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ABSTRACT

A light-weight generative adversarial network for
fingerprint patch generation

Masud An-Nur Islam Fahim

Advisor: Prof. Jung, Ho Yub, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

Generating fingerprint images for biometric purposes is both necessary and

challenging. In this thesis, we presented a fingerprint generation approach based

on a generative adversarial network [1]. To ensure GAN training stability,

we have introduced conditional loss doping that allows a continuous flow of

gradients. Our study utilizes a careful combination of a residual network and

spectral normalization [2] to generate fingerprints. The proposed average residual

connection shows more immunity against vanishing gradients than a simple

residual connection. Spectral normalization allows our network to enjoy reduced

variance in weight generation, which further stabilizes the training [2]. The

proposed scheme uses spectral bounding only in the input and the fully connected

layers. Our network synthesized fingerprints up to 256 by 256 in size. We used

the multi-scale structural similarity (MS-SSIM) metric [3] for measuring the

diversity of the generated samples. Our model has achieved 0.23 MS-SSIM

scores for the generated fingerprints. The MS-SSIM score indicates that the

proposed scheme is more likely to produce more diverse images and less likely

to face mode collapse.
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한글요약

경량생성대립네트워크

지문패치생성

마수드안누르이슬람파힘

지도교수:정호엽

학과 :컴퓨터공학과

조선대학교대학원

생체인식목적으로지문이미지를생성하는것은필수적이면서도도전적입니

다.이논문에서우리는생성적대립네트워크 [1]에기반한지문생성접근법을

제시했습니다. GAN훈련안정성을보장하기위해지속적으로기울기흐름을

허용하는 조건부 손실 도핑을 도입했습니다. 우리의 연구는 ’레즈넷(ResNet,

Residual Network)’과 스펙트럼 정규화 [2]의 신중한 조합을 사용하여 지문을

생성합니다. 제안 된 평균 잔류 연결은 단순한 잔류 연결보다 소실 기울기에

대한내성이더큽니다.스펙트럼정규화를사용하면네트워크에서가중치생

성의분산을줄일수있으므로훈련 [2]를더욱안정화할수있습니다.제안된

방식은입력계층과완전연결계층에서만스펙트럼경계를사용합니다.네트

워크는최대 256 x 256크기의지문을합성했습니다.생성된샘플의다양성을

측정하기위해다중스케일구조적유사성 (MS-SSIM)메트릭 [3]를사용했습

니다. 우리 모델은 생성 된 지문에 대해 0.23 MS-SSIM 점수를 달성했습니다.

MS-SSIM점수는제안된방식이더다양한이미지를생성할가능성이더높고

모드붕괴에직면할가능성이적음을나타냅니다.
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I. INTRODUCTION

Fingerprints are essential to biometric systems. Many approaches have been

proposed to create fingerprints for biometric purposes. Previous studies on

fingerprint synthesis have been mostly associated with manual generation

from a single or multiple fingerprint base structure. These studies show that

using morphological or minutiae point manipulation, we can produce synthetic

fingerprints[4]–[7].

A master fingerprint is capable of bypassing a small-scale biometric security

system such as those used on smartphones. This MasterPrint invasion is possible

due to the input data limitation of these devices. This scenario was introduced

by [8], [9], who attempted to emulate the master fingerprint. Their study has

shown that a master fingerprint can be obtained by manipulation of original

images or through synthesis using the hill-climbing scheme. However, their

master fingerprints are visually distinguishable from the original data. These

studies [10]–[12] proposed a zero-pole model for synthetic fingerprint generation.

However, visually indistinguishable fingerprints are still very difficult to produce.

Compared to previous studies, fingerprint generative adversarial network-based

studies [13]–[15] have shown great promise. A summary of these studies is

presented in table 1.

The GAN [1] is a massive leap in the area of artificial intelligence since it

popularizes information synthesis using a neural network. The GAN framework

takes a sampled data distribution and produces a synthetic data distribution

that closely reflects the input data. Despite introducing an enormous number of

possibilities, the GAN framework also has challenges, such as mode collapse,

training stability, and a large computational budget. To mitigate these challenges,

1



Table 1: Previous fingerprint synthesis studies at a glance.

Algorithm Approaches

Cappelli et al. [9]
Three models were used autonomously. However, the visual distinction between synthetic and real fingerprints is clear.

No metric for measuring the similarity between the generated fingerprints was provided.

Johnson et al. [10]
Three models were used autonomously. However, the visual distinction between synthetic and real fingerprints is clear.

No metric for measuring the similarity between the generated fingerprints was provided.

Johnson et al. [10]
Three models were used autonomously. However, the visual distinction between synthetic and real fingerprints is clear.

No metric for measuring the similarity between the generated fingerprints was provided.

Bontrager et al. [13] 128×128 slices.

Kai et al. [12] Produces up to 512× 512. Autoencoder-based image generation always approximates images close to the original image

Kai et al. [12] Produces 128 × 128 patches; produces blurry ridges. Additionally, like all other previous studies, they did not show any diversity analysis

many schemes have been proposed, and all of them are based on the idea of

the deep convolutional generative adversarial network (DCGAN) [16]. DCGAN

uses deep convolutional layers instead of fully connected layers to generate fake

images. It can successfully produce 64 by 64 images, somewhat successful with

128 by 128 size, but fails for larger scale.

Following DCGAN, three significant studies [17]–[19] were reported in

2017. Instead of typical cross-entropy-based loss, Arjovsky et al. [17] uses the

Wasserstein distance as the loss function. This particular method enables the

network to enjoy a continuous flow of loss values throughout the training in

comparison to cross entropy-based loss functions. This method also improves

Lipschitz constraint enforcement by proposing weight clipping. Later, Gulrajani

et al. [18] improved weight clipping by introducing gradient penalty and it

has been adopted by other GAN studies. An alternating gradient update-based

scheme [19] has shown convergence when the distribution from the generator

and the original distribution are absolutely continuous [20]. A much more stable

training strategy was later introduced by Google [21] based on an encoder-

decoder-based discriminator. This study employs the idea of the Wasserstein

2



Figure 1: Proposed structure for the generator and the discriminator. a) This schematic

diagram is indicating the details of the proposed generator. b) This schematic diagram

is indicating the details of the proposed discriminator. c) This section is showing the

meaning behind each block as presented in a and b.

distance for constructing their adaptive learning rate dependent loss function.

BEGAN [21] studied the training stability issue and successfully produced 128

by 128 images.

Currently, we have a handful of practical advances in GAN training

mechanisms. However, the underlying dynamics have yet to be established.

From [20], the authors of Dirac-GAN show that if it is possible to examine

the eigenvalues of the Jacobian of the associated gradient vector field, local

convergence and stability properties can be analyzed. A far-fetched similarity

can be shown in the spectral analysis of the generative adversarial network [2].

This study place emphasis on normalizing the weights of the neural network to

3



stabilize the training procedure. Similar to BEGAN [21], these studies [2], [20]

examined the means of stable training to generate 128 by 128 images. Enforcing

the Lipschitz continuity may lead to stable training [2]. This intuition is also

supported by Odena et al. [22] since they have shown that the stability of the

generator is dependent on taming the Jacobian. Another stable training scheme

from Google [23] has also supported spectral analysis for the further stabilization

of GAN training.

Instead of dealing with a cost function, some research suggests looking

at the differences in the number of networks [24]–[27]. They proposed that

multiple generators or discriminators can improve GAN stability. One study

[24] shows that using the KL divergence and the reverse KL divergence

as dual discriminators for GAN can improve training. These studies [25],

[26] employ more than two discriminators to produce gradients with low

variance, consequently improves the generator. However, this idea increases

the training cost dramatically for higher-dimensional images. AdaGAN [28]

utilizes the boosting technique to improve training performance. This study [29]

uses multiple generators to improve the GAN training scheme. Mixture GAN

(MGAN) [30] proposes to reduce the mode collapse situation by training multiple

generators to learn the statistics of different data modes. However, this increases

training difficulty, and mode collapse remains unsolved.

The goal of this study is to design a GAN system to produce faithful synthetic

fingerprint images. Synthetic fingerprints can aid in many research applications.

For example, an extensive collection of usable synthetic fingerprint images

can help in fingerprint detection, fingerprint classification, fingerprint liveness

detection, or data augmentation for deep learning tasks.

Due to hardware, computational, and design complexities, it is hard to

4



generate images with a higher dimension. We have designed the proposed

network in a way that it can easily deal with the above concerns. To ensure

stability in the fingerprint generation, we adopted spectral normalization [2].

The presence of skip connection in the generator and the discriminator helps our

network to mitigate the vanishing gradient problem. We provided a more detailed

analysis in the methodology section.

A. Contributions

Here, we have proposed a GAN scheme that can successfully produce fingerprint

patches. The overall contributions of this study can be summarized as follows:

• The proposed lightweight network can generate fingerprint patches for up

to 256 by 256 fingerprint images.

• This study introduced loss-doping for overall training stability. Loss doping

allows our network to avoid training collapse, which is prevalent in

previous GAN studies. Also, we have observed improved convergence for

this technique.

• Mode collapse is still an open challenge in GAN research. The proposed

network is fairly free from this drawback, with an average MS-SSIM score

of 0.23. We have observed that produced images are less likely to be similar

to each other. Additionally, the utilization of data augmentation has enabled

it to cope with the same image with different appearances.

• Our minimalistic residual-spectral network for fingerprint generation

enjoys good stability during the entire training procedure and is less likely

to suffer from training collapse.

5



B. The Research Objectives

There are few studies out there to deal with fingerprint generation. Due to

the generative feature, GAN shows superior performance over the handcrafted

algorithms. However, the GAN performance is constrained by the nature of

loss function, network design, and gradient processing techniques. The proposed

study aims to produce fingerprint patches by utilizing GAN. It is usual to face

stability challenges with the generative adversarial network. Moreover, no GAN

studies ensure free of mode collapsing. Our goal is to design a generative

adversarial network that can successfully produce fingerprint patches without

facing usual GAN training problems. We aim to provide a GAN training scheme

that can aid other GAN studies to skip mode collapse as much as possible while

maintaining desired stability.

C. Thesis Layout

The thesis follows this organization. Chapter II presents an overview of the

GAN objective function, GAN loss function variants, GAN metrics, and several

GAN alternatives. Then in chapter III, we describe the related works for GAN-

based image generation and GAN tuning techniques. Next, in Chapter IV, we

explain the network architecture and relevant analysis for the proposed loss

doping employed to mitigate the training collapse during the training as much as

possible. We present sufficient pictorial demonstration and comparison, tables,

quantitative analysis for this study in Chapter V. We conclude our proposed

approach in Chapter VI.
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II. Generative Adversarial Network

A. Generative Adversarial Network

After having information, X, but no proper label, Y, one will utilize unsupervised

learning to extract value from it. Unlabeled information is the default state of all

information found in nature; it is not until we need to extricate a few causal

interface meanings from the data to relate labels to that information. People

frequently make this identification in a dataset. To many, this procedure is costly

and time expending. In any case, many valuable data can beget from a dataset

without having a particular forecast objective in intellect. One exciting property

can be to be able to create new tests from a dataset. The generative adversarial

network makes it possible to develop new tests comparable to those found in a

dataset. It comprises two convolutional neural networks, the generator G and the

discriminator D. In together, they create an adversarial system. This adversarial

phenomenon’s underlying façade is a cyclic operation, where the generator tries

to fools the discriminator, and the only priority of the discriminator is to see

through the generator’s output.

B. Theoretical Formulation

In the desired setting, we have a discriminator that can decide between real or

fake data for a given input from a given dataset. The discriminator return the

probability score for the input data, necessarily D : X→ [0,1]. If the mapped

output is 0, the discriminator is sure about its fake nature. On the other hand,

for 1, the discriminator will consider it as genuine. For this discussion, we will

denote the discriminator as θd.

7



On the other hand, the genarator works with pure noise z ∼ Dz,. For the

generator input, as an example Dz=N
(
0,σ2I

)
is a possible choice and produces

samples as output, G : Dz→X .

The noise provides arbitrariness to the generator G. People call the input

vector z as the latent vector. There are numerous ways to manipulate the latent

vector space. A summary of the latent vector design is discussed later. We denote

the generator’s parameters as θg when necessary along with the discriminator. To

avoid extra complexity, we represent the total parameter of the whole model as θ.

Let’s set up a condition that will govern the GAN to work according to our

objective. For this, it is obvious to design a generator that can convince the

discriminator with its output. We seem to maximize the likelihood, D(G(z)), that

the discriminator guesses that produced tests are from the real distribution. This is

often comparable to minimizing 1–D(G(z)), which can be helpful afterward. On

the other hand, we need the discriminator to classify produced tests as fake, which

implies maximizing 1 – D(G(z)). So, the formulation of the generator objective

is

min
G

max
D

Ez∼D∗ [1 –D(G(z))]

This formulation does not work complexities. One typical case is to provide

output with a min-max limit of 0 to 1. This bound is not helpful for the

overall optimization procedure. A standard measurable approach would require

the logarithm of the likelihood and mirrors the log probability definition from

insights. From the inferential statistical view, here we are trying to fit a

distribution to our data, and to do so, we should select the distribution with the

maximum entropy. So, the reformulation of the generator objective function is as

8



follows:

Lg(G,D) = Ez∼Dz [log(1–D(G(z)))]

And the minimization task for the generator is:

min
G

Lg(G,D)

Now, we will settle things for the discriminator. Before that, one may set up

the perfect discriminator at the beginning of the training. This is not a desirable

choice for the GAN since the generator will yield easily to the discriminator.

Instead, setting the discriminator and the generator with poor initialization is

more suitable. We let the discriminator learn to distinguish samples from the

dataset and become strong at seeing through the generator’s deception. We will

define the discriminator’s objective as

Ld(G,D) = Ex∼Ddat [logD(x)]+Ez∼Dz [log(1–D(G(z)))]

which will be maximized throughout the training procedure.

max
D

Ld(G,D)

By combining the above objectives, we get the adversarial loss function as

LJS(D,G) = Ex∼Ddat [logD(x)]+Ez∼Dx [log(1–D(G(z)))]

However, this choice of the loss function is not sufficient. Later we will see

the relationship between maximizing this over D with the Jensen-Shannon

divergence.

C. Loss function variants

There are many ways we can follow to design the loss function of the GAN.

We incorporate a constrained outline for the loss function and the regularization

9



techniques in the following tables. The Non-Immersing GAN (NS GAN) is

comparable to the JS GAN, which differs where the generator tries to maximize

its objective, not minimize. It is subsequently not a minimax diversion. To

increase this distinction, JS GAN is additionally cited as MM (MiniMax) GAN.

BEGAN utilizes the autoencoder and the decoder to improve the performance

of GAN while compromising the diversity. GAN regularization is also as critical

as the loss function. This necessarily includes discriminator supervision for the

continuity of the training.

Table 2: Different types of loss functions for GAN.

Name Discriminator Objective Generator Objective

JS GAN Ld = - Ex∼Ddat [log D(x)] - Ez∼Dz [log(1 - D(G(z))] Lg = Ez∼Dz [log(1 - D(G(z))]

NS GAN Ld = - Ex∼Ddat [log D(x)] - Ez∼Dz [log(1 - D(G(z))] Lg = - Ez∼Dz [log(1 - D(G(z))]

LS GAN Ld = - Ex∼Ddat [(D(x)– 1)2] - Ez∼Dz [(1 –D(G(z))2] Lg = - Ez∼Dz [(1 –D(G(z))2]

WGAN Ld = Ex∼Ddat [D(x)] - Ez∼Dz [D(G(z))] Lg = - Ez∼Dz [D(G(z))]

BEGAN Ld = Ex∼Ddat [‖ x–AE(x) ‖1] - ktEz∼Dz [‖G(z)–AE(G(z)) ‖1] Lg = Ez∼Dz [‖G(z)–AE(G(z)) ‖1]

To analyze the overall performance of a given generative adversarial network,

researchers usually use the Inception score and the Fréchet Inception Distance.

Two primary intuition results in the Inception score. The conditional label

distribution of samples containing meaningful objects should have a low entropy,

and the samples should have a high amount of variability. To calculate this score,

we need the Inception network, which was trained with the ImageNet data set.

The inception score is as follows:

IS(G) = exp
(
Ex∼Dg [DKL(p(y | x)‖p(y))]

)
10



Table 3: Different varieties of GAN regularizers. For L1 and L2 we are in a supervised

setting.

Name Discriminator Objective

L1 E(x,y)∼Ddata ,z∼Dz
[‖y –G(x,z)‖1]

L2 E(x,y)∼Ddata ,z∼Dz
[‖y –G(x,z)‖2]

WGAN-GP Ex̃∼Dg,x∼Ddata [(‖∇D(αx+(1–α)x̃)‖2–1)2]

DRAGAN Ex̃∼Ddata +N (0,c)

[
(‖∇D(x̃)‖2 – 1)2

]
InfoGAN Ex∼Ddata ,c′∼p(c) [logQ(c′ | x)]+H(c)

However, this formula is not satisfactory enough to fulfill the criteria of the

metric. This score shows the record to correlate with human evaluations. The

Fréchet Inception Distance (FID) implants created outputs into the n-dimensional

feature space given by a layer of Inception Net. This score assumes the feature

space as a multivariate Gaussian distribution. For the given dataset, we can

compute the mean and the variance of the generated outputs from the given

network. At this point, we have two distributions for one generated output. Hence,

the formulation of the Fréchet Inception Distance (FID) is as follows:

FID(x,g) = ‖μx – μg‖22+tr
(
Σx+Σg – 2(ΣxΣg)

1
2

)
The FID score is also handy in detecting the intra-class mode dropping.

This situation occurs when the generator shows limited distribution production

performance for each class. In this scenario, one might get a good Inception

distance score but will attain poor FID. However, both of them do not show any

glimpse of accountability with the over-fitting issue. When a GAN can embed the
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training data into its space entirely but fails to produce new samples, GAN never

achieves perfect ID score and FID for that dataset.

D. GAN’s representative variants

Here, we have tried to note some of the alternatives to the original objective

function. In the original GAN, the total optimization procedure tries to minimize

the criteria of the min-max game. Since that reduces the overall training flexibility

and leads to more complexities, several studies develop new training strategies.

The following subsections contain a brief discussion upon some variants of the

GAN objective function.

1. InfoGAN

InfoGAN utilizes a single unstructured noise vector z to decompose it into two

parts: an incompressible noise z and the latent code c and features the semantic

structure for real data distribution. InfoGAN wishes to solve the following

equation :

min
G

max
D

VI(D,G) = V(D,G)– λI(c;G(z,c))

Here, V(D,G) is represented as the objective function of original GAN, G(z,c),

and λ is defined as the generated sample and tunable regularization parameter

respectively. I is mutual information. InfoGAN wishes to maximize I(c;G(z,c))

by maximizing the mutual information I between c and G(z,c) to make c contain

more reliable and meaningful as much as possible according to the real sample

features.

However, the GAN faces some difficulties in direct optimization at the time
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of its access to the posterior P(c|x). InfoGAN finalizes its objective function as :

min
G

max
D

VI(D,G) = V(D,G)– λLI(c;Q)

where LI(c;Q) is the lower bound of I(c;G(z,c)) Lately, several variants

of InfoGAN have been proposed for improvements such as semi-supervised

InfoGAN and causal InfoGAN.

2. Conditional GANs (cGANs)

CGANs are the extended version of the GANs where both discriminator and

genrator are conditioned on some additional information. Conditional GANs

represents the objective function as follows:

minGmaxDV(D,G) = Ex∼pdata(x)
[logD(x | y)]

+Ez∼pz(z)[log(1–D(G(z | y)))]

If we compare with the two objective functions of the InfoGAN and Conditional-

GANs, the two generators are similar but the latent code c of the InfoGAN is

unknown and that can be discovered through training. Moreover, InfoGAN has

an extra network Q.

cGANs can generate samples conditioning on class labels, boundary box,

tests, and key points. Based on the cGANs, stacked generative adversarial

network (SGAN), a multi-task perspective composition of two cGANs can

conduct text to photo-realistic image synthesis. Different applications of cGANs

such as convolutional face generation, image translation, face aging, and outdoor

image synthesis contain specific scenery attributes, natural image descriptions,

and 3-D-aware scene manipulation. Robust cGANs augments the generator
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through an unsupervised pathway to promote the outputs o the generator to

span the target, which is full of intense noise. Thekumparampil et al.[16] also

maintained the robustness of conditional GANs to noisy labels. Conditional

CycleGAN [16] maintains cyclic consistency. Considering the mode collapse

issue of cans, Mao et al. proposed Mode Seeking GANs (MSGANs) with a

simple, effective regularization term to fix it.

The discriminator equation of the original GANs can be likely as follows:

L = E[logP(S = real | Xreal)]

+E[log(P(S = fake | Xfake))]

The auxiliary classifier GAN (AC-GAN) consists of two different parts; such as

the loglikelihood of the correct source Ls and the loglikelihood of the correct

class label, Lc. Ls is equivalent to L and Lc can be defined as follows:

LC = E[logP(C = c | Xreal)]

+E[log(P(C = c | Xfake))]

AC-GAN is the first variant of GANs, where the discriminator and the

generator maximize Lc +Ls and Lc – Ls respectively to produce recognizable

examples of all the ImageNet classes.

Another special type of cGANs related software called pix2pix ,which

performs sparse regularization for image-to-image translation. The generator of

pix2pix learns mapping from the input image y to the output image G(y). The

objective function of cGANs can be expressed as follows:

LcGANs(D,G) = Ex,y[logD(x,y)]

+Ey[log(1–D(y,G(y)))]
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Furthermore, l1 distance is used:

Ll1(G) = Ex,y [‖x–G(y)‖1]

The final objective of C-GAN is

LcGANs(D,G)+λLl1(G)

Following pix2pix, pix2pix-HD features matching loss for high-resolution

images and semantic manipulation using cGANs . The learning problem of the

discriminators of this pix2pix-HD can be formulated as follows:

min
G

max
D1,D2,D3

∑
k=1,2,3

LGAN (G,Dk)

The training set is given as a set of pairs of corresponding images (si;xi), where

xi is a natural photo and si is a corresponding semantic label map. (G,Dk) is the

feature extractor of the discriminator Dk. If LFM(G,Dk) is the feature matching

loss of the ith layer of the discriminator Dk can be expressed as follows:

LFM (G,Dk) =

E(s,x)∑
T
i=1

1
Ni

[∥∥∥D(i)
k (s,x) –D

(i)
k (s,G(s))

∥∥∥
1

]
where Ni is the number of elements in each layer and T denotes the total number

of layers. The final objective function of is

min
G

max
D1,D2,D3

∑
k=1,2,3

(LGAN (G,Dk)+λLFM (G,Dk))

3. CycleGAN

Computer vision problems require the image to image translation where the

motto is to learn the mapping between the input and output images through
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training over a set of the dataset. Test data are also required for this purpose for

proper prediction, which was effectively solved by the Cycle-consistent GANs

(CycleGAN). CycleGAN trained the unpaired dataset and proved the cycle-

consistency in an upper bound of the conditional entropy. Lately, DiscoGan has

been proposed with a similar idea. After that, DualGAN and Wassesterian GAN

use the loss format rather than the sigmoid cross-entropy loss, which was used in

CycleGAN.

4. f-GAN

f-GAN is a special area of the original GAN, uses the Kullback-Leibler

divergence, which can measure the difference between two given probability

distributions. For a large class of assorted divergence, this can be called as f–

divergence. If P and Q are the two given probabilities, p and q are the absolute

continuous density function, then f– divergence can be defined as follows:

Df(P‖Q) =
∫
X
q(x)f

(
p(x)

q(x)

)
dx

Lately, f-GAN has been extended to quantitatively evaluated GANs with

divergence, which is more efficient for training. For accuracy upgrade, f–

divergence has been directly minimized in the generator step. As a result, this

extension to f-GAN can predict the distributions’ ratio between the realistic and

generalized data in the discriminator step.
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III. Related Works

The generation of high-resolution images has attracted much attention in recent

years. Even though the DCGAN architecture enables the production of higher

resolution images, it needs several modifications; it is unable to ensure fidelity

and stability in image generation with higher dimensionality. These problems

were later addressed in other studies, and many remedies have been proposed.

StackGAN [31] and StackGAN++ [32] have tried to solve these problems

gradually. In the earlier version [31], they used a two-stage GAN strategy to

achieve higher resolution images. Using the attention mechanism, self-attention

GAN [33] has been proposed.

ID-GAN [34] uses variational auto-encoder (VAE) to distill latent distribution

for GAN training and produced high dimensional images with the help of

3 networks. RAGAN [34] produces high-quality images by decreasing the

probability of fake data to be recognized as real for the generator. MSG-GAN [35]

allows gradient flow between the generator and the discriminator, which results in

1k resolution images. This study [36] utilizes domain translation from semantic

label maps to produce crisp HD cityscape images. AE-GAN[3] combines WGAN

and VAE to create stable, high-resolution photos. COCO-GAN [37] generates

state-of-the-art images by utilizing spatial information as the constraint for

the generator. The semantic bottleneck network combines progressive semantic

generation network and segmentation-to-image synthesis network to produce 5k

images. BigGAN [23], Progressive GAN [38], StyleGAN [39] these state-of-the-

art methods provide means for large scale(≥ 512 by 512) image generation.

On the contrary, super-resolution GAN [40] can provide computational-

friendly support to produce a high-resolution image. G-GANISR [41] improves
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the GAN performance for super-resolution by utilizing the least square loss

function. Dual generative adversarial network [42] uses two generators to

enhance the robustness of the network and successfully produces super-resolution

images.

Very little has been done regarding studies on producing fingerprints

compared to other GAN studies. [14] This study proposed Wasserstein distance-

based GAN for fingerprint generation. Usually, GAN-based systems have

advantages in producing sharper images than those produced by autoencoder-

based schemes. Despite this trend, this scheme [14] seems to produce blurrier

images. Additionally, compared to the original samples, the ridges presented in

the images are more likely to be noisy. FingerGAN [15] proposed a DCGAN-

based scheme that emphasizes the TV loss as an extension to the traditional

loss for the DCGAN. They have produced 512 by 512 images. Even with

this large-scale synthesis, images seem to be fuzzy in comparison with the

original images. The stability power of an autoencoder combined with WGAN

[13] provides a good way to implement fingerprint generation compared to

[14], [15]. They [13] have produced 512 by 512 images and have claimed to

produce millions of samples in one day. In contrast, they have presented very

little pictorial representations. Moreover, none of these studies [13]–[15] have

presented a diversity analysis. We can summarize the remaining challenges in

previous studies as follows:

1) Their schemes rely on Gabor filtering, and AM-FM modeling produces

a visually different image that appears synthetic when juxtaposed with real

fingerprints.

2) Minutiae-based modeling is independent of minutiae formation. This

results in poor pattern generation for fingerprint synthesis.
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3) Due to independent minutiae sampling, the generated ridges are very

unrealistic.

4) Additionally, they cannot produce random realistic looking patterns, and

the gaps between ridges are constant in the generated images [13]–[15].

In this study, we aim to produce fingerprint images that are free from the

above traits. Additionally, we hope to produce faithful fingerprint images and

least likely to face usual GAN training challenges.
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IV. Methodology

This section will cover our reasoning regarding the proposed training scheme

for fingerprint generation. A theoretical framework for spectral normalization-

based training, training without spectral normalization, and the intuition behind

the proposed loss function will form the bulk of this section.

In the adversarial training setup, we need a generator G and a discriminator D.

The generator produces fake images to outperform the classification performance

of the discriminator. Intuitively, we can consider a value function V for both of the

networks to express the GAN formulation theory [1]. The original formulation of

the generative adversarial network can be given by:

min
G

max
D V(G,D) (1)

Throughout the entire training, the generator G is trained to minimize its cost,

while the discriminator D is trained to maximize its cost. For this, let x denote

the sample data and z denote the noise data for the generator. Now, pG is the

distribution from the generator , and qdata is the distribution over x. Then, the

conventional formulation of equation 1 can be stated as follows:

V(G,D) = Ex∼qdata [log(D(x))]+Ez∼pG [log(1–D(G(z)))] (2)

In equation 2, we ensure that the discriminator is accurate over the real data by

maximizing Ex∼qdata [log(D(x))]. On the other hand, the generator G is producing

data G(z) from the noise data z. The goal of the generator is to minimize

Ez∼pG [log(1–D(G(z)))] by producing high quality fake data G(z).

Let us define the training parameters for the discriminator and the generator

as ΩD,ΩG. The discriminator maps the incoming data distribution in the network
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Figure 2: a) 128 by 128 patch generation using Leaky ReLU at epoch=5000 . b) 128 by

128 patch generation using ReLU at epoch=5000. c) 128 by 128 patch generation using

Leaky ReLU at epoch=9000. d) 128 by 128 patch generation using ReLU at epoch=9000.

From this figure, sharpness and clarity achieved with ReLU activation is clearly visible.

Figure 3: The performance of the loss functions, as mentioned in table 2, is present

here. Our whole training period is consists of 9000 epochs. Binary Cross entropy +

Total Variation loss function seems superior compared to other loss functions but shows

inconsistency in training. From figure (b, d, f, h), Sigmoidal cross-entropy, and Huber

Loss + loss augmentation was unable to produce meaningful structure over the whole

training period. Hinge Loss + loss augmentation is somewhat successful in the first half

of the training, and later it degrades the performance of the GAN.
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into a set of probabilities. These probabilities indicate which sample comes from

the fake and real distributions. If P(xi;ΩD) denotes the probability for the real

data distribution that the discriminator classifies as real data and P(G(zi;ΩD)

denotes the probability for the generated distributions that the discriminator

classifies as real data, then we can set up the cost function for our discriminator

and generator as stated in equations 3 and 4.

LD = –
1

m

m

∑
i=1

[logP(xi;ΩD)]+ [log(1–P(G(zi;ΩG);ΩD))] (3)

LG = –
1

m

m

∑
i=1

[log(1–P(G(zi;ΩG);ΩD))] (4)

Here, LD and LG denote the cost function for the discriminator D and

the generator G, respectively. The data distribution for the discriminator is

represented by xi. G(zi) represents the data distribution generated by the

generator throughout the training, and zi stands for the noise vector.

One important concept we should keep in mind is that the generator acts

as a black box. Thus, weights generated for the generator are not independent

of the discriminator. This means that if the discriminator is not strong enough

to classify fake images, we will see that the generated distributions are poor in

terms of fidelity. This concept brings about the idea of an optimal discriminator

[2], [17], [18]. We can find out the theoretical representation for the optimal

discriminator D∗G (x) by fixing the generator. If S denotes the sigmoid function,

then the optimal discriminator can be formulated as follows:

D∗G (x) =
qdata(x)

qdata(x)+pG(x)
= S (λ(x)) (5)

Before explaining the further, first we will inspect the relationship between GAN

and the KullbackLeibler (KL) divergence and Jensen-Shannon (JS) divergence.
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From the equation (1) we can see min-max game as follows:

C(G) = maxDV(D,G)

= Ex∼pdata [logD
∗
G(x)]+Ez∼pz [log (1–D

∗
G(G(z)))]

= Ex∼pdata [logD
∗
G(x)]+Ex∼pg [log (1–D

∗
G(x))]

= Ex∼pdata

[
log pdata(x)

1
2(pdata(x)+pg(x))

]
+Ex∼pg

[
pg(x)

1
2(pdata(x)+pg(x))

]
– 2log2

For two given probabilistic distributions p(x) and q(x), we can write the

KullbackLeibler (KL) divergence and Jensen-Shannon (JS) divergence as

follows:

KL(p‖q) =
∫
p(x) log p(x)

q(x)dx

JS(p‖q) = 1
2KL

(
p‖p+q

2

)
+ 1

2KL
(
q‖p+q

2

)
Therefore, above mentioned min-max formulation is:

C(G) = KL
(
pdata‖

pdata+pg
2

)
+KL

(
pg‖

pdata+pg
2

)
– 2log2

= 2JS
(
pdata‖pg

)
– 2log2

From this, we can infer that, the objective function of GAN is related to the KL.

divergence and JS divergence.

From the min-max game formulation, its possible face a situation where

the generator lacks in gradient severely. Informally, in the early stage of the

training, G is poor in suitable weights and the generated samples are easily

distinguishable from the input data. This enables the discriminator D to reject

the generated samples with profound confidence. This scenario leads to saturate

the log(1–D(G(z))). it is possible for us to train the generator in a way, where it
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will maximize log(D(G(z))) instead minimizing log(1–D(G(z))). Then the cost

function for the generator will be as follows:

J(G) = Ez∼pz(z)[– log(D(G(z)))]

= Ex∼pg [– log(D(x))]

Above mentioned objective function may results in fixed point of dynamics

but will supply larger gradients in comparison in the early stage of the training.

The non-saturating game is not strongly rooted by theory. Additionally, the non-

saturating game faces other problems such as unstable numerical gradient for

training G. With optimal D∗G, we have

Ex∼py [– log (D
∗
G(x))]+Ex∼pq [log (1–D

∗
G(x))]

= Ex∼pg

[
log

(1–D∗g(x))
D

(x)
G

]
= Ex∼py

[
log

Pg(x)
pdata(x)

]
=KL

(
pg‖pdata

)
Therefore, Ex∼pg [– log (D

∗
G(x))] can be written as like noted below:

Ex∼pg [– log (D
∗
G(x))]

= KL
(
pg‖pdata

)
–Ex∼pg [log (1–D

∗
G(x))]

From the previous derivation of the min-max game, we can bring the JS

divergence here:

Ex∼pdata [logD
∗
G(x)]+Ex∼pg [log (1–D

∗
G(x))]

= 2JS
(
pdata‖pg

)
– 2log2
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Therefore, Ex∼pg [log (1–D
∗
G(x))] equals

Ex∼pg [log (1–D
∗
G(x))]

= 2JS
(
pdata‖pg

)
– 2log2–Ex∼pdata [logD

∗
G(x)]

By substituting Ex∼pg [log (1–D
∗
G(x))] KL divergence equation, we can reduce

it to this extent:

Ex∼pg [– log (D
∗
G(x))]

= KL
(
pg‖pdata

)
– 2JS

(
pdata‖pg

)
+Ex∼pdata [logD

∗
G(x)]+2log2

From above equation, we can see that, due to negative sign, the optimization

of the alternative generator in the non-saturating game is contradictory in nature.

Because, the first term in the equation tries to make the divergence between the

generated distribution and the real distribution as small as possible and the second

term tries the opposite; make the divergence between these two distributions as

large as possible. This phenomena brings the instability in the training dimension.

Moreover, KL divergence is not a symmetrical quantity, which can be better

understood from the following two examples:

• If pdata (x)→ 0 and pg(x)→ 1, we have

KL
(
pg‖pdata

)
→+∞

• If pdata (x)→ 1 and pg(x)→ 0, we have

KL
(
pg‖pdata

)
→ 0

These errors are the sole contribution of the generator. For them, we need to

apply penalization. The first error leads the generator to produce absurd samples,
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and the penalization is rather significant. In the second error, the generator

produces real distribution; in other words, it returns the training data as the output.

For this error, penalization is relatively small. In essence, for the first error, we

get the undesirable samples from the generator, and for the second error, we face

the limited diversity issue. Due to this, the generator a safe gamble. Instead of

making a risky decision like producing a diverse sample, which might lead to

undesirable samples, it shows redundancy; in other words, it repeatedly produces

safe samples. This situation is known as then mode collapse. However, this is

still an open challenge. Going back to the equation (5), we can derive another

unsolved situation from here: convergence complexity.

Here, λ(x) is as follows:

λ(x) = logqdata(x) – logpG(x) (6)

Its derivative can be written as follows:

δxλ(x) =
1

qdata(x)
(δxqdata(x)) –

1

pG(x)
(δxpG(x)) (7)

The above equation is unbounded and may even be incomputable [2]. To

mitigate this, some bounding conditions are necessary for convergence. This is

the reason why researchers [2], [17], [18] have tried to bind the discriminator by

K-Lipschitz, which is,
max
‖f‖lip≤k

V(G,D) (8)

In the above equation, ‖ f ‖lip denotes the smallest value y, where

‖ f(m)– f(m′) ‖ / ‖m–m′ ‖ ≤ y for any m,m′. This situation can be addressed

by introducing spectral normalization[2]. Spectral normalization stabilizes the

training by normalizing the weights in any layer ξ. For a matrix A, the spectral
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norm σ(A) is defined as follows:

σ(A) =max
ξ∈Rn,ξ 6=0

‖ Aξ ‖2
‖ ξ ‖2

(9)

This equation resembles the maximum among the singular values of the

matrix A. For a given vector s and weight matrix w,

σ(wΩ, s)≤
N

∏
n=1

σ(wn) (10)

which means that to bound the spectral norm, its enough to normalize the

spectral norm of wn in each layer. The theoretical guarantee for the above

equation can be obtained from [2].

From the fundamental assumptions of convex optimization, to ensure

convexity, a multidimensional linear function has to be Lipschitz continuous.

Spectral normalization controls the Lipschitz constant of the discriminator by

constraining spectral norm in every single layer [2]. If the previous statement

holds, then Lipschitz constant is the largest singular value of the linear function.

In other words, it is the spectral norm. If any multidimensional linear function

M is K-Lipschitz at 0, then it is K-Lipschitz at any other point. This property

simplifies Lipschitz continuity as follows:

‖Mξ ‖ ≤K‖ ξ ‖;∀ξ ∈ I (11)

Here, I is the distribution domain. We can write the above equation as follows:

〈Mξ,Mξ〉 ≤K2〈ξ,ξ〉 (12)

This can be rewritten as follows:
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〈(MTM–k2)ξ,ξ〉 ≤ 0 (13)

Expanding ξ on the basis of eigenvector’s orthonormality,

〈(MTM–k2)ξ,ξ〉= 〈(MTM–k2)∑
i

ξi,vi,∑
j

ξj,vj〉

= ∑
i

∑
j

ξiξj〈(MTM–k2)vi,vj〉 ⇒∑
i

(k2 – λi)ξ
2
i ≥ 0

(14)

From the above equations, MTM is positive semi-definite, which means all

the values of λi must be non-negative. To ensure this, each of (k2 – λi)≥ 0. Since

the value of K is the minimum to satisfy the above constraint, then it is obvious

from the above relationship that K is the square root of the largest eigenvalue of

MTM. Hence, the Lipschitz constant of any linear function is its spectral norm.

This inherent property justifies the utilization of spectral normalization to ensure

convergence [2]. We can only speculate that these properties also carry over to

more complex non-linear models.

In our network setup, we used spectral bounding only in the dense and

input layers of the discriminator. This makes our spectral norm-dependent

setup different from [2], [23], where the authors have used it for every layer.

We observed that this bounding has contributed to fingerprint generation by

introducing more diversity. Our network achieved the best diversity score with

the help of spectral normalization.

A vanishing gradient is a common challenge in GAN-based networks. To

mitigate this, we can simply use residual connections. This residual formation

has also been utilized by other studies [2], [21], [23] for this purpose. Let us say

that the initial layer for our network is X0. After applying the common activation

function Ψ(), we can write this as α1=Ψ(X0). The nth layer of the proposed
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generator is stated as follows:

α
n =Ψn(X(n–1);Ωn)+Ψn(X0;Ω1) = α(n–1)+α1 (15)

We experimented with the skip connections using different algebraic operations.

We found that simply adding the distributions from α1 creates gradient explosion

and convergence difficulty. We performed an averaging operation in skip

connections instead of simple addition. This ensures the mitigation of the

gradient-related problems that were typical of previous GANs. From figure 1, we

used the skip connection in every layer for the generator. For the discriminator,

we used it only in the last layer. We maintained this structure for training with

and without spectral normalization.

For the objective function, we applied some of the modifications to obtain a

better result. In GAN theory, there is no incentive for the GAN training scheme

to reach a minimal point [20]. Even though it reaches a point where it can

successfully produce high-quality images, it does not have the motivation to

stop the training. Additionally, it can propagate towards an unstable point. We

found this through some experiments with the DCGAN. Similar findings were

also observed by researchers from Google [23].

During the training procedure, we observed that a minute random

modification in the generator loss can introduce dramatic changes. These changes

rely on the degree of loss modification. This observation motivated us to take a

different approach to mitigate the static loss scenario. In the traditional setup,

when the discriminator wins over the generator, the discriminator and generator

loss remain the same for some epochs. This static loss generation continues

until the generator produces better images to fool the discriminator. To avoid
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Training Scheme: Conditional Loss Doping

1 Data: Noise Vector, Real images

2 Output: Synthetic fingerprint images

1 For e=1 to k do,

2 G′loss = Ex′∼PG
[log(1–D(x′))]

3 If G′loss[e] = G′loss[e – 1]

4 Gloss = (1+β)∗G′loss
5 else Gloss =G′loss

6 Dloss = Ex∼PD
[log(D(x))]+Gloss

7 End

this situation, we introduced loss doping. Loss doping implements a minute loss

augmentation in the generator loss instead of returning its original loss value.

We implement this only if the generator produces the same loss value for two

consecutive epochs. The total procedure is presented in the training scheme

above. In this way, our network has enjoyed a non-freezing epochs during the

entire training time.

Table 4: Summary of loss augmentation in our network architecture.

Loss augmentation choice Comments

Hinge Loss + Loss Augmentation With spectral normalization, it works well at the beginning. However, later, it shows performance degradation

Huber Loss + Loss Augmentation It fails to produce any sort of meaningful image structure

Binary Cross entropy + Total Variation Severely unstable performance due to rapid total variation

Sigmoidal Cross entropy Produces very poor-quality images but is better than the abovementioned cases

Intuitively, loss doping acts more like a ’conditional momentum’ scenario.

30



Table 5: Summary of the noise vectors results for proposed GAN.

Noise vector choice Comments

Uniform Helps the network implement good training

Normal As good as uniform distribution

Binomial As good as uniform distribution

Binomial + Sigmoid Struggles to generate necessary latent values to continue the training

TanH + Normal Similar to binomial+sigmoid

Table 6: Summary of the proposed network’s properties.

Inclusion Inclusion Detail Comments

Activations ReLU, LeakyReLU, TanH, Sigmoid Sigmoid replacement of ReLU. LeakyReLU performs worst regarding the generator and discriminator.

Batch Normalization True For both the generator and discriminator, it helps the network perform well.

Spectral normalization True Only for the discriminator. We have tried it for both in every layer. Least design choice is appreciated in our network.

Kernel size 5 Between 3 and 5, we have seen better results with 3.

Layer Normalization None We have tried it for every layer and observed desirable results without it.

Number of filters (generator) 64, 128, 256,512

Number of filters (generator) 64,64, 128, 256,512 For 256 by 256 size, we have increased one layer.

Number of filters (discriminator) 64,256,256,256

Number of filters (discriminator) 64,256,256,256 For 256 by 256 size, we did not increase the number of layers

Momentum allows the gradient descent algorithm to escape the saddle point

and push the optimization procedure towards the convergence. In this study,

loss doping does the same by changing the loss values minutely if and only if

consecutive loss value is the same. This conditional doping supposedly changes

the trainable weights and helps the optimization to converge faster. Empirically,

we have observed faster convergence with the help of loss doping. Figure 10 and

figure 11 show the effect of loss doping.

To ensure the best means of loss doping, we experimented with piecewise

loss difference, random numbers, and percentile loss. With percentile loss

augmentation, we observed stable training without facing training collapse. In
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our work, we updated the generator loss Gloss using loss doping as follows:

Gloss = (1+β)∗Gloss (16)

Here, β is the doping amount for our network. We maintained the value of

β = Gloss/10000 for the training. Due to this, our network enjoyed a variable

learning rate during the entire training time. In table 2, the summary of the loss

doping is noted.

We did not limit our experiments only to networks for fingerprint generation.

For maintaining stable training, we experimented with weight initialization

techniques. In terms of convergence speed, we observed that Xavier initialization

helps the network converge faster.

We focused on finding the learning capability of the network. To find this,

we experimented with the selection of the latent vector. We started with the

normal distribution, which ranges from zero to one, and this distribution aids the

overall GAN training. We used the spherical uniform distribution [-1,1], whose

performance is the same as that of the normal distribution. We also found that the

Bernoulli distribution (0,1) aids in stable training. One interesting case for the

normal distribution is that when it occurs with a nonzero formation, it is superior

to the typical normal distribution.

We also applied the activation function ReLU [43], [44]. and TanH

to the latent vectors. Compared to other choices, ReLU with a spherical

uniform distribution shows mixed performance. The hyperbolic tangent version

of the Bernoulli distribution showed identical performance as the spherical

uniform distribution. Although these experiments show good results, the overall

performance depends on the network and the objective function. Our choice of

network parameter in the end governs the final outcome. For that reason, we
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have presented tables 3 and 4 summarizing the compact picture of our total

scheme. Figure 2 and 3 is showing the necessary diagrams for the table 2 and

4. The findings in table 2,3, and 4 is obtained through experiments with the

proposed network and our input dataset. Among all the evaluated architectures,

we observed the best fingerprint generation training with this architecture.

Additionally, we produced full-sized fingerprint images and patch images from

this structure. Our discriminator has two versions: with and without spectral

normalization. For each model choice, we observed the meaningful generation

of synthetic images. The results of this study are presented in the next section.
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V. Performance Analysis

Our study utilizes two different architectures for fingerprint generation. In our

network, spectral normalization was used for 128x128 and 256x256 images. We

also produced these images without spectral normalization. For this purpose, we

used the LivDet fingerprint dataset [27], [45]–[48]. Images in this dataset come

with five different scanners. We used images from the Greenbit scanner, which

contains 1000 real fingerprints. We applied rotation, translation, and flipping for

data augmentation.

Figure 4: a) Images from Finger GAN [15]. b) Images from deep MasterPrints [14]. c)

256x256 patches from the proposed study. d) 128x128 patches from the proposed study.

By visual inspection, ridges are clearer and sharper in the images from this study.

Figure 4 shows the output from [14], [15], and the proposed study. Images

produced by [15] are blurry compared to those from the other two studies.
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Figure 5: a) 128 × 128 images with BEGAN [21]. b)128 × 128 images with BEGAN.

Here, input images are 128 × 128 patches downscaled from 256 × 256 patches. For

both of these cases, patches are highly similar to each other. BEGAN produces different

images with different initializations. However, the amount of diversity is explicitly

negligible in all cases for BEGAN. c) Images from the DCGAN where images are

somewhat diverse and not fully developed [16]. d) 128 × 128 Images from WGAN

where the images are diverse and not fully developed [17]. e) 128 × 128 Images from

WGAN-GP where the images are diverse, not fully developed, and comparatively sharper

than WGAN [18]. f) 128 × 128 images from G-GANISR are somewhat recognizable as

fingerprints [41]. g)128 × 128 patches from the proposed study. h) 256×256 patches

from the proposed study. By visual inspection, ridges are more precise and sharper in the

images from the proposed study. Even though BEGAN produced a very stable structure,

the amount of diversity is nearly negligible.

Figure 6: 128 by 128 patch from the input images and the corresponding fake fingerprints.
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Figure 7: 256 by 256 patch from the input images and the corresponding fake fingerprints.

Figure 8: a) 128 by 128 patch generation. Patches from the proposed network without

spectral normalization. b) 128 by 128 patch generation. Patches from the proposed

network with spectral normalization.

From figure 4, we can easily observe the ridge difference in the fingerprints.

Our research can successfully emulate sharper ridges than the other two studies.

Figures 6 and 7 show the input patch images and the respective patches of 128

by 128 and 256 by 256 sizes produced in this study. Figures 8 and 9 contain the

images generated using the proposed method. These images show 128 by 128

patches with and without spectral normalization and 256 by 256 patches with

and without spectral normalization. Using spectral normalization, we enjoyed a

similar quality in the output compared to images without spectral normalization.

For comparative purposes, we have used the DCGAN [16], WGAN [17],

WGAN-GP[18], BEGAN [21], and G-GANISR [41] for image generation.

We stacked the output from these in figure 5. BEGAN produces images
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Figure 9: a) 256 by 256 patch generation. Patches from the proposed network without

spectral normalization. b) 256 by 256 patch generation. Patches from the proposed

network with spectral normalization.

without any deformity. However, the diversity between generated images is

minimal. WGAN and DCGAN produce distorted fingerprint images compared

to BEGAN. Additionally, these networks provide greater variety in image

generation compared to BEGAN. WGAN-GP is somewhat successful in

fingerprint generation compared to DCGAN and WGAN. Even though WGAN-

GP produces sharper images compared to WGAN, it also struggles to produce

desirable fingerprint patches. Photos from the G-GANISR performed similarly

to the DCGAN. All of these methods are viable for producing images with a 128

by 128 size. If we increase the dimension, it is tough for these methods to create

any meaningful structure. Compared to these methods, our network can produce

up to 256 by 256 patches with desirable fidelity and diversity, as shown in figure

5(g-h).

A common way of evaluating the performance of the GAN is to measure the

inception distance [18]. Lately, researchers have used the FID score[49] more

frequently than the inception distance. The inception score gives us a way to

measure the quality of the generated images. This score can be calculated using

a large number of generated images. The FID score is an improvement on the

37



Figure 10: a) Images with loss doping. b) a) Images without loss doping. Left images

are from the proposed network at epoch 3244 with the help of loss doping. The pictures

on the right were produced using the same system at epoch 3244 without the aid of loss

doping. From these figures, the effect of loss doping on the proposed network is apparent.

Figure 11: a) Images with loss doping. b) Images without loss doping. Images from both

sides are at epoch 5975. Here, the proposed network is producing fake fingerprints.
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previously mentioned inception distance. This performance metric compares the

statistics of the synthesized images according to the original images. The MS-

SSIM [3] score can help us measure the diversity of the generated images.

Likewise, this metric also utilizes a large number of generated images. This

metric returns a score between 0.0 and 1.0. The higher the score per batch, the

lower the amount of diversity among the generated images.

However, we did not use the inception distance or FID score to measure our

network performance. These two metrics use weights from the inception network,

and these weights are valid for images similar to those in the ImageNet dataset.

Since our fingerprint dataset is absent in the ImageNet dataset, it is futile to use

these metrics. Hence, we used the MS-SSIM score [3]. This score is entirely

different from the other metrics in terms of its application. Since this score does

not require an inception network, we can easily use it to measure our network’s

performance.

To quantitatively measure our network performance, we used the MS-SSIM

metric[3]. Other studies [13]–[15]were not subject to diversity analysis. Table

5 shows the differences between the proposed method and other studies. In

this table, [R] stands for the model with a residual connection, and [S] stands

for the model with spectral-residual connections. From table 5, BEGAN shows

the lowest diversity performance. Our fingerprint generator achieved better MS-

SSIM scores when it came to patches with larger sizes. Since larger size patches

contain shapes, ridges, and orientation, it is easier to introduce more diversity.

The MS-SSIM score is empirically lower for patches from the spectral-

residual discriminator. This observation is consistent with both small- and large-

scale patches. However, the DCGAN and WGAN achieve somewhat good scores

even though they seem to produce irregular patches. For BEGAN, the MS-SSIM
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Table 7: MS-SSIM score comparison.

Methods MS-SSIM [2]

BEGAN (patch images,128 by 128) [20] 0.944

DCGAN (patch images,128 by 128) [15] 0.5-0.613

WGAN (patch images,128 by 128) [16] 0.43-0.476

WGAN-GP (patch images,128 by 128) [17] 0.393-0.441

G-GANISR (patch images,128 by 128) [41] 0.47-0.558

Proposed method (patch images[S], 128 by 128) 0.31 -0.374

Proposed method (patch images[R], 128 by 128) 0.351-0.425

Proposed method (patch images[S], 256 by 256) 0.23-0.34

Proposed method (patch images[R], 256 by 256) 0.258 -0.32

score is the highest. This result justifies the figure 5. We inserted 128 by 128

patches and downscaled 256 by 256 patches to 128 by 128 patches in the BEGAN

network. BEGAN seems to produce the same image every time with very slight

ridge variation for both of these cases. Moreover, blurred structures are prominent

in figure 5 for BEGAN. WGAN-GP produces deformed patches and shows better

diversity performance than other methods. G-GANISR shows better diversity

than BEGAN and DCGAN.

Our network achieves better diversity performance for both 128 by 128 and
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Table 8: MS-SSIM and average SSIM score comparison.

Proposed method (MS-SSIM, 128 by 128) 0.31 -0.374

Proposed method (average SSIM, 128 by 128) 0.257-0.324

Table 9: Number of weights.

Methods (Generator, Discriminator)

BEGAN [20] (19.7 M , 3.9 M)

DCGAN [15] (45.3 M , 7.5 M)

WGAN [16] (50.3 M , 8.4 M)

WGAN-GP [17] (50.3 M , 8.4 M)

G-GANISR [41] (232.4 M , 38.7 M)

Proposed method (17.8 M , 3.3 M

256 by 256 patches compared to all of them. Our study has performed at best

0.23 MS-SSIM for 256x256 images with spectral normalization. Without spectral

normalization, we achieved a slightly lower score of .258 for 256x256 images.

We also measured SSIM scores between 1000 counterfeit and real photos. Thus,

there are 1000 SSIM scores from the real photos for one generated image,

and we averaged them. We have performed the same for the rest of the fake

pictures. Table 6 contains the average SSIM score information for the 1000 fake
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fingerprints. This table justifies the MS-SSIM score since the mean SSIM score

of all those GAN generated images did not exceed our achieved MS-SSIM score.

The presented GAN scheme is lighter in terms of trainable weights. For

comparison, we have counted number of trainable weights for our network and

other studies [16]–[18], [21], [41]. From table 7, we can see that the weight count

for our architecture is significantly lower than other state-of-the-art studies.

Usually, the training time required for the GAN is higher than other deep

learning networks. Our model’s training time varies from 30 hours to several

days, depending upon the size of the generated images and the dataset. Our

trained model can produce a batch of 36 fake fingerprints in between 4 to 7

seconds.
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VI. CONCLUSION

In this study, we have presented a new GAN scheme to generate fingerprints.

The proposed method can successfully produce whole and cropped fingerprint

patches with 128 by 128 and 256 by 256 sizes. We have experimentally shown

that our network can converge faster with the help of proposed loss doping.

Additionally, to generate these fingerprints, our scheme utilizes comparatively

a fewer number of weights. Furthermore, our network has demonstrated better

divergence performance compared to other state-of-the-art studies. We have also

presented experimental results to justify our selection of activation function, noise

vector, and network design.

We can easily extend the proposed study for different lines of fingerprint

scanners. The proposed doping allows our models to converge faster, although

this paper does not cover the generalization of loss doping. We hope this work

can provide general insight into the designing of the GAN networks. However,

like the current GAN studies, our GAN scheme is not free from a redundant

distribution and does not guarantee the deformity free image generation.

In our future work, we would like to extend our research for stable 512 by

512 fingerprint patch generation. Additionally, we are hoping to design a stable

GAN architecture that can produce fingerprints with a precise boundary line and

high fidelity.
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