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초록 
다양한 방법론을 사용한 카이네이즈와 Covid19 주단백질 

효소에 대한 계산과학적 리간드 

모델링: 도킹, 분자동력학, 자유에너지 계산, 3차원 QSAR 및 

가상검색 

세게투래     캐렛수 

지도교수: 조승주, Ph.D. 

의과학과  

                                                 조선대학교 대학원 

 

단백질카이네이즈는 다양한 세포 신호전달과정에 중요한 역할을 하는 

효소이다. 다양한 세포의 과정에 중요한 역할을 하기 때문에, 

카이네이즈의 작용을 방해하는 것은 다양한 암과 자가면역질환과 

관련되어 있다. 카이네이즈는 중요한 신약개발 타깃이다. 현재까지 

미국식품안전청에서 52개의 카이네이즈억제제가 약품의 용도로 

승인되었다. 카이에니즈 억제제의 개발의 성공에도 불구하고  부작용 

때문에 실제사용은 제한적이다. 따라서, 효능이 우수하고 선택적인 

카이네이즈 억제제의 개발은 신약설계에서 중요한 분야이다. 

단백질카이네이즈의 억제를 일으키는 구조적이고 물리화학적인 

요인을 이해하기 위하여, G-단백질과 연결된 수용체 

카이네이즈2(GRK2),  줄기세포인자 수용체(c-KIT), 혈소판유래 

성장인자수용체 알파(PDGFRα)등을 계산연구에 대한 타깃으로 

선정하였다. 분자 도킹과 분자동력학 시뮬레이션을 이용하여, 단백질과 
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리간드 결합 상호작용을 연구하였다. 3차원 구조활성상관관계 모델을 

만들어서 화합물의 구조와 억제능력간의 관계를 연구하였다. 3차원 

QSAR 모델로부터 얻을 수 있는 컨투어 맵을 사용하여 다양한 

치환체에 대한 정보를 알아볼 수 있었다. 계산연구의 결과는 더 

강력하고 선택적인 억제제를 만드는데 중요한 방향성을 제공한다.  

2019년 12월의 COVID19의 발발과 관련하여 과학계에서는 이를 

치료해야하는 도적적인 과업에 직면하게 되었다. COVID19를 일으키는 

원인물질인 SARS-COV-2의 3CLpro 단백질은, 바이러스의 증식에 

대단히 중요한 역할을 하기 때문에 중요한 타깃으로 확인되었다. 

따라서, 3CLpro 억제제는 COVID19를 치료하는데 효과적일 것이라고 

추정되고 있다. 우리는 이 작용점에 대하여, 단백질 억제제 

데이터베이스인 MEROPS를 사용하여 가상검색을 실행하였다. 

가상검색의 결과, 32개의 화합물이 강한 결합력을 보였으며, 계속적인 

실험으로 검증할 필요가 있다고 생각되었다. 최종적으로 높은 

결합에너지를 가지는 15개의 가능성이 큰 3CLpro 억제제를 제안할 수 

있었다. 이들 중, Saquinavir (인증된 HIV-1치료제)와 3개의 다른 

연구중의 약품들, 즉, aclarubicin, TMC-310911, Faldaprevir 등이  

potential 3CLpro 의 억제에 가능성이 큰 것으로 나타났다. Aclarubicin은 

화학적 항암요법에 쓰이는 anthracycline 약이고, TMC-130911은 

항바이러스 약이다. Faldaprevir은 현재 임상시험중인 C형 간염에 쓸 

약이다. 이 화합물들에 대한 계속적이고 실험적인 검증이 필요하다.  

본 연구의 결과는 카이네이즈와 COVID 19 주 단백질 분해효소에 대한 

억제제의 구조적인 요인을 이해하는데 많은 도움을 주었다.  
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Protein kinases are enzymes that play important role in various cell signaling 

pathways. Because of their important role in various cellular processes, the 

dysregulation of kinases has been associated with various cancers and 

autoimmune diseases.  Hence, kinases are regarded as important drug targets. 

So far 52 kinase inhibitors have been approved by the Food and Drug 

Administration (FDA) for pharmaceutical use. Despite the success in the 

development of kinase inhibitors, their use has been limited due to their off-

target activity. Hence, the development of potent and selective kinase 

inhibitors has been an interesting area in drug design. To understand the 

structural and physicochemical properties that drive the inhibition of protein 

kinases, the G-protein coupled receptor kinase 2 (GRK2),  stem cell factor 

receptor (c-KIT), and platelet derived growth factor receptor alpha (PDGFRα) 
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have been selected as model targets for computational study. Molecular 

docking and molecular dynamics simulation were performed to study the 

protein-ligand binding interactions. 3D-Quantitative structure-activity 

relationship (3D-QSAR) models were developed to study the relationship 

between the structure of the compounds and their inhibitory activities. 

Contour maps generated based on the 3D-QSAR models provided crucial 

information regarding various favorable and unfavorable substituents. The 

result of the computational study provided valuable insights that could be 

used as guidelines in the future development of potent and selective inhibitors. 

Following the outbreak of the COVID-19 pandemic in December 2019, the 

scientific community was faced with the challenging task to develop therapy 

against the disease. The 3CL
pro 

protease of the SARS-COV-2, the causative 

agent of COVID-19, has been identified as a drug target due to its unique role 

in the viral replication. Hence, 3CL
pro

 inhibitors were considered to be 

promising agents for COVID-19 treatment. We have performed virtual 

screening of the protease inhibitor database MEROPS for potential 3CL
pro

 

inhibitors. Based on the virtual screening, 32 compounds that showed high 

binding energy values were further accessed for pharmaceutical use.  We 

found 15 potential 3CL
pro

 inhibitors with high binding affinity. Among them, 

Saquinavir (an approved drug for HIV-1 treatment) and three other 

investigational drugs namely aclarubicin, TMC-310911, and Faldaprevir 

could be suggested as potential 3CL
pro

 inhibitors. Aclarubicin is an 

anthracycline drug used in cancer chemotherapy.  TMC-310911 is an antiviral 

drug and Faldaprevir is an experimental drug under clinical trial for the 

treatment of hepatitis C disease.  Further experimental validation of the 

compounds is recommended. 
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The outcome of this study gave a comprehensive understanding of the 

structural factors important for the inhibition of kinases and COVID-19 main 

protease.  
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PART 1 

Brief Overview of Kinases 
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1. Introduction 

Kinases are biological enzymes that catalyze the transfer of phosphates in 

proteins through a process known as phosphorylation. Kinases are involved in the 

phosphorylation of up to one-third of the proteome. During phosphorylation, a 

phosphate from the high energy Adenosine Triphosphate (ATP) is transferred to a 

specific substrate. The phosphorylation of a protein, in turn, leads to its activation. 

This mechanism serves as the primary means of signal transduction.  Hence, 

kinases play a very important role in the signaling regulation of various cellular 

processes such as cell progression, differentiation, apoptosis, and signal 

transduction [1]. 

2. Structure 

Kinase monomers typically consist of 300 to 500 amino acid residues. Kinases 

may form a functional unit such as dimers and tetramers. Though kinases may 

structurally vary, they share a highly conserved kinase domain. The kinase 

domain consists of an N-terminal domain and a C-terminal domain. The two 

terminal domains are connected by the hinge. The N-terminal domain is 

characterized by five-stranded anti-parallel β-sheets (β1- β5) and an αC-helix 

whereas the C-terminal domain is globular consisting of six helixes. The cavity at 

the interface of the N and C domain forms the ATP binding site. This ATP 

binding site is also commonly referred to as the active binding site or ligand 

binding site [2]. 

The ATP binding site is enveloped by residues from the activation loop, catalytic 

loop, p-loop (glycine-rich loop), αC-Helix, and the hinge region. The residues 

forming the active site are highly conserved throughout the kinase family and 

play significant roles in the catalytic processes through the binding of the ATP 

and other cofactors.  
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3. Classification of Kinases 

The human kinome consists of 518 kinases which can be classified into various 

families and subfamilies based on the sequence and structural similarities. The 

human kinase families are AGC (Kinase A, G, and C) family, CMGC (CDK, 

MAPK, GSK2, CLK) family, CAMK (CMK1 and CMK2) family, CK1 (Casein 

Kinase 1) family, and others. The ‘other’ kinase family consists of STE 

(Homologs of STE7, STE11, and STE20), TK (Tyrosine Kinase), TKL 

(Tyrosine-Like Kinase), RGC, PKL, and Atypical kinases [3]. 

Based on the residue of phosphorylation, kinases within the human kinome can 

also be classified as either tyrosine kinases or serine/threonine kinases. Tyrosine 

kinases are involved in the transfer of phosphate from an ATP to a free hydroxyl 

group in the tyrosine residue of a target protein. Whereas, serine/threonine 

kinases catalyze the transfer of phosphates from ATP to serine or tyrosine residue 

of a target protein [4].  

4. Kinase as Drug Target 

The first oncogene was identified as a protein kinase in 1978 by Ray Erikson.  

This was followed by the discovery of other kinases associated with cancer and 

other diseases. The phosphorylation by kinases mediates important cellular 

processes hence, their overactivation and dysregulation lead to cancer and the 

pathogenesis of many diseases such as autoimmune, inflammatory, degenerative, 

metabolic, and cardiovascular diseases. Hence, kinases are regarded as important 

drug targets.  Survey studies showed that one-third of the small molecules drug 

candidates reported target the protein kinases [5]  [6]. Recent studies of kinases as 

drug targets have shown the AGC and CMGC were the major kinase families that 

have been targeted for inhibition. However, there are subfamilies of kinases for 

which inhibitors have not been developed. Suggesting that not all kinases 
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received equal attention. This also suggested that the full potential of kinases as 

drug targets have not be achieved yet.  

5. Kinase Inhibitor  

The earliest kinase inhibitors were Naphthalene sulphonamides developed by 

Hiroyoshi Hidaka. These early inhibitors target the cyclic-AMP and cGMP-

dependant protein kinases, protein kinase C and cyclic-nucleotide dependent 

kinase. Most kinase inhibitors are small-molecule kinase inhibitors while a small 

number of them are nucleotide-based inhibitors. The majority of the kinase 

inhibitors are ATP completive and its functional activity depends on the ATP 

concentration. However, non-competitive and uncompetitive inhibitors that target 

other binding sites are also being considered. These types of inhibitors typically 

target allosteric bind sites [7].  

Due to the various binding mechanisms of the small molecule kinase inhibitors, 

these inhibitors are classified into various types (Type 1 - Type 4). Type 1 

inhibitors target the active conformation of the ATP binding site and are therefore 

ATP competitive inhibitors. A majority of the existing kinase inhibitors are 

classified as type 1. Due to the catalytic activity, most kinases share sequence and 

structural similarity in this region hence type 1 inhibitor is considered to show 

multi-kinase inhibitory activity. Type 2 inhibitors target the inactive conformation 

of kinases. While the type 3 and type 4 target binding site outside the catalytic 

domain. These inhibitors are commonly referred to as allosteric inhibitors. Due to 

the unique mechanism of binding associated with allosteric inhibitors. This class 

of inhibitors is considered to be ideal candidates for selective inhibition of 

specific kinases [8].    
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PART II 

Docking and 3D-QSAR Studies of Hydrazone and 

Triazole Derivatives for Selective Inhibition of GRK2 

over ROCK2. 
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1. INTRODUCTION 

Heart failure has become a global health problem with an estimation of more than 

38 million patients worldwide. The future of heart failure treatment looks 

pessimistic as further projection showed the increase of heart failure patients [9]. 

During heart failure, the heart fails to produce sufficient myocardial contraction, 

subsequently reducing the flow of blood throughout the body [10]. The positive 

inotropic effect needed for myocardial contraction to counter the reduced blood 

flow is achieved via the beta-adrenergic receptors (β-AR) signaling. These β-ARs 

are tightly regulated by the feedback enzyme G protein-coupled receptor kinase 2 

(GRK2), which promotes beta-arrestin binding at the receptor. Beta-arrestin 

binding at the β-ARs blocks substrate binding at the receptor and leads to reduced 

β-AR signaling [11-13]. Therefore, the up-regulation of the β-AR signaling by 

inhibiting GRK2 is considered as a potential route to mitigate heart failure [10]. 

Several studies in animal models have also shown the association between 

overexpression of GRK2 and heart failure [14-16], indicating the importance of 

GRK2 inhibition as a potential drug target for heart failure treatment.  

GRK2 belongs to G protein-coupled receptor kinase (GRK) subfamily under the 

A, G, and C family (AGC family) of kinases [13]. They share high sequence and 

structural similarity with other kinases in the AGC family. The AGC family of 

proteins play a vital role in regulating many physiological processes. 

Consequently, their mutation and dysregulation contribute to the pathogenesis of 

many human diseases, including cancer and diabetes [17-19]. 

Rho-associated coiled-coil containing kinase (ROCK2) is a serine/threonine 

kinase and belongs to the AGC kinase family. They are known to play an 

important role in cell migration and invasion, centrosome duplication, 

cytokinesis, and apoptosis [13, 20]. Due to the high sequence identity between the 

catalytic domain of GRK2 and ROCK2 (nearly 32 % identity), cross-activity 

against them has been observed in previous studies [14, 21]. Hence, to avoid cell 
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toxicity due to inhibition of ROCK2 during the inhibition of GRK2, 

discriminatory inhibition against GRK2 and ROCK2 is crucial. 

Over the last few years, several GRK2 inhibitors have been developed for the 

treatment of heart failure, such as the natural product balanol [22], CMPD101 and 

CMPD103A developed by Takeda pharmaceuticals [23], paroxetine [24, 25] and 

GSK180736A [26]. However, none of these GRK2 inhibitors advanced to clinical 

trials due to a lack of selectivity and poor bioavailability. 

Computational drug design methods such as molecular docking and three-

dimensional quantitative structure-activity relationship (3D-QSAR) have emerged 

as powerful tools in assisting the drug discovery process [27, 28]. Though these 

computational techniques have been used to study the structure-activity 

relationship (SAR) and protein-ligand interactions of kinase inhibitors [29, 30], 

its application in the study of GRK2 and its inhibitors is yet to be seen. In this 

work, we performed molecular docking and 3D-QSAR study on a series of 93 

hydrazone and triazole derivatives that showed inhibitory activity towards GRK2 

and its closely related ROCK2 [31]. To analyze the binding affinities and 

interactions formed between the ligand and receptor, docking of the most active 

compound with receptor was performed for both GRK2 and ROCK2. Using 

Docking and 3D-QSAR techniques, comparative molecular field analysis 

(CoMFA) [32] and comparative molecular similarity indices analysis (CoMSIA) 

[33] models were developed for both GRK2 and ROCK2. Co-analysis of the 

molecular docking and 3D-QSAR results from both GRK2 and ROCK2 were 

performed to identify the important structural features and interactions that drive 

these compounds to prefer GRK2 over ROCK2. 

2. METHODOLOGY 

2.1. Dataset 

A series of 93 hydrazone and triazole derivatives and their activity values against 

G protein-coupled receptor kinase (GRK2) and Rho-associated coiled-coil 
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containing kinase (ROCK2) which were reported in previous studies are collected 

for molecular modeling studies [31]. The inhibitory concentration (IC50) values of 

the compounds are converted to negative logarithmic pIC50 values. The structure 

of the compounds and their corresponding pIC50 values against GRK2 and 

ROCK2 are given in Table 1. The series of compounds have a wide activity range 

of 5 to 8.9 for GRK2 and 5 to 8.1 for ROCK2 and is considered to be suitable for 

3D-quantitative structure-activity relationship (3D-QSAR) studies [34]. 

All the compounds are sketched and optimized in Sybyl-X 2.1 for 3D-QSAR 

studies. The docked pose of the most active compound is used as a template for 

sketching the other compounds. The structures are energy minimized using Tripos 

force field, followed by the application of Gastriger-Hückel charges as partial 

charges. The dataset was divided into training set of 63 compounds and test set of 

30 compounds based on activity value. The training set was used in deriving the 

3D-QSAR model and the test set was used to test the predictive ability of the 

derived model. 

 

2.2. Molecular Docking 

To analyze the ligand-protein interactions, we performed molecular docking of 

the most active compound with both the receptors, GKR2 and ROCK2 using 

Autodock 4.2.5.1 [35]. The structure of the ligand-GRK2 complex (PDB code: 

5UUU) [31] and ligand-ROCK2 (PDB code: 4QL6) [36] were already reported in 

previous studies. To validate the docking protocol, we have sketched the ligand 

structure and minimized it using Tripos force field in Sybyl-X 2.1 outside of the 

receptor and then docked to the apo-receptor to perform the re-docking. The 

docked pose of the ligand showed an RMSD value of 0.6.  

The docking of the most active compound is preceded by the preparation of the 

ligand and the protein. During the protein preparation, the water molecules are 

removed and polar hydrogen atoms are added to the protein.  Kollman and 
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Gasteiger charges are calculated for all atoms in the protein. In the ligand 

preparation, non-polar hydrogen atoms are merged to the ligand and Gasteiger 

charges are applied. A grid box of dimension 70 X 70 X 70 points was set around 

the ligand to define the area to be searched during docking. All points on the grid 

box are separated by 0.375 Å.  In the docking process, Lamarckian Genetic 

Algorithm (LGA) was used to generate 100 conformations with 2500000 

evaluations per run. Finally, the outcome of the docking process is analyzed and a 

pose is selected based on binding energy and interactions reported in earlier 

studies.  

Table 1 Structure of the hydrazone and triazole derivatives and their pIC50 

values for GRK2 and ROCK2.  
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6
 

A 3-OMe - - 7.3 7.2 

7
 

A 4-OMe - - 5.0 5.4 

8
 

B H - - 5.9 5.7 

9
 

B OMe - - 7.8 6.4 

10
 

B OEt - - 6.9 5.2 

11
 

B OPh - - 7.3 5.2 

12
 

B OBn - - 7.2 5.0 

13
 

B CO-
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- - 5.0 5.0 

14
 

B CONH
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C C NH 4-OMe 6.3 6.5 
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C C NH 2-Cl 6.6 5.7 

28
 

C C NH 3-Cl 6.8 6.4 

29
 

C C NH 3-SO2NH2 7.3 6.7 

30
 

C C NH 4-SO2NH2 5.9 6.4 
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C C NH 2-OPh 6.5 5.0 
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C C NH 2-OBn 6.4 5.8 
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C C NH 2-O(CH2)2Ph 6.5 5.5 
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C C NH 2-SBn 6.5 5.9 

35
 

C C NH 2-SO2NHBn 7.0 7.0 

36
 

C C NH 2-SO2Bn 5.7 5.9 
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C C NH 2-CONHMe 7.1 6.6 
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C C NH 2-CONHPh 7.2 7.5 

39
 

C C NH 2-CONHBn 8.2 7.6 
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46
 

C C NH 2-NHCONHBn 7.7 7.5 

47
 

C C NH 2-CH2CONHBn 6.4 6.3 

48
 

D 2-Me H - 5 5.1 

49
 

D 3-Me CONHBn - 7.3 7.0 

50
 

D 3-CH2OH CONHBn - 6.8 6.2 

51
 

D 3-(CH2)2OH H - 5.4 5.0 

52
 

D 3-
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H2 
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6.2 5.6 
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E ME 2-F-6-F - 7.2 5.1 
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F 

- 
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5.0 
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58
 

F N NH N 7.8 7.2 
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F CCH3 NH N 8.0 7.6 
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F N C NH 6.3 6.7 
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G C H 2-OMe 8.5 7.0 
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G C H 2-Cl 8.4 7.3 

76
 

G C Me H 7.3 6.2 

77
 

G C Me 4-CF3 7.3 6.2 

78
 

G C Me 3-CF3 7.4 6.2 

79
 

G C Me 2- CF3 7.7 5.8 

80
 

G C Me 2-OMe 7.3 5.7 
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G C Me 2-Cl 7.9 5.7 

82
 

G C Et H 8.1 7.1 

83
 

G C n-Pr H 7.4 6.9 

84
 

G C i-Pr H 6.8 6.5 

85
 

G C Bn H 6.4 5.4 
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G C (CH2)2OM

e 
H 7.7 6.4 
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2.3. CoMFA and CoMSIA 

The comparative molecular field analysis (CoMFA) [32, 37] and comparative 

molecular similarity indices analysis (CoMSIA) [33] models were developed for 

both GRK2 and ROCK2 using Sybyl-X 2.1.  

In CoMFA, electrostatic field and steric field exerted by the compounds are 

calculated at each point on a regularly spaced 3D grid around the compounds. The 

field exerted at each point on the 3D grid is calculated using a probe atom (sp
3 

carbon of +1 charge and having a van der Waal radius of 1.52 Å) [32]. The steric 

and electrostatic fields are contributed by the Lennard- Jones potential and 

Coulombic potential respectively. Since CoMFA is highly sensitive to the 

alignment of the dataset compounds, proper alignment of the molecule in 3D 

Cartesian space is crucial [38]. Here, we considered the docked pose of the most 

active compound as the bioactive conformation and aligned all compounds using 

the most active compound as a template. The compounds are aligned by manually 

superimposing them on the fragment of the template compound which is common 

in all compounds. Partial least square (PLS) regression analysis is used to linearly 

correlate the 3D-QSAR descriptor values (independent variables) to the activity 

values (dependent variables) [39]. The leave-one-out method is used to derive the 

cross-validated correlation coefficient (q
2
) and optimal number of components 
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(ONC). Based on the ONC, the non-cross-validation was performed to get the 

conventional correlation coefficient (r
2
), standard error of estimation and F-test 

value (F) [38]. 

In CoMSIA, five descriptors namely, steric (S), electrostatic (E), H-bond donor 

(D), H-bond acceptor (A) and hydrophobic (H) descriptors are used. Similar to 

CoMFA, the descriptor values are calculated by probing the intersection of the 3D 

cubic lattice around the structure of the compounds by a probe atom (sp
3 

carbon 

atom having a +1 charge). The attenuation factor was set to the default value of 

0.3. CoMSIA models based on all different possible combination of the five 

descriptors were developed and the model giving the best statistical value was 

selected as the final model. 

2.4. Model Validation 

To validate the derived CoMFA and CoMSIA models, the models were tested 

rigorously using both internal and external validation techniques [40]. 

To access the robustness and statistical confidence of the derived model, 

bootstrapping analysis was carried out for 1000 runs. Also, to assess the 

sensitivity of the derived model to chance correlation, we performed leave-five-

out cross-validation. In leave-five-out method, a model is derived by omitting five 

compounds randomly and the derived model is used to predict the activity of the 

five compounds. 

To test the predictive ability of the derived model against external dataset 

compounds, predictive correlation coefficient (r
2

pred) was calculated based on the 

equation given below [40]: 

r
2
pred = (SD - PRESS)/SD 
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Where SD represents sum of squared deviation between the inhibitory activities 

of test set compounds and mean activity of the training set compounds and 

PRESS represents the sum of square deviation between the predicted and actual 

activity of each compound in the test set. 

3.  RESULTS AND DISCUSSION 

3.1. Molecular Docking 

Molecular docking analysis was performed for the most active compound of 

GRK2 (93) and the most active compound of ROCK2 (60) to explore the ligand-

protein binding mechanisms. The interactions between the most active 

compounds and the receptors are shown in Figure (1a) (GRK2) and Figure (1b) 

(ROCK2).  

The crystal structure of GRK2 in complex with one of the dataset compound (79) 

has been reported in a previous study (PDB code 5UUU) [31]. This crystal 

structure was used in the docking study of the most active compound (93) with 

GRK2. The binding site of GRK2 consists of residues from adenine subsite (Leu-

324, Met-274, Asp-272, Ala-218, Val-205), ribose subsite (Asp-278), phosphate 

subsite (Lys-220, GLU-239, ARG-199, GLY-200, GLY-201, PHE202, GLY-

203), hydrophobic subsite (ALA-236, LEU-235, GLU-239, GLY-337) and 

catalytic loop (ASP-335) [21]. Docking of the ligand into the receptor was 

performed with Autodock 4.2.5.1 using the Lamarckian Genetic Algorithm. The 

docking procedure was first validated by extracting the ligand from the crystal 

structure and docking it back into the receptor. The resultant docked pose is then 

compared with the pose of the ligand in the crystal structure. The docking process 

for the most active compound generated 100 conformations, out of which one 

conformation was selected based on its binding energy and important interactions 

which were reported in previous studies. 
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Figure (1) (a) The docked conformation of the most active compound (compound 

93) inside the active site of GRK2. (b) Docked conformation of the most active 

compound (compound 60) inside the active site of ROCK2. The hydrogen bond 

interactions are indicated by dotted lines and bond distances in Angstrom are 

given (Color figure online). 

The most active compound (93) of GRK2 forms four hydrogen bonds with the 

binding site residues as shown in Figure (1a). One nitrogen atom from the 

pyrimidine ring of the ligand forms an H-bond with Met-274 at the hinge region. 

This H-bond was also observed in the crystal structure and is considered to be 

important as it anchors the ligand inside the binding site. Another H-bond 

interaction was observed between the nitrogen of ligand triazole ring and the 

LYS-220 and between the oxygen of ASP-335 of the catalytic loop with the 

amide nitrogen at the linker between the triazole ring and the aniline ring of the 

ligand. A fourth interaction was observed between the PHE-202 of the p-loop 

with the oxygen at the linker between the aniline and the benzyl ring of the 

ligand. This interaction with the p-loop (PHE-202) was also observed in previous 

studies [16].  

Docking of the most active compounds (60) with the ROCK2 was performed 

using the same procedure used for the docking of compound 93-GRK2 complex. 

The crystal structure of ROCK2 (PDB code 4L6Q) which has previously been 
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reported by Tsutomu et al., was used for the docking study [36]. The binding site 

of ROCK2 consists of the following residues: MET-172, TYR-171, GLY-99, 

ASP-218, GLY-101, PHE-103, ARG-100, GLY-104, ASP-232, and ALA-119. 

The docking of the most active compound (60) generated 100 conformations and 

a docked pose was selected based on the binding energy and significant 

interactions with the receptor. Three H-bond interactions were observed between 

the most active compound and ROCK2 as shown in Figure (1b).  One H-bond 

was observed between the nitrogen of the pyridine ring with the MET-172. 

Another H-bond interaction by the nitrogen at the linker between the triazole ring 

and the aniline ring with ASP-208 was also observed. A third H-bond was 

observed between the nitrogen of ARG-100 and the oxygen at the linker moiety 

between the aniline ring and the benzyl ring.  

From the docking study of the most active compound of GRK2 (93) and ROCK2 

(60), it was observed that both compound 93 and 60 forms H-bond interaction 

with hinge region residues MET-274 and MET-172 respectively, which is known 

to be important for anchoring the ligand inside the binding site while also 

stabilizing the active conformation of the proteins [41]. The most active 

compound of GRK2 forms an interaction with the p-loop (PHE-202) and extends 

the difluorobenzyl ring into the hydrophobic pocket which is considered to be 

important for the potency and selectivity [21]. However the most active 

compound of ROCK2 did not form interaction with the p-loop and also failed to 

fully extend the benzyl ring into the hydrophobic pocket.  

3.2. 3D-QSAR 

3D-QSAR study on a series of hydrazone and triazole derivatives was performed 

using Sybyl-X 2.1. The dataset was divided into training set (63 compounds) and 

test set (30 compounds) based on activity values to ensure that both test set and 

training set are composed of a uniform distribution of the compounds from 

different activity range.  
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3.2.1. CoMFA and CoMSIA models for GRK2 

CoMFA and CoMSIA models were developed for GRK2, followed by the 

contour map analysis of the selected models to understand the structural 

properties that are responsible for GRK2 inhibition. 

 During the 3D-QSAR model development, the docked pose of the most active 

compound (93) was used as the template for aligning the compounds. The 

fragment of the most active compound (93) used in the alignment and the final 

alignment of all the compounds are shown in Figure (2a) and (2b) respectively. 

Two compounds (21 and 22) could not be aligned with the template due to 

structural difference (the presence of an additional atom) and were discarded. 

Based on the alignment, the CoMFA and CoMSIA models were developed. In 

CoMFA, the steric and electrostatic descriptors are considered for field 

calculations. PLS analysis was performed to assess the predictive ability of the 

models and the results are shown in Table 2. The derived CoMFA model showed 

a q
2 

value of 0.608 and r
2
 value of 0.902. The statistical results of the CoMFA 

model suggested that the model has reasonable predictive ability.  

Table 2 Statistical results of the CoMFA and CoMSIA models for GRK2. 

Parameters CoMFA 
CoMSIA 

(SEHD) 

q
2
 0.608 0.558 

ONC 6 5 

SEP 0.654 0.689 

r
2
 0.902 0.877 

SEE 0.327 0.363 

F value 81.756 77.21 

LFO 0.633 0.607 
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BS r
2
 0.928 0.945 

BS SD 0.029 0.017 

r
2
pred 0.574 0.784 

Influence of different fields (%) 

S 46.3 14.7 

E 53.7 31.8 

H - 19.9 

A - - 

D - 33.6 

q
2
: cross-validated correlation coefficient; ONC: Optimum number of 

components; SEP: Standard Error of Prediction; r
2
: non-validated correlation 

coefficient; SEE: Standard Error of Estimation; F value: F-test value; r
2
; LFO: 

Leave five out; BS-r
2
: Bootstrapping r

2 
mean; BS-SD: Bootstrapping Standard 

deviation; Q
2
: Progressive scrambling; S: Steric; E: Electrostatic; H: 

Hydrophobic; A: Acceptor; D: Donor.  

 

Table 3 Statistical results of the CoMFA and CoMSIA models for ROCK2. 

Parameters CoMFA 
CoMSIA 

(SEHD) 

q
2
 0.621 0.632 

ONC 5 5 

SEP 0.540 0.53 

r
2
 0.673 0.867 

SEE 0.313 0.32 

F value 75.52 71.15 

LFO 0.580 0.563 

BS r
2
 0.913 0.946 
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BS SD 0.023 0.014 

r
2
pred 0.511 0.562 

Influence of different fields (%) 

S 65.20 17.8 

E 34.80 21.6 

H - 20.8 

A - - 

D - 39.8 

 

 

 

Figure (2) (a) Substructure from template compound (compound 93) used for the 

alignment of dataset. (b) Alignment of the dataset compounds used in the GRK2 

model development. (c) Substructure from template compound (compound 60) 

used for the alignment of dataset. (d) Alignment of the dataset compounds used in 

the GRK2 model development (Color figure online). 

During the CoMSIA model development, all possible combinations of the 

descriptor fields namely, steric (S), electrostatic (E), hydrophobic (H), H-bond 

acceptor (A) and H-bond donor (D) were used to develop multiple models. The 

model based on SEHD descriptors was selected as it resulted in relatively higher 
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statistical outcome with q
2
, ONC and r

2 
value of 0.558, 5 and 0.877 respectively, 

suggesting that the model has a reasonable predictive ability.   

Leave-Five-Out (LFO) method was performed to assess the sensitivity of the 

models to chance correlation and Bootstrapping (BS) method was used to test the 

robustness of the derived models. The statistical results obtained from the LFO 

(0.633) and BS (BS-r
2
= 0.928) indicated that the derived CoMFA and CoMSIA 

models have acceptable accuracy and robustness in its prediction.  

To validate the predictive ability of the derived models against external test set, 

the models were used to predict the activity values of the test set (30 compounds). 

The CoMFA and CoMSIA models showed acceptable predictive ability for 

external test set, giving r
2
pred value of 0.511 and 0.562 respectively.  

3.2.2. CoMFA and CoMSIA models for ROCK2 

During the CoMFA and CoMSIA model development for ROCK2, the docked 

pose of the most active compound (60) for ROCK2 was used as the template in 

aligning the compounds. The fragment of the most active compound (60) used in 

the alignment and the final alignment of all the compounds are shown in Figure 

(2c) and (2d) respectively. Two compounds (20 and 21) which do not align with 

the template compound due to structural differences were discarded. Based on the 

aligned compounds, the models were developed and PLS analysis was performed 

to assess the predictive ability of the models. 

 The derived CoMFA model showed a q
2
, ONC and r

2 
value of 0.621, 5 and 0.673 

respectively, suggesting that the model has a reasonable predictive ability. During 

the CoMSIA model development the SEHD descriptors were used as it resulted in 

better statistical value with q
2
, ONC and r

2
 value of 0.632, 5 and 0.867 

respectively, showing reasonable predictive ability. The statistical results for the 

ROCK2 CoMFA and CoMSIA models are shown in Table 3. 
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Both the models developed for ROCK2 were also validated for sensitivity to 

chance correlation using LFO. The CoMFA and CoMSIA models showed 

acceptable LFO values of 0.580 and 0.563 respectively. During the test for 

robustness using bootstrapping (BS) method, the CoMFA model gave a BS-r
2
 

value of 0.913 with a BS-SD value of 0.023 and the CoMSIA model gave a BS-r
2
 

value of 0.946 with a BS-SD value of 0.014.  These statistical results support that 

the derived models have reasonable accuracy and robustness in prediction.  

During the external validation using the test set (30 compounds) the CoMFA and 

CoMSIA models showed r
2
pred value of 0.511 and 0.562 respectively, suggesting 

that the models can be used for external test set.  

The comparison between the predicted and actual pIC50 values for both GRK2 

CoMFA and CoMSIA models are shown in Table 4. The comparison between the 

predicted and actual pIC50 values for both ROCK2 CoMFA and CoMSIA models 

are shown in Table 5.   

3.3 Contour map analysis 

Based on the CoMFA and CoMSIA models derived for GRK2 and ROCK2, 

contour maps were developed for analysis. The CoMFA and CoMSIA contour 

maps for GRK2 overlaid with its most active compound 93 for reference are 

shown in Figure (3) and Figure (4) respectively and the CoMFA and CoMSIA 

contour maps for ROCK2 overlaid with its most active compound 60 for 

references are shown in Figure (5) and Figure (6) respectively. In the electrostatic 

contour maps derived for both GRK2 and ROCK2, blue and red color contours 

were used to represent electropositive and electronegative substituent favorable 

regions respectively. Likewise, green and yellow contours were used to represent 

steric bulk substituent favorable and unfavorable regions respectively. For 

hydrophobic contour maps derived from the CoMSIA models, yellow contours 

represent the regions favorable to hydrophobic substituents whereas, and gray 

contours represent hydrophobic substituent unfavorable regions. In the H-bond 
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donor contour maps, cyan and purple colors were used to indicate H-bond donor 

favorable and unfavorable regions respectively.    

3.3.1. GRK2 CoMFA contour maps 

The steric and electrostatic contour maps developed based on the GRK2 CoMFA 

model are shown overlaid with the most active compound (93) for reference in 

Figure (3a) and (3b) respectively. In the steric contour map, a green contour was 

observed near the difluorobenzyl ring suggesting that bulky substituents are 

favorable in this region and can potentially increase the inhibitory activity toward 

GRK2.  While the yellow contour near the pyrimidine ring and triazole rings 

suggested that bulky substituents are not favorable in these regions and could lead 

to a decrease in inhibitory activity of the compounds. This can be observed in 

compounds 51, 52, 56 and 57 (pIC50= 5.420-6.959) which have significantly 

larger bulky substituent near the pyrimidine ring and showed lower activity 

values compared to compound 17, 39 and 54 (pIC50 =7.208-8.215) which have 

relatively smaller substituents. 

 

Figure (3) Standard coefficient contour maps obtained from GRK2 CoMFA 

analysis with the template compound (compound 93) as reference.  (a) Steric 

contour map. Green contour indicates steric bulk favorable regions and yellow 

contour indicates steric bulk unfavorable regions. (b) Electrostatic contour map. 

Blue contour indicates electropositive substituent favorable regions and red 

contour indicates electronegative substituent favorable regions (Color figure 

online). 
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Figure (4) Standard contour maps obtained from GRK2 CoMSIA analysis with 

the template compound (compound 93) as reference. (a) Electrostatic contour 

map. Blue contour indicates electropositive substituent favorable regions and red 

contours indicate electronegative substituent favorable regions. (b) Steric contour 

map. Green contour indicates steric bulk favorable regions and yellow contour 

indicates steric bulk unfavorable regions. (c) Hydrophobic contour map. Yellow 

and gray contours indicate hydrophobic substituents favorable and unfavorable 

regions respectively. (d) Hydrogen bond donor contour map. Cyan and purple 

contours indicate hydrogen bond donor substituent favorable and unfavorable 

regions respectively (Color figure online). 

In the electrostatic contour map, blue contours were observed near the linker 

between the aniline ring and the difluorobenzyl ring and also near the linker 

between the triazole ring and aniline ring suggesting that electropositive 

substituents are favorable in these regions. Electropositive substituents at the 

linker position between the triazole ring and the aniline ring can lead to H-bond 

interaction with the H-bond acceptor oxygen of ASP-335 at the catalytic loop, as 

observed in the docking study of the most active compound (93) with GRK2 in 

Figure (1). 

 Red contour was observed near the triazole ring suggesting that electronegative 

and H-bond acceptor substituents are favorable at this region. This is observed in 
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compounds 86 to 93 (pIC50 =7.796-8.921) all of which have H-bond acceptor and 

electronegative substituents at the triazole ring and showed relatively higher 

activity value compared to compound 52, 56, 65 and 71 (pIC50=6.252-6.602) 

which do not have H-bond acceptor and electronegative substituents. Having 

electronegative substituents at these regions can form H-bond interactions with 

donor nitrogen atom of LYS-220 as seen in the docking study of the most active 

compound (93) with GRK2 in Figure (1).  

3.3.2. GRK2 CoMSIA contour maps 

In the CoMSIA contour map analysis shown in Figure (4a) and (4b), the steric 

and electrostatic contours were found to closely resemble those of the CoMFA 

steric and electrostatic contours respectively, hence further analysis of these 

contours was not done. 

In the hydrophobic contour map shown in Figure (4c), the yellow contour near the 

difluorobenzyl ring and near the linker between the triazole ring and aniline ring 

suggested hydrophobic substituents are favorable in these regions. This is 

exemplified by compounds 90, 91, 92 and 93 all of which have hydrophobic 

substituents at these positions and showed relatively higher GRK2 inhibitory 

activity value in the series (pIC50 = 8.108-8.921).  

In the H-bond donor contour map in Figure (4d), the only cyan contour was 

observed near the linker between the triazole ring and aniline ring, indicating the 

importance of H-bond donor at this region. Having H-bond donor substituents 

here can lead to H-bond interaction with acceptor oxygen of ASP-335 at the 

catalytic loop, as observed in the docking study of the most active compound 

(93).  
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Figure (5) Standard coefficient contour maps obtained from ROCK2 CoMFA 

analysis with the template compound (compound 60) as reference.  (a) Steric 

contour map. Green contour indicates steric bulk favorable regions and yellow 

contour indicates steric bulk unfavorable regions. (b) Electrostatic contour map. 

Blue contour indicates electropositive substituent favorable regions and red 

contour indicates electronegative substituent favorable regions (Color figure 

online). 

3.3.3. ROCK2 CoMFA contour maps 

The steric and electrostatic contour map derived from the CoMFA models of 

ROCK2 is shown in Figure (5a) and Figure (5b). In the steric contour map, two 

green contours were observed near the benzyl ring suggesting that steric bulk 

substituents are favorable in these regions. This is exemplified by compounds 31, 

48 and 51 (pIC50=5.000-5.149) which does not have the extended benzyl moiety 

and showed much lower activity value compared to compounds 39, 45, 49, 50 and 

60 (pIC50= 6.268-8.137) all of which have the extended benzyl moiety. Yellow 

contours were observed near the pyridine ring and near the linker between the 

aniline ring and benzyl ring suggesting that bulky substituent in these regions are 

not favorable. This can be observed in the low active compounds 53, 54, 55, 56 

and 57 (pIC50= 5.000-5.131) all of which have bulky substituents near the 

pyridine ring as opposed to compound 39 and 49 (pIC50= 7.027- 7.620) which 

possess smaller substituents. Having bulk substituents at the pyridine ring may 

cause steric clash with binding site residues such as PHE-384, ILE-98, and TYR-

171.  
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In the electrostatic contour map, a blue contour was observed near the amide 

linker between the triazole ring and aniline ring, suggesting that electropositive 

substituents are favorable at this position. Red contours observed near the 

pyridine ring, near the linker between the pyridine ring and triazole ring, and at 

the benzyl ring suggested that electronegative substituents are favorable in these 

regions. Electronegative substituents at the pyridine ring can lead to H-bond 

interaction with the MET-172 as observed in the docking study of the most active 

compound (60) with ROCK2. 

3.3.4. ROCK2 CoMSIA contour maps 

The CoMSIA steric and electrostatic contour maps are shown in Figure 6a and 6b. 

In the electrostatic contour map, as observed in the ROCK2 CoMFA electrostatic 

contour map, a red contour was observed near the pyridine ring suggesting that 

electronegative substituents are favorable at this region. A blue contour was 

observed near the amide linker between the aniline ring and the benzyl ring 

indicating that electropositive substituents are favorable at this position. As for 

the steric contour map, it resembles closely to the CoMFA steric contour map and 

therefore further separate analysis was not done.  

In the hydrophobic contour map shown in Figure (6c), yellow contour was 

observed near the benzyl ring, suggesting hydrophobic substituents are favorable 

in this region. This can be observed in compounds 38, 39, 45 and 60 having 

hydrophobic substituents such as benzyl group and phenyl group in this region 

and showed higher activity (pIC50= 7.509-8.137) compared to compounds 31, 48 

and 51 (pIC50=5.000-5.149) which do not have hydrophobic substitution at that 

region. Yellow contour was also observed near the triazole ring suggesting 

hydrophobic substituents are favorable at this region whereas, hydrophobic 

substitutions are not favorable near the aniline ring as indicated by the gray 

contour. 
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In the H-bond donor contour map shown in Figure (6d), the purple contour 

observed near the pyridine ring indicating that H-bond donors are not favorable at 

that region whereas, a cyan contour was observed near the linker between the 

aniline and benzyl ring suggesting that H-bond donors are favorable at this 

region. 

 

Figure (6) Standard contour maps obtained from ROCK2 CoMSIA analysis with 

the template compound (compound 60) as reference. (a) Electrostatic contour 

map. Blue contour indicates electropositive substituent favorable regions and red 

contours indicate electronegative substituent favorable regions. (b) Steric contour 

map. Green contour indicates steric bulk favorable regions and yellow contour 

indicates steric bulk unfavorable regions. (c) Hydrophobic contour map. Yellow 

and gray contours indicate hydrophobic substituents favorable and unfavorable 

regions respectively. (d) Hydrogen bond donor contour map. Cyan and purple 

contours indicate hydrogen bond donor substituent favorable and unfavorable 

regions respectively (Color figure online).  
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From the analysis of the CoMFA and CoMSIA contour maps derived from GRK2 

and ROCK2, we observed that having non-bulky substituents near the 

pyridine/pyrimidine ring, steric bulk and hydrophobic substituents at the 

benzyl/difluorobenzyl ring and electronegative substituents near the linker 

between the triazole ring and the pyridine/pyrimidine ring of the compounds are 

favorable in both GRK2 and ROCK2 and can potentially lead to increase in the 

inhibitory activity of the compounds towards both GRK2 and ROCK2.  

Further analysis of the steric contours showed that green contour near the 

difluorobenzyl ring derived from GRK2 models are larger than the green contour 

observed near the benzyl ring derived from the ROCK2 models, suggesting that 

GRK2 has a relatively higher affinity for bulky substitutions in this region 

compared to ROCK2. This could be a possible reason why compounds having the 

bulky benzyl ring without additional substitutions are more favorable in the case 

of ROCK2 inhibition and are among the compounds having the highest inhibitory 

activity for ROCK2 in the dataset. Adding substitutions to the benzyl ring tend to 

reduce the inhibitory activity of the compounds toward ROCK2.  This can be 

observed in compounds 79, 80 and 91 all of which have additional substitutions at 

the benzyl ring and showed lower activity value (pIC50= 5.721-5.854) compared 

to compounds  39, 59, 60, 61 and 69 (pIC50= 7.638-8.137) all of which have no 

substitution on the benzyl ring. Docking analysis of the most active compound 

(60) with ROCK2 showed that the pose adopted by the most active compound 

place the benzyl ring in close proximity to the residues at the p-loop. Addition of 

substituents to the benzyl ring could cause steric clash with these residues. This 

could be a possible explanation of why additional substitutions to the benzyl ring 

are not favorable and lead to a decrease in inhibitory activity. On the other hand, 

the addition of substituents like difluoro and trifluoromethyl group on the benzyl 

ring increases the activity of the compounds towards GRK2 as seen in compounds 

90 to 93 (pIC50= 8.108-8.921) which are among the compounds with the highest 

activity towards GRK2 in the dataset. From docking study of the most active 
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compound (93) with GRK2, it was observed that the compound extends the 

difluorobenzyl ring into the hydrophobic pocket which can accommodate the 

added substituents at the benzyl ring.  

From the analysis, it was observed that non-bulky substituents near the triazole 

ring, bulky and hydrophobic substituents near the benzyl/difluorobenzyl ring and 

electronegative and H-bond acceptor substituents at the triazole ring tends to 

increase the inhibitory activity of the compounds towards GRK2 over ROCK2. 

This can be observed in compounds 79, 80, 81 and 91 which show high activity 

preference towards GRK2 (pIC50=7.357- 8.168) and low activity towards ROCK2 

(pIC50=5.721-5.854). All these compounds which showed activity preference 

towards GRK2 have smaller substitutions like methyl group at the pyrimidine 

ring, electronegative and H-bond acceptor nitrogen at the triazole ring and have 

bulky and hydrophobic substituents at the benzyl/difluorobenzyl ring. 

4. CONCLUSIONS 

The selective inhibition of GRK2 is considered to be important for the successful 

treatment of heart failure. In this study, we performed molecular docking study 

and 3D-QSAR analysis on a series of triazole derivatives and hydrazone 

derivatives that showed activity against both GRK2 and ROCK2, to understand 

the ligand-protein binding mechanisms and the structural properties that drive the 

inhibitory preference of the compounds toward GRK2 over ROCK2. Docking 

studies revealed that the most active compound of GRK2 forms four H-bond 

interactions with residues MET-274, LYS-220, ASP-335 and PHE-202 of the 

active site. On the other hand, the most active compound of ROCK2 showed three 

H-bond interactions with MET-172, ASP-218 and ARG-100 residues of the 

active site.  CoMFA and CoMSIA models were developed for both GRK2 and 

ROCK2 and contour maps were derived based on these models.  
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Co-analysis of the molecular docking results and 3D-QSAR results derived from 

GRK2 and ROCK2 revealed that the presence of electronegative substituents near 

the linker between the pyridine/pyrimidine ring and triazole ring, hydrophobic 

substituents near the benzyl/difluorobenzyl ring and non-bulky substituents near 

the pyridine/pyrimidine ring of the compounds increases its inhibitory activity 

towards both GRK2 and ROCK2. On the other hand, the addition of hydrophobic 

and bulky substituents near the benzyl/difluorobenzyl ring and the presence of 

electronegative and H-bond acceptor substituents at the triazole ring tend to 

selectively increase the activity of the compounds towards GRK2 over ROCK2. 

The outcome of this study may be used in rational drug design to develop potent 

GRK2 inhibitors with selectivity over ROCK2.  

Table 4.  Experimental and predicted pIC50 values with their residuals of selected 

CoMFA and CoMSIA model derived from GRK2. 

Compound 
Actual 

pIC50 

CoMFA CoMSIA 

Predicted Residual Predicted Residual 

1
*
 5.745 5.753 -0.008 5.665 0.080 

2 5.000 5.332 -0.332 5.615 -0.615 

3 6.155 5.992 0.162 5.716 0.439 

4 5.252 5.588 -0.336 5.518 -0.266 

5 5.000 4.972 0.02 5.287 -0.287 

6
*
 

7.310 6.325 0.984 5.860 1.450 

7
*
 

5.000 5.529 -0.529 5.526 -0.526 

8 
5.959 6.062 -0.103 6.309 -0.350 

9
*
 

7.854 6.455 0.465 7.563 0.291 

10
*
 

6.921 7.385 -0.008 6.678 0.243 
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11 
7.377 7.418 -0.142 7.187 0.190 

12 
7.276 5.753 -0.008 7.020 0.256 

13
*
 

5.000 5.229 -0.229 5.707 -0.707 

14 
7.699 7.643 0.056 7.611 0.088 

15
*
 

5.921 5.509 0.411 5.688 0.233 

16 
5.357 5.611 -0.254 5.601 -0.245 

17
*
 

7.387 5.589 1.798 6.008 1.379 

18 
5.244 5.317 -0.072 5.452 -0.208 

19
*
 

6.009 5.614 0.394 5.297 0.712 

20 
5.000 5.174 -0.174 5.147 -0.147 

23 
7.000 6.1452 0.854 6.975 0.025 

24
*
 

5.921 5.492 0.428 5.794 0.127 

25 
6.796 6.925 -0.129 6.539 0.257 

26 
6.357 6.383 -0.026 6.155 0.201 

27 
6.602 5.703 0.899 6.008 0.594 

28
*
 

6.854 5.895 0.958 5.975 0.879 

29 
7.357 7.037 0.3196 7.388 -0.032 

30 
5.921 6.124 -0.203 5.889 0.032 

31
*
 

6.523 6.296 0.226 6.448 0.075 

32 
6.444 6.045 0.398 6.111 0.333 

33 
6.553 6.518 0.034 6.479 0.074 

34
*
 

6.538 6.22 0.317 5.977 0.561 
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35 
7.000 7.041 -0.040 7.336 -0.336 

36 
5.745 5.733 0.011 5.933 -0.188 

37 7.187 7.124 0.063 7.171 0.016 

38
*
 7.268 7.105 0.162 7.099 0.169 

39
*
 8.215 7.276 0.938 8.213 0.002 

40
*
 7.420 8.038 -0.617 7.772 -0.352 

41
 

7.638 7.784 -0.145 7.633 0.005 

42 6.155 6.799 -0.644 6.330 -0.175 

43 7.187 7.69 -0.503 7.752 -0.565 

44
*
 6.886 7.572 -0.685 7.638 -0.752 

45 7.921 7.843 0.078 7.708 0.213 

46 7.721 7.594 0.126 7.451 0.270 

47 6.495 6.793 -0.298 6.534 -0.039 

48
*
 5.000 5.746 -0.746 5.008 -0.008 

49 7.377 7.194 0.183 7.398 -0.021 

50 6.886 6.808 0.078 6.811 0.075 

51
*
 5.420 5.548 -0.127 5.968 -0.548 

52 6.252 6.136 0.115 5.863 0.389 

53 6.770 6.837 -0.067 6.774 -0.004 

54 7.208 6.974 0.233 7.080 0.128 

55 7.174 7.294 -0.120 7.084 0.090 

56 6.602 6.543 0.058 6.587 0.015 
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57
*
 6.959 6.987 -0.028 6.624 0.335 

58 7.854 7.579 0.275 7.731 0.123 

59 8.004 7.517 0.487 7.695 0.309 

60 7.678 6.706 0.971 7.177 0.501 

61 7.620 7.077 0.543 7.112 0.508 

62 7.337 7.196 0.141 6.984 0.353 

63
*
 6.337 6.211 0.126 6.203 0.134 

64 7.347 7.544 -0.197 7.421 -0.074 

65
*
 6.886 7.135 -0.248 7.471 -0.585 

66 5.770 6.684 -0.914 6.453 -0.683 

67
*
 7.174 7.057 0.116 7.035 0.139 

68 6.699 7.012 -0.313 6.926 -0.227 

69 6.796 6.495 0.301 6.508 0.288 

70 6.328 6.42 -0.092 6.017 0.311 

71 6.292 6.271 0.021 6.926 -0.634 

72 7.770 7.706 0.063 8.154 -0.384 

73 7.921 7.996 -0.074 8.285 -0.364 

74 8.523 8.53 -0.007 8.532 -0.009 

75 8.409 8.167 0.242 8.484 -0.075 

76 7.347 7.493 -0.145 7.415 -0.068 

77
*
 7.347 7.516 -0.169 7.789 -0.442 

78
*
 7.409 7.939 -0.530 7.868 -0.459 
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79 7.745 7.928 -0.183 8.031 -0.286 

80
*
 7.357 8.292 -0.935 7.654 -0.298 

81 7.921 7.951 -0.031 7.668 0.253 

82
*
 8.125 7.387 0.738 7.362 0.763 

83 7.495 7.704 -0.208 7.322 0.173 

84 6.854 6.966 -0.112 7.136 -0.282 

85
*
 6.432 6.991 -0.559 7.176 -0.744 

86
*
 7.796 6.808 0.987 7.089 0.707 

87 8.260 7.916 0.343 8.085 0.175 

88 8.745 8.681 0.063 8.598 0.147 

89
*
 8.770 8.661 0.108 8.665 0.105 

90 8.108 8.457 -0.349 8.585 -0.477 

91 8.168 8.461 -0.293 8.618 -0.451 

92 8.721 8.708 0.012 8.461 0.260 

93 8.921 8.712 0.208 8.494 0.427 

 
*
 represents the test set compounds. 

 

Table 5.  Experimental and predicted pIC50 values with their residuals of selected 

CoMFA and CoMSIA model for ROCK2. 

 

Compound 
Actual 

pIC50 

CoMFA CoMSIA 

Predicted Residual Predicted Residual 

1
*
 6.1938 6.235 -0.041 5.933 0.260 

2 5.585 5.770 -0.185 5.799 -0.214 
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3 6.5229 6.330 0.193 5.908 0.614 

4
*
 6.2676 6.273 -0.005 5.681 0.586 

5 5.1308 5.268 -0.137 5.654 -0.523 

6
*
 

7.2076 5.946 1.261 5.715 1.492 

7
*
 

5.432 6.282 -0.850 6.219 -0.787 

8 
5.745 5.689 0.056 5.653 0.091 

9
*
 

6.409 5.652 0.757 5.427 0.981 

10 
5.244 5.170 0.075 5.305 -0.060 

11 
5.208 4.919 0.289 5.184 0.023 

12
*
 

5.000 5.765 -0.765 5.594 -0.594 

13 
5.000 4.920 0.080 4.814 0.186 

14 
7.237 6.795 0.442 6.891 0.345 

15
*
 

6.229 5.571 0.658 5.538 0.691 

16 
5.770 5.593 0.177 5.563 0.206 

17
*
 

7.027 5.638 1.389 5.659 1.367 

18 
5.721 5.534 0.187 5.484 0.237 

19
*
 

6.569 5.709 0.860 6.111 0.457 

20 
5.000 5.078 -0.078 4.913 0.087 

23 
6.201 6.235 -0.034 6.04 0.160 

24 
5.745 5.257 0.488 5.753 -0.008 

25 
6.143 5.953 0.189 5.823 0.319 

26 
6.553 6.721 -0.168 6.329 0.223 
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27 
5.770 5.765 0.005 5.906 -0.136 

28 
6.420 6.331 0.089 6.015 0.405 

29 
6.796 6.807 -0.011 7.063 -0.267 

30 
6.444 6.789 -0.345 6.86 -0.416 

31 
5.000 4.949 0.051 5.243 -0.243 

32 
5.854 5.987 -0.134 5.935 -0.081 

33 
5.569 5.567 0.001 5.86 -0.291 

34
*
 

5.921 6.144 -0.223 5.935 -0.014 

35 
7.009 7.227 -0.218 6.992 0.016 

36 
5.959 5.979 -0.020 5.859 0.099 

37 6.658 6.597 0.061 5.848 0.809 

38 7.509 7.281 0.227 7.2 0.308 

39
*
 7.620 7.358 0.262 6.848 0.771 

40
*
 7.328 7.028 0.300 7.2 0.127 

41 7.000 7.410 -0.410 7.243 -0.243 

42 5.658 6.447 -0.789 5.744 -0.086 

43 7.155 7.304 -0.149 7.415 -0.260 

44 7.131 7.238 -0.107 7.155 -0.024 

45 7.745 7.362 0.383 7.685 0.059 

46
*
 7.523 6.764 0.759 7.155 0.367 

47
*
 6.319 6.659 -0.340 6.685 -0.366 

48 5.149 5.495 -0.346 5.855 -0.706 



Seketoulie Keretsu Ph.D. Thesis  

Chosun University, Department of Biomedical Sciences 

 

- 37 - 

 

49 7.027 6.911 0.116 7.126 -0.099 

50 6.268 6.628 -0.360 6.682 -0.414 

51 5.000 5.151 -0.151 4.89 0.110 

52 5.638 5.920 -0.282 5.228 0.410 

53 5.000 4.851 0.149 4.759 0.241 

54 5.131 5.262 -0.132 5.383 -0.252 

55
*
 5.000 4.633 0.367 4.759 0.241 

56 5.000 4.772 0.228 5.06 -0.060 

57
*
 5.000 5.148 -0.148 5.105 -0.105 

58
*
 7.222 7.245 -0.023 7.06 0.161 

59 7.638 7.150 0.488 7.210 0.428 

60 8.137 7.397 0.740 7.503 0.633 

61
*
 7.745 6.915 0.830 7.21 0.534 

62 6.886 6.812 0.074 6.622 0.264 

63 6.796 7.115 -0.320 6.619 0.176 

64 6.260 6.285 -0.025 6.379 -0.119 

65
*
 7.284 6.839 0.445 7.674 -0.390 

66 6.469 6.647 -0.179 6.69 -0.221 

67
*
 6.495 6.802 -0.307 5.674 0.821 

68 6.456 6.988 -0.532 6.745 -0.289 

69
*
 7.658 6.875 0.783 7.141 0.516 

70 6.921 6.871 0.050 6.633 0.287 
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71
*
 6.770 6.998 -0.228 6.985 -0.215 

72 7.569 7.319 0.250 7.248 0.320 

73 7.699 7.330 0.369 7.291 0.408 

74 7.071 7.159 -0.088 7.226 -0.155 

75 7.301 6.777 0.525 7.034 0.267 

76 6.260 6.285 -0.025 6.379 -0.119 

77
*
 6.208 6.662 -0.454 7.034 -0.826 

78
*
 6.276 6.732 -0.456 6.379 -0.103 

79 5.854 6.415 -0.561 6.32 -0.466 

80
*
 5.796 6.371 -0.575 6.425 -0.629 

81 5.796 6.318 -0.522 6.32 -0.524 

82
*
 7.119 6.376 0.743 6.452 0.667 

83
*
 6.959 6.437 0.522 6.32 0.638 

84 6.585 6.619 -0.034 6.43 0.15 

85 5.495 5.570 -0.075 5.914 -0.411 

86
*
 6.495 5.910 0.585 6.43 0.064 

87
*
 6.495 6.395 0.100 5.914 0.580 

88
*
 7.310 6.407 0.903 6.926 0.383 

89 6.721 6.283 0.438 6.362 0.359 

90 6.143 6.655 -0.513 6.658 -0.515 

91
*
 5.721 6.525 -0.804 6.362 -0.640 

92 6.854 6.779 0.075 6.549 0.304 



Seketoulie Keretsu Ph.D. Thesis  

Chosun University, Department of Biomedical Sciences 

 

- 39 - 

 

93 6.721 6.728 -0.007 6.651 0.070 

 
*
 represents test set compounds 
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PART III 

Computational study of paroxetine-like inhibitors reveals 

new molecular insight to inhibit GRK2 with selectivity 

over ROCK1 
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1. INTRODUCTION 

Heart failure is a condition in which the heart fails to produce sufficient 

myocardial contraction needed to effectively circulate blood throughout the body. 

The low circulation of blood is mitigated by the release of catecholamines by the 

sympathetic nervous system [42]
 
[43]. Catecholamines bind to the β-adrenergic 

receptor (β-AR) on the cell surface and activate the downstream release of cAMP, 

which induces the positive inotropic needed for myocardial contraction of the 

heart [44]. The stimulated β-AR is desensitized through the phosphorylation of its 

serine and threonine residues by G protein-coupled receptor kinase 2 (GRK2) 

[45-47]. The phosphorylation by GRK2 induces arrestin binding at the β-AR, 

thereby blocking the pathway responsible for increased myocardial contraction 

[48-50]. Hence, the desensitization of β-AR by inhibition of GRK2 is considered 

as a potential route for heart failure treatment [51]. 

GRK2 is a serine/threonine kinase and is one of the members of A, G, and C 

family (AGC family) of kinases. AGC kinases play a vital role in cell survival, 

insulin signalling, regulation of ion transporters and channels, and blood pressure 

among others and its aberrant activity has been shown to be implicated in several 

diseases [13, 52]. Due to high sequence and structural similarity at the kinase 

domain among AGC kinases (~33% identity), the inhibition of GRK2 leads to 

inhibition of other AGC kinases [53]. The Rho-associated coiled-coil containing 

kinase 1 (ROCK1) is a member of the AGC kinase family and plays crucial role 

in several vital cellular functions including gene transcription, proliferation, 

differentiation, apoptosis and oncogenic transformation [54-56]. Rho-associated 

coiled-coil containing kinase (ROCK2) is also another member of the AGC 

kinase family. They are known to play an important role in cell migration and 

invasion, centrosome duplication, cytokinesis, and apoptosis [20].  Several studies 

have shown that the inhibition of GRK2 leads to the inhibition of ROCK1 and 

ROCK2. In addition, cross activity between GRK2 and other AGC kinases such 

as GRK1, GRK3 and protein kinase A (PKA) have been observed and reported 
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[21, 26, 53]. Therefore, the selective inhibition of GRK2 is considered to be 

crucial, to avoid unwanted side effects that may result from the inhibition of other 

AGC kinases. 

The catalytic domain of the AGC kinases is highly conserved and consists of a 

small lobe (N-lobe) and a large lobe (C-lobe). The active site, where most AGC 

kinase inhibitors bind, is formed at the intersection between the two lobes [21]. 

The conserved active site consists of the adenine subsite which is adjacent to the 

hinge moiety, the ribose subsite, the polyphosphate subsite and the hydrophobic 

subsite. The hydrophobic subsite is made up of residues from the p-loop, the αC-

Helix and the DFG motif [57]. A comparison of the residues at the active site of 

GRK2, ROCK1 and ROCK2 are shown in Table 1. 

Table 1. Comparison of the residues at the adenine subsite, polyphosphate 

subsite, ribose subsite and hydrophobic subsite for GRK2, ROCK1 and ROCK2 

Subsites GRK2 ROCK1 ROCK2 

Adenine 

Subsite 

Met274, Asn275, 

Gly276, Gly277, 

Asp278, Leu279, 

His280 

Met156, Pro157, 

Gly158, Gly159, 

Asp160, Leu161, 

Val162 

Met172, Pro173, 

Gly174, Gly175, 

Asp176, Leu177, 

Val178. 

Polyphosph

ate Subsite 

Tyr217, Ala218, 

Met219, Lys220, 

Cys221, Leu222 

Tyr102, Ala103, 

Met104,Lys105,L

eu106, Leu107 

Tyr118, Ala119, 

Met120, Lys121, 

Leu122, Leu123 

Ribose 

Subsite 

Gly276, Gly277, 

Asp278, Leu279, 

His280, Tyr281, 

His282, Leu283, 

Ser284 

Gly156, Gly159, 

Asp160, Leu161, 

Val162, Asn163, 

Leu164, Met165 

Gly174, Gly175, 

Asp176, Leu177, 

Val178, Asn179, 

Leu180, Met181, 

H
y
d

ro
p

h
o
b

ic
 S

u
b

si
te

 

P
-l

o
o
p

 

Ile197, Gly198, 

Arg199, Gly200, 

Gly201, Phe202, 

Gly203, Glu204, 

Val205 

Ile98, Gly99, 

Arg100, Gly101, 

Ala102, Phe103, 

Gly104, Gly105, 

Val106 

Ile82, Gly83, 

Arg84, Gly85, 

Ala86, Phe87, 

Gly88, Glu89, 

Val90 
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α
C

-H
el

ix
 

Thr234, Leu235, 

Ala236, Leu237, 

Asn238, Glu239, 

Arg240, Ile241, 

Met242, Leu243, 

Ser244, Leu245, 

Val246, Ser247 

Ser118, Ala119, 

Phe120, Phe121, 

Trp122, Glu123, 

Glu124, Arg125, 

Asp126, Ile127, 

Met128, Ala129, 

Phe130, Ala131 

Ser134, Ala135, 

Phe136, Phe137, 

Trp138, Glu139, 

Glu140, Arg141, 

Asp142, Ile143, 

Met144, Ala145, 

Phe146, Ala147 

D
F

G
/D

L

G
 m

o
ti

f 

Asp335, Leu336, 

Gly337 

Asp216, Phe217, 

Gly218 

Asp232, Phe233, 

Gly234 

 

Several GRK2 inhibitors have been reported over the last decade. The natural 

product balanol potently inhibits GRK2 with an IC50 of 50 nM (at 3 μM ATP) but 

lacks the selectivity against protein kinase A (PKA) and protein kinase C (PKC) 

[18]. Paroxetine, which is an FDA approved serotonine reuptake inhibitor is 

modestly potent towards GRK2 with an IC50 of 1.1 μM and selective against other 

GRKs [25] GSK180736A which was originally developed as an ROCK1 inhibitor 

is a potent inhibitor of GRK2 (IC50= 0.77 µM) and is selective against other 

GRKs. However GSK180736 exhibited limited bioavailability [26, 58] 

CMPD101 and CMPD103 developed by Takeda pharmaceuticals showed high 

activity for GRK2 with selectivity over other AGC kinases but are not 

bioavailable [23, 31]. Bouley et al., developed a series of indazole hybrid 

compounds that showed high potency for GRK2 but these compounds also 

showed activity for GRK5, ROCK1 and PKA [59]. Recently, Waldschmidt et al., 

have reported a series of paroxetine-like compounds that showed high inhibitory 

activity for GRK2 and selectivity over other AGC kinases [16, 53]. A study of 

this series of paroxetine-like compounds with the objective to understand the 

structural factors that drive its potency and selectivity for GRK2 poses an 

interesting challenge. Therefore, these paroxetine-like compounds were selected 

for computational study. 
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In-silico drug design techniques have emerged as powerful methods in assisting 

drug discovery [60-62]. In this study, we have performed molecular docking, 

molecular dynamics simulation and molecular mechanics Poisson-Boltzmann 

surface area (MM/PBSA) free energy calculations on 53 paroxetine-like 

compounds [16, 53] to gain detailed insight into the binding interactions and 

binding stability of the inhibitors. Using three dimensional quantitative structure 

activity relationship (3D-QSAR) studies, CoMFA models were developed for 

both GRK2 and ROCK1. The contour maps developed from the CoMFA models 

were analyzed to understand the structural changes favorable for high activity. 

The contour map results and docking analyses of individual receptors were co-

analysed to identify the crucial interactions and structural properties that are 

important to increase the inhibitory activity for GRK2 and selectivity over 

ROCK1. 

2. METHODOLOGY 

2.1. Dataset: 

A series of 53 paroxetine-like compounds having activity values for GRK2 and 

ROCK1 were collected from recent literature [16, 53]. The inhibitory 

concentration IC50 value of the compounds were converted to pIC50 (-log IC50) 

values. The series of compounds showed an activity range of 4.42 to 7.52 for 

GRK2 and an activity range of 5.17 to 7.96 for ROCK1. The structure of the 

compounds and their pIC50 values for GRK2 and ROCK1 are provided in Table 2. 

The most active compound for GRK2 (compound 47) showed a pIC50 value of 

7.523 for GRK2 and showed more than 230-fold selectivity over the other kinases 

including ROCK1. The most active compound for ROCK1 (compound 11) 

showed pIC50 value of 6.824 and 7.959 for GRK2 and ROCK1 respectively. The 

most selective compound (compound 17) showed activity pIC50 value of 6.886 for 

GRK2 with more than 700-fold selectivity over other kinases including ROCK1. 
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Based on the binding pose of the most active compound, the rest of the 

compounds were sketched and minimized using the Tripos force field in Sybyl-X 

2.1. The dataset was randomly divided into a test set and a training set. A training 

set of 33 compounds were used to develop the CoMFA model for GRK2 and 19 

compounds were used to validate the model. During the CoMFA model 

development for ROCK1, 21 compounds were used to build the model after 

removing all compounds that do not have a specified activity value for ROCK1. 

 
Table 2. Structure of the paroxetine-like derivatives and their pIC50 values 

for GRK2 and ROCK1. 
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  E F   
C

o
m

p
o
u

n

d
s 

S
tr

u
ct

u
re

s 
R

1
 R

2
 R

3
 R

4 

GR

K2 

pIC

50 

ROC

K1 

pIC50 

1 C H - - - 5.8 10%
* 

2
 

A H - - - 6.1 7 

3
 

A COOH - - - 4.6 6.7 

4
 

A CONHMe - - - 5.3 6.2 

5
 

B C - -  6.1 7.1 

6
 

B C 3-F - - 6.6 7.6 

7
 

B C 2-F-6-F - - 6.6 6.9 

8
 

B C 2-OMe - - 7.2 7.2 

9
 

B C 3-OMe - - 6.3 7.0 

10
 

B C 4-OMe - - 6.3 7.3 

11
 

B N - - - 6.8 7.9 

12
 

A 

N
NH O

 

- - - 6.5 7.6 

13
 

A N

NH O

 

- - - 5.3 7.0 

14
 

A 
N

NH O

 

- - - 6.5 7.9 

15
 

B C 
2-Cl-6-

Cl 
- - 6.8 5.1 

16
 

B C 
2-Me-6-

Me 
- - 7.1 5.2 

17
 

B C 
2-OMe-

6-OMe 
- - 6.8 0%

*
 

18
 

B C 
2-CF3-

6-CF3 
- - 5.9 22%

*
 

19
 

B C 
3-CF3-

5-CF4 
- - 5.5 5.7 

20
 

B N 2-Me - - 5.7 6.8 

21
 

A 
NH O

 

- - - 6.6 6.5 
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22
 

A 
NH

O

 

- - - 4.6 6.3 

23
 

A 
NH

O
CF

3

CF
3  

- - - ND 6.3 

24
 

A NH

O
OMe

OMe
 

- - - 6.3 6.6 

25
 

C 
N
H

N

NH

O

 

- - - 6.2 27%
* 

26
 

C CONHCH3    5.6 11%
*
 

27
 

D - C C C 6.1 17%
*
 

28
 

E - C C C 5.5 22%
*
 

29
 

D 2-F-6-F C C C 5.8 34%
*
 

30
 

E 2-F-6-F C C C 5.6 0%
*
 

31
 

D 2-CF3 C C C 4.9 5%
*
 

32
 

D 2-Me-6-Me C C C 5.6 0%
*
 

33
 

D 2-Cl-6-Cl C C C 5.7 0%
*
 

34
 

D 2-OMe-6-OMe C C C 5.6 13%
*
 

35
 

D 2-OMe C C C 4.4 1%
*
 

36
 

C 

N

NH

O

 

- - - 5.6 18%
*
 

37
 

D - N C C 6.2 6%
*
 

38
 

D - C N C 5.8 6%
*
 

39
 

D - C C N 5.6 8%
*
 

40
 

E - N C C 5.4 15%
*
 

41
 

E - C N C 5.5 18%
*
 

42
 

E - C C N 5.4 21%
*
 

43
 

C 

N

NH

O

 

- - - 5.2 0%
*
 

44
 

C 
N

NH

O

 
- - - 5.2 0%

*
 

45
 

C 
N
H

NH
O

 

- - - 6.1 18%
*
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46
 

C 

N

N
H

NH

O

 

- - - 6.2 11%
*
 

47
 

F N - - - 7.5 9%
*
 

48
 

C 
N
H

N

NH

O

 

- - - 6.1 18%
*
 

49
 

F N - Me - 7.5 12%
*
 

50
 

F N - Me - 5.9 17%
*
 

51
 

F N - Me - 5.6 14%
*
 

52
 

F - N - - 6.4 19%
*
 

53
 

C 
NH

N

NH

O

 

- - - 4.7 13%
*
 

        

        

2.2. Protein preparation 

The crystal structures of compound 11 with GRK2 (PDB ID: 5HE0), compound 

17 with GRK2 (PDB ID: 5HE2) and compound 47 with GRK2 (PDB ID: 

5UKM) of the same dataset compounds were retrieved from the protein databank 

(https://www.rcsb.org/). The crystal structure of ROCK1 (PDB ID: 6E9W) 

reported by Hobson et al. was used for docking study of the most active 

compound (compound 11) with the binding site of ROCK1 [63]. The alignment 

of the amino acid sequences in the kinase domains of GRK2 and ROCK1 are 

shown in Figure 1. The missing residues in protein structures were modeled using 

the homology modeling program MODELLER v9.21 [64-66]. The final model 

after refinement was selected based on statistical potentials (GA341) score and 

Discrete Optimized Protein Energy (DOPE) score [67]. 

https://www.rcsb.org/
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Figure 1. The alignment of the amino acid sequences in the kinase domains of 

GRK2 and ROCK1. Identical and positive matches in the sequences are 

highlighted by red and green colours respectively. 

2.3. Molecular Docking 

Docking study of the most active compound (compound 11) into the binding site 

of ROCK1 was done using Autodock 4.2.5.1 [35]. The crystal structure of 

ROCK1 in complex with a pyridinylbenzamide based inhibitor (PDB ID 6E9W) 

was already reported in a previous study [63]. The docking protocol was validated 

by redocking the co-crystalized ligand. The ligand structure was sketched and 

minimized with the Tripos force field in Sybyl-X 2.1 outside the receptor and 

then docked to the apo-receptor to perform the redocking. The docked pose 

showed a root-mean-square deviation (RMSD) value of 1.07 Å. 

The docking of the most active compound to ROCK1 was preceded by the 

preparation of the ligand and the protein. During the protein structure preparation, 

polar hydrogen atoms were added to the protein. Gasteiger charges were added as 

partial charges. A grid box of size of 70x70x70 was created around the ligand to 

define the area of the receptor to be searched during the docking process. 

Lamarckian Genetic Algorithm (LGA) was selected to perform the docking. 

Finally, the docking process was executed to generate 100 docking conformation 

with 2500000 evaluations per run. The docking results were analyzed using 

AutoDockTools. Based on its binding energy and important interactions reported 
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in earlier studies, a docked pose was selected and used as input for molecular 

dynamics simulation studies. 

This docking protocol was also used for docking study of compound 17 and 

compound 47 with ROCK1. 

2.4. Molecular Dynamics (MD) simulation 

MD simulations were carried out in Gromacs 2018 [68-72]. The protein topology 

and structure files were prepared using Amber99SB force field [73]. The ligand 

topology files were generated with ACYPE package using general AMBER force 

field (GAFF) [74, 75]. The three-point water model (TIP3 water) was used as the 

solvent. A dodecahedron box was built around the protein-ligand complex and the 

system was solvated. Sodium ions (NA
+
) were added to the protein-ligand system 

to neutralize the charge of the system. The system was energy minimized using 

steepest descent algorithm with the maximum force (FMax) set to 1000 KJ/Mol. 

The system was subjected to constant Number of particles, Volume, and 

Temperature (NVT) ensemble equilibration for 100 ps to equilibrate the solvent 

and ions around the protein at 300 K. The temperature coupling was done using 

modified Berendsen thermostat [76]. Constant number of particle, pressure, and 

temperature (NPT) ensemble equilibration was performed for 100 ps to stabilize 

the pressure. During NPT equilibration, Parrinello-Rahman barostat was used for 

pressure coupling [77]. LINCS algorithm was used to keep the bonds constrained 

[78]. During NVT and NPT equilibration, the positions of the protein and the 

ligand were kept restrained. Production MD simulations were carried out for 40 

ns without restraints.  

2.5. Free energy calculation 

Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) free energy 

calculation was performed using the g_mmpbsa package [79, 80]. The last 5 ns 

from the production run of the 40 ns MD simulation were used to calculate 
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binding energy. Snapshots were extracted every 50 ps. The binding energy 

consists of three energetic terms (potential energy in vacuum, polar-solvation 

energy, and non-polar solvation energy) [81, 82]. The vacuum potential energy 

includes both bonded (angle, bond, and dihedral) and non-bonded (electrostatics 

and van der Waals) interactions and was calculated based on molecular 

mechanics force field parameters [73, 83]. Polar solvation energy was calculated 

by solving the Poisson-Boltzmann equation [80, 84, 85]and non-polar solvation 

energy was calculated based on the solvent accessible surface area (SASA) model 

[86, 87]. The binding energy contributed by individual residue was calculated 

based on the equation given below: 

 

Where,  represents the binding energy of the residue x, and  and 

 are the energy of i
th

 atom from x residue in bound and unbound forms 

respectively. 

2.6. 3D-QSAR  

The comparative molecular field analysis (CoMFA) models were developed for 

both GRK2 and ROCK1 using Sybyl-X 2.1[32]. In CoMFA model development, 

the electrostatic field and steric field exerted by the compounds were calculated at 

each point of a regularly spaced 3D grid around the compounds. A probe atom 

(sp
3 
carbon of +1 charge and having a van der Waal radius of 1.52 Å) was used to 

calculate the field exerted. The steric fields were contributed by Lennard-Jones 

potential and the electrostatic fields were contributed by Coulombic potential. 

During the CoMFA model development for GRK2, the binding pose of the most 

active compound (compound 47) given in the co-crystal structure (PDB ID 

5UKM) was used for aligning the dataset compounds. Since the co-crystalized 
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structure of ROCK1 with its most active compound (compound 11) was not 

available, the average structure of the most active compound extracted from the 

last 5 ns of the 40 ns MD simulation was used as a template for developing the 

CoMFA model for ROCK1. 

The dataset compounds were aligned by superimposing on the substructure which 

was common to all compounds using the ‘database align’ method given in Sybyl-

X 2.1.  

The alignments used for developing the CoMFA models for GRK2 and ROCK1 

are shown in Figure 2. Partial least square (PLS) analysis was performed to 

linearly correlate the 3D-QSAR descriptor values to the activity values. The 

leave-one-out method was used to derive the cross-validated correlation 

coefficient (q
2
) and optimal number of components (ONC) of the model. The 

non-cross-validated correlation coefficient (r
2
), standard error of estimation and 

F-test value (F) were evaluated for the CoMFA model based on the ONC 

value[88]. 

 

Figure 2. (a) Alignment of the dataset compounds used in the CoMFA model 

development for GRK2. (b) Alignment of the dataset compounds used in the 

CoMFA model development for ROCK1. 

2.7 Model validation 
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The CoMFA models were validated for its robustness and statistical confidence 

using bootstrapping (BS) analysis. Leave-five-out (LFO) analysis was performed 

to assess the sensitivity of the models to chance correlation [37]. To test the 

predictive ability of the models against external test set, predictive correlation 

coefficient (r
2

pred) was calculated based on the equation given below [40]: 

r
2
pred = (SD - PRESS)/SD 

where SD represents the squared deviation between the activity value of the test 

set compounds and the mean activity value of the training set compounds. PRESS 

represents the sum of square deviation between the actual activity and the 

predicted activity of each compound in the test set.  

3. RESULTS 

3.1. Molecular Docking 

The x-ray crystal structure of ROCK1 (PDB ID 6E9W) in complex with a 

pyridinylbenzamide derivative reported by Hobson et al. [63] was used for the 

docking study of compound 11, 17 and 47. The docking protocol was validated 

by redocking the co-crystal ligand into the apo-receptor of ROCK1. The re-

docked ligand pose showed a root-mean-square deviation (RMSD) value of 1.07 

Å.  

Docking of the most active compound for ROCK1 (compound 11) resulted in 100 

conformations. The docking results were analyzed and a pose was selected based 

on low binding energy and H-bond interactions. The binding site of ROCK1 

consisted of residues Gly85, Ala86, Phe87, Lys105, Leu106, Met156, Tyr155, 

Glu154, Ala215, Asp216, Glu124, Phe120, Phe217, and Leu107. Analysis of the 

non-bonded interactions showed that the compound 11 formed H-bond 

interactions with the Glu154 and Met156 at the hinge region, Asn203, and 

Asp216 at the ribose subsite and Lys105 at the phosphate binding site of ROCK1. 
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The interactions between compound 11 and the binding site residues of ROCK1 

are shown in Figure 3 

Docking studies of compound 17 (most selective compound) and compound 47 

(most active compound for GRK2) were also performed to understand the binding 

modes of the inhibitors inside ROCK1. In the docking of compound 17 with 

ROCK1, the compound 17 formed H-bond interactions with Met156 at the hinge 

region and also with Arg84 and Phe87 at the P-loop. Analysis of the docking 

results for compound 47 with ROCK1 showed that the benzodioxole, piperidine, 

and pyrazole of compound 47 formed H-bond interactions with the ROCK1 

residues Met156, Asp160, and Gly88 respectively.  

 

Figure 3. The docked conformation of the most active compound for ROCK1 

(compound 11) inside the active site of ROCK1. H-bond interactions were 

represented as yellow dotted lines. 

From the docking studies, it was observed that compound 11, 17 and 47 formed 

H-bond interaction with Met156 at the hinge region of ROCK1. This interaction 

with the hinge region was considered to be important as it anchors the inhibitor 
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inside the receptor and also induces significant conformational changes in the 

kinase domain [89]. The docked structures of compound 11, 17 and 47 inside 

ROCK1 were used for molecular dynamics simulations studies to understand the 

dynamic interactions between the inhibitors and ROCK1. 

3.2. Molecular Dynamics (MD) Simulation 

During the MD simulation studies of compound 11, 17 and 47 with GRK2, the 

crystal structure having PDB ID 5HE0 (compound 11-GRK2 complex), 5HE2 

(compound 17-GRK2 complex) and 5UKM (compound 47-GRK2 complex) were 

used as initial structures  [53]. In the MD studies of compound 11, 15 and 47 with 

ROCK1, the inhibitor-protein complex structures obtained from the docking 

studies were used as starting structures. The root-mean-square deviation (RMSD) 

values of the inhibitors and proteins for the 40 ns MD simulations are shown in 

Figure 4. The snapshots of the inhibitor-protein complexes after 40 ns MD 

simulations were extracted and analyzed to understand the non-bonded 

interactions between the inhibitors and the receptors. Analysis of the H-bond 

interactions and hydrophobic interactions were shown in Figure 5 and 6 

respectively. 

The compound 11 showed H-bond interactions with the GRK2 binding site 

residues Met274, Asp272, Asn322, Lys 319 and Lys220 as shown in Figure 5a. 

The interactions with Met274, Asp272, and Asn322 were observed in the crystal 

structure of compound 11 with GRK2 (PDB ID 5HE0). Compound 11 also 

formed hydrophobic interactions with the GRK2 binding site residues Ile197, 

Gly200, Gly201, Gly203, Val205, Ala218, Asn322 and Leu324 as shown in 

Figure 6a.  In the MD study of compound 11 with ROCK1, H-bond interactions 

between compound 11 and the binding site residues Glu154, Met156, Ala215, 

Asp202, and Asp216 were observed. Hydrophobic interactions were also 

observed between compound 11 and the binding site residues Gly83, Gly85, 

Gly88, Val90, Phe120, and Leu205. The H-bond interactions and hydrophobic 



Seketoulie Keretsu Ph.D. Thesis  

Chosun University, Department of Biomedical Sciences 

 

- 56 - 

 

interactions between compound 11 and the binding site residues of ROCK1 are 

shown in Figure 5d and 6d respectively. From the analysis, it was observed that 

compound 11 formed stable H-bond interactions and hydrophobic interactions 

with both GRK2 and ROCK1, which could be a possible reason behind the high 

activity value of the compound for both GRK2 (pIC50=6.8) and ROCK1 

(pIC50=7.9). 

 

Figure 4. The RMSD diagrams for the 40 ns MD simulation runs. MD production 

run for each protein-ligand complex was performed once only. (a) Compound 11 

with GRK2. (b) Compound 11 with ROCK1. (c) Compound 17 with GRK2. (d) 

Compound 17 with ROCK1.  (e) Compound 47 with GRK2. (f) Compound 47 

with ROCK1. 
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Figure 5. H-bond interactions between the compound 11 (salmon), 17 (green) 

and 47 (magenta) with GRK2 and ROCK1. Snapshots were collected after 40 ns 

simulations. The GRK2 and ROCK1 residues are shown in grey and cyan colours 

respectively. H-bond interactions were represented as yellow dotted lines.  (a) 

Compound 11 with GRK2. (b) Compound 17 with GRK2. (c) Compound 47 with 

GRK2. (d) Compound 11 with ROCK1.  (e) Compound 17 with ROCK1. (f) 

Compound 47 with ROCK1. 

In the MD study of the most selective compound (compound 17) with GRK2, the 

compound 17 formed H-bond interactions with the GRK2 binding site residues 

Met274, Asp272, Asp335, Ala321, Lys220, and Phe202. All these H-bond 

interactions, except the interaction with Lys220, were also observed in the crystal 

structure of compound 17 with GRK2 (PDB ID 5HE2). Compound 17 also 

formed hydrophobic interactions with residues Arg199, Phe202, Gly203, Val205, 

Leu235, Leu273 and Leu324 of the GRK2 binding site. The H-bond interactions 
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and hydrophobic interactions of compound 17 with GRK2 are shown in Figure 5b 

and Figure 6b respectively. In ROCK1, compound 17 formed H-bond interactions 

with Ile82 and Arg84. The loss of the crucial H-bond interactions with Met156 

(hinge region) and Phe87 (P-loop) in ROCK1 indicated that compound 17 was 

unable to form stable interactions with ROCK1. The H-bond interactions and 

hydrophobic interactions of compound 17 with ROCK1 are shown in Figure 5e 

and Figure 6e respectively. It was also observed that the dimethoxybenzene ring 

of compound 17 extended away from the binding site and was unable to form 

hydrophobic interactions with residues at hydrophobic subsite of ROCK1. 

Hydrophobic interactions were observed between compound 17 and residues 

from the adenine subsite and P-loop of ROCK1 such as Ile82, Gly83, Arg84, 

Gly85, Ala86, and Leu205. 

From the analysis of the MD results for compound 47 with GRK2, it was 

observed that compound 47 formed H-bond interactions with Met274, Asp278, 

Glu239, Lys220, and Phe202. In addition to the interactions observed in the co-

crystal structure of compound 47 with GRK2 (PDB ID 5UKM), new interactions 

with the Met274 (hinge region) and Lys220 (phosphate subsite) were observed. 

Hydrophobic interactions were also observed between compound 47 and GRK2 

binding site residues Ile197, Val205, Gly203, Val205, Met274, Leu324, Asp335, 

and Gly337. The H-bond interactions and hydrophobic interactions are shown in 

Figure 5c and Figure 6c respectively. In ROCK1, the compound 47 formed H-

bond interactions with residues Met153 and Glu124 however, failed to form 

interactions with Met156 (Hinge region) and Gly88 (P-loop) of ROCK1. The 

inability of the compound 47 to form interactions at the hinge region and the P-

loop could be the reason why the inhibitor was unable to form stable binding with 

ROCK1 and extended out of the binding pocket.  Compound 47 also formed 

hydrophobic interactions with residues Gly85, Gly88, Glu89, Val90, Leu106, and 

Leu107 at the binding site of ROCK1. The H-bond interactions and hydrophobic 

interactions of compound 47 with ROCK1 are given in Figure 5f and Figure 6f. 
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Figure 6. Hydrophobic interactions between compound 11, 17, and 47 with 

GRK2 and ROCK1. Snapshots were collected after 40 ns simulations. 

Hydrophobic interactions are represented as red dotted line. H-bond interactions 

are represented as green dotted lines.  (a) Compound 11 with GRK2. (b) 

Compound 17 with ROCK1. (c) Compound 47 with GRK2. (d) Compound 11 

with ROCK1.  (e) Compound 17 with ROCK1. (f) Compound 47 with ROCK1. 

The analysis of the binding interactions from the MD studies showed that the 

most active compound for GRK2 (compound 47) and the most selective 

compound (compound 17) were able to adopt conformations that allow the 

pyrazole/pyridine rings to form interactions with the Lys220 at the phosphate 

binding site of GRK2, which was not observed in the interactions with ROCK1. 

H-bond interaction was also observed between the pyrazole of the compound 47 

and Glu239 (αC-Helix) in GRK2 which was not observed in the other inhibitor-

protein interactions. The ability of the compound 47 to form stable interactions 
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with Lys220 and Glu239 could be vital for stabilizing the dimethoxybenzene ring 

at the hydrophobic subsite of GRK2.  

3.3. MM/PBSA based free energy calculations 

The binding energies of the inhibitor-protein interactions were calculated from the 

last 5 ns of the 40 ns MD production runs. The results of the binding energy 

calculations are given in Table 3. The total binding energy for each inhibitor-

protein complex was contributed by the following energy terms: van der Waals, 

electrostatic, polar solvation, and non-polar solvation. From the analyses, we 

observed that Van der Waals energy and electrostatic energy made the major 

contribution to the total binding energies. In the interaction of compound 11 with 

ROCK1, the van der Waals and electrostatic energy values were -225.88 kJ/mol 

and -120.99 kJ/mol respectively suggesting that van der Waals interactions 

(hydrophobic interactions) were the major forces in the binding of ROCK1 and its 

most active compound. In the interaction of compound 47 with GRK2, the 

contribution of van der Waals energy and electrostatic energy to the total binding 

energy were -254 kJ/mol and -242.27 kJ/mol respectively suggesting that 

compound 47 can form favorable van der Waals interactions (hydrophobic 

interactions) and electrostatic interactions (H-bond interactions) with the binding 

site residues of GRK2. 

Table 3. The energy contribution of the various energetic terms (van der Waals 

energy, electrostatic energy, polar solvation energy, and non-polar solvation 

energy/SASA) to the total binding energy. 

Complexes 

Van der 

Waals 

(kJ/Mol) 

Electrost

atics 

(kJ/Mol) 

Polar 

solvation 

(kJ/Mol) 

SASA 

(kJ/Mol

) 

Total 

Binding 

Energy 

(kJ/Mol

) 

Compound 11- 

GRK2 
-249.62 -85.93 246.63 -24.66 

-

113.58 

Compound 11- 

ROCK1 
-255.88 -120.99 307.92 -24.08 -63.03 
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Compound 17- 

GRK2 
-262.38 -112.65 275.98 -25.58 

-

124.63 

Compound 17 

–ROCK1 
-189.84 -76.00 160.00 -20.40 

-

126.25 

Compound 47-

GRK2 
-254.96 -242.27 293.74 -23.97 

-

227.48 

Compound 47- 

ROCK1 
-225.91 -73.84 190.62 -21.19 

-

130.34 

 

The energy contributions of the residues to the total binding energies were 

calculated for each inhibitor-protein complex to understand the residues that made 

significant contributions in the inhibitor-protein interactions. The binding energy 

values for the residues at the binding site of GRK2 that made significant 

contributions to the total binding energy are shown in Figure 7a and the energy 

values for the corresponding residues in ROCK1 are shown in Figure 7b. In 

binding of compound 11, 17 and 47 with GRK2, the residues Gly200, Gly201, 

Phe202, Val 204 and Lys205 from the P-loop, the residues Leu222 and Glu235 

from the phosphate subsite and the residues Leu271, Asp272, Leu273, met274, 

Asn275 and Asp278 from the adenine subsite made vital contributions to the total 

binding energies. Whereas in ROCK1, the residues Glu89 and Val90 from the P-

loop, Met153, Glu154, Tyr155 and Met156 from the adenine subsite and residues 

Asp160, Asp 202, Leu205 and Asp216 from the ribose subsite made vital 

contributions to the total binding energies. 

 

3.4. 3D-QSAR 

The CoMFA models for GRK2 and ROCK1 were developed using Sybyl-X 2.1. 

During the development of the CoMFA model for GRK2, the structure of the 

most active compound for GRK2 (compound 47) given in the co-crystallized 

structure (PDB ID 5UKM) was used as the template for aligning the dataset 

compounds. The model was built based on a training set of 30 compounds and the 
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remaining 23 compounds were used for testing the model. The aligned 

compounds are shown in Figure 2a. The CoMFA model showed a cross-validated 

correlation coefficient (q
2
) value of 0.67 and non-cross-validated correlation 

coefficient (r
2
) value of 0.92. The statistical results of the CoMFA model are 

shown in Table 4. The derived CoMFA model showed an LFO value of 0.54 and 

also showed reasonable BS-r
2
 and BS-SD value of 0.96 and 0.03 respectively. 

During the external validation, the CoMFA model exhibited acceptable predictive 

ability showing an r
2
pred value of 0.61. 

 

 

Figure 7. The energy contributions (in kJ/mol) of the key residues to the total 

binding energy; (a) Interaction of compound 11 (brown), 17 (green) and 47 

(magenta) with GRK2. (b) Interaction of compound 11 (brown), 17 (green) and 

47 (magenta) with ROCK1.  

 

During the development of the CoMFA model for ROCK1, the average structure 

of the most active compound for ROCK1 (compound 11) extracted from the last 5 
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ns of the 40 ns MD simulation (compound 11-ROCK1 complex) was used as the 

template for aligning the dataset compounds. The CoMFA model was build using 

21 compounds. The aligned compounds for the CoMFA model for ROCK1 are 

shown in Figure 2b. The derived model showed a q
2
 value of 0.59 and r

2
 value of 

0.94. During the model validation, the CoMFA model showed an LFO value of 

0.62 and showed reasonable BS-r
2
 and BS-SD value of 0.98 and 0.01 

respectively. The statistical results are shown in Table 4. 

Table 4. Statistical results of the CoMFA models for GRK2 and ROCK1. 

Parameters CoMFA 

(GRK2) 

CoMFA 

(ROCK1) 

q
2
 0.67 0.59 

ONC 

 

5 6 

SEP 0.50 0.57 

r
2
 0.92 0.94 

SEE 0.22 0.2 

F value 52.46 35.93 

LFO  0.54 0.62 

BS r
2
 0.96 0.98 

BS SD 0.03 0.01 

r
2

pred 0.61 NA 

Influence of different fields (%) 

S 0.49 0.73 

E 0.50 0.27 

q
2
: cross-validated correlation coefficient; ONC: Optimal number of components; 

SEP: Standard Error of Prediction; r
2
: non-cross-validated correlation coefficient; 
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SEE: Standard Error of Estimation; F value: F-test value; r
2
; LFO: Leave five out; 

BS-r
2
: Bootstrapping r

2 
mean; BS-SD: Bootstrapping Standard deviation; r

2
pred: 

predictive correlation coefficient; S: Steric; E: Electrostatic; ND: Not Determined. 

The statistical results from the CoMFA models for GRK2 and ROCK1 suggested 

that the models have acceptable robustness and predictive ability. The comparison 

of the actual activity values and the predicted activity values for the CoMFA 

models for GRK2 and ROCK1 are shown in Table 5 and 6. 

3.5. Contour Map Analysis 

The electrostatic and steric contour maps developed from the CoMFA models for 

GRK2 and ROCK1 are shown in Figure 8. In the electrostatics contour maps, the 

regions favorable to electropositive substituents were shown in blue color 

contours and the electronegative substituents favorable regions were shown in red 

color contours. In the steric contour maps, the bulky substituents and non-bulky 

substituents favorable regions were represented in green and yellow contours 

respectively. 

 

In the CoMFA contour maps for GRK2, compound 47 (most active compound for 

GRK2) was used as a reference (Figure 8a and 8b). The blue contours observed 

near the benzodioxole, the piperidine ring and near the linker between the 

benzodioxole and the piperidine ring suggested that electropositive substituents at 

these positions are favored. Red color contours were observed near the pyrazole 

ring, the benzodioxole and near the linker between the benzene ring and the 

pyrazole ring suggesting that electronegative substituents are favored in these 

regions. The electronegative and electropositive substituents near the 

benzodioxole can lead to H-bond interactions with the GRK2 hinge region 

residues such as Met274 and Asp272 as observed in compound 11, 17 and 47. 

Electronegative substituents at the pyrazole ring can lead to H-bond interaction 

with Lys220 as observed in compound 17 and 47. In the steric contour map 

(Figure 8b), green contours were observed near the benzodioxole and the 
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pyrazole ring suggesting that bulky substituents are favored in these regions. As 

the benzodioxole and the pyrazole ring occupied the adenine subsite and the 

hydrophobic subsite respectively, the presence of bulky substituents may result in 

favorable non-bonded interactions with residues surrounding the hydrophobic 

subsite. Yellow contour at the back of the pyrazole ring suggested that extended 

bulky substituents are not favorable in this region. Extended bulky substituents in 

this region can cause steric clash with binding site residues. This is exemplified 

by compound 22, 30, 40, 41 and 42 all of which have relatively lower activity 

value for GRK2 in the series. 

 

Figure 8. Standard coefficient contour maps obtained from GRK2 and ROCK1 

CoMFA analyses. In the electrostatic contour maps, Blue contour indicates 

electropositive substituent favorable regions and red contour indicates 

electronegative substituent favorable regions. In the steric contour maps, green 

contour indicates steric bulk favorable regions and yellow contour indicates steric 

bulk unfavorable regions. (a) Electrostatic contour map for GRK2 CoMFA model 

with the template compound (compound 47) as reference. (b) Steric contour map 

for GRK2 CoMFA model with the template compound (compound 47) as 

reference. (c) Electrostatic contour map for ROCK1 CoMFA model with the 

template compound (compound 11) as reference. (d) Steric contour map for 

ROCK1 CoMFA model with the template compound (compound 11) as 

reference.  
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In the CoMFA contour maps for ROCK1, the compound 11 (most active 

compound for ROCK1) was used as a reference (Figure 8c and 8d). The blue 

contours near the indazole and near the linker between the benzene ring and the 

pyridine ring in the electrostatic contour map (Figure 8c) suggested that 

electropositive substituents at these positions are favorable and may increase the 

activity of the compounds for ROCK1. Electropositive substituents at the linker 

between the benzene ring and the pyridine can lead to H-bond interactions with 

Ala215 as observed in the interaction of compound 11 with ROCK1 (Figure 5d). 

The red contour near the pyridine ring suggested that electronegative substituents 

are favored in that region. Having electronegative substituents at the pyridine ring 

can lead to favorable H-bond interactions with Lys105 as observed in the 

interaction compound 11 with ROCK1. Green contour was observed near the 

pyridine ring, suggesting that bulky substituents are favorable in that region 

(Figure 8d).  

From the analysis of the CoMFA contour maps for GRK2 and ROCK1, it was 

observed that electronegative substituents near the benzodioxole and near the 

piperidine ring and having bulky substituents near the piperidine ring increased 

the activity for both GRK2 and ROCK1. Whereas, having electropositive 

substituents at the piperidine ring, having electropositive and electronegative 

substituents at the benzodioxole and having electronegative substituents near the 

amide linker between the benzene ring and the pyrazole ring are favorable for 

increasing the activity for GRK2 with selectivity over ROCK1.  

4. DISCUSSIONS 

From the analysis of the inhibitor-protein interactions from the MD simulation 

results, it was observed that compound 11, 17 and 47 were able to form stable H-

bond interactions with residues from the hinge region (Met274 and Asp272) and 

the ribose subsite (Asp278, Lys319, Asn322, and Asp335) of GRK2 which 

anchored the inhibitors at the binding site (Figure 5a, 5b, and 5c). Compound 11 
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also formed H-bond interactions with residues from the hinge region (Glu154) 

and the ribose subsite (Asp216 and Asp202) of ROCK1 (Figure 5d). However, 

compound 17 and 47 could not form stable interactions with residues at the hinge 

region and at the ribose subsite of ROCK1 (Figure 5e and 5f), which could be a 

reason behind the poor activity of these compounds towards ROCK1. 

 

Figure 9. RMSD values of pyridine ring (compound 11), dimethoxybenzene ring 

(compound 17) and pyrazole ring (compound 47) inside GRK2 and ROCK1 for 

40 ns MD simulations. MD production run for each protein-ligand complex was 

performed once only. (a) RMSD of pyridine ring of compound 11 at the 

hydrophobic pocket of GRK2 (black) and ROCK1 (red). (b) RMSD of 

dimethoxybenzene ring of compound 17 at the hydrophobic pocket of GRK2 

(black) and ROCK1 (red). (c) RMSD of pyrazole ring of compound 47 at the 

hydrophobic pocket of GRK2 (black) and ROCK1 (red). 

In both compound 17 and compound 47, the oxygen at the amide linker between 

the benzene ring and the dimethoxybenzene ring/pyrazole ring formed H-bond 
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interactions with the nitrogen of Phe202 (P-loop) and extended the 

dimethoxybenzene/pyrazole ring into the hydrophobic pocket of GRK2 (Figure 

5b and 5c). This allowed the dimethoxybenzene ring/pyrazole rings to form H-

bond interactions with Lys220 (phosphate subsite) of GRK2.  

These H-bond interactions with the P-loop (Phe87) and the phosphate subsite 

(Lys105) were not observed in ROCK1. These interactions with the Phe202 and 

Lys220 could be crucial for the binding stability of compound 17 and compound 

47 inside GRK2. To investigate the influence of the interactions with the Phe202 

and Lys220 on the stability of the dimethoxybenzene/pyrazole ring inside the 

hydrophobic pockets, we calculated the RMSD of the pyridine ring (compound 

11), dimethoxybenzene ring (compound 17) and pyrazole ring (compound 47) 

inside the hydrophobic subsites of GRK2 and ROCK1. MD production run for 

each protein-ligand complex was performed once only. The outcomes of the 

RMSD calculations for each protein-ligand complex are shown in Figure 9. The 

pyridine ring of Compound 11 showed an average RMSD value of 0.36 Å and 

0.33 Å inside GRK2 and ROCK1 respectively (Figure 9a). Though compound 11 

formed multiple H-bond interactions with the binding site residues of GRK2 and 

ROCK1, it did not form interactions with Lys220 (GRK2) or Lys105 (ROCK1) 

which could be the reason behind the increased in the average RMSD values of 

0.36 Å and 0.33 Å for GRK2 and ROCK1 respectively. The pyrazole of 

compound 47 showed an average RMSD value of 0.19 Å and 0.37 Å in GRK2 

and ROCK1 respectively (Figure 9c). The low average RMSD value of the 

pyrazole ring inside GRK2 suggested that the pyrazole of compound 47 was 

stably locked at the hydrophobic subsite. This stability may be attributed to the H-

bond interactions with Lys220 and Glu239 at the hydrophobic subsite of GRK2.  

The biggest difference in the RMSD value was observed for the 

dimethoxybenzene ring of compound 17 which showed an average RMSD value 

of 0.25 Å and 0.85 Å inside GRK2 and ROCK1 respectively (Figure 9b). The 

difference in the average RMSD values may be attributed to the fact that 
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compound 17 was able to form interactions with Phe202 and Lys220 in GRK2 

which stabilized the dimethoxybenzene ring inside the hydrophobic subsite, 

however, in ROCK1, the dimethoxybenzene ring extended out of the hydrophobic 

subsite and did not form interactions at the hydrophobic subsite. 

The H-bond interactions with Phe202 and Lys220 could be the reason behind the 

stability of compound 17 and 47 in GRK2, resulting in higher activity of the 

compounds for GRK2. These observations suggested that the H-bond formation 

with the Phe202 and Lys220 may be crucial for the stability of the inhibitors at 

the hydrophobic pocket of GRK2 and could potentially lead to selective inhibition 

of GRK2 over ROCK1. 

Table 5. Experimental and predicted pIC50 values with their residuals of CoMFA 

for GRK2 

Compound Actual pIC50 

GRK2 CoMFA 

Predicted 

pIC50 

Residual 

1
* 

5.9 6.0 -0.1 

2
*
 6.1 5.8 0.3 

3 4.7 4.9 -0.2 

4 5.4 5.4 -0.1 

5
*
 6.2 6.8 -0.7 

6 6.7 6.8 -0.1 

7 6.7 6.6 0.1 

8 7.3 7.2 0.0 

9
*
 6.4 6.1 0.3 

10 6.4 6.6 -0.3 
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11 6.8 6.8 0.0 

12 6.6 6.5 0.0 

13 5.3 5.2 0.1 

14
*
 6.6 6.2 0.4 

15 6.9 7.1 -0.2 

16
*
 7.2 7.5 -0.4 

17
*
 6.9 7.1 -0.2 

18 5.9 6.0 0.0 

19 5.6 5.4 0.2 

20 5.7 5.7 0.0 

21
*
 6.6 6.7 -0.1 

22 4.6 4.5 0.1 

24
*
 6.3 5.6 0.8 

25 6.2 6.4 -0.2 

26 5.7 5.5 0.2 

27
*
 6.1 6.1 0.0 

28 5.6 5.6 -0.1 

29 5.8 6.0 -0.2 

30
*
 5.7 5.9 -0.2 

31
*
 4.9 4.9 0.0 

32 5.7 5.9 -0.3 

33 5.7 5.8 0.0 
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34 5.7 5.7 0.0 

35
*
 4.4 5.1 -0.7 

36 5.6 5.6 0.0 

37
*
 6.2 6.6 -0.4 

38 5.8 5.9 -0.1 

39 5.7 5.7 0.0 

40
*
 5.5 5.9 -0.4 

41
*
 5.5 5.7 -0.2 

42 5.5 5.6 -0.1 

43 5.2 5.2 0.1 

44
*
 5.2 5.9 -0.7 

45 6.1 6.1 0.0 

46 6.2 6.2 0.0 

47 7.5 7.0 0.6 

48 6.1 6.7 -0.6 

49 7.5 7.1 0.4 

50
*
 5.9 5.7 0.2 

51 5.7 5.4 0.2 

52 6.4 6.4 0.0 

53
*
 4.8 5.7 -0.9 

* Test set compounds 
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Table 6.Experimental and predicted pIC50 values with their residuals of 

CoMFA for ROCK1. 

Compound Actual pIC50 

ROCK1 CoMFA 

Predicted 

pIC50 
Residual 

2 7.0 7.1 -0.1 

3 6.7 6.6 0.1 

4 6.3 6.3 0.0 

5 7.2 7.1 0.0 

6 7.7 7.4 0.3 

7 7.0 6.6 0.3 

8 7.2 7.3 -0.1 

9 7.0 7.0 0.0 

10 7.3 7.3 0.0 

11 8.0 8.2 -0.3 

12 7.6 7.6 0.0 

13 7.1 7.1 0.0 

14 7.9 7.9 0.0 

15 5.2 5.7 -0.5 

16 5.2 5.1 0.2 

19 5.7 5.2 0.5 

20 6.8 6.9 -0.1 

21 6.5 6.5 -0.1 

22 6.3 6.4 -0.1 
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23 6.4 6.4 -0.1 

24 6.7 6.7 -0.1 

 

5. CONCLUSIONS 

In this study, we have used molecular docking, molecular dynamics simulation, 

free energy calculation and 3D-QSAR methods to study a series of 53 paroxetine-

like inhibitors to understand the structural properties that drive the inhibitory 

preference for GRK2 over ROCK1. The observations from the MD studies 

suggested that H-bond interactions of the inhibitors with the residues at hinge 

regions and ribose subsites are crucial for anchoring the inhibitors at the binding 

site in GRK2 and ROCK1. It was also observed that H-bond interactions with 

Phe202 and Lys220 increased the stability of the inhibitors at the hydrophobic 

subsite of GRK2. Hence, H-bond interactions with Phe202 and Lys220 were 

considered to be vital for the selective inhibition of GRK2. Free energy 

calculations of the inhibitor-protein interactions suggested that van der Waals and 

electrostatic energies were the major contributors to the total binding energies in 

GRK2 and ROCK1. Residue-wise energy decompositions indicated that van der 

Waals interactions and electrostatic interactions with residues Phe202, Val205, 

Lys220, and Glu239 were important for the inhibition of GRK2 with selectivity 

over ROCK1. Analysis of the contour maps from the 3D-QSAR models 

suggested that having electropositive substituents at the piperidine ring, 

electronegative and electropositive substituents at the benzodioxole and 

electronegative substituent near the amide linker between the benzene ring and 

the pyrazole ring were favorable in GRK2 and may lead to increased inhibitor 

activity for GRK2 with selectivity over ROCK1.  
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The statistical results and scientific observations reported in this study contributed 

in understanding the structural properties required for the selective inhibition of 

GRK2 with selectivity over ROCK1. The outcome of this study could be useful in 

designing potent GRK2 inhibitors with selectivity over ROCK1 for therapeutic 

intervention of heart failure diseases. 
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PART IV 

 

Molecular Modelling Study of c-KIT/PDGFRα Dual 

Inhibitors for the Treatment of Gastrointestinal Stromal 

Tumors 
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1. Introduction 

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal 

tumors of the gastrointestinal tract that arise from interstitial cells of Cajal (ICC) 

or from stem cells that differentiate towards ICCs [90, 91]. GISTs are commonly 

originated in the stomach (70%), with rare cases of it observed in the small 

intestine (20%) or esophagus (10%) [92]. It has an incidence rate of 14.5 per 

million per year [93]. 

Stem cell factor receptor (c-KIT) [94] and platelet derived growth factor receptor 

alpha (PDGFRα) [95] kinases are members of Type 3 transmembrane receptor 

protein-tyrosine kinase (RPTK) family and play important roles in various 

cellular signaling processes. Structurally, the member of the RPTK subfamily 

consists of five extracellular immunoglobulin (Ig) domains, one transmembrane 

domain, one juxtamembrane helix, and one cytoplasmic kinase domain [96]. The 

c-KIT kinases are primarily expressed on the hematopoietic stem cell surface and 

binds to the stem cell factor at the extracellular Ig domain. The binding of the 

stem cell factor to c-KIT leads to the dimerization of the kinase domains and 

phosphorylation of specific tyrosine residues in the juxtamembrane regions, 

which in turn activates downstream signaling cascades that mediate cell survival, 

proliferation, and differentiation [97, 98].  The PDGFRα kinases are expressed on 

the surface of several cell types and bind to the platelet-derived growth factor. 

The binding of the platelet derived growth factor leads to kinase domain 

dimerization and activation. PDGFRα plays an important role in the regulation of 

embryonic development, cell proliferation, and cell survival [99, 100]. 

Experimental studies have shown that the tumorigenesis of GISTs is associated 

with the gain-of-function mutation in c-KIT and PDGFRα [101-103]. Rammohan 

et al. (2013) reported that positive c-KIT expression was observed in 

approximately 90% of GISTs cases [104]. Mutations that lead to constitutive 
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PDGFRα activation have been found in approximately 10% of GISTs cases [105]. 

Because of the role of the c-KIT and PDGFRα in the development and 

progression of GISTs, these kinases are considered to be promising therapeutic 

targets for the treatment of GISTs. 

So far, three non-selective inhibitors namely, Imatinib, Sunitinib, and 

Regorafenib have been approved by the Food and Drug Administration (FDA) for 

the treatment of GISTs [106]. Imatinib is a non-selective inhibitor of c-KIT, 

PDGFRα, and ABL (Abelson) kinases and has been approved for use as a first-

line treatment of GISTs. However, one-half of the responding GISTs patients gain 

Imatinib resistance within 2 years of treatment via mutation at the T670 residue of 

c-KIT [107]. The result is more optimistic in the case of PDGFRα with only 5%-

7% of cases with PDGFRα mutation showing resistance to Imatinib [108]. 

Sunitinib is another non-selective inhibitor of c-KIT, PDGFRα, vascular 

endothelial growth factor receptor (VEGFR), and Fms like tyrosine kinase 3 

(FLT3) that has been approved for second-line treatment of GISTs [109]. 

Regorafenib is also a non-selective multi-kinase inhibitor with activity against c-

KIT, PDGFRα, VEGFR, rapidly accelerated fibrosarcoma 1 (RAF1), rearranged 

during transfection (RET), and fibroblast growth factor receptor (FGFR) [110, 

111]. However, efficacy and safety study of Regorafenib in patients with 

advanced GISTs has shown that 15% of the patients experience an exacerbation 

of cancer-related symptoms [112]. In addition to the approved drugs, several 

other c-KIT/ PDGFRα inhibitors such as dovitinib [113], masitinib [114], 

crenolanib [115], and ripretinib [116] are also under investigation for the 

treatment of GISTs [117]. Though progress has been made in the treatment of 

GISTs, current therapeutic options have various drawbacks such as low efficacy, 

clinical resistance, and side effects due to the non-selective property of the 

existing drugs. 

Computer-aided drug discovery (CADD) methods have become popular in the 

drug discovery process and have been widely used in several drug discovery 
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studies [29, 118]. Taking advantage of the CADD techniques, our research group 

has performed several computational studies particularly in the area of kinase 

inhibitors [119-122]. Given the role of both c-KIT and PDGFRα in tumorigenesis 

of GISTs, the computational study of the dual inhibitory mechanism of these 

kinases could provide valuable insight into developing more effective drugs 

against GISTs. In this spirit, we have performed the computational studies of a 

series of potent and selective pyrazolopyridine inhibitors to explore the structural 

features important for dual inhibition of c-KIT/ PDGFRα. Molecular docking and 

molecular dynamics (MD) simulation were performed to study the inhibitor-

protein binding interactions. Comparative molecular field analysis (CoMFA) [32] 

and comparative molecular similarity indices analysis (CoMSIA) [123] models 

were developed and the contour maps were analyzed to explore the important 

structural features. Binding energy evaluation was carried out to predict the 

binding affinity of the compounds. 

2. Methodology 

2.1. Data Preparation 

The dataset of 48 pyrazolopyridine derivatives and their inhibitory values against 

c-KIT and PDGFRα were collected for computational study [124]. The half-

maximal inhibitory concentration (IC50) values of the compounds were converted 

to its log (pIC50) values. The compounds were sketched and minimized in Sybyl 

X 2.1. The compound 14 which showed the highest activity for both c-KIT 

(pIC50=8.6) and PDGFRα (pIC50=8.1) was selected as a representative compound 

for the dataset. 

 The X-ray crystal structure of Imatinib-c-KIT complex (PDB ID 1T46) and 

Imatinib- PDGFRα complex (PDB ID 6JOL) were collected from the protein 

databank (RCSB.ORG) [94]. The water molecules, ions, and other small 
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molecules were removed from the protein file. The missing residues of the 

proteins were modeled using the SWISS-MODEL [125]. 

 

2.2. Molecular Docking 

The binding interactions of compound 14 with the c-KIT and PDGFRα were 

studied using Autodock 4.2 [35]. The receptor was prepared by removing the 

heteroatoms. This was followed by the addition of hydrogen atoms and the 

application of partial charges to all the atoms. The inhibitor was prepared by 

assigning partial charges and the number of rotatable bonds. A grid box of 

70×70×70 was developed to define the search space inside the receptor using the 

Autogrid program. The Lamarckian genetic algorithm was selected to perform the 

docking of the ligand. To validate the docking protocol, the crystal ligand 

(Imatinib) was minimized outside the receptor and docked into the receptor. The 

docking results showed that the docked pose closely overlapped with the crystal 

ligand in both c-KIT and PDGFRα. The result of the docking was analyzed using 

the autodock tools. This docking protocol was used for all protein-ligand 

interactions in this study. 

2.3. Molecular Dynamics Simulation 

The protein-ligand dynamics simulation was performed with the Gromacs 2020 

[68, 126, 127]. The protein-ligand complex from the molecular docking study was 

used as the initial structure for the MD simulation. The protein parameter files 

were generated with the CHARMM36 all-atom force field (2019) [128]. The 

ligand topology and parameter files were prepared using the CHARMM General 

Force Field (CGenFF) [129]. Initially, the system was set up containing the 

protein-ligand complex inside a dodecahedron box and solvated with TIP3 

waters. The charge of the system was neutralized by adding Na
+
 and Cl

- 

counterions. Steepest descent energy minimization step was performed to remove 
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steric clashes and inappropriate geometries. This was followed by 100 ps 

isothermal-isochoric ensemble (NVT ensemble) equilibration and 100 ps 

isothermal-isobaric ensemble (or NPT ensemble) equilibration of the system to 

stabilize the water around the protein and ligand. The protein was kept restrained 

during the equilibrations. Temperature and pressure coupling was performed 

using Berendsen thermostat and Parrinello-Rahman barostat respectively. Long-

range electrostatics were treated using the Particle-mesh Ewald method. The 

thermodynamic properties of the system were collected every 1 ps. The 

unrestrained MD production run was performed for 100 ns at the temperature and 

pressure of 300 K and 1 bar respectively.  

2.4. Evaluation of Binding Energy 

The binding energy between the protein and the ligand was calculated using the 

g_mmpbsa package[79]. Molecular mechanics energies combined with the 

Poisson–Boltzmann and surface area continuum solvation (MM/PBSA) methods 

have been successfully used to predict the relative binding energy values of 

congeneric compounds. In g_mmpbsa, the MM potential energy term is calculated 

based on the molecular mechanics force-field parameters as given in the equation 

below. 

 

Where, Ebonded is a bonded energy term consisting of bond, angle, dihedral, and 

improper interactions. The non-bonded energy term is made up of electrostatics 

and van der Waals energy terms and was calculated based on Coulomb and 

Lennard-Jones potential function respectively. The free energy of solvation was 

calculated based on an implicit solvent model where the electrostatic (Gpolar) and 

non-electrostatic (Gnonpolar) energy terms were calculated as given below. 

 

The electrostatic term and non-electrostatic terms were calculated based on the 
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Poisson-Boltzmann equation and solvent accessible surface area (SASA) model 

respectively. 

Before calculating the binding energy, the trajectory was processed to correct the 

periodicity and center the protein within the unit cell. Water molecules and ions 

were removed from the trajectory file. Finally, the binding energy was calculated 

from the converged region of the MD trajectory at an interval of 0.5 ns (100 

frames). 

2.5. 3D-QSAR 

To perform the 3D-QSAR studies, we have selected a binding conformation of 

compound 14 from the MD simulation trajectories. A confirmation that 

corresponded to the highest number of H-bond interactions with the receptor was 

selected. The structure of the compound was relaxed by quick minimization in 

Sybyl X 2.1. Using compound 14 as a template the other compounds were 

sketched and minimized. The alignment of the compounds was performed based 

on the common substructure of the compounds [32, 123]. The aligned compounds 

were randomly divided into a training set and a test set . 

The training set compounds were used to develop various Comparative Molecular 

Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis 

(CoMSIA) models [9, 130]. In CoMFA, the electrostatic and van der Waal energy 

terms were calculated for each compound. In CoMSIA the hydrogen bond donor, 

hydrogen bond acceptor, hydrophobic, steric, and electrostatic energy terms were 

calculated for each compound [131]. The energy terms were calculated by 

probing the 3D-grid around the compound by using an sp
3
 hybridized carbon 

atom (charge +1). The partial least square (PLS) method was used to establish the 

relationship between the dependent and the independent variables. Leave-One-

Out crossvalidated analysis was performed to determine the predictive ability of 

the 3D-QSAR models and to determine the optimal number of components 
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(ONC). Based on the crossvalidated q
2
 and the ONC, the non-crossvalidated 

predictive r
2
 value was calculated. Based on the statistical results, a model with 

high q
2
 and r

2
 values was selected for further analysis. 

Bootstrapping (BS) was performed to estimate the confidence intervals of the 

parameters predicted by the 3D-QSAR models. A bootstrap sampling size of 100 

was used during the validation. In addition, the predictive ability of the derived 

models against an external test set was also evaluated using the equation given 

below. 

 

Where, SD represented the standard deviation between the activity value (pIC50) 

of the test set compounds and the mean activity value of the training set 

compounds. PRESS represented the sum of the square deviation between the 

predicted and the actual activity value of each compound in the test set. 

3. Results 

 The X-ray crystal structures of Imatinib in complex with the inactive form of c-

KIT (PDB ID 1T46) and PDGFRα (PDB ID 6JOL) were collected from the 

protein databank (www.rcsb.org). Imatinib showed an pIC50 value of 7.4 and 8.3 

for c-KIT and PDGFRα respectively and was used as a reference compound 

[124]. The dataset compound 14 which showed high pIC50 values of 8.6 for c-KIT 

and 8.1 for PDGFRα was used as a representative compound for the dataset. The 

dataset compounds and their log activity values are shown in Table 1. 
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Table 1. Structure of the pyrazolopyridine derivatives and their pIC50 values 

for c-KIT and PDGFRα. 

OH

N

N
H

N

NH

O

NH
R

1

 
Structure A 

Comp

ounds 
Structures R1 

c-KIT 

(pIC50) 

PDGF

Rα 

(pIC50) 

1 
OH

N

N

H
N

NH

O

NH

 

8.62 7.06 

2
 

OH

N

N

H
N

NH

O

NH

 

8.43 7.49 

3
 

F

N

N

H
N

NH

O

NH

F

F

 

>4.3 >4.3 
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4
 

F

N

N

H
N

NH

O

NH

F

F

 

5.2 >4.3 

5
 

A 

 

8.41 7.66 

6
 

A 
 

4.96 6.52 

7
 

A 
 

5.74 7.19 

8
 

A 
 

5.32 6.58 

9
 

A 
Cl

 

5.62 6.74 

10
 

A 
N

 
6.70 4.67 

11
 

A 
NN

 

7.72 6.67 

12
 

A 
N N

 

5.71 5.75 

13
 

A 
NN

 

8.14 6.90 

14
 

A 
NO

 

8.62 8.14 

15
 

A 
NN

 

5.65 5.96 

16
 

A 
NN

 

5.34 6.03 



Seketoulie Keretsu Ph.D. Thesis  

Chosun University, Department of Biomedical Sciences 

 

- 85 - 

 

17
 

A 
NO

 

6.40 4.72 

18
 

A 
NO

 

5.19 5.39 

19
 

A 
N

 

7.92 6.87 

20
 

A N

 

7.92 6.75 

21
 

A 
N

 

8.59 7.08 

22
 

A N

 
8.03 6.51 

23
 

A N

 

4.66 5.34 

24
 

A 
 

4.4 >4.3 

25
 

A 
 

4.7 >4.3
 

26
 

A 
 

4.69 4.36 

27
 

A 
 

8.46 6.79 

28
 

A 
 

8.85 7.57 

29
 

A 
 

6.49 5.95 

30
 

A 
 

5.85 5.83 

31
 

A 
 

6.26 5.95 

32
 

A 
 

6.50 6.14 
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33
 

A 
 

6.84 6.24 

34
 

A 
 

>4.3 >4.3 

35
 

A 
O

 

7.29 6.41 

36
 

A 
S

 

7.59 6.80 

37
 

A 
N

 
7.11 6.33 

38
 

A 
 

>4.3 >4.3 

39
 

A 

 

8.43 7.09 

40
 

A 

 

8.77 7.62 

41
 

A 
 

8.21 6.87 

42
 

A 
 

8.06 7.08 

43
 

A N
N
H  

6.92 6.39 

44
 

A 
N  

7.70 6.40 

45
 

A 
N  

7.85 6.50 

46
 

A 

N

 

8.72 7.66 

47
 

A 
 

7.70 6.91 

48
 

A 

 

8.44 7.01 
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3.1 Molecular Docking 

Molecular docking was performed using Autodock 4.2. Validation of the docking 

procedure was performed by docking the crystal ligand (imatinib) into the 

receptors.. Docking results showed that imatinib formed H-bond interactions with 

Cys673, Thr670 (Gatekeeper), Glu640, and Ile769 in c-KIT and Cys677, Thr836, 

Glu644, Val815, and His816 in PDGFRα. 

Docking of the compound 14 with c-KIT showed H-bond interactions with 

Cys673 at the hinge region, Glu640 at the αC-helix, and Asp810 at the DFG motif 

of the activation loop. The binding interaction of pyrazolopyridine of compound 

14 with hinge residue Cys673 was analogous to the interaction of the pyridine of 

imatinib with Cys673 observed in the X-ray structure (PDB ID 1T46). This 

interaction with the hinge region was crucial for anchoring the ligand at the 

binding site. Compound 14 showed H-bond interaction with PDGFRα residues 

Cys677 (hinge), Glu644 (αC-helix), and Asp836 (DFG motif). The results 

suggested that compound 14 was bound to c-KIT and PDGFRα in a similar 

binding pattern. 

3.2. Molecular Dynamics Simulation 

Classical MD simulations of imatinib and compound 14 with c-KIT and PDGFRα 

were performed for 100 ns using Gromacs. The interactions of imatinib and 

compound 14 with the receptors and the pairwise RMSD of the ligands from the 

MD trajectories were shown in Figure 1. During the simulation of the imatinib-c-

KIT complex, the αC-helix and the activation loop formed a narrow pocket 

around the binding site (Figure 1a). This allowed the Glu640 from the αC-helix to 

form a stable salt bridge with Lys623 of β3 and one H-bond with the amide linker 

of imatinib. Imatinib also formed a stable H-bond with Cys673 at the hinge and 
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Thr670 of the gate-keeper residue. The methyl piperazine moiety of imatinib also 

formed a weak H-bond with the Ile789 of the catalytic loop. The overlap between 

the crystal ligand and the MD binding pose showed an RMSD value of 0.9 Å. 

In PDGFRα (Figure 1b), imatinib formed H-bond interaction with Cys677 and 

Thr674 at the hinge region. The carbonyl linker between the two benzyl rings of 

imatinib also formed H-bond interaction with the Asp836 at the DFG motif. 

Additionally, a weak H-bond interaction was also observed between the methyl 

piperazine of imatinib and the catalytic loop residue Val815. These interactions 

were also observed in the X-ray structure of the imatinib-PDGFRα (PDB ID 

6JOL). The overlap of the crystal ligand and the MD binding pose showed an 

RMSD value of 0.4 Å. 

In the compound 14-c-KIT complex simulation, the pyrazolopyridine of 

compound 14 occupied the pocket close to the hinge region and formed H-bond 

interactions with Cys673. Additionally, compound 14 formed H-bond interactions 

with Glu640 and Asp810 from the αC-helix and the DFG-motif respectively. The 

morpholine moiety of compound 14 extended into the hydrophobic pocket formed 

by residues Ile571, Val643, Leu647, Phe782, Leu783, Cys788, and Ile789 from 

the αC-helix and the catalytic domain. The binding pose of compound 14 inside 

c-KIT is shown in Figure 1c. In PDGFRα, compound 14 formed H-bond 

interactions with Cys677 (hinge), Glu644 (αC-helix), and Asp836 (DFG motif). 

The binding pose of compound 14 inside PDGFRα is given in Figure 1d. These 

results indicated that compound 14 formed interactions with c-KIT and PDGFRα 

in a similar pattern. 
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Figure 1. H-bond interactions of imatinib and compound 14 with c-KIT and 

PDGFRα from the MD simulations. H-bond interactions are represented by 

yellow dotted lines and residues forming H-bonds are shown in purple color. (a) 

Binding interactions between imatinib and c-KIT. The overlap between the 

crystal ligand pose (salmon) and the MD binding pose (green) of imatinib at the 

binding site (RMSD=0.9 Å). (b) Binding interactions between imatinib and 

PDGFRα. The overlap between the crystal ligand pose (salmon) and the MD 

binding pose (magenta) of imatinib at the binding site (RMSD=0.4 Å). (c) 

Binding interactions between compound 14 and c-KIT. (d) Binding interactions 

between compound 14 and PDGFRα. The pairwise RMSD plots of the lignads 

from the MD simulation of (e) imatinib and c-KIT (f) imatinib and PDGFRα (g) 

compound 14 and c-KIT (h) compound 14 and PDGFRα. 

3.3. Evaluation of Binding Energy 

The binding energy (BE) of imatinib and compound 14 with c-KIT and PDGFRα 

were evaluated using the g_mmpbsa package. The contribution of van der Waals, 
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electrostatic, polar, and non-polar solvation energy terms to the total BE of the 

protein-ligand complexes were given in Table 2. The total BE of imatinib-c-KIT 

and imatinib-PDGFRα were -105 kJ/mol and -104 kJ/mol respectively. The van 

der Waals and electrostatic energy terms made the major contributions to the total 

BE. In imatinib-c-KIT binding, the van der Waals and electrostatic energies 

contributed -236 kJ/mol and -70 kJ/mol to the total BE respectively.  In imatinib-

PDGFRα, the van der Waals and electrostatic energy contributions were -244 

kJ/mol and -58 kJ/mol respectively. The total BE values of compound 14-c-KIT 

and compound 14-PDGFRa were -120 kJ/mol and -117 kJ/mol respectively. In 

the compound 14-c-KIT interaction, the van der Waals and electrostatic energies 

contributed -257 kJ/mol and -57 kJ/mol to the total BE respectively. In compound 

14-PDGFRα interaction, the van der Waals energy contribution was -251 kJ/mol 

and the electrostatic energy contribution was -55 kJ/mol. 

Table 2. The energy contribution of the various energetic terms (Van der Waals 

energy, electrostatic energy, polar solvation energy, and non-polar solvation 

energy/SASA) to the total binding energy during the binding of imatinib and 

compound 14 with c-KIT and PDGFRα. 

Complexes 

Van der 

Waals 

(kJ/Mol

) 

Electrost

atics 

(kJ/Mol) 

Polar 

solvation 

(kJ/Mol) 

SASA 

(kJ/Mol) 

Total 

Binding 

Energy 

(kJ/Mol

) 

Imatinib-c-KIT -260 -74 257 -28 -105 

Imatinib-

PDGFRα 
-244 -58 225 -27 -104 

Compound14-c-

KIT 
-257 -57 219 -25 -120 

Compound14-

PDGFRα 
-251 -55 213 -25 -118 

Compound31 -

c-KIT 
-183 -48 185 -19 -65 

Compound31-

PDGFRα 
-180 -50 163 -18 -85 
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Imatinib-c-

KIT/I670 
-227 -48 228 -26 -73 

Imatinib-

PDGFRα/I674 
-248 -18 227 -28 -67 

Compound 14-

c-KIT/I670 
-250 -61 205 -25 -131 

Compound 14-

PDGFRα/I674 
-265 -39 203 -25 -126 

 

The residues that made a high contribution to the total BE in compound 14-c-KIT 

interaction were compared with the corresponding residues in imatinib-c-KIT 

interaction in Table 3. The results indicated that the hydrophobic residues Val603, 

Leu644, Val654, Cys809, and Phe811 individually contributed more than -5 

kJ/mol to the total BE in compound 14-c-KIT interaction. In imatinib-c-KIT, the 

hydrophobic residues Leu644, Val654, Tyr672, and Cys809 individually 

contributed more than -5 kJ/mol to the total BE. The hydrophobic residues 

Val607, Met648, Val658, Leu825, and Cys835 individually contributed more 

than -5 kJ/mol to the total BE in both imatinib-PDGFRα and comound14- 

PDGFRα interactions. The polar residue Asp836 contributed -5.1 kJ/mol in 

compound 14-PDGFRα interaction and 1.8 kJ/mol in imatinib-PDGFRα 

interaction. Similarly, the corresponding c-KIT residue Asp810 contributed -2.1 

kJ/mol in compound 14-c-KIT interaction and 9.3 kJ/mol in imatinib-c-KIT 

interaction. The high energy contribution of Asp836/Asp810 in the interactions 

with compound 14 may be attributed to the H-bond interaction between the 

carbonyl oxygen of compound 14 with Asp836/Asp810 in c-KIT/PDGFRα. The 

PDGFRα residue Phe837 also contributed -4.8 kJ/mol and -7.1 kJ/mol in the 

interactions with compound 14 and imatinib respectively. The corresponding c-

KIT residue Phe811 also contributed -6.8 kJ/mol and -4 kJ/mol in interactions 

with compound 14 and imatinib respectively through hydrophobic interactions.  

These hydrophobic interactions with Phe811/Phe837 of the DFG motive were 

possible as a result of the DFG-in conformation of the inactive form of c-KIT and 

PDGFRα[94]. 
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Table 3. Residues that showed a high contribution to the total binding energy 

during the MD simulations of Compound14-c-KIT, Imatinib-c-KIT, 

Compound14-PDGFRα, and Imatinib-PDGFRα. The energy values of the 

residues are given in kJ/mol. 

c-KIT 

Residue

s 

Comp

ound1

4-c-

KIT 

(kJ/mo

l) 

Imatini

b-c-KIT 

(kJ/mol) 

 

PDGFR

α 

Residue

s 

Compound 

14- 

PDGFRα 

(kJ/mol) 

Imatini

b- 

PDGFR

α 

(kJ/mol) 

Asp572 -0.9 -0.7 Glu587 -0.66 -0.42 

Leu595 -2.6 -3.4 Leu599 -2.48 -2.87 

Val603 -5.4 -3.2 Gly600 -0.91 -0.82 

Ala621 -2.7 -3.1 Val607 -5.23 -5.10 

Val620 -0.7 -0.8 Val608 -1.10 -0.69 

Val622 -1.0 -1.7 Glu609 -1.31 -2.33 

Glu635 -0.8 -0.7 Val624 -0.76 -1.10 

Val643 -3.1 -3.6 Ala625 -2.20 -1.87 

Leu644 -6.7 -6.6 Val626 -1.15 -1.84 

Leu647 -2.1 -0.5 Glu637 -0.83 -0.96 

Ile653 -3.0 -0.9 Ile647 -4.19 -4.35 

Val654 -5.2 -7.6 Met648 -8.93 -7.98 

Tyr672 -3.9 -5.6 Leu651 -2.11 -0.96 

Cys673 -2.1 -2.5 Ile657 -2.52 -0.76 

Gly676 -0.8 -0.4 Val658 -5.46 -5.28 

Leu783 -2.9 -0.6 Ile672 -0.83 -2.95 

Cys788 -1.3 -1.8 Tyr676 -3.39 -4.99 

His790 -3.6 -1.9 Cys677 -2.48 -1.82 

Asp792 -1.0 -0.2 Gly680 -0.92 -0.76 

Leu799 -4.9 -4.3 Leu809 -2.58 -1.14 

Lys807 -1.1 2.2 Cys814 -2.27 -1.81 

Ile808 -1.0 0.4 Leu825 -5.59 -5.59 

Cys809 -6.4 -6.2 Ile834 -1.21 -0.40 

Asp810 -2.1 9.3 Cys835 -6.27 -5.11 

Phe811 -6.8 -4.0 Asp836 -5.11 1.89 

Asp851 -1.5 -0.5 Phe837 -4.87 -7.16 

 

3.4. 3D-QSAR 
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The 48 pyrazolopyridine derivatives and their activity values were used to 

perform the 3D-QSAR study. The specific activity values of compounds 3, 4, 24, 

25, 34, and 38 for both receptors were not available and were excluded from the 

3D-QSAR study. The compounds were randomly separated into a training set and 

a test set of 30 compounds and 12 compounds respectively. 

In the c-KIT CoMFA and CoMSIA models, the binding pose of compound 14 

from the MD simulation with c-KIT was used as a template for the alignment of 

the compounds. The aligned compounds are shown in Figure 2(g). The developed 

CoMFA model showed a crossvalidated q
2
 value of 0.63 and an optimal number 

of components (ONC) value of 6. In the non-validated analysis, the model 

showed an r
2
 value of 0.98 and SEE value of 0.2, suggesting that the model has a 

reasonable predictive ability. The CoMSIA model based on the hydrophobic (H) 

and steric (S) descriptors gave relatively higher statistical results. Hence, this 

model was selected for further analysis. The selected CoMSIA model exhibited q
2
 

and ONC values of 0.6 and 5 respectively. In the non-crossvalidated analysis, the 

CoMSIA model showed r
2
 and SEE values of 0.9 and 0.46. The statistical results 

of the c-KIT CoMFA and CoMSIA models are shown in Table 4. 

Table 4. Statistical results of the CoMFA and CoMSIA models for c-KIT and 

PDGFRα. q
2
: cross-validated correlation coefficient; ONC: Optimal number of 

components; r
2
: non-cross-validated correlation coefficient; SEE: Standard Error 

of Estimation; F value: F-test value; r
2
; BS-r

2
: Bootstrapping r

2 
mean; BS-SD: 

Bootstrapping Standard deviation; r
2
pred: predictive correlation coefficient; S: 

Steric; E: Electrostatic; H: Hydrophobic. 

Parameters CoMFA 

(c-KIT) 

CoMSIA 

(c-KIT) 

CoMFA 

(PDGFRα) 

CoMSIA 

 

(PDGFRα) 

q
2
 0.63 0.6 0.61 0.62 

ONC 6 5 6 3 

r
2
 0.98 0.9 0.98 0.81 
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SEE 0.2 0.46 0.12 0.39 

F value 204 43 232 46 

BS r
2
 0.98 0.94 0.98 0.97 

BS SD 0.15 0.32 0.1 0.14 

r
2

pred 0.59 0.58 0.56 0.59 

Influence of different fields (%) 

S 59 50 67 42 

E 41 - 33 - 

H - 50 - 58 

 

In the PDGFRα CoMFA and CoMSIA models, the compounds were aligned 

based on the binding pose of compound 14 from the MD simulation with 

PDGFRα. The aligned compounds are shown in Figure 2(h). The PDGFRα 

CoMFA model showed a q
2
 value of 0.61 and an ONC value of 6. In the non-

validated analysis, the model showed r
2
 and SEE values of 0.98 and 0.12 

respectively. The PDGFRα CoMSIA model was developed based on the HS 

descriptors. The PDGFRα CoMSIA model showed q
2
 and ONC values of 0.62 

and 3 respectively. The non-crossvalidated r
2
 and SEE values were 0.81 and 0.39 

respectively. The statistical results of the PDGFRα CoMFA and CoMSIA models 

are shown in Table 4. 

Internal and external validation of the derived 3D-QSAR models were performed 

using bootstrapping (BS) and external r
2
pred analysis. The c-KIT CoMFA model 

showed BS-r
2
 and BS-SD values of 0.98 and 0.15 respectively.  The c-KIT 

CoMSIA (SH) model showed a BS-r
2
 value of 0.94 and a BS-SD value of 0.32. 

The BS analysis suggested that the c-KIT CoMFA and CoMSIA models have 

reasonable robustness. The PDGFRα CoMFA model showed a BS-r
2
 value of 

0.98 and a BS-SD value of 0.1. The BS- r
2
 and BS-SD values for the CoMSIA 

model were 0.97 and 0.14 respectively. These results suggested that the derived 

CoMFA and CoMSIA models have reasonable robustness.  In the external 

validation, c-KIT CoMFA and CoMSIA models showed r
2
pred values of 0.59 and 

0.58 respectively. The PDGFRα CoMFA and CoMSIA models showed r
2
pred 
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values of 0.56 and 0.59 respectively. The external validation results suggested 

that the derived models have reasonable predictive ability against an external 

dataset. The predicted activity values of the compounds for c-KIT and PDGFRα 

are given in Table 7 and 8.  

3.5. Analysis of Contour Map 

In the CoMFA and CoMSIA contour maps, compound 14 was used as a 

reference. The contour maps are shown in Figure 2. In the electrostatic contour 

map, the red and blue contours represented electronegative and electropositive 

substituents favorable and unfavorable regions respectively. The Green and 

yellow color contours in the steric contour map represented bulky substituents 

favorable and unfavorable regions respectively. In the hydrophobic contour map, 

cyan and purple color contours represented hydrophobic favorable and 

unfavorable regions respectively. 

In the c-KIT CoMFA electrostatic contour map (Figure 2a), a blue contour was 

observed near the meta position of the methylbenzene ring suggesting that 

electropositive substituents were favored at that position. In the steric contour 

map (Figure 2b), a green contour was observed near the meta position. The 

yellow contour near the ortho position of methylbenzene indicated that bulky 

substituents were not favored in that position. Bulky substituents at the ortho 

position of methylbenzene could lead to a steric clash with binding site residues. 

In the CoMSIA hydrophobic contour map (Figure 2c), a cyan contour was seen 

near the para position and meta position of methylbenzene suggesting that 

hydrophobic substituents were favorable in these regions. CoMSIA steric contour 

map was similar to that of the CoMFA steric contour map and was not included in 

the analysis. 

In the PDGFRα CoMFA electrostatic contour map (Figure 2d), a blue contour 

was observed near the benzene and the para position of the methylbenzene 
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suggesting that electropositive substituents were favored in these regions. In the 

steric contour map (Figure 2e), the green contour was observed near the meta-

position of methylbenzene suggesting that bulky substituents were favored in that 

region. The yellow contour near the ortho position suggested that bulky 

substituents were not favored in that region and could lead to decreased activity 

for both c-KIT and PDGFRα. In the CoMSIA hydrophobic contour map (Figure 

2f), a cyan contour was observed near the ortho position of the methylbenzene 

and purple contours were observed near the pyrazolopyridine and the meta 

position of the methylbenzene suggesting that hydrophobic substituents are not 

favored in these regions.  

 

Figure 2. Contour maps generated based on the CoMFA and CoMSIA models for 

c-KIT and PDGFRα with Compound 14 used as a reference. Blue and red 

contours indicate electropositive and electronegative substituents favorable 

regions respectively. Green and yellow contours indicate steric bulk substituents 

favorable and unfavorable regions respectively. Cyan and purple colors contours 

represent hydrophobic favorable and unfavorable regions. (a) Electrostatic 

contour map for the c-KIT CoMFA model. (b) Steric contour map for c-KIT 

CoMFA model (c) Hydrophobic contour map for c-KIT CoMSIA model. (d) 

Electrostatic contour map for the PDGFRα CoMFA model. (e) Steric contour 

map for PDGFRα CoMFA model (f) Hydrophobic contour map for PDGFRα 

CoMSIA model. Alignments used for the development of the 3D-QSAR models. 



Seketoulie Keretsu Ph.D. Thesis  

Chosun University, Department of Biomedical Sciences 

 

- 97 - 

 

(g) Alignment of the compounds inside c-KIT (h) Alignment of the compounds 

inside PDGFRα. (i) Scheme developed based on the 3D-QSAR models for 

designing new compounds. 

3.6. Designed Compounds 

Based on the 3D-QSAR contour maps, a design scheme was developed as shown 

in Figure 2(g). Following the scheme, 50 compounds were designed and the 

activity values for c-KIT and PDGFRα were predicted using the derived CoMSIA 

(SH) models. Base on the predicted pIC50 values, eight compounds that showed 

higher activity values than the compound 14 were selected for further evaluations. 

The predicted activity values of the designed compounds for both the receptors 

are given in Table 5.  

MD simulation of the eight designed compounds with the receptors was 

performed for 70 ns. The binding interactions of the designed compounds with 

the receptors are shown in Figure 3. The results showed that the designed 

compounds were able to form stable interactions with both c-KIT and PDGFRα 

throughout the simulation. In the designed compounds, the pyrazolopyridine 

moiety was anchored near the hinge region of c-KIT and PDGFRα through H-

bond interactions with Cys673 and Cys677. The eight designed compounds also 

showed H-bond interaction with DFG motif residues Asp810/Asp836 (c-KIT/ 

PDGFRα). Except for compound D23, D25, and D44 in PDGFRα, the designed 

compounds also formed weak H-bond interactions with the Lys623/Lyss627 (c-

KIT/ PDGFRα) and Glu640/Glu644 (c-KIT/ PDGFRα). 

Table 5. The chemical structures and the predicted pIC50 values of the newly 

designed compounds for c-KIT and PDGFRα. 
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N

N
NH

NH

NH

O

R
1

R
2

R
3

 

C
o
m

p
o
u

n
d

s 

R1 R2 R3 

Predicted 

Activity 

(pIC50) 

c-
K

IT
 

P
D

G
F

R
α

 

Compound 

D18 
N O

  

H 10.4 8.3 

Compound 

D23 
N O

  
CH3 10.1 8.2 

Compound 

D25 
N O

  

CH3 10.5 8.1 

Compound 

D28 
N O

  

CH3 9.6 8.4 

Compound 

D32 
N O

  

CH3 9.1 8.3 

Compound 

D39 
  

H 10.3 8.1 

Compound 

D44 
N O

  

H 10.2 8.3 
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Compound 

D45 
N O

 
 

H 9.3 8.1 

 

The BE values of the designed compounds with both c-KIT and PDGFRα are 

given in Table 6. The evaluation of the BE values showed that the designed 

compounds possessed higher predicted binding affinity then imatinib and 

compound 14 for both receptors. Among the eight designed compounds, the D39 

showed the highest binding affinity against both the receptors. In c-KIT, D39 

formed H-bond interactions with Cys673, Glu640, and Asp810. In PDGFRα, D39 

formed H-bond interactions with Cys677, Asp836, and Lys627. In addition, the 

benzyl and butyl substituents at the R1 and R2 positions of the methylbenzene 

extended into the hydrophobic pocket. This allowed the formation of hydrophobic 

interactions with residues Leu647, Val643, His790, Cys809, and Ile808 in c-KIT 

and Ile657, Met648, Val815, Leu809, and Ile834 in PDGFRα. The benzyl and 

butyl substituents were unique in D39 which suggested that having hydrophobic 

substituents in the R1 and R2 positions may increase the binding affinity towards 

both c-KIT and PDGFRα. The hydrophobic interactions of D39 with the receptors 

are given in Figure 4. 

Table 6. The energy contributions of the various energetic terms (Van der Waals 

energy, electrostatic energy, polar solvation energy, and non-polar solvation 

energy/SASA) to the total binding energies are shown for the designed 

compounds.  

Complexes 

(Designed 

Compounds-

Receptor) 

Van der 

Waals 

(kJ/Mol) 

Electrostat

ics 

(kJ/Mol) 

Polar 

solvation 

(kJ/Mol) 

SASA 

(kJ/Mol

) 

Total 

Binding 

Energy 

(kJ/Mol

) 

D18-c-KIT -272 -57 218 -28 -139 

D18 -

PDGFRα 
-282 -57 224 -27 -142 

D23-c-KIT -287 -48 242 -29 -122 

D23- -286 -36 212 -28 -138 
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PDGFRα 

D28-c-KIT -278 -62 242 -27 -126 

D28-

PDGFRα 
-289 -38 227 -29 -129 

D32-c-KIT -271 -53 229 -27 -122 

D32-

PDGFRα 
-283 -44 224 -28 -130 

D39-c-KIT -268 -65 212 -26 -148 

D39-

PDGFRα 
-274 -48 200 -26 -150 

D44-c-KIT -262 -56 216 -25 -129 

D44-

PDGFRα 
-261 -42 209 -26 -120 

D45-c-KIT -262 -76 244 -26 -121 

D45-

PDGFRα 
-274 -58 215 -26 -143 

 

The synthetic accessibility of the designed compounds was evaluated with 

SwissADMET (http://www.swissadme.ch/) and the results were given in Table 9. 

The synthetic accessibilities of the compounds were scored within the range of 1 

to 10 where a synthetic accessibility score of 1 indicates easy synthesis and a 

score of 10 indicates difficult synthesis. The designed compounds showed a 

reasonable synthetic accessibility score of less than 5. The absorption (A), 

distribution (D), metabolism (M), excretion (E), and toxicity (T) properties of the 

designed compounds were also evaluated using the pkCSM online server 

(http://biosig.unimelb.edu.au/pkcsm/)[132]. Steady-state volume of distribution 

(VDss) of a compound represents the degree to which the compound will likely 

get distributed in the body rather than the plasma. VDss score is considered low if 

below -0.15 log L/kg. The designed compounds showed low to moderate VDss 

scores, suggesting a reasonable distribution rate. The designed compounds also 

showed a positive outcome for the cytochrome P450 substrate test suggesting that 

the compounds are likely to be metabolized by cytochrome P450.  Except for 

compound D32 and D39, the designed compounds showed a total clearance rate 

http://www.swissadme.ch/
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of at least 0.8. The compound D32 and D39 showed a clearance rate of 0.6 and 

0.5 respectively. The toxicity prediction showed that, except compound D39, the 

designed compounds tested negative for mutagenic potential. 

 
Figure 3. H-bond interactions of the designed compounds with c-KIT and 

PDGFRα from the MD simulations. H-bond interactions are represented by 

yellow dotted lines and residues forming H-bonds are shown in purple color. (a) 

D18-c-KIT (b) D23-c-KIT (c) D25-c-KIT (d)  D28-c-KIT (e) D32-c-KIT (f) 

D39-c-KIT (g) D44-c-KIT (h) D45-c-KIT (i) D18-PDGFRα (j) D23-PDGFRα (k) 

D25-PDGFRα (l) D28-PDGFRα (m) D32-PDGFRα (n) D39-PDGFRα (o) D44-

PDGFRα  (p) D45-PDGFRα 

4. Discussion 

Molecular docking and molecular dynamics simulation of compound 14 showed 

H-bond interactions with Cys673, Glu640, and Asp810 in c-KIT and Cys677, 

Glu644, and Asp836 in PDGFRα. For comparative study, MD simulations of the 
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compound 31 which showed low activity values for c-KIT (pIC50= 6.2) and 

PDGFRα (pIC50= 5.9) was performed. In c-KIT, Compound 31 form H-bond 

interactions with Cys673, Glu640, and Asp810 which were also observed in 

compound 14-c-KIT interaction. However, compound 31 did not have the 

extended methylbenzene and morpholine moiety present in compound 14 and lost 

the hydrophobic interactions with Leu644, Ile768, Leu783, Leu647, Val643, and 

Ile808 which were observed in compound 14-c-KIT interaction. The hydrophobic 

and H-bond interactions of compound 31 with c-KIT are shown in Figure 4 and 

Figure 5 respectively. Similarly, compound 31 formed H-bond interactions with 

PDGFRα residues Cys677, Lys627, and Asp836 which were observed in 

compound 31-PDGFRα interaction. However, compound 31 did not form 

hydrophobic interactions at the catalytic loop and the αC-Helix due to the absence 

of the extended methylbenzene moiety. The loss of the hydrophobic interactions 

at the catalytic loop and the αC-Helix could be the reason why compound 31 

showed lower activity value against both c-KIT and PDGFRα.  

Contour map analysis suggested that positive, bulky, and hydrophobic 

substituents were favored near the meta position of the methylbenzene of 

compound 14 and could increase activity for c-KIT and PDGFRα. The presence 

of bulky hydrophobic substituents at the meta position may lead to the formation 

of crucial hydrophobic interaction with residues from the αC-helix and the 

catalytic loop (Figure 5). The result is also supported by the BE evaluation which 

showed that hydrophobic residues Leu644, Val643, Leu647 from the αC-helix, 

and Leu783 and Cys788 from the catalytic loop made key contributions to the 

total BE in c-KIT (Table 3). Further analysis also showed that hydrophobic 

residues Val603, Leu644, Val654, Cys809, and Phe811 contributed more than -5 

kJ/mol to the total BE in compound 14-c-KIT. Whereas, the hydrophobic residues 

Val607, Met648, Val658, Leu825, and Cys835 contributed more than -5 kJ/mol 

to the total BE in compound14-PDGFRα. These results suggested that 

hydrophobic interactions were dominant in the binding of compound 14 with both 
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the receptors. The eight designed compounds showed a higher binding affinity 

with both c-KIT and PDGFRα compared to compound 14 and imatinib. The 

higher binding affinity could be attributed to the hydrophobic substituents in the 

designed compounds which were able to form interaction with hydrophobic 

residues from the catalytic loop and the αC-Helix (Figure 5a).   

 

Figure 4. Showing the hydrophobic interactions of the inhibitors with c-KIT and 

PDGFRα. Hydrophobic interactions were represented in red dotted lines. 

Residues that showed Hydrophobic and H-bond interactions were given in green 

and black label respectively. (a) Compound 14-c-KIT (b) Compound 31-c-KIT 

(c) D39-c-KIT (d) compound D39- PDGFRα. 
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Figure 5 (a) The hydrophobic surface of the c-KIT binding site residues; 

Hydrophobic residues from the αC-helix and the catalytic loops are shown in 

stick representation (b) Binding interactions between compound 31 and c-KIT. 

(c) Binding interactions between compound 31 and PDGFRα. 

Earlier studies have shown that imatinib resistance is achieved via T670I 

substitution in c-KIT and T674I substitution in PDGFRα [108, 124]. However, 

the molecular mechanisms underlying the drug resistance remained unclear. We 

have performed MD simulations of the imatinib with c-KIT/I670 and 

PDGFRα/I674 mutants to study the effect of the T670I/T674I substitutions on the 

binding interactions. The results showed that imatinib formed H-bond interaction 

with Cys673 and Glu640 in c-KIT/I670. In imatinib-PDGFRα/I674 complex, 

imatinib formed only one H-bond interaction with Glu644 and the pyridine of 

imatinib moved out of the hinge region. This outward movement could be 

attributed to the loss of H-bond interaction with Cys677 as a result of the T674I 

substitution.  The binding interaction of imatinib and compound 14 with c-

KIT/I670 and PDGFRα/I674 are shown in Figure 4.  In c-KIT/I670, compound 14 

formed H-bond interactions with Cys673, Glu640, Asn810, Ile789, and His790. 

Whereas, compound 14 formed H-bond interactions with Cys677, Glu675, 

Glu644, and Asp836 in PDGFRα/I674. Following the T670I substitution, the total 

BE of imatinib was reduced from -105 kJ/mol (wild-type) to -72 kJ/mol (c-

KIT/I670). Similarly, the total BE value of imatinib reduced from -104 kJ/mol 

(wild-type) to -67 kJ/mol (PDGFRα/I674) after T674I substitution. On the other 

hand, compound 14 showed total BE values of -131 kJ/mol with c-KIT/I670 and -

122 kJ/mol with PDGFR/I674.  These results suggested that the T670I/T674I 

substitutions disrupted the interaction of imatinib with c-KIT/I670 and 

PDGFR/I674 which consequently reduced the binding affinity against the 

receptors. Whereas, compound 14 was able to retain the interactions with c-

KIT/I670 and PDGFRα /I674 resulting in high binding affinity against both 

receptors. In contrast to the H-bond interaction between the amide linker of 
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imatinib and T670/T674 in c-KIT/PDGFRα, compound 14 formed hydrophobic 

interactions with T670/T674. Hence, the substitution of the hydrophilic threonine 

residue with the hydrophobic isoleucine residue could have led to the loss of H-

bond interaction with imatinib while increased the binding affinity for compound 

14 through hydrophobic interactions.  

Residue contact map analysis was calculated for the Ile670 (c-KIT/I670) and 

Ile674 (PDGFRα/I674) to study the effect of the T670I/T674I substitutions on the 

residue interactions at the binding sites. The residue contact map shows how often 

a residue of interest interacted with its surrounding residues throughout the 

simulation[133]. The I670/I674 contact maps were generated from the MD 

trajectories of imatinib and compound 14 with c-KIT, c-KIT/I670, PDGFRα, and 

PDGFRα/I674. The contact maps are shown in Figure 6. Comparison of the 

Thr670 (imatinib-c-KIT) and the Ile670 (imatinib-c-KIT/I670) contact maps 

showed that the T670I substitution led to the loss of interactions with the Val620 

and Val668 (Figure 6e & 4f).  Similarly, the T674I substitution also led to the loss 

of interactions with Val672 and Lys627 in imatinib-PDGFRα/I674 (Figure 6i & 

4j). The comparison of the Thr670 (compound 14-c-KIT) and Ile670 

(comound14-c-KIT/I670) contact maps showed that the substitution led to the 

loss of interactions with Val668, Val620, and Lys623. However, the substitution 

has also led to more interactions with Asn655.  Comparison of the contact maps 

for Thr674 and Ile674 in compound14-PDGFRα and compound 14-

PDGFRα/ILE674 showed that that the substitutions led to the loss of interaction 

with Val624, Val626, and Lys627. However, T674I substitution also led to more 

interaction with Asn659, Ile672, and Met648.  

These results suggested that the T670I substitution in c-KIT induced 

conformation changes at the binding site which led to reduced interaction with 

Val620, Val668, and Lys623 while increased the interactions with Asn655. 

Similarly, T674I substitution in PDGFRα led to the loss of interaction with 

Val624 and Lys627. The loss of interaction with Val620/Val624, and 
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Lys623/Lys627 in c-KIT/PDGFRα upon T670I/T674I substitution was 

characterized by the movement of the I670/I674 at the DFG motif away from the 

β3 and moving closer to the αC-helix.  These results complemented earlier claims 

that the T670I/T674I substitutions modified the binding pocket of c-

KIT/PDGFRα [108, 134].   

 

Figure 6. H-bond interactions and residue contact map from the MD simulation of 

imatinib and compound 14. H-bond interactions observed in (a) imatinib-c-

KIT/I670 (b) imatinib-PDGFRα/I674 (c) compound 14-c-KIT/I670 (d) compound 

14-PDGFRα/I674. Residue contact map for (e) Thr670 in imatinib-c-KIT (f) 

Ile670 in imatinib-c-KIT/I670 (g) Thr670 in compound 14-c-KIT (h) Ile670 in 

compound 14-c-KIT/I670 (i) Thr674 in imatinib-PDGFRα (j) Ile674 in imatinib-

PDGFRα/I674 (k) Thr674 in compound 14-PDGFRα (l) Ile674 in compound 14-

PDGFRα /I674. Weight on the edge between two residues represented how often 

the interaction existed between the residues during the simulation. Residues that 

showed a significant increase or decrease in interactions with the residue of 

interest were highlighted in red circles. 

Table 7. The experimental/actual and predicted pIC50 values with their residuals 

for the CoMFA and CoMSIA for c-KIT. 
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Comp

ound 

Experimen

tal pIC50 

c-KIT CoMFA c-KIT CoMSIA 

Predicte

d pIC50 

Residua

l 

Predic

ted 

pIC50 

Residu

al 

1 8.62 8.27 -0.35 8.27 0.35 

2 8.43 8.61 0.17 9.10 -0.67 

5 8.41 8.58 0.17 8.13 0.28 

6
*
 4.96 5.80 0.84 5.96 -0.99 

7 5.74 5.91 0.17 6.73 -0.99 

8 5.32 5.26 -0.06 5.86 -0.54 

9 5.62 5.51 -0.11 5.51 0.11 

10
*
 6.70 7.21 -0.52 7.33 -0.63 

11 7.72 7.62 -0.10 7.57 0.15 

12 5.71 5.87 0.16 5.88 -0.17 

13 8.14 8.16 0.02 8.18 -0.04 

14 8.62 8.68 0.06 8.27 0.35 

15
*
 5.65 6.55 -0.90 6.60 -0.95 

16 5.34 5.17 -0.17 5.16 0.18 

17 6.40 6.12 -0.28 6.07 0.33 

18 5.19 5.50 0.31 5.35 -0.16 

19 7.92 7.97 0.05 8.26 -0.34 

20
*
 7.92 7.62 0.30 8.90 -0.98 

21 8.59 8.71 0.13 8.41 0.17 

22 8.03 7.86 -0.17 7.78 0.25 

23
*
 4.66 5.58 -0.93 5.60 -0.94 

26 4.69 4.73 0.04 5.31 -0.62 

27 8.46 8.37 -0.09 8.51 -0.05 

28
*
 8.85 8.09 0.77 8.44 0.42 

29 6.49 6.41 -0.08 5.88 0.62 

30 5.85 6.10 0.25 5.82 0.03 

31 6.26 6.18 -0.08 5.93 0.32 

32
*
 6.50 6.46 0.03 6.30 0.20 

33 6.84 6.94 0.10 7.08 -0.24 

35
*
 7.29 8.10 -0.81 7.92 -0.62 

36 7.59 7.48 -0.10 7.45 0.14 

37
*
 7.11 6.11 1.00 6.47 0.64 

39 8.43 8.57 0.14 8.37 0.06 

40 8.77 9.02 0.25 8.88 -0.11 

41 8.21 8.32 0.11 8.71 -0.51 

42
*
 8.06 8.91 -0.85 8.68 -0.62 

43 6.92 6.98 0.06 7.15 -0.23 

44 7.70 7.75 0.05 7.75 -0.05 

45
*
 7.85 6.92 0.94 7.62 0.23 

46 8.72 8.37 -0.35 8.45 0.28 
47

*
 7.70 8.42 -0.72 8.49 -0.79 
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48 8.44 8.14 -0.30 7.52 0.92 
* Test set compounds

 

Table 8. The experimental/actual and predicted pIC50 values with their residuals 

for the CoMFA and CoMSIA for PDGFRα. 

Com

poun

d 

Experimen

tal pIC50 

PDGFRα CoMFA PDGFRα CoMSIA 

Predicte

d pIC50 
Residual 

Predicted 

pIC50 

Residu

al 

1 7.06 7.14 -0.08 7.32 -0.26 

2 7.49 7.49 0.01 7.45 0.04 

5 7.66 7.54 0.12 7.23 0.43 

6
*
 6.52 6.11 0.40 6.78 -0.27 

7 7.19 6.98 0.21 6.99 0.20 

8 6.58 6.55 0.03 6.81 -0.22 

9 6.74 6.87 -0.13 7.05 -0.31 

10
*
 4.67 3.85 0.82 5.56 -0.89 

11 6.67 6.70 -0.03 6.57 0.09 

12 5.75 5.57 0.18 5.25 0.50 

13 6.90 7.00 -0.11 6.96 -0.06 

14 8.14 7.98 0.16 7.96 0.18 

15
*
 5.96 6.34 -0.38 6.65 -0.69 

16 6.03 6.25 -0.22 5.50 0.53 

17 4.72 4.66 0.06 5.30 -0.57 

18 5.39 5.35 0.04 5.56 -0.17 

19 6.87 6.89 -0.03 7.05 -0.19 

20
*
 6.75 6.81 -0.06 7.04 -0.29 

21 7.08 7.04 0.04 6.97 0.11 

22 6.51 6.54 -0.03 6.86 -0.35 

23
*
 5.34 5.99 -0.66 6.17 -0.83 

26 4.36 4.33 0.03 4.59 -0.23 

27 6.79 6.86 -0.07 6.80 -0.01 

28
*
 7.57 6.94 0.63 6.90 0.67 

29 5.95 5.96 -0.01 5.78 0.17 

30 5.83 6.09 -0.25 5.90 -0.07 

31 5.95 5.91 0.04 6.00 -0.06 

32
*
 6.14 5.88 0.26 5.80 0.34 

33 6.24 6.20 0.04 5.73 0.51 

35
*
 6.41 6.88 -0.46 6.18 0.23 

36 6.80 6.80 0.00 6.47 0.34 

37
*
 6.33 6.86 -0.53 6.27 0.05 

39 7.09 7.08 0.01 7.45 -0.36 

40 7.62 7.66 -0.04 7.33 0.29 

41 6.87 7.05 -0.18 6.90 -0.03 
42

*
 7.08 7.54 -0.46 6.97 0.11 
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43 6.39 6.29 0.10 6.16 0.23 

44 6.40 6.41 -0.01 6.43 -0.03 

45
*
 6.50 6.29 0.22 6.03 0.47 

46 7.66 7.57 0.09 7.50 0.16 

47
*
 6.91 6.21 0.70 6.61 0.30 

48 7.01 6.99 0.03 6.43 0.58 
* Test set compounds

 

 

Table 9: The predicted ADMET values and synthetic accessibility values for the 

8 designed compounds. 
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D18 89 0.2 Yes Yes No Yes Yes No Yes 0.9 No 3.8 

D23 98 -0.5 Yes Yes Yes Yes No Yes No 0.8 No 4.4 

D25 87 -0.4 Yes Yes No No No No No 0.8 No 4.0 

D28 92 -0.7 Yes Yes Yes Yes Yes No Yes 0.8 No 3.9 

D32 93 -0.8 Yes Yes Yes Yes Yes No No 0.6 No 3.8 

D39 88 -1.2 Yes Yes Yes Yes No No No 0.5 Yes 3.5 

D44 87 0.1 Yes Yes Yes Yes Yes No No 0.8 No 3.5 

D45 86 0.2 Yes Yes Yes Yes Yes No Yes 0.9 No 3.6 
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Figure 7. The ligand RMSD plots from the MD simulations. (a) Imatinib-c-KIT 

(b) Compound 14-c-KIT (c) Compound 31-c-KIT (d) D18-c-KIT (e) D23-c-KIT 

(f) D25-c-KIT (g) D28-c-KIT (h) D32-c-KIT (i) D39-c-KIT (j) D44-c-KIT (k) 

D45-c-KIT (l) Imatinib-c-KIT/T670I (m) Imatinib-PDGFRα (n) Compound 14- 

PDGFRα (o) Compound 31- PDGFRα (p) D18-PDGFRα (q) D23-PDGFRα (r) 

D25-PDGFRα (s) D28-PDGFRα (t) D32-PDGFRα (u) D39-PDGFRα (v) D44-

PDGFRα (w) D45-PDGFRα (x) Imatinib-PDGFRα/T674I (y) Compound 14-c-

KITα/T670I (z) Compound 14- PDGFRα/T674I 
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Abbreviations 

 

S   Steric 

E   Electrostatic 

H   Hydrophobic 

ADMET  Absorption, distribution, metabolism, excretion 

and toxicity 

BE   Binding Energy 

BS SD  Bootstrap standard deviation 

CADD  Computer-aided drug discovery  

c-KIT   Stem cell factor receptor  

CoMFA  Comparative molecular field analysis 

CoMSIA  Comparative molecular similarity indices 

analysis 

FDA   Food and Drug Administration  

FGFR   Fibroblast growth factor receptor  

FLT3   Fms like tyrosine kinase 3  

GISTs   Gastrointestinal stromal tumors  

ICC   Interstitial cells of Cajal 

MD    Molecular dynamics  

MM/PBSA  Molecular mechanics energies combined with 

the Poisson–Boltzmann and surface area 

continuum solvation   

ONC   Optimal number of components 

PDB   Protein data bank 

PDGFRa  Platelet derived growth factor receptor alpha  

RAF1   Rapidly accelerated fibrosarcoma 1  

RET   Rearranged during transfection 

RMSD  Root mean square deviation 



Seketoulie Keretsu Ph.D. Thesis  

Chosun University, Department of Biomedical Sciences 

 

- 112 - 

 

SASA   Solvent accessible surface area  

SEE  Standard error of estimation  

VEGFR  Vascular endothelial growth factor receptor  

3D-QSAR  Three-dimensional quantitative structure-

activity relationship 

 

5. Conclusion 

We performed modelling study of pyrazolopyridine derivatives which showed 

inhibitory activity for both c-KIT and PDGFRα. 3D-QSAR study was performed 

to understand the structural properties important for the dual inhibition of c-KIT 

and PDGFRα. Contour maps analysis showed that positive and bulky substituents 

are favorable near the meta and para position of compound 14 and may lead to an 

increase in activity against c-KIT and PDGFRα. Whereas, bulky substituents near 

the ortho position of reference compound 14 were not favored and could lead to 

steric clashes with binding site residues in both receptors. Comparative study of 

compound 14 and compound 31 (low activity value for c-KIT/PDGFRα) showed 

that the compound 14 was able to form additional interactions at the hydrophobic 

pocket formed by residues from the catalytic loop and the αC-helix. These 

interactions were not observed in the interactions of compound 31 with c-

KIT/PDGFRα. The results suggested that possessing substituents that extended 

into the hydrophobic pocket could be crucial to increase the activity against c-KIT 

and PDGFRα. Based on the predicted activity values from the 3D-QSAR models, 

eight compounds were selected as potential c-KIT/ PDGFRα inhibitors. The eight 

designed compounds showed higher BE values against c-KIT/ PDGFRα than 

imatinib. Residue contact map analysis indicated that the T670I/T674I 

substitution in c-KIT/ PDGFRα led to conformational changes at the binding 

sites. BE calculation showed that, following the T670I/T674I substitution, the 
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activity values of imatinib against c-KIT/I670 and PDGFRα /I674 reduced to -72 

kJ/mol and -67 kJ/mol respectively. Whereas, the activity value of compound 14 

against c-KIT and PDGFRα were -131 kJ/mol and -126 kJ/mol suggesting that 

compound 14 was able to retain the activity values against both receptors after the 

T670I/T674I substitutions. The high activity values of compound 14 against both 

wild-type and mutant c-KIT/PDGFRα showed the potential of the 

pyrazolopyridine derivatives as c-KIT/PDGFRα inhibitors for the treatment of 

imatinib-resistant GIST. The outcome of this study could provide valuable insight 

into designing more potent dual c-KIT and PDGFRα inhibitors.     
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PART V 

Rational Approach toward COVID-19 Main Protease 

Inhibitors via Molecular Docking, Molecular Dynamics 

Simulation and Free Energy Calculation 
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1. Introduction 

The coronavirus disease (COVID-19) is an acute respiratory tract disease caused 

by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was 

first reported in December 2019 in Wuhan, China [135]. The disease was declared 

a pandemic by the World Health Organization (WHO) on March 11, 2020 [136]. 

Since then, it has spread to 218 countries and has infected more than 25 million 

people and claimed the lives of 852,000 people until September 2, 2020. The 

common symptoms observed in COVID-19 patients include fever, cough, fatigue, 

shortness of breath, and loss of smell [137]. 

Epidemiological analyses have shown that the SARS-CoV-2 has a lower fatality 

rate (5%) but a higher transmissibility rate (2-2.5%) than those of the previously 

known coronaviruses Middle East respiratory syndrome (MERS) coronavirus 

(34.4% fatality, <1% transmissibility) and severe acute respiratory syndrome 

(SARS) coronavirus (9.5 % fatality, 1.7-1.9 % transmissibility)[138, 139]. Serial 

viral load analyses in COVID-19 patients using reverse transcriptase quantitative 

polymerase chain reaction (RT-qPCR) indicated that peak viral load was observed 

during the first week of symptom onset, with a median viral shedding period of 

20 days [140, 141].  Antibody production starts approximately 10 days after 

symptom onset. Cohort studies of COVID-19 patients associated old age, 

multiple organ dysfunction, and high blood coagulation activity on admission 

with increased odds of death.. Sepsis, respiratory failure, acute respiratory distress 

syndrome (ARDS), heart failure, and septic shock were the commonly observed 

complications among the cohorts[141, 142]. Chakraborty et al. have provided a 

detailed review regarding the diagnostic and proposed therapeutic options for 

COVID-19 treatment [143-146].  

Following the outbreak of the COVID-19 pandemic, several drug candidates from 

the repository of existing drugs have been tested for activity against SARS-CoV-2 

[147-149]. The Food and Drug Administration (FDA) has also created a special 
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emergency program, the Coronavirus Treatment Accelerated Program (CTAP), 

that has reviewed 270 trials and is currently monitoring more than 570 drug 

development programs in the planning stage [150]. A review of the currently 

available literature shows that several existing antiviral drugs that target the viral 

replicating mechanism are under investigation for the treatment of COVID-19. 

The list of antiviral drugs being tested for COVID-19 includes remdesivir, 

hydroxychloroquine, chloroquine, lopinavir, darunavir, baloxavir, imatinib, and 

Favipiravir [151]. Immunomodulating drugs that reduce inflammatory responses 

such as corticosteroids, tocilizumab, ruxolitinib, infliximab, acalabrutinib, and 

azithromycin are also under clinical investigation [152-155]. Various adjunctive 

drugs such as vitamins C and D and antithrombotics are also being considered for 

COVID-19 treatment [156-158]. 

The ritonavir-lopinavir drug combination (Kaletra) has been used for the 

treatment of hospitalized patients in China and its benefits have been noted by the 

WHO [159]. Phase 3 clinical trials are underway to evaluate the performance and 

safety of the influenza drug Favipiravir [160, 161]. Remdesivir, an RNA-

dependent RNA polymerase inhibitor, has been identified as a potential 

therapeutic agent for COVID-19 based on in vitro studies of SARS-CoV-2 

clinical isolates [162, 163]. The FDA issued an Emergency Use Authorization 

(EUA) for the emergency use of the drug following promising results from a 

placebo-controlled randomized clinical trial of remdesivir for COVID-19 

treatment (https://www.fda.gov/). In a clinical study, remdesivir showed 

effectiveness in reducing the recovery time in COVID-19 patients. However, the 

drug did not contribute to significant improvement in survival rates, and the 

efficiency of the drug in reducing viral load in patients remained unclear. The 

FDA has also authorized the emergency use of the anti-malarial drugs 

chloroquine and hydroxychloroquine for COVID-19 treatment [164, 165]. 

However, the clinical efficacy of these drugs remains inconclusive.  
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Viruses that cause diseases in humans are known to encode one or more proteases 

that play important roles in the viral life cycle. Proteases are ideal drug targets for 

viral diseases as they are responsible for cleaving the viral polyprotein, thus 

continuing the viral replication process [166, 167]. Protease inhibitors have been 

used in combination drug therapy in diseases where the virus developed 

resistance by mutation. This strategy of using combination therapy to combat 

drug resistance has been successfully used in the treatment of viral diseases such 

as acquired immunodeficiency syndrome, in which protease inhibitors were used 

in combination with nucleoside reverse transcriptase inhibitors [168].  

The SARS-CoV-2 replicase enzyme encodes two polyproteins, pp1a and pp1ab, 

that produce all functional polypeptide units responsible for replication and 

transcription. Polypeptides are released by the catalytic cleavage activity of 

3CL
pro

 at various subsites of the polyproteins. This cleavage process is known to 

be conserved in 3CL
pro

 for all coronaviruses [169, 170]. Due to the important role 

of 3LC
pro

 in the viral replication process and the absence of a close homolog in 

humans, this protease has been regarded as a promising therapeutic target for 

COVID-19 treatment [171]. However, despite its potential, the quest for 3CL
pro

 

inhibitors feasible for therapeutic use against COVID-19 has been unsuccessful so 

far. 

Computer-aided drug discovery (CADD) methodologies have emerged as 

powerful tools in the drug discovery process and have been used over the last 

decade to identify protein inhibitors and to study protein-drug interactions and 

protein-protein interactions [119, 149, 172, 173]. Since the development of a 

candidate drug into an approved drug is a long and costly process, a combination 

of computational methodologies such as virtual screening, docking, molecular 

dynamics (MD) simulation, and binding free energy evaluation, serves as a 

promising alternative for identifying potential drug candidates from compound 

libraries [174]. Cava et al. studied the mechanism of the angiotensin-converting 

enzyme 2 (ACE2) and its co-expressed genes using gene expression profiles in 
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silico and suggested several interesting potential drug candidates for COVID-19 

[175]. Wang et al. performed virtual screening of the approved drugs and of those 

that are in clinical trials and identified several existing drug candidates that 

showed high binding affinity against 3CL
pro 

[176]. Zhang et. al (2020) used in 

silico screening to identify potential SARS-CoV-2 inhibitors from a repository of 

traditional Chinese medicines [177]. Liang et al. performed MD simulation to 

demonstrate the binding stability of an α-ketoamide inhibitor inside the SARS-

CoV-2 main protease [178].  

In this rapidly evolving pandemic, repurposing existing drugs and evaluating 

commercially available inhibitors against the druggable targets of SARS-CoV-2 

should be an effective strategy to accelerate the drug discovery process. 

Consequently, taking advantage of the availability of the X-ray crystal structure 

of 3CL
pro

 in complex with the inhibitor N3 (PDB code 6LU7)[170], we 

performed a docking-based virtual screening of the protease inhibitor database 

MEROPS[179] (http://www.ebi.ac.uk/merops/) to identify potential 3CL
pro

 

inhibitors.  

Molecular docking and dynamic simulations were carried out to study the binding 

interactions of the inhibitor compounds with 3CL
pro

 [180]. Binding energy 

calculations were performed using the molecular mechanics Poisson-Boltzmann 

surface area (MM-PBSA) method to evaluate the binding affinity of the 

compounds and to identify residues important for binding with 3CL
pro

 [180]
,
[79]. 

The results of the modeling study were carefully analyzed to identify 

commercially available potential 3CL
pro

 inhibitors. 

2. Methods 

2.1. Data preparation 
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The X-ray crystal structure of 3CL
pro

 in complex with the inhibitor N3 (PDB ID 

6LU7) prepared by Jin et al. was used as the receptor for our study [170]. The 

heteroatoms and water molecules were removed from the protein file for further 

study. 

A total of 2700 protease inhibitors were collected from the MEROPS database. 

MEROPS is a database of proteases and their inhibitors [179]. The two-

dimensional (2D) structures provided in the simplified molecular-input line-entry 

system (SMILES) format and the PubChem IDs of the compounds were collected 

from the PubChem website (https://pubchem.ncbi.nlm.nih.gov/) using an in-house 

script. The 2D structures were converted to three-dimensional (3D) structures 

using the concord module in Sybyl-X 2.1 [181]. 

2.2. Virtual Screening  

Docking-based virtual screening was performed using the Surflex-Dock 

module[182] in Sybyl-X 2.1 and the autodock vina [183] program to identify 

potential 3CL
pro

 inhibitors. Since Surflex-Dock and autodock vina use different 

approaches in scoring the binding affinity of the compounds, using both methods 

increased the credibility of the virtual screening results.  

2.2.1. Surflex-Dock 

The protein structure was prepared by adding hydrogen atoms and assigning 

Amber 7FF99 atom types, followed by brief energy minimization. During ligand 

preparation, a general cleanup process was carried out by filling valences and 

removing duplicates and compounds that are not drug-like. A computational 

representation of the binding site, called the protomol, was generated based on the 

crystal ligand coordinate, as shown in Figure 1. The protomol was used to direct 

the initial placement of the ligands during docking. Virtual screening was carried 

out via the Surflex-Dock program using a molecular similarity-based search 
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engine. Binding interactions were evaluated using an empirical scoring function 

based on hydrophobic, polar, repulsive, entropic, and solvation energy terms. 

2.2.2. Autodock vina  

3D coordinates of the compounds bearing partial charges were generated and 

saved in the pdbqt format. The receptor coordinates and grid parameters were 

generated using autodock tools [184]. The virtual screening process and the 

analysis of the results were performed using in-house scripts that incorporated the 

autodock vina program. The binding energies of the compounds were analyzed 

and used to rank the compounds. 

2.3. Molecular docking 

Molecular docking was performed to evaluate the binding energy and to provide 

initial coordinates and topology parameters for the MD simulations. The docking 

procedure was validated by extracting the irreversible inhibitor N3 [170] (PDB ID 

6LU7) and the α-ketoamide inhibitor 13b [185] (PDB ID 6Y2F) from the crystal 

structures and docking them back into the receptor. 

During the molecular docking of the compounds, the binding pose of the selected 

compounds from the virtual screening was used as the input. Polar atoms were 

added to the protein and Kollman charges were added as partial charges. A grid 

box with dimensions 60×60×60 centered at the coordinates X=-10, Y=13, and 

Z=70 was used to represent the search area. The Lamarckian genetic algorithm 

(LGA) was used to perform the docking process, generating 100 conformations 

for each compound. Based on the binding energy and binding interactions with 

the receptor, a representative binding pose for the ligands was selected. 

2.4 Molecular dynamics simulation 
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Classical MD simulations were carried out on selected compounds, using 

GROMACS 2019 [72], to evaluate their binding interactions with 3CL
pro

. The 

protein-ligand complexes from the docking study were used for the MD 

simulation study. The ligands were parameterized with the general amber force 

field (GAFF) [74] using the Acpype program [75]. Protein topology and 

coordinate files were generated using the Amber99SB force field provided in 

GROMACS. The protein-ligand complex was contained in a dodecahedron and 

solvated with TIP3P water. Counter ions were added to neutralize the solvated 

system followed by quick energy minimization with the steepest descent 

minimization algorithm. This was followed by a restrained constant number of 

particles, volume, and temperature (NVT) ensemble equilibration for 500 ps and a 

constant number of particles, pressure, and temperature (NPT) ensemble for 1 ns 

equilibration. Thermodynamic properties such as pressure, density, potential 

energy, and temperature of the systems were monitored to ensure adequate 

equilibration before the production run. The particle mesh Ewald method was 

used to calculate the long-range electrostatics. Modified Berendsen thermostat 

and Parrinello-Rahman barostat were used for temperature and pressure coupling, 

respectively. Finally, unrestrained 50 ns production simulations were carried out 

for the systems at 310 K and 1 bar atmospheric pressure. The MD simulation 

procedure used here has been used in several protein-ligand interaction studies by 

our group and others [119, 173]. 

2.5. Calculation of binding free energy 

The g_mmpbsa package developed by Kumari et al. (2014) was used to calculate 

the binding free energy or simply, the binding energy (BE) of the protein-ligand 

complexes. The g_mmpbsa program used subroutines sourced from GROMACS 

and APBS packages to integrate high-throughput molecular dynamics simulation 

with binding energy calculations [79]. 
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The vacuum potential energy was calculated from the bonded and non-bonded 

interactions based on the molecular mechanics (MM) force field. The electrostatic 

and van der Waals (Evdw) energy contributions were calculated based on Coulomb 

potential and Lennard-Jones potential functions, respectively. During the 

evaluation of the free energy of solvation, the polar contribution was calculated 

by solving the Poisson-Boltzmann equation. The non-polar contribution was 

calculated based on the assumption that the non-electrostatic solvation energy is 

linearly related to the solvent-accessible surface area (SASA). The non-polar 

energy term (Gnonpolar) includes both repulsive and attractive forces between the 

solute and solvent developed due to cavity (Gcavity) formation as well as the van 

der Waals interaction (GvdW). This can be represented by the equation below [173, 

186]. 

 

During the calculation of the BE, snapshots were generated from the equilibrated 

region of the MD trajectory. Energy components were evaluated for 51 snapshots 

extracted every 0.1 ns from the trajectory. The decomposition of the energy term 

to individual residues was carried out using the MmPbsaDecomp.py script 

provided with the g-mmpbsa package. The default parameters set by Kumari et al. 

were used for all the calculations. 

3. Results 

The X-ray structures of the irreversible inhibitor N3 [170] and the α-ketoamide 

inhibitor 13b [185] in complex with 3CL
pro

 were retrieved from the Research 

Collaboratory for Structural Bioinformatics (RCSB) database. In the cell-based 

study by Jin et al. [170], N3 showed inhibitory activity against SARS-CoV-2 with 

a half-maximal effective concentration (EC550) value of 16.77 μM. However, N3 

covalently binds to 3CL
pro

 as an irreversible inhibitor, and its half-maximal 

inhibitory concentration (IC50) value could not be determined. The α-ketoamide 
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inhibitor 13b showed an IC50 value of 0.67 μM for purified recombinant SARS-

CoV-2 main protease 3CL
pro

 and also showed inhibitory activity against COVID-

19 with an EC50 value of 4 to 5 μM in human Calu-3 cells infected with SARS-

CoV-2[185]. The moderate inhibitory activity values of the existing inhibitors 

necessitate the development of high-affinity 3CL
pro

 inhibitors. 

 

Figure 1. Structure of the inhibitor N3 in complex with 3CL
pro

 as given in 6LU7. 

The protein and ligand were shown in gray and magenta color. The mesh (cyan) 

representation between domain 1 and domain 2 represents the area to be searched 

by surflex dock (protomol).  
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The 3CL
pro

 protease consists of three domains: domain 1 (residues 3-99), domain 

2 (residues 100-182), and domain 3 (residues 199-307), as shown in Figure 1 

[185]. Domains 1 and 2 comprise six-stranded antiparallel β-barrels with the 

substrate binding site at the intersection of the two domains. As shown in Figure 2 

(a), the binding site is made up of subsites S1, S2, S3, S4, and S1ˋ, which are 

represented based on the binding position of the substrate polyprotein [170].  

Domains 2 and 3 are connected by a hinge region (residues 182-198), which 

contributes to the formation of the S3 and S4 subsites. Domain 3 consists of five 

α-helices arranged in a globular cluster and regulates the dimerization of 3CL
pro

. 

The tight dimerization of 3CL
pro

 is necessary for its catalytic activity, as it leads 

to crucial conformational changes at the S1 subsite and subsequent binding of the 

substrate.  

 

Figure 2. Showing the H-bond interactions of the inhibitors N3 and 13b with 

3CL
pro

 from the MD simulation studies. H-bond interactions were represented by 

yellow dotted lines and residues forming H-bonds were shown in purple color. (a) 

The overlap between the crystal ligand pose (green) and the MD binding pose 

(salmon) of N3 at the binding site. The subsites S1 (cyan), S2 (red), S3 (yellow), 

S4 (magenta) and S1ˋ (salmon) were shown in mesh representation.  (b) Binding 

interactions between N3 and 3CL
pro

. (c) Binding interactions between 13b and 

3CL
pro

. (d) The overlap between the crystal ligand pose (green) and the MD 

binding pose (salmon) of 13b at the binding site of 3CL
pro

.  

3.1. Virtual screening 
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The protease inhibitor dataset consisting of 2700 compounds was retrieved from 

the MEROPS database [179]. Using an in-house script, we retrieved the 

PubChem IDs and simplified molecular-input line-entry system (SMILES) 

structures of the compounds from the PubChem website. 3D structures were 

generated using the concord module in Sybyl-X 2.1 [181] and the Open Babel 

package [187]. Virtual screening of the protease inhibitor dataset was performed 

with the Surflex-Dock [182] program in Sybyl-X 2.1 and autodock vina. The 

Surflex-Dock program in Sybyl-X 2.1 uses a scoring function that includes 

hydrophobic, polar, repulsive, entropic, and solvation energy terms, whereas the 

autodock vina uses a scoring function based on steric, hydrophobic, and hydrogen 

bonding energy terms [182, 183]. The protein file was prepared by stripping the 

water molecules and other heteroatoms present in it and then converting the file to 

pdbqt file format. The methods and parameters used for virtual screening were 

validated by redocking the crystal ligands N3 (PDB ID 6LU7) and 13b (PDB ID 

6Y2F) into the receptor.  

The total binding score from Surflex-Dock and the binding energy from autodock 

vina were collected and used to rank the compounds. Based on the total score and 

binding energy, 32 compounds were selected and further studied using molecular 

docking, MD simulation, and free energy calculation methods. The Surflex-Dock 

binding scores and the autodock vina binding energies for the 32 compounds, 

including the reference compounds N3 and 13b, are presented in Table 1. 

Table 1. The PubChem IDs, total scores (Surflex-Dock), autodock vina and 

autodock binding energies (kcal/mol), and MM-PBSA based binding energies 

(kJ/mol) of compounds N3, 13b, and the 32 selected compounds. 

Sl. 

No 

PubChem 

ID 

Total Score 

(Surflex 

Dock) 

Binding Energies (kcal/mol) 

 

MM-

PBSA 

Score 

(kJ/mol) 

Autodock 

Vina 

Autodock 
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1 53361968 7.1 -8.5 -11.0 -151 

2 451415 7.0 -8.7 -8.6 -150 

3 134815261 7.1 -8.6 -9.7 -133 

4 15942730 10.9 -8.3 -8.8 -129 

5 644196 10.1 -7.1 -7.7 -129 

6 441243 8.6 -9.1 -9.4 -125 

7 46178275 9.2 -8.1 -9.5 -123 

8 9828551 7.1 -8.3 -10.2 -120 

9 446837 7.9 -8.8 -10.8 -115 

10 132531950 9.0 -7.8 -9.3 -114 

11 102285029 10.3 -7.8 -8.8 -111 

12 11962092 8.3 -8.7 -9.5 -108 

13 446918 7.0 -8.5 -8.3 -108 

14 92727 9.7 -8.4 -8.8 -104 

15 45358152 9.9 -8.1 -7.4 -102 

16 443119 9.1 -8.1 -6.4 -98 

17 134691740 7.0 -8.9 -10.2 -97 

18 5492607 10.5 -8.5 -8.0 -96 

19 121304016 6.3 -7.9 -7.9 -94 

20 447216 7.1 -8.7 -9.4 -92 

21 103535 10.5 -8.3 -9.2 -90 

22 6918046 10.7 -8.1 -7.4 -90 

23 6324659 9.3 -8 -8.7 -88 

24 213039 7.5 -8 -9.1 -81 

25 5464035 9.3 -8.2 -9.6 -79 

26 132585244 7.2 -8.6 -10.7 -77 

27 134823859 7.0 -8.7 -10.0 -73 

28 102207029 7.0 -8.9 -9.8 -63 

29 21881944 7.0 -8.6 -8.1 3 
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30 4322 9.9 -8.3 -8.7 12 

31 100997107 8.4 -8.4 -8.5 24 

32 3451 7.0 -8.3 -9.8 4 

Inhibitors from crystal structures 

33 N3 (6LU7) 10 -7.8 -6.3 -150 

34 13b (6Y2F) 7.8 -9.7 -9.7 -99 

 

3.2. Molecular docking 

Molecular docking of the selected 32 compounds was performed to study the 

binding interactions and to provide initial coordinates of the protein-ligand 

complexes for subsequent MD simulation studies. The X-ray crystal structure of 

3CL
pro 

(PDB ID 6LU7) provided by Jin et al. (2020) was used as the receptor for 

this study. The docking protocol was validated by redocking the crystal ligands 

N3 (PDB ID 6LU7) and 13b (PDB ID 6Y2F) into the receptor. The docking 

showed that N3 formed H-bond interactions with residues His41, Asn142, 

Glu166, and Gln189 of 3CL
pro

. Compound 13b showed interactions with Asn142, 

Gly143, Ser144, His163, and Glu166 with the binding site residues of 3CL
pro

. 

The binding interactions of the inhibitors with 3CL
pro

 are shown in Figure 3.  
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Figure 3. Showing the H-bond interactions of the inhibitors N3 and 13b with 

3CL
pro

 from the molecular docking studies. H-bond interactions were represented 

by yellow dotted lines and residues forming H-bonds were shown in purple color. 

(a) Binding interactions between N3 and 3CL
pro

. (b) Binding interactions between 

13b and 3CL
pro

.  

Both the X-ray structure and docked structure overlapped within a similar space 

inside the receptor. The docked pose of N3 overlapped with the pose in the X-ray 

crystal structure (PDB ID 6LU7) at a root mean square deviation (RMSD) value 

of 2.6 Å, whereas the docked pose of 13b and X-ray structure (PDB ID 6Y2F) 

showed an RMSD value of 1.8 Å.  

The docking protocol used in docking the 3CL
pro

 inhibitors was used to dock the 

selected 32 compounds. The resultant binding energy values of the 32 compounds 

are presented in Table 1. Binding conformations of the compounds were carefully 

selected based on the binding energy values and also based on important non-

bonded interactions observed with 3CL
pro

. The protein-ligand complexes from the 

docking study were used as initial coordinates in the MD simulations. 

3.3. Molecular Dynamics Simulation 

GROMACS 2019 [72] was used to perform classical MD simulations of the 

selected 32 protein-ligand complexes to study the dynamic binding interactions of 

the compounds with 3CL
pro

.  

For a comparative study, we also performed MD simulations of the N3-3CL
pro

 

complex (PDB ID 6LU7) and the 13b-3CL
pro

 complex (PDB ID 6Y2F). The 

observed H-bond interactions and hydrophobic interactions are shown in Figure 1 

and Figure 2, respectively. The X-ray structure of N3-3CL
pro

 showed H-bond 

interactions with Phe140, Gly143, His160, Glu166, Glu189, and Thr190 [170]. 

The ligand N3 also formed a covalent bond with Cys145. However, this covalent 

bond with Cys145 was not observed in the MD simulation result because the 
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standard force field (AMBER99SB) cannot account for the formation of covalent 

bonds. The inhibitor N3 formed H-bond interactions with Phe140, Gly143, 

Cys145, His163, and His164 at the S1 subsite of 3CL
pro

. H-bond interactions 

were also observed between N3 and the hinge residue Glu192 near the S4 subsite. 

Isopropyl moieties of N3 were seen at the adjacent hydrophobic subsites S2 and 

S3. The benzene moiety of N3 was observed near the S1ˋ subsite, as seen in the 

crystal structure (PDB ID 6LU7). The binding interactions of N3 with 3CL
pro

 are 

shown in Figure 2 (b). Similar binding patterns were also observed in the α-

ketoamide compound 13b, where the moiety between the benzene ring and the 

pyridone ring formed H-bond interactions with His41, Asn142, Cys145, and 

His164 at the S1 subsite. The benzene ring of 13b also formed hydrophobic 

interactions with residues at the S1ˋ subsite. The pyridone ring formed H-bond 

interactions with Glu166 of β11 and the cyclopropyl moiety extended into the 

small hydrophobic subsite S2. The tert-butyloxycarbonyl protecting (Boc) group 

of 13b did not fully extend into the S4 subsite to form interactions with the hinge 

residues, as observed in the N3-3CL
pro

 complex, and instead formed hydrophobic 

interactions with Leu167 and Pro168 at β11. The binding interactions observed in 

the MD simulation of 13b-3CL
pro

 are shown in Figure 2 (c). The least-square fit 

RMSD of the ligands N3 and α-ketoamide 13b during the 50 ns simulations are 

shown in Figure 7. When compared with the respective crystal ligand poses, 

compounds N3 (Figure 2a) and 13b (Figure 2d) showed RMSD values of 1.5 Å 

and 2 Å, respectively. Similarly, the dynamic binding interactions of the 32 

compounds with 3CL
pro

 were also studied. The trajectories from the MD study 

were used to evaluate the free energy of binding for the selected 32 compounds. 

The hydrophobic interactions observed from the MD simulations of N3 and 13b 

are shown in Figure 4.  

3.4. Calculation of binding free energy 

MM-PBSA based binding energy (BE) calculations were performed for the 

selected 32 protein-ligand complexes, followed by evaluation of the energy 
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contribution of the individual residues. For a comparative study, we also 

calculated the BE and the BE distribution for both, N3-3CL
pro

 and 13b-3CL
pro

 

complexes. Compounds N3 and 13b showed BE values of -150 kJ/mol and -99 

kJ/mol, respectively. Calculation of the BE distribution identified residues that 

contributed highly to the total BE, as shown in Figure 5. The binding site residue 

Met165 from the S2 subsite showed the highest BE contribution, that may be 

attributed to the hydrophobic interaction observed with the compounds N3 and 

13b. Pro168 at β11 also showed a high BE contribution, that may be attributed to 

the hydrophobic interaction with the methylisoxazole of N3 and the Boc group of 

13b. 

 

Figure 4. Showing the hydrophobic interactions of the inhibitors N3 and 13b 

with 3CL
pro

. Hydrophobic interactions were represented in red dotted lines. 

Residues that showed Hydrophobic and H-bond interactions were given in green 

and black label respectively. Carbon, oxygen, nitrogen and sulfur atoms were 

shown in black, red, blue and yellow color respectively.  (a) N3-3CL
pro

 complex 

(b) 13b-3CL
pro

 complex. 
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Figure 5. Residues that showed high contribution to the total binding energy 

during the MD simulation of N3-3CL
pro

 (6LU7) and 13b-3CL
pro

 (6Y2F) 

complex. The residues from the N3-3CL
pro

 complex and 13b-3CL
pro

 complex 

simulations were shown in red and blue color respectively. 

The residues from the S1 subsite, namely Phe140, Asn142, Gly143, Ser144, and 

Cys145, and the residues from β11, namely His163, His164, Met165, Leu167, 

and Pro168, were involved in both H-bond interaction and hydrophobic 

interactions in N3-3CL
pro

 as well as 13b-3CL
pro

 complexes. Consequently, these 

residues showed relatively high BE contributions (Figure 4). Trajectory analyses 

also showed that the binding interactions with S1, S2, and β11 were stable 

throughout the simulations. However, interactions at the S1ˋ and S4 subsites were 

transient, resulting in flexible movement as indicated by the flipping of the 

benzene ring at the S1ˋ subsite and the movement of Boc and methylisoxazole at 

the S4 subsite.  

Following the calculation of the BE for the 32 compounds, 16 compounds 

showed total BE values higher than the BE of compound 13b (-99 kJ/mol), 

suggesting potential inhibitory activity for 3CL
pro

. Compounds 53361968 (-151 

kJ/mol) and 451415 (-150 kJ/mol) showed higher BE values than the potent 

inhibitor N3. We also observed that 12 compounds showed BE values in the 

range of -98 kJ/mol and -63kJ/mol, suggesting a moderate binding affinity with 

3CL
pro

. Compounds 21881944, 4322, 100997107, and 3451 showed positive BE 

values, possibly due to non-converging simulations. The total BE values of the 

compounds are presented in Table 1. Based on the MM-PBSA based BE 

evaluations, the residue energy contributions of 10 protein-ligand complexes with 
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high binding affinity were analyzed, as shown in Table 3. Analysis of the energy 

decomposition results for the selected 10 compounds showed that residues Thr25, 

Leu27, His41, Asp48, Met49, Leu50, Leu141, Cys145, His164, Met167, Pro168, 

Asp187, Gln189, and Ala191 play important roles in the binding of the 

compounds with 3CL
pro

. The interactions with these residues were dominated by 

electrostatic and hydrophobic interactions (Table 2). 

 

Figure 6. Showing the H-bond interactions of the inhibitors with 3CL
pro

. The 

protein and ligand and ligand were shown in gray and green color respectively. H-

bond interactions were represented by yellow dotted lines and residues forming 

H-bonds were shown in purple color. (a) 441243-3CL
pro

 (b) 451415-3CL
pro

 (c) 

446837-3CL
pro

 (d) 53361968-3CL
pro

 (e) 46178275-3CL
pro

 (f) 9828551-3CL
pro

 (g) 

644196 -3CL
pro

 (h) 134815261-3CL
pro

 (i) 15942730-3CL
pro

 and (j) 132531950-

3CL
pro

. 

4. Discussion 

We selected 10 compounds that showed high potential for 3CL
pro

 inhibition based 

on the total binding free energy to analyze the structural features critical for 

binding with 3CL
pro

. The structures of the selected compounds are presented in 

Table 4. The binding interactions with 3CL
pro

 and the RMSD values for the 10 

compounds are shown in Figure 6 and Figure 7, respectively.  
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Figure 7. Least Square Fit Root Mean Square Deviation (RMSD) of the protein 

(red) and ligand (black) from the 50 ns MD simulations. (a) N3-3CL
pro

 (b) 13b-

3CL
pro

 (c) 441243-3CL
pro

 (d) 451415-3CL
pro

 (e) 644196-3CL
pro

 (f) 53361968-

3CL
pro

 (g) 46178275-3CL
pro

 (h) 9828551-3CL
pro

 (i) 446837-3CL
pro

 (j) 

134815261-3CL
pro

 (k) 15942730-3CL
pro

 and (l) 132531950-3CL
pro

. 

Compound 441243 formed H-bond interactions with Gln189 and His41, while 

forming multiple interactions at the S1 subsite with Asn142, Ser144, and Gly143. 

Compounds 451415 (-150 kJ/mol) and 53361968 (-151 kJ/mol), which showed 

relatively high binding energy values (Table 2), had a relatively less number of H-

bond interactions. However, further analysis showed that these compounds had 

relatively high hydrophobic energy contributions, resulting in higher total binding 

energy values. The donor nitrogen atoms of compound 446837 formed two H-

bond interactions: with His41 and Glu166. Compound 46178275 showed only 

one stable H-bond interaction with Glu166. However, the oxygen and donor 

nitrogen atoms of 46178275 near the hinge region could form transient 

interactions with Gln189 and Thr190. Compound 15942730 showed the highest 
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number of H-bonds, forming multiple interactions with His41, Glu166, Gln189, 

and Gln192. In the binding energy analysis of the 15942730-3CL
pro

 complex 

(Table 2), the contribution of the electrostatic component to the total binding 

energy was -91 kJ/mol, which was higher than that of the other selected 

compounds.  Compounds 9828551 and 644196 formed several H-bond 

interactions with residues from β11 and S1. Consequently, these two compounds 

showed high electrostatic energy terms in the binding energy calculations. 

Compound 134815261 formed H-bond interactions with Glu166 and Gly143. 

Compound 13231950 formed H-bond interactions with His41, Asn142, His164, 

and Gln189. The analyses suggested that compounds showing higher binding 

affinities with 3CL
pro

 were able to form H-bond interactions with residues from 

multiple subsites and also showed higher number of hydrophobic interactions. 

Table 2. Energy contributions of the various energetic terms to the total binding 

energies of the inhibitors with 3CL
pro

. 

Complexes 

Van der 

Waals 

(kJ/mol) 

Electrostati

cs 

(kJ/mol) 

Polar 

solvation 

(kJ/mol) 

Non-

polar 

(kJ/mol) 

Total 

Binding 

Energy 

(kJ/mol) 

441243-

3CL
pro -256 -81 238 -26 -125 

451415-

3CL
pro

 
-293 -44 217 -29 -150 

446837-

3CL
pro

 
-217 -60 185 -23 -115 

53361968-

3CL
pro

 
-276 -33 184 -26 -151 

46178275-

3CL
pro

 
-213 -38 152 -24 -123 

9828551-

3CL
pro

 
-215 -72 188 -21 -120 
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644196-

3CL
pro

 
-231 -88 214 -24 -129 

134815261-

3CL
pro

 
-262 -54 210 -27 -133 

15942730-

3CL
pro

 
-239 -91 225 -24 -129 

132531950-

3CL
pro

 
-254 -53 219 -26 -114 

N3-3CL
pro

 -300 -108 286 -27 -150 

13b-3CL
pro

 -229 -78 232 -23 -99 

 

Table 3. Residues with a high contribution to the total binding energy during the 

MD simulations of the complexes 441243-3CL
pro

, 451415-3CL
pro

, 446837-

3CL
pro

, 53361968-3CL
pro

, 46178275-3CL
pro

, 9828551-3CL
pro

, 644196-3CL
pro

, 

134815261-3CL
pro

, 15942730-3CL
pro

, and 132531950-3CL
pro

. The energy values 

of the residues are in kJ/mol. 

R
es

id
u

es
 

4
4
1
2

4
3
 

4
5
1
4

1
5
 

4
4
6
8

3
7
 

1
3
4
8
1
5
2
6
1
 

5
3
3
6
1

9
6
8
 

1
5
9
4
2

7
3
0
 

4
6
1
7
8

2
7
5
 

9
8
2
8
5
5
1
 

1
3
2
5
3
1
9
5
0
 

6
4
4
1

9
6
 

THR25 -1.16 -4.25 -0.89 -2.02 -1.56 -2.07 -3.03 -0.16 -1.94 -0.38 

Leu27 -2.43 -3.88 -0.55 -0.93 -2.43 -1.05 -2.41 -1.79 -3.16 -3.69 

His41 -1.31 0.11 -4.13 -0.36 -8.03 -4.21 1.78 -0.79 -4.73 -1.39 

Cys44 -0.23 -0.04 0.39 0.22 -1.35 2.46 -0.08 -0.10 -0.31 -0.20 

Asp48 -0.28 -0.92 -0.56 -2.22 -1.63 -1.45 -2.28 -1.81 -1.68 -0.97 

Met49 -5.81 -6.99 -5.29 -6.89 -6.68 -6.14 -5.97 -2.97 -7.65 -2.37 

Leu50 -0.51 -0.49 -0.63 -0.43 -1.24 -0.69 -0.40 -0.29 -0.75 -0.12 

Leu141 -2.01 -0.67 -0.49 -0.52 -1.76 -0.36 -3.69 -2.67 -0.30 -2.68 

Cys145 -6.26 -3.84 -1.70 -2.14 -4.28 -4.19 -1.78 -2.51 -4.35 -6.67 

His164 -5.05 -2.89 0.57 4.14 -0.62 1.41 -0.27 -1.25 2.90 -5.98 

Met165 -9.01 
-

11.29 
-9.62 

-
12.06 

-
10.39 

-11.13 -2.59 -6.64 
-

10.07 
-

11.23 

Leu167 -2.28 -3.61 -3.40 -4.74 -1.49 -2.89 -0.61 -0.85 -2.00 -0.56 

Pro168 -1.54 -2.88 -5.76 -4.07 -3.42 -7.68 -0.33 -0.36 -1.11 -1.04 
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Asp187 0.02 -2.55 -0.41 0.09 -2.61 -2.03 -2.04 -2.37 -3.70 -2.14 

Gln189 -7.24 -0.09 -3.47 -2.68 -6.20 -3.55 -3.45 -1.92 -8.39 1.01 

Thr190 2.46 -0.28 2.41 0.31 -3.98 -2.89 -1.10 -1.74 2.29 0.27 

Ala191 -0.98 -0.81 -0.95 -1.12 -3.09 -2.07 0.00 -3.92 -1.04 -2.02 

From the analyses of the binding interactions, we observed that the interactions of 

the compounds with the S1 subsite residues such as His41, Asn142, Gly143, 

Ser144, and the Glu166 residue of β11 were crucial for stable interaction with 

3CL
pro

. These interactions with the S1 and β11 residues were also observed in 

experimental studies [170, 185]. Interactions of the compounds at the S2 subsite 

were predominantly hydrophobic. Since the S2 subsite is a small hydrophobic 

pocket, compounds with substituents such as isopropyl and cyclopropyl, which 

can fit into the hydrophobic pocket, could be promising 3CL
pro

 inhibitors, as in 

the cases of inhibitor 13b (Figure 2b), compound 451415/aclarubicin, and 

53361968/TMC-310911 [188]. It was also observed that compounds with 

substituents that extend into the S4 subsite tend to show higher binding energies. 

The compounds 451415/aclarubicin [189] and 53361968, which formed H-bonds 

(Figure 6b and 6d)  and hydrophobic interactions at the S4 subsite showed 

relatively high total BE of -150 kJ/mol and -151 kJ/mol, respectively, suggesting 

the importance of these interactions in 3CL
pro

 inhibition. This observation was 

also made in the experimental study of inhibitor 13b, wherein removing 

substituents that extended into the S4 subsite reduced the activity value[185]. 

Having substituents that extend into the S4 subsite induced conformational 

changes at the hinge region between subunits 1 and 2, as noted by Zhang et al. 

(2020) [185]. However, the exact mechanism behind the conformational change 

leading to increased affinity for 3CL
pro 

remains unclear. From interaction studies, 

it was observed that having substituents that form hydrophobic interactions at the 

S1ˋ subsite was important for binding with 3CL
pro

. These interactions at S1ˋ were 

dominated by hydrophobic interactions, as observed in the interactions of N3 and 

13b (Figure 4) and also in the cases of compounds 446837/KNI-764 [190] (-115 

kJ/mol), 53361968[188] (-150 kJ/mol), and 15942730/chemostatin [191] (-129 

kJ/mol). However, in the case of compound 451415, that lacks an extended 
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hydrophobic benzyl substituent, H-bond interaction was observed with Thr26 at 

the S1ˋ subsite (Figure 6b). From these observations, we speculate that having 

substituents that can form hydrophobic and H-bond interactions with S1ˋ residues 

may increase the binding affinity since having both hydrophobic and H-bond 

interactions with 3CL
pro

 closely emulates the substrate-binding pattern [192]. 

Binding energy decomposition for individual residues identified His41, Met49, 

Met165, and Glu189 as key locations. These residues were also identified as 

important hotspot residues by Wang et al. [176] in a recent study. Additionally, 

analysis of BE decomposition also revealed that the residues Thr25, Leu27, 

Asp48, Leu50, Leu141, Cys145, His164, Leu167, Pro168, Asp187, and Ala191 

were significant for the binding of the inhibitors with 3CL
pro

. 

Table 4. Structures of the 10 compounds selected on basis of binding energy 

(MM-PBSA)  
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Table 5: The predicted ADMET values for the 10 selected compounds. 
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(l
o
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 m
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m
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C
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o
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(Y
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441243 57 1.0 
N

o 

Ye

s 

N

o 
No No 

N

o 
Yes 0.3 No 

451415 84 1.4 
N

o 

Ye

s 

N

o 
No No 

N

o 
Yes 0.9 No 

446837 63 0.7 
N

o 

Ye

s 

N

o 

Ye

s 

Ye

s 

N

o 
Yes 

-

0.1 
No 

53361968 82 1.9 
N

o 

Ye

s 

N

o 
No No 

N

o 
Yes 0.2 No 

46178275 53 -0.6 
N

o 

Ye

s 

N

o 
No No 

N

o 
No 0.3 No 

9828551 66 0.25 
N

o 

Ye

s 

N

o 
No No 

N

o 
Yes 0.5 No 

644196 39 0.3 
N

o 

Ye

s 

N

o 
No No 

N

o 
Yes 1.0 No 
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134815261 92 0.85 
N

o 

Ye

s 

N

o 
No No 

N

o 
Yes 0.4 No 

15942730 17 -1.3 
N

o 
No 

N

o 
No No 

N

o 
Yes 

0.0

3 
No 

132531950 75 0.5 
N

o 

Ye

s 

N

o 
No No 

N

o 
No 0.5 No 

The absorption, distribution, metabolism, and excretion (ADMET) properties of 

the compounds were also evaluated using the pkCSM server[132] and the results 

are presented in Table 5. In the ADMET analyses, compounds that showed an 

intestinal absorption value of less than 30% were considered to have poor 

absorption rates. Except for compound 15942730, all the selected compounds 

showed reasonable intestinal absorption rates. Steady-state volume of distribution 

(VDss) represents the degree to which the compounds are distributed in the body 

rather than the plasma, and compounds with log (VDss) values greater than -0.15 

are considered to have a reasonable distribution rate. All the compounds in Table 

5 except 46178275 and 15942730 showed VDss values greater than -0.15, 

indicating that the compounds have satisfactory distribution rates. Analyses of the 

metabolism results suggest that the compounds are poor cytochrome P450 

inhibitors. Compounds with positive results for the CYP3A4 substrate test 

suggest that they can be metabolized by cytochrome P450. The selected 

compounds also showed a reasonable total clearance rate from the body, except 

compound 446837. The negative Ames toxicity test results suggest that the 

compounds have poor mutagenic potential. 

Being in the middle of the COVID-19 pandemic, availability of these compounds 

is crucial for in vivo and in vitro experimental studies. Hence, we checked the 

availability of the selected compounds in commercial libraries by referencing 

vendor data through the PubChem website and the ZINC database[193]. The 

details regarding the ZINC ID and the distributor (vendor) of the compounds are 
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provided in Table 6. Compound 441243/saquinavir [194] is an antiretroviral 

protease inhibitor approved by the FDA for the treatment of human 

immunodeficiency virus (HIV) infection. Recently, several computational studies 

have also reported the encouraging binding ability of saquinavir with 3CL
pro

 [159, 

195]. The high binding affinity of saquinavir observed in our study, as well as 

other by independent research groups, indicates its potential as a 3CL
pro

 inhibitor. 

The registry of clinical trials maintained by the United States National Library of 

Medicine under the National Institute of Health (NIH) showed that compound 

451415/aclarubicin is an anthracycline drug and has been under evaluation (phase 

2 clinical trial) for combination therapy against acute myeloid leukemia (AML). 

Compound 53361968, which showed the highest BE value (-151 kJ/mol), is an 

investigational protease inhibitor that is currently being studied for HIV-1 

infection treatment [196]. Compound 46178275/faldaprevir is a hepatitis C virus 

protease inhibitor currently being studied for the treatment of hepatitis C [197]. 

Additionally, compounds 132531950 (-114 kJ/mol), 102285029 (-111 kJ/mol), 

11962092 (-108 kJ/mol), 446918 (-108 kJ/mol), 92727 (-104 kJ/mol), and 

45358152 (-102 kJ/mol) also showed BE values greater than that of the inhibitor 

in the X-ray structure (α-ketoamide with a BE value of -99 kJ/mol), suggesting 

that these compounds may have higher inhibitory activity against 3CL
pro

. 

Table 6. The binding energies, ZINC compound IDs, and the distributor/vendor 

names and vendor compound IDs of the 10 compounds selected on basis of high 

MM-PBSA-based binding energy evaluation.  

PubChem 

ID 

Binding 

Energy 

(kJ/mol

) 

ZINC 

Compound ID 
Vendor 

Vendor 

Compound 

ID 

441243 

(saquinavir) 
-125 ZINC3914596 Molport 

MolPort-000-

883-824 

451415 

(aclarubicin) 
-150 ZINC8101053 

Molport 

SC 

Economica

l 

MolPort-004-

845-383 

446837 -115 ZINC3941126 eMolecules 92333721 

https://zinc.docking.org/substances/ZINC000003914596/
https://zinc.docking.org/substances/ZINC000008101053/
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(KNI-764) 

53361968 

(TMC-

310911) 

-151 ZINC98208561 
Synblock 

Inc. 
SB17102 

46178275 

(faldaprevir) 
-123 

ZINC15033914

5 

Compoun

d Cloud 

42601552, 

56594927 

9828551 -120 
ZINC13729397

8 

eNovation 

Chemicals 
D676701 

644196 -129 ZINC78938888 Ambinter 
Amb1993041

1 

134815261 -133 NA NA NA 

15942730 

(chemostatin

) 

-129 ZINC3947583 NA NA 

132531950 -114 
ZINC22469939

9 
NA NA 

*NA represents not available. 

 

5. Conclusion   

In this ongoing COVID-19 pandemic, CADD methodologies can be used 

effectively to accelerate the process of developing therapeutic agents for the 

treatment of this disease. In this study, we used docking-based virtual screening to 

search the protease inhibitor database (MEROPS) to identify potential inhibitors 

of the SARS-CoV-2 main protease 3CL
pro

. Molecular docking and dynamics 

simulations were carried out to study the binding interactions. Binding free 

energy calculations were performed to identify potential 3CL
pro

 inhibitors. The 

study identified saquinavir, which is an approved drug for HIV-1 treatment, and 

several other investigational drugs, such as aclarubicin, TMC-310911, and 

faldaprevir. We also assessed the commercial availability of the compounds, 

which could be useful for experimental researchers. Analysis of the binding 

interactions revealed that electrostatic interactions with residues from the S1 

subsite and the β –strand (β11) were important for the inhibition of 3CL
pro

. 

Compounds possessing substituents that extend into the S4 subsite induced 

conformational changes at the hinge between subunit 1 and subunit 2 and showed 

https://zinc.docking.org/substances/ZINC000098208561/
https://zinc.docking.org/substances/ZINC000150339145/
https://zinc.docking.org/substances/ZINC000150339145/
https://zinc.docking.org/substances/ZINC000137293978/
https://zinc.docking.org/substances/ZINC000137293978/
https://zinc.docking.org/substances/ZINC000003947583/
https://zinc.docking.org/substances/ZINC000224699399/
https://zinc.docking.org/substances/ZINC000224699399/
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higher binding affinity. Compounds with high binding energies showed either 

hydrophobic or electrostatic interactions at the S1ˋ subsite. These structural 

features may be harnessed to design potent 3CL
pro

 inhibitors. Using CADD 

methods, we identified 15 compounds with a binding affinity greater than that of 

the inhibitor inside 3CL
pro

 in the X-ray structure (α-ketoamide). We suggest 

further experimental investigation of these compounds. 
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Conclusion 
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Conclusion 

Protein kinases play an important role in mediating various signaling processes 

and their over-activation has been linked to the pathogenesis of various cancers 

and diseases. This has made kinases interesting targets for drug development. To 

this end, several kinases have been identified to be associated with the 

pathogenesis of various cancer types and efforts have been made by drug 

developers to design potent inhibitors for these kinases. Consequently, several 

small compounds and peptide-based inhibitors have been designed and tested for 

inhibition of kinases which resulted in the approval of 52 kinase inhibitors. 

However, the targeting kinases for pharmaceutical use are still limited due to the 

lack of selectivity of the inhibitors. Most inhibitors showed activity for multiple 

kinases, resulting in off-target effects. Hence, the design and development of 

selective and potent inhibitors constitute an interesting field in drug design. 

We have performed a molecular modeling study of several dataset compounds 

that were reported in recent studies as kinase inhibitors. In the first study, we have 

used molecular docking, molecular dynamics simulation, and 3D-QSAR to 

understand the structural factors important for selective inhibition of GRK2 

kinases. GRK2 is a protein kinase implicated in heart diseases, making it a target 

for drug design. MM/PBSA based method was used to calculate the binding 

energy between the ligand and the receptor. The study resulted in the 

identification of several structural elements that were important for the inhibition 

of GRK2. Further analysis also showed that compounds with substituents that 

extended into the hydrophobic pocket tend to show higher activity and selectivity 

for GRK2. Similarly, we have also performed a computational study of a series of 

c-KIT/PDGFRα inhibitors. The study showed that the inhibitors are bound with c-

KIT and PDGFRα in a similar pattern. The study also suggested several structural 

guidelines that were important for dual inhibition of the two kinases.  
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Finally, virtual screening of the protease inhibitor database MEROPS for 

potential SARS-COV-2 main protease (3CL
pro

) inhibitor was performed. The 

study resulted in the identification of several know protease inhibitors. Based on 

the binding affinity with 3CL
pro

 we selected 15 protease inhibitors as potential 

inhibitors of 3CL
pro

 inhibitors.  The selected inhibitors include Saquinavir (an 

approved drug for HIV-1 treatment) and three other investigational drugs namely 

aclarubicin, TMC-310911, and Faldaprevir. Aclarubicin is an anthracycline drug 

used in cancer chemotherapy.  TMC-310911 is an antiviral drug and Faldaprevir 

is an experimental drug under clinical trial for the treatment of hepatitis C disease.  

Further in vivo and in vitro experiment could provide promising insight into the 

pharmaceutical potential of the compounds for COVID-19 treatment.  

Taken together, the computational modeling study provided various important 

structural clues for the development of potent kinases inhibitors. The studies also 

lead to the design of several compounds that showed promising predicted activity 

values against specific kinases. Further validation of the activity of the 

compounds is recommended.   
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