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국문초록

플래그벡터 순서쌍  를 만족하는 4차원 다면체의 구체적인 예의 
나열에 관한 연구

설 유 미
지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

  

2018년에 Sjöberg와 Ziegler는 4차원 다면체의 플래그벡터 순서쌍 ()을 

완벽하게 결정하는 연구결과를 발표하였다. Sjöberg와 Ziegler는 이 연구결과

를 얻기 위해 Altshuler와 Steinberg의 최대 8개의 꼭짓점을 갖는 4차원 다면

체에 관한 연구결과를 사용하였다. 또한 이를 바탕으로 2019년에 Kim and 

Park는 Sjöberg와 Ziegler의 연구결과를 심도 있게 이해하고, 기존의 연구 방

법을 확장하여 4차원 다면체의 플래그벡터 순서쌍 , , , 

의 범위에 관한 새로운 결과를 제시하였다. 이에 본 논문은 Kim과 

Park의 결과를 필요충분조건으로 확장하기 위한 기초 연구를 위해 Kim과 

Park의 연구결과가 제시하는 범위를 만족하는 구체적인 예를 찾고 나열하였다.

그 결과, 의 값이

                

로 나타남을 확인하였고, 특히 를 만족하는 4차원 다면체의 구체적인 예

가 존재함을 보였다.
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Ⅰ. Introduction

For a -dimensional polytope  (or, in short, -polytope), let   

denote the number of dimensional faces of  for ≤≤. Then 

the -vector of  is defined to

… .

It is one of the well-known and fundamental combinatorial invariants of 

polytopes, which is our major concern of thesis.

In order to understand geometric properties of a given polytope more 

deeply, one can generalize the concept of -vectors in various ways. 

One of them is to use the notion of the so-called flag vector, which is 

another useful combinatorial invariant for convex polytopes. To be more 

precise, let  be a subset of …, and let    denote 

the number of chains 

 ⊂ ⊂⋯⊂   ⊂

of faces of  with 

dim … dim. 

For the sake of simplicity, from now on we use the notation  … 
 

instead of  … 
 for any subset … of … . For 

example,  will mean . The flag vector of  is defined to 

be

  ⊆  …  .

Then clearly the -vector   is just a vector which is formed by 

some part of components of the whole flag vector   ⊆  …  . That 

is, for example, if we take   for each ≤≤, then we have

  .

Recently, in [13] Sjöberg and Ziegler has proved surprising results that 

completely determine the flag vector pair  of any 4-dimensional 
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polytopes. In order to obtain such results, they crucially used Altshuler 

and Steinberg's results of a 4-dimensional polytopes with up to 8 

vertices([2], [3]). Furthermore, Sjöberg and Ziegler used methods such 

as stacking, general stacking on cyclic polytopes, facet splitting, and 

truncating to find out the structure of specific 4-dimensional polytopes. 

Based on the results of Sjöberg and Ziegler, in [10] Kim and Park 

proved some necessary conditions for the ranges of flag vector pairs 

such as , , ,  of 4-dimensional polytopes. 

However, currently it is not clear that their results give rise to 

necessary and sufficient conditions for flag vector pairs , , 

,  to be satisfied by 4-dimensional polytopes.

In view of this, the goal of this thesis is to enumerate various and 

concrete examples of 4-dimensional polytopes which satisfy necessary 

conditions for the ranges of flag vector pair  proved by Kim and 

Park in [10]. This will provide some initial step towards a necessary 

and sufficient condition for the range of flag vector pair  as well 

as the validity for the results given in [10]. In order to achieve our 

goal, we make use of the examples of 4-dimensional polytopes with the 

number of vertices equal to 7 or 8 listed in the paper [13] of  Sjöberg 

and Ziegler.

The thesis is organized as follows. 

In Chapter 2, we first summarize some basic definitions, notation, and 

useful facts which are necessary for explaining our main results given 

in Chapters 3 and 4. We refer the reader to [1], [5], [7], [8], [9],  

[10], [11], [12], and [14] for more details.

In Chapter 3, we summarize some important results previously obtained 

by Kim and Park in [10] which are our main concern of this thesis.



- 3 -

Finally, in Chapter 4 we enumerate specific examples which satisfy the 

range of the flag vector pair  , in detail. 
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Ⅱ. Preliminaries

This chapter sets up the notation and definitions used in this thesis. In 

addition, this chapter briefly describes some important facts used to 

understand this thesis.

A polytope refers to a shape that extends a shape such as a polygon or 

polyhedron to an arbitrary dimension. The polytope defined in 

-dimension is called -polytope. For example, polygons are 2-polytope, 

while polyhedra are 3-polytopes. 

To be more precise, a convex polytope is the convex hull of a finite 

set of points in some Euclidean space . More generally, for ≤≤ 

let  denote a linear functional in  and let  be a real number. Then 

a convex polyhedron  is an intersection of finitely many half-spaces in 

 given by

  ∈   ≥   ….

In this thesis, we will study only the 4-polytopes.

Recall that  is the number of vertices,  is the number of edges,  

is the number of faces that make up the vertex, and  is the number 

of facets that make up the vertex. 

Now we list some examples of polytopes with small polytopal pairs 

  for  ≤ with simplex facet and/or simple vertex as in the 

paper [13] of Sjöberg and Ziegler, which will play an important role in 

finding some explicit examples which satisfy the results given in 

Theorem 3.1.

In Table 2.1 below, the second column explains the way to find the 

polytope. The polytopes  are ones with 7 or 8 vertices which are 
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known from the well-known classification result of all polytopes with up 

to 8 vertices, and 
 denotes the dual of the polytope . 

We now explain some terminologies in Table 2.1.  First, we begin with 

the definition of a cyclic polytope. To do so, let us define the moment 

curve in   by

  →  ↦ …∈.

For any  , the standard -th cyclic polytope with  vertices, 

denoted by , is defined as the convex hull in  of  

different points …  on the moment curve  such that 

  ⋯ . The set of all the faces (including the improper faces) of 

a (convex) polytope   is a partially ordered set (or poset), when  

partially ordered by inclusion. Two polytopes are said to be 

combinatorial equivalent, or of the same combinatorial type, if they have 

isomorphic face posets. Cyclic polytopes  are precisely those 

which are combinatorial equivalent to the standard cyclic polytope 

.

Let  be a -polytope with a facet  and let  be a point beyond  

and beneath all other facets of . Let  be the convex hull of  and , 

i.e., conv∪. In this case, we say that  is a -polytope 

obtained by stacking. Hence, for example, by skacking onto square 

pyramid  we can obtain a new -polytope  which is the convex hull 

of  and a new vertex . 

On the other hand, a pyramid over triangular bipyramid just means the 

polytope obtained by taking the pyramid over a 3-dimensional triangular 

bipyramid.

For the facet splitting, consider a facet  of a 4-polytope  and a 

hyperplane  which intersects the relative interior of  in a polygon . 
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If the only vertices of  happen to be simple vertices on one side of 

, then we can obtain a new polytope  by separating the facet  into 

two new facets by the polygon . In this case, we say that  is 

obtained from  by splitting a facet. So, for example, splitting bipyramid 

means that we obtain a new polytope by splitting one facet of 

bipyramid. 
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[Table 2.1] Some polytopal pairs

  Description   Description
Polytopes with ∆-facet and simple vertex   



  4-simplex   


  2-fold pyramid over quadrangle   dual of  
  pyramid over triangular bipyramid   dual of  
  pyramid over triangular prism   



  -fold pyramid over pentagon   


   polytopes with ∆-facet
  

  cyclic polytope 

     

     

  
   

  
   

  2-fold pyramid over hexagon   cyclic polytope 

     

     

     

     

     

     

     

     

     

  
   

  
   

  split bipyramid in     cyclic polytope 

  split bipyramid in    
stack onto square pyramid in 

 

  split bipyramid in   Polytopes with simple vertex

 
stack onto square pyramid in 

 
  dual of cyclic polytope 

  
   



  
   



  dual of     


  split bipyramid in     


 
stack onto square pyramid in 

 
  





- 8 -

[Table 2.2] list all polytopes  with 7 or 8 vertices from [Table 2.1] 

which were used in the construction of all possible flag vector pairs 

 in the paper [13] of Sjöberg and Ziegler. They will be used in 

finding specific examples in Chapter 4 that satisfy the results proved by 

Kim and Park in [10]. 

The polytopes in [Table 2.2] are listed by their facet list. In fact, in 

[6] Fukuda, Miyata, and Moriyama provide a complete list of all 31 

polytopes with 7 vertices and 1294 polytops with 8 vertices. The third 

column in [Table 2.2] such as  means that the polytope can be 

found as the -th polytope listed in the classification of -polytopes 

with 7 vertices.
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[Table 2.2] 4-Polytopes  with 7 and 8 vertices

polytope facet list row
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Ⅲ. Results of Kim and Park revisited 

In this section, we briefly review Theorem 3.1 of Kim and Park and its 

proof in [10] which is necessary for our concrete enumeration of flag 

vector pairs   for certain 4-polytopes.

Theorem 3.1 The flag vector pair    of a -polytope 

 satisfies the following two conditions:

(1) ≤ ≤ ≤

(2)  ≥ and for ∈,  ≠  .

Lemma 3.2 The flag vector of every 4-polytope  satisfies the 

following identity 

 

Proof. For the proof, we apply the generalized Dehn-Sommerville 

equation [4] with          Then we can obtain 


  



     

That is, we have 

    

By using the identity   , it is now straightforward to show 

   

as desired.

□

As an immediate consequence, we have the following result that is 

equivalent to Theorem 3.1 (1).

Proposition 3.3 The flag vector of every 4-polytope  satisfies the 

inequalities 
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≤≤≤ 

Proof. Recall that by a result of Sjöberg and Ziegler [13] we have

≤ ≤ ≤

By combining the above inequalities with the identity given in Lemma 

3.2, it is easy to obtain 

≥   

Hence, we can show 

 ≤

(3.1)                      ≤ 

                             

Also, it follows from  ≥ and  ≥ that the identity 

   implies 

(3.2)                     ≥ ≥ ≥ 

By (3.1) and (3.2), we now have 

≤ ≤ ≤

      □

Note that    if and only if  is neighborly. Thus, 

if  , then  is not neighborly, i.e., 

(3.3)              ≤ 


   


 

Lemma 3.4 For each ∈, we have

 ≠

Proof. We prove this lemma by contradiction. So suppose

 

for some positive integer  with ≤≤. Then it follows from 

Sjöberg and Ziegler [13] that we have
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                             ≤

This implies the following inequality

 ≥.

That is, we should have

(3.4)                ≥





  




Note that, since  is assumed to be equal to  

for ≤≤,  is not neighborly. Thus, it follows from (3.3) that we 

have

(3.5)                          .

By (3.4) and (3.5), it is now immediate to obtain

 


≤    .

Therefore, if ≤≤, then we should have

      

≤    .

Clearly this is a contradiction.

      □

The cases of       can be dealt with separately in a similar 

fashion as above, so that we leave the proofs of those cases to a 

reader (refer to the paper [10] of Kim and Park for more details).

By combining all of the results obtained so far, we can finish the proof 

of Theorem 3.1.

□
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Note that the bipyramid  over the tetrahedron contains a unique 

non-edge so that  satisfies

  and  

Hence, there exists a 4-polytope for which  in Theorem 3.1 is 

actually attained. This corrects the statement of Theorem 3.1 given in 

[10], where the case of  was also ruled out.
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Ⅳ. Examples of 4-polytopes with   : 

  ≤ ≤ 

The aim of this chapter is to find some concrete examples satisfying 

the results obtained in the paper [10] of Kim and Park, and thus to 

provide some positive evidence for their results. In order to achieve our 

goal, we make use of the examples listed by Fukuda, Miyata, and 

Moriyama in [6].

In order to label all of the vertices of a 4-polytope with a given facet 

list, we first label a bipyramid over a triangle or a square pyramid in 

such a way that the labeling of the remaining tetrahedra fits well with 

that of a bipyramid over a triangle or a square pyramid. Note also that 

a 4-polytope with a given facet list cannot have only one square 

pyramid as a facet. This is because the square pyramid has a square as 

a facet, while a tetrahedron or a bipyramid over a triangle has only a 

triangle as a facet.

4.1  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

      
      

(see Table 2.2 for more details). Thus it has 11 tetrahedra and 3 

bipyramids over a triangle or 3 square pyramids. It turns out that there 

are eight possibilities for  with such a facet list. 

Below, we list all eight possibilities for  with the facet list, and by 

explicitly calculating the value

,
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we show that each case fits well with Theorem 3.1 of Kim and Park 

and thus supports Theorem 3.1 positively. We will explain how to obtain 

the value  only for the first case, in detail, and leave the details of 

other cases to a reader.

(1)    with the followings edges:

             
            

[Figure 4.1] The first case of all facets of 

The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

 ××  .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

(2)    with the following edges:
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[Figure 4.2] The second case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(3)    with the following edges:

             
            

[Figure 4.3] The third case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .
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(4)    with the following edges:

             
            

[Figure 4.4] The fourth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(5)     with the following edges:

            
           

[Figure 4.5] The fifth case of all facets of 

In this case, we have

  ,   ,   .
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Thus,    , and

 . 

(6)    with the following edges:

             
             

[Figure 4.6] The sixth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(7)    with the following edges:
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[Figure 4.7] The seventh case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(8)    with the following edges:

            
            

[Figure 4.8] The eighth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

All of the above cases are consistent with the results of the thesis [10] 

of Kim and Park. According to the results of the paper [13] of 

Sjöberg-Ziegler, if   , then  should be equal to 28, which is the 

maximum possible value. But in this case  as well as  must also 

have a maximum value. Note that the maximum value of  is 120, 

while the maximum value of  is 80. The first and sixth cases are 

ones which have  . But our computations show that in their cases 
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both  and  do not have the maximum value. This implies that the 

first and sixth cases should be excluded from our results. Furthermore, 

notice that the second, third, fourth, and seventh cases have the same 

value  that is equal to 23. Therefore our results can be summarized, 

as follows.

[Table 4.1]  

    



      

      

      

4.2  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

      
      

(see Table 2.2 for more details). Thus it has 10 tetrahedra and 4 

bipyramids over a triangle or 4 square pyramids. It turns out that there 

are seven possibilities for  with such a facet list, as follows.

(1)    with the followings edges:
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[Figure 4.9] The first case of all facets of 

The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

 ××  .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

(2)    with the following edges:

             
            

[Figure 4.10] The second case of all facets of 
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In this case, we have

  ,   ,   .

Thus,    , and

 .

(3)    with the following edges:

            
            

[Figure 4.11] The third case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(4)    with the following edges:
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[Figure 4.12] The fourth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(5)     with the following edges:

            
            

[Figure 4.13] The fifth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .
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(6)    with the following edges:

           
           

[Figure 4.14] The sixth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(7)    with the following edges:

            
           

[Figure 4.15] The seventh case of all facets of 

In this case, we have

  ,   ,   .
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Thus,    , and

 .

These results can be summarized, as follows.

[Table 4.2] 

    



      

      

      

      

4.3  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

       
     

(see Table 2.2 for more details). Thus it has 13 tetrahedra and 2 

bipyramids over a triangle or 2 square pyramids. It turns out that there 

are six possibilities for  with such a facet list, as follows.

(1)    with the followings edges:
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[Figure 4.16] The first case of all facets of 

The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

 ××  .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

(2)    with the followings edges:

             
            

[Figure 4.17] The second case of all facets of 
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In this case, we have

  ,   ,   .

Thus,    , and

 .

(3)    with the followings edges:

            
           

[Figure 4.18] The third case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(4)    with the followings edges:
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[Figure 4.19] The fourth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(5)    with the followings edges:

            
           

[Figure 4.20] The fifth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .
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(6)    with the followings edges:

            
            

[Figure 4.21] The sixth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

These results can be summarized, as follows.

[Table 4.3]  

    



      

      

      

4.4  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

       
      



- 30 -

(see Table 2.2 for more details). Thus it has 12 tetrahedra and 3 

bipyramids over a triangle or 3 square pyramids. It turns out that there 

are four possibilities for  with such a facet list. 

(1)    with the followings edges:

             
            

[Figure 4.22] The first case of all facets of 

The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

 ××  .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

(2)    with the following edges:
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[Figure 4.23] The second case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(3)    with the following edges:

             
             

[Figure 4.24] The third case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .
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(4)    with the following edges:

            
           

[Figure 4.25] The fourth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

These results can be summarized, as follows.

[Table 4.4] 

    



      

      

      

4.5  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

       
       



- 33 -

(see Table 2.2 for more details). Thus it has 15 tetrahedra and 1 

bipyramids over a triangle or 1 square pyramids. It turns out that there 

are twelve possibilities for  with such a facet list.

(1)    with the followings edges:

            
            

[Figure 4.26] The first case of all facets of 

The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

 ××  .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

(2)    with the following edges:
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[Figure 4.27] The second case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(3)    with the following edges:

            
            

[Figure 4.28] The third case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .
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(4)    with the following edges:

            
            

[Figure 4.29] The fourth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(5)     with the following edges:

            
            

[Figure 4.30] The fifth case of all facets of 

In this case, we have

  ,   ,   .
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Thus,    , and

 .

(6)    with the following edges:

            
            

[Figure 4.31] The sixth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(7)     with the following edges:

            
            

[Figure 4.32] The seventh case of all facets of 
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In this case, we have

  ,   ,   .

Thus,    , and

 .

(8)    with the following edges:

            
            

[Figure 4.33] The eighth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(9)    with the following edges:
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[Figure 4.34] The ninth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(10)    with the following edges:

            
            

[Figure 4.35] The tenth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .
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(11)    with the following edges:

            
            

[Figure 4.36] The eleventh case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(12)    with the following edges:

            
           

[Figure 4.37] The twelfth case of all facets of 

In this case, we have

  ,   ,   .
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Thus,    , and

 .

These results can be summarized, as follows.

[Table 4.5]  

    



      

      

4.6  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

       
       

(see Table 2.2 for more details). Thus it has 14 tetrahedra and 2 

bipyramids over a triangle or 2 square pyramids. It turns out that there 

are five possibilities for  with such a facet list.

(1)    with the followings edges:

            
            

[Figure 4.38] The first case of all facets of 
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The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

 ×× .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

(2)    with the followings edges:

            
            

[Figure 4.39] The second case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(3)    with the followings edges:
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[Figure 4.40] The third case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(4)    with the followings edges:

            
           

[Figure 4.41] The fourth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .
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(5)    with the followings edges:

             
            

[Figure 4.42] The fifth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

These results can be summarized, as follows.

[Table 4.6]  

    



      

      

      

4.7  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:
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(see Table 2.2 for more details). Thus it has only 17 tetrahedra.  is 

simplicial, i.e., all facets are 3-simplexes. It turns out that there is only 

one possibility for  with such a facet list.

(1)    with the followings edges:

            
           

[Figure 4.43] The first case of all facets of 

The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

 ×× .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

Since all facets are only tetrahedron, there is only one of the above for 

. This result can be summarized, as follows.
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[Table. 7]  

    

       

4.8  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

        
       

(see Table 2.2 for more details). Thus it has 16 tetrahedra and 1 

bipyramids over a triangle or 1 square pyramids. It turns out that there 

are six possibilities for  with such a facet list.

(1)    with the followings edges:

             
            

[Figure 4.44] The first case of all facets of 

The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,
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Thus it is easy to obtain

 ×× .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

(2)    with the followings edges:

             
            

[Figure 4.45] The second case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(3)    with the followings edges:
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[Figure 4.46] The third case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(4)    with the followings edges:

             
           

[Figure 4.47] The fourth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .
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(5)    with the followings edges:

             
            

[Figure 4.48] The fifth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(6)    with the followings edges: 

            
            

[Figure 4.49] The sixth case of all facets of 

In this case, we have

  ,   ,   .
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Thus,    , and

 .

These results can be summarized, as follows.

[Table 4.8]  

    



      

      

4.9  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

        
       

(see Table 2.2 for more details). Thus it has 15 tetrahedra and 2 

bipyramids over a triangle or 2 square pyramids. It turns out that there 

are four possibilities for  with such a facet list.

(1)    with the followings edges:

             
             

[Figure 4.50] The first case of all facets of 
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The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

 ×× .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

(2)    with the followings edges:

             
            

[Figure 4.51] The second case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(3)    with the followings edges:
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[Figure 4.52] The third case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(4)    with the followings edges:

            
            

[Figure 4.53] The fourth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .
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These results can be summarized, as follows.

[Table 4.9]  

    



      

      

4.10  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

        
        

(see Table 2.2 for more details). Thus it has only 18 tetrahedra.  is 

simplicial, i.e., all facets are 3-simplexes. It turns out that there is only 

one possibility for  with such a facet list.

(1)    with the followings edges:

            
            

[Figure 4.54] The first case of all facets of 

The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,
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  ,

Thus it is easy to obtain

 ×× .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

Since all facets are only tetrahedron, there is only one of the above for 

. This result can be summarized, as follows.

[Table 4.9]  

    

       

4.11  case

In this section, we deal with  case. For 8 eight vertices labeled  

with 0,1,2,…,7,  is a 4-polytope with the following facet list:

        
        

(see Table 2.2 for more details). Thus it has 17 tetrahedra and 1 

bipyramids over a triangle or 1 square pyramids. It turns out that there 

are four possibilities for  with such a facet list.

(1)    with the followings edges:
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[Figure 4.55] The first case of all facets of 

The value of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

 ×× .

It follows from the equation    that we 

have . Consequently, this case provides an example  of a 

-polytope which satisfies

  .

(2)    with the followings edges:

             
             

[Figure 4.56] The second case of all facets of 



- 55 -

In this case, we have

  ,   ,   .

Thus,    , and

 .

(3)    with the followings edges:

             
             

[Figure 4.57] The third case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

(4)    with the followings edges:
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[Figure 4.58] The fourth case of all facets of 

In this case, we have

  ,   ,   .

Thus,    , and

 .

These results can be summarized, as follows.

[Table 4.10] 

    

       

4.12 Summary of Our Results

As mentioned above, our goal of this paper is to set up a first step to 

find a necessary and sufficient condition for the flag vector pair  

of a 4-polytope to satisfy. To do so, we enumerated many specific 

examples that satisfy the range of the flag vector pairs  

suggested by the paper [10] of Kim and Park. 
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As a consequence, we found that there are some concrete examples of 

4-polytopes satisfying  with

                .

It is interesting to note that at least in our list there is no example of a 

4-polytope whose value of  is exactly equal to . 

Further, it is worth mentioning that there is a concrete example of 

4-polytope whose  is equal to 9. Notice also that in our 

list there are no examples of a 4-polytope whose value of 

 lies in the set . This, in particular, 

implies that our results perfectly fit well with the result of Kim and 

Park in [10] (see Theorem 3.1).

Table 4.11 below shows our overall results of concrete examples that 

we found in this thesis, based on the list provided by Fukuda, Miyata, 

and Moriyama in [6] (see [Table 2.2]).
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[Table 4.11] Summary of our results
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