to collect
the sensed data from the clusters. This graph shows that even if the UAV visits
the CH position with its default altitude and optimizes the distance between
them, the dead node count for the proposed EFDC still shows a better result.
This outcome also proves that our suboptimal positioning technique has a
beneficial effect on the outcome ofthe dead node count per round performance
metric, which cannot be achieved only by acquiring the CH’s position for the

UAV.
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Figure 10. Number of control packets versus number of rounds.

Figure. 10 depicts a comparison of the number of exchanged control packets
among LEACH with UAV, HEED with UAV, and the proposed EFDC. We
can observe that EFDC exchanges a relatively higher number of control
packets in the first round compared to the subsequent rounds. As already
mentioned, the clustering process takes place only once in EFDC. As a result,
to form the cluster among the sensor nodes with the CBHEED clustering
approach, the method consumes a relatively higher number of control packets.
In the subsequent rounds, our approach does not reform the clusters; therefore,
the number of exchanged control packets decreases dramatically. In the other
two approaches, the CHs change in every round of data collection, so the
sensor nodes need to exchange a suitable number of control packets to locate
and initiate the data transmissions between the CHs and UAV. On the other
hand, EFDC does not need to find the CH position in every round, which also

contributes to the increasing number of the exchanged control packets.

61

Collection @ chosun



1

0o
-8-HEED with UAV
gp - ~LEACH with UAV
=-EFDC

0 - ¢
100°100 150*150 200200 250250 300300 3507350
Area (m2)

Figure 11. Energy consumption versus network area.

Figure. 11 illustrates the scalability performance of the proposed EFDC. The
scalability is measured among the three compared schemes by varying the area
parameter. It should be noted that we took a square shape of ROI in
consideration and the length and width were measured in meters. We assumed
that the nodes are randomly deployed. For the two compared clustering
techniques, the intra-cluster distance increases with the increment of the area.
Therefore, the data transmission cost in terms of energy also increases. In the
proposed EFDC, the suboptimal position search algorithm plays a major part
behind the superior outcome. The tabu search finds a suitable place that
optimizes the distance among all nodes, which also reduces the energy
consumption of the WSN. With the increasing area of the ROI, the
effectiveness and necessity of finding the data collection position also

Increases.
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Figure 12. Data collection delay versus network area.

Figure. 12 displays the outcome of the delay analysis comparison between
our proposal and the other two approaches. The delay performance of the
compared approaches is calculated based on (45). The LEACH with UAV and
HEED with UAV approaches do not know the position of the CH before they
start for the data collection tour. As a result, both need to follow a search and
collect mechanism. For implementing the scenario, we used an S-shaped UAV
path from where the UAV simultaneously searches for the CHs and collects
data from them. Consequently, the data collection time increases enormously
with the increasing size of the ROI, whereas in EFDC, the UAV is able to
collect all data collection positions in advance, and it calculates the shortest
data collection trajectory based on the GA. The trajectory optimization
algorithm shortens the data collection path; thus, our EFDC shows a better
result. The graph also shows that in our method, the data collection time does
not vary substantially with the size of the ROI, unlike those of the compared
approaches, because in EFDC, the traveling distance depends on the distance
of'the calculated suboptimal position for data collection and not directly on the
size of the ROI. In LEACH with UAV and HEED with UAV, the delay

increases with increasing size of the ROIL.
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Figure 13. Energy consumption at different nodes using CM-UAV direct
transmission and CM-CH-UAYV transmission.

Figure. 13 is presented to analyze the energy depletion comparison between
direct data collection and CH data collection. In the direct data collection
mechanism, all CMs along with their CH directly send their data to the UAV,
whereas in the CH data collection mechanism, the CMs first send their data to
the CH and the CH sends the data to the UAV. The data shown in figure. 13
were taken from one cluster consisting of nine CMs and one CH. The CH
selection was done by our proposed CBHEED clustering technique. The
horizontal axis shows the node ID and the vertical axis shows the remaining
energy after data collection. The analysis was conducted by observing the
energy depletion from the same cluster. The graph shows that even though
both cases consume similar amounts of energy for sending data from the CMs
to the CH or UAV, the CH consumes more energy in the CH data collection
method. Thus, collecting data through the CH will consume more energy
because of an imbalanced energy consumption, and the direct data collection

approach is the better option for our given scenario.
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Figure 14. Convergence along with iterations.

Figure. 14 shows the convergence along with iterations for the three
algorithms of the modified tabu search, simulated annealing [42], and Nelder
Mead optimization [43]. In the simulation, data are taken five times for every
iteration and, then, the percentage of the changed fitness value is recorded
based on the initial fitness values for all the three algorithms. The graph shows
the relative increment of fitness values, in which it can be seen that the
proposed tabu search algorithm does not bring any change after the sixth
iteration. This is a desired phenomenon for implementing the tabu search as
the goal is to achieve a moderate optimized data collection position with the
minimal iteration count. Even though the energy consumption of UAV has not
considered in designing EFDC, the higher the number of iterations is, the
higher the energy depletion will be for the UAV as well as the sensor nodes.

As for every iteration, the sensor nodes also need to broadcast a beacon packet.

65

Collection @ chosun



Packet delivery ratio

© © o o o o o
N w kS (5] [=)] ~ o«
T T

e
T

o

EFDC LEACH with UAV HEED with UAV

Figure 15 Comparison of packet delivery ratio

In figure 15 the comparison of normalized value of packet delivery ratio
(PDR) among the investigating frameworks are given. From the figure it can
be observed that the EFDC outperforms other two compared frameworks in
terms of PDR also. The outcome of this experiment is reasonable due to the
practical assumption of the 7. We have assumed the value of 77 is between 2.45
to 3.40 and assigned randomly for all the edges WSN. Whereas, the value of
7 is assumed to be 2 for the UAV-sensor and sensor-UAV communication,
ensures no packet loss due to weak signal. Another reason of packet drop is
the adopted mobility model of the compared protocols. EFDC follows an
optimized trajectory and gets a larger data transmission window. In case of the
compared protocols, they follow a S-path mobility model, where the data

transmission window is less and the packet drop increases.
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VI. CONCLUSION

In this study, we proposed an EFDC scheme for UWSNs. This scheme is
suitable for data collection in hilly or mountainous areas, where infrastructures
are difficult to build and maintain. We formulated a joint optimization problem
in this regard and divided the problem into two parts. Energy-efficient data
collection requires a suitable UAV position for data collection. To find an
initial data collection position, we proposed the CBHEED clustering algorithm
by modifying the HEED algorithm. The probability of being a CH of a sensor
node depends on the central bias of its geolocation in a polygon formed by its
neighboring nodes. The polygon formulation was performed by applying the
monotone chain convex hull algorithm and the centroid of the polygon was
derived by applying Paul Bourke’s centroid finding calculation. The positions
of the CHs were selected by the CBHEED algorithm, which tries to minimize

the overall energy consumption of data collection within a cluster.

The second level of energy optimization was conducted by computing a
suboptimal position for data collection by applying a modified tabu search
algorithm. This algorithm tries to determine a better position that will consume
less energy and improve load balancing in terms of energy consumption in a
cluster simultaneously. The UAV-aided data collection approach is separated
into discovery and data collection phases. In the discovery phase, the UAV
searches the CH locations and optimizes the data collection position based on
the modified tabu search algorithm. We applied a GA to optimize the trajectory
of the data collection route based on the derived data collection positions. In
the data collection phase, the sensed data are collected from each of the sensors
to the UAV via a direct connection with a cluster. As a result, no extra
workload is given on the CH such as collecting and aggregating data from the

CMs. The altitude with the position is also optimized and thus, less energy is
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consumed compared with the conventional approaches. In EFDC, we ran the
discovery phase for a single time only as the CH positions do not change. We
compared the performance of the proposed EFDC with HEED with UAV and
LEACH with UAV in terms of energy efficiency, dead node comparison,

scalability, and load balancing.
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