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I . Introduction

For a d-dimensional polytope P (or, in short, d-polytope), let f;,=f;(P)
denote the number of i—dimensional faces of P for 0<i¢<d—1. Then
the f-vector of P is defined to

(fo(Pf1(P)scis fym i (P)).

It is one of the well-known and fundamental combinatorial invariants of

polytopes, which is our major concern of thesis.

In order to understand geometric properties of a given polytope more
deeply, one can generalize the concept of f-vectors in various ways.
One of them is to use the notion of the so-called flag vector, which is
another useful combinatorial invariant for convex polytopes. To be more
precise, let § be a subset of {0,1,2,...,d—1}, and let fg¢=f¢(P) denote

the number of chains

FCFc-CF_|CF
of faces of P with

{dim A, ...dim £ }=S.

For the sake of simplicity, from now on we use the notation fz‘liz...ik(P)
instead of fy;, 1 (P) for any subset {ij;iy...i;} of {0,1,2,...d—1}. For
example, f,(P) will mean fi, (P). The flag vector of P is defined to
be

)

Then clearly the f-vector f(P) is just a vector which is formed by

some part of components of the whole flag vector (fg)sc (0. .4—1). That

is, for example, if we take S={i} for each 0 <i <d—1, then we have

fs(P)=f,(P).

Recently, in [13] Sjoberg and Ziegler has proved surprising results that

completely determine the flag vector pair (fo7f03) of any 4-dimensional

_‘l_
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polytopes. In order to obtain such results, they crucially used Altshuler
and Steinberg's results of a 4-dimensional polytopes with up to 8
vertices([2], [3]). Furthermore, Sjoberg and Ziegler used methods such
as stacking, general stacking on cyclic polytopes, facet splitting, and

truncating to find out the structure of specific 4-dimensional polytopes.

Based on the results of Sjoberg and Ziegler, in [10] Kim and Park
proved some necessary conditions for the ranges of flag vector pairs
such as (fy fo2), (Foo.Sfos)s (Frfoe). (fifo3) of 4-dimensional polytopes.
However, currently it is not clear that their results give rise to

necessary and sufficient conditions for flag vector pairs (fy fo), (foo.fo3):

(f1.fo2), (f1.fo3) to be satisfied by 4-dimensional polytopes.

In view of this, the goal of this thesis i1s to enumerate various and
concrete examples of 4-dimensional polytopes which satisfy necessary
conditions for the ranges of flag vector pair (f07f02) proved by Kim and
Park in [10]. This will provide some initial step towards a necessary
and sufficient condition for the range of flag vector pair (f, fy,) as well
as the validity for the results given in [10]. In order to achieve our
goal, we make use of the examples of 4-dimensional polytopes with the
number of vertices equal to 7 or 8 listed in the paper [13] of Sjoberg

and Ziegler.
The thesis is organized as follows.

In Chapter 2, we first summarize some basic definitions, notation, and
useful facts which are necessary for explaining our main results given
in Chapters 3 and 4. We refer the reader to [1], [5], [7], [8], [9],
[10], [11], [12], and [14] for more details.

In Chapter 3, we summarize some important results previously obtained

by Kim and Park in [10] which are our main concern of this thesis.

_2_
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Finally, in Chapter 4 we enumerate specific examples which satisfy the

range of the flag vector pair (f, f,), in detail.
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II. Preliminaries

This chapter sets up the notation and definitions used in this thesis. In
addition, this chapter briefly describes some important facts used to

understand this thesis.

A polytope refers to a shape that extends a shape such as a polygon or
polyhedron to an arbitrary dimension. The polytope defined in n
—dimension is called n—polytope. For example, polygons are 2-polytope,

while polyhedra are 3-polytopes.

To be more precise, a convex polytope is the convex hull of a finite
set of points in some Euclidean space R". More generally, for 1<:<m
let I, denote a linear functional in R" and let g; be a real number. Then
a convex polyhedron P is an intersection of finitely many half-spaces in
R"™ given by

P= {pE]R”| <l,p>=—a, i=1,2,.,,,m}.
In this thesis, we will study only the 4-polytopes.

Recall that f, is the number of vertices, f; is the number of edges, fy,
is the number of faces that make up the vertex, and fy; is the number

of facets that make up the vertex.

Now we list some examples of polytopes with small polytopal pairs
(fos fo3) for fos <80 with simplex facet and/or simple vertex as in the
paper [13] of Sjoberg and Ziegler, which will play an important role in
finding some explicit examples which satisfy the results given in
Theorem 3.1.

In Table 2.1 below, the second column explains the way to find the

polytope. The polytopes P are ones with 7 or 8 vertices which are

7

_4_
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known from the well-known classification result of all polytopes with up
to 8 vertices, and P, denotes the dual of the polytope P.
We now explain some terminologies in Table 2.1. First, we begin with
the definition of a cyclic polytope. To do so, let us define the moment
curve in RY by

a:R—RY te (4,15 1) ER
For any n>d, the standard d-th cyclic polytope with n vertices,

denoted by Ci(t,,ty...,t,), is defined as the convex hull in R? of n

n

different points «(t),...,a(t,) on the moment curve « such that
t, <t, <---<t,. The set of all the faces (including the improper faces) of
a (convex) polytope P is a partially ordered set (or poset), when
partially ordered by inclusion. Two polytopes are said to be
combinatorial equivalent, or of the same combinatorial type, if they have
isomorphic face posets. Cyclic polytopes Czl(n) are precisely those
which are combinatorial equivalent to the standard cyclic polytope
Gyt ty, - t,).

Let P be a 4-polytope with a facet £ and let v be a point beyond F
and beneath all other facets of P. Let @ be the convex hull of P and v,
ie., @=conv({v}UP). In this case, we say that @ is a 4-polytope
obtained by stacking. Hence, for example, by skacking onto square
pyramid P we can obtain a new 4-polytope ¢ which is the convex hull

of P and a new vertex wv.
On the other hand, a pyramid over triangular bipyramid just means the
polytope obtained by taking the pyramid over a 3-dimensional triangular

bipyramid.

For the facet splitting, consider a facet F of a 4-polytope P and a

hyperplane H which intersects the relative interior of F in a polygon X.

_5_
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If the only vertices of P happen to be simple vertices on one side of
H, then we can obtain a new polytope () by separating the facet F' into
two new facets by the polygon X. In this case, we say that @ is
obtained from P by splitting a facet. So, for example, splitting bipyramid
means that we obtain a new polytope by splitting one facet of

bipyramid.

Collection @ chosun



[Table 2.1] Some polytopal pairs

(for foa) Description i) Description
Polytopes with A;-facet and simple vertex = (11,45) P,
(5,20) 4-simplex (11,49) P,
(6,26) 2-fold pyramid over quadrangle (11,52) dual of (9,52)
(6,29) pyramid over triangular bipyramid = (11,55) dual of (10,55)
(7,29)  pyramid over triangular prism = (12,52) P,
(7,32)  2-fold pyramid over pentagon = (13,55) P
(7,35) P, polytopes with A,-facet
(7,36) P, (6,36) cyclic polytope C,(6)
(7,39) P (7,42) P,
(7,45) P, (7,46) Py
(8,35) P (7,49) P,
(8,36) P, (7,52) R,(6)
(8,38)  2-fold pyramid over hexagon  (7,56) cyclic polytope C,(7)
(8,39) P, (8,43) Py
(8,42) P, (8,60) P,
(8,45) P, (8,63) Py
(8,46) P, (8,65) Py,
(8,49) Py (8,66) P,
(8,52) P, (8,68) P,
(8,55) P (8,69) Py
(8,59) Py (8,70) Py,
(8,62) Py (8,72) Py
(9,39) P (8,73) Py
(9,42) P, (8,76) Py,
(9,45) split bipyramid in (9,42) (8,80) cyclic polytope C,(8)
(9, 46) split bipyramid in (9,43) (9,79) ~ Stack onto square pyramid in
(8,63)
(9,49) split bipyramid in (9,46) Polytopes with simple vertex
(9,52) stack onto square pyramid in (9,36) dual of cyclic polytope C,(6)
(8,36)
(10,45) P (9,43) Py
(10, 46) P, (10,42) P
(10,49) dual of (9,49) (11,46) P,
(10,52)  split bipyramid in (10,49) (12,49) P
(10, 55) stack onto s(c;L’l?e:;)e pyramid in (13,52) RQ(G)*
- 7 -
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[Table 2.2] list all polytopes P, with 7 or 8 vertices from [Table 2.1]

which were used in the construction of all possible flag vector pairs
(fy:fo3) in the paper [13] of Sjoberg and Ziegler. They will be used in
finding specific examples in Chapter 4 that satisfy the results proved by
Kim and Park in [10].

The polytopes in [Table 2.2] are listed by their facet list. In fact, in
[6] Fukuda, Miyata, and Moriyama provide a complete list of all 31
polytopes with 7 vertices and 1294 polytops with 8 vertices. The third
column in [Table 2.2] such as 7.z means that the polytope can be
found as the z-th polytope listed in the classification of 4-polytopes

with 7 vertices.
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[Table 2.2] 4-Polytopes P, with 7 and 8 vertices

?

polytope facet list row
P, [654321] [65430] [6520] [6420] [5310] [5210] [4310] [4210] 7.3
2, [65432] [65431] [65210] [64210] [5320][5310] [4320] [4310] 7.21
P, [65432] [65431] [65210] [6421] [5320] [5310] [4320] [4310] [4210] 7.22
2] [65432] [65410] [6531] [6431] [5420] [5321] [5210] [4320] [4310] [3210] 7.11
P [65432] [6541] [6531] [6431] [5421] [5320] [5310] [5210] [4320] [4310] [4210] 7.16
Z, [65432] [65431] [6521] [6420] [6410] [6210] [5320] [5310] [5210] [4320] [4310] 7.24
P, [65432] [6541] [6531] [6430] [6410] [6310] [5421] [5320] [5310] [5210] [4320] [4210]] 7.13
P, [765432] [765410] [76321] [75310] [64210] [5430] [4320] [3210] 8.186
P, [765432] [76541] [76310] [75310] [64210] [6320] [5420] [5410] [5320] 8.285
P [76543] [76542] [76321] [75310] [75210] [64310] [64210] [5430] [5420] 8.1145
P, [765432] [76541] [76310] [54310] [7531] [6421] [6320] [6210] [4320] [4210] 8.241
Py [765432] [76541] [76320] [75310] [54310] [7610] [6421] [6210] [4320] [4210] 8.353
P, [765432] [76541] [73210] [63210] [7631] [7520] [7510] [6420] [6410] [5420] [5410] | 8.201
P 765432] [76541] [76310] [7531] [6430] [6410] [5420] [5410] [5321] [5210] [4320] 3.306
1 3210] )
P 765432] [76510] [7641] [7541] [6530] [6421] [6321] [6310] [5420] [5410] [5320] 8117
L 42101 [3210] '
P 76543] [76521] [76420] [7542] [6531] [6431] [6410] [6210] [5432] [5320] [5310] R.676
16 5210] [4320] [4310] '
P 76543] [76542] [73210] [63210] [7632] [7531] [7520] [7510] [6431] [6420] [6410] 8.909
1 5431] [5420] [5410] '
P 76543] [76521] [7642] [7542] [6530] [6510] [6432] [6320] [6210] [5430] [5421] 8778
18 5410] [4321] [4310] [3210] '
P 76543 [76542] [73210] [7631] [7621] [7530] [7520] [6431] [6420] [6410] [6210] 8.910
19 5431] [5420] [5410] [5310] '
P 76543] [7652] [7642] [7531] [7521] [7431] [7421] [6530] [6521] [6510] [6430] [6420]| g g5
20 62101 [5310][4310] [4210] '
P 76543 [76542] [7632] [7531] [7521] [7320] [7310] [7210] [6431] [6420] [6410] 8.1997
2 63201 [6310] [5431] [5421] [4210] '
P 7654] [7653] [7643] [7542] [7532] [7431] [7421] [7321] [6540] [6530] [6431] [6410] | g 1969
2 6310] [5420] [5320] [4210] [3210] '
P 76543] [7652] [7642] [7531] [7521] [7431] [7421] [6530] [6521] [6510] [6430] [6420] ¢ 506
3 6210] [5310] [4321] [4320] [3210] '
P 76543] [76542] [7631] [7621] [7531] [7520] [7510] [7210] [6430] [6420] [6321] 8.1041
H 6320] [5431] [5420] [5410] [4310] [3210] )
P 7654] [7653] [7643] [7542] [7532] [7431] [7421] [7321] [6542] [6530] [6520] [6430] | g 1963
» 64201 [53211[5310] [5210] [4310] [4210 )
P 76543] [7652] [7642] [7541] [7521] [7420] [7410] [7210] [6530] [6521] [6510] [6432]| g o135
2 6320] [6210] [5431] [5310] [4320] [4310] )
P 7654] [7653] [7643] [7542] [7532] [7431] [7421] [7321] [6542] [6530] [6520] [6431] | ¢ 1966
27 64201164101163101 153211 (53101 (52101 [4210] i
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II. Results of Kim and Park revisited

In this section, we briefly review Theorem 3.1 of Kim and Park and its
proof in [10] which is necessary for our concrete enumeration of flag

vector pairs (fy, fy,) for certain 4-polytopes.

Theorem 3.1 The flag vector pair (fy, fo) = (fo(P).f4e(P)) of a 4-polytope
P satisfies the following two conditions:

(1) 30 <6f, < fy <3f,(f,—3)

(2) f, =6 and for mE1{1,2,3,4,5,7,8,10,11}, f,, #3f,(f, —3) —m.

Lemma 3.2 The flag vector of every 4-polytope P satisfies the
following identity

2fo(P)_2f1(P)+f02(P)_f03(P):

Proof. For the proof, we apply the generalized Dehn-Sommerville
equation [4] with S= {O} i =0, k=4. Then we can obtain

Mu

Y=o o= fol= (=10,

That is, we have
Joo —Joa T oz = 2/
By using the identity f, = 2f,, it is now straightforward to show

2f0=2f1 tfa—f03 =0,
as desired.

0

As an immediate consequence, we have the following result that is

equivalent to Theorem 3.1 (1).

Proposition 3.3 The flag vector of every 4-polytope P satisfies the

inequalities

_’IO_
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30 < 6/,(P) < £,,(P) < 3£, (P)(f,(P)~3).
Proof. Recall that by a result of Sjoberg and Ziegler [13] we have
20 < 4f, < fo3 = 2, (f,—3).
By combining the above inequalities with the identity given in Lemma

3.2, it is easy to obtain
2f0(fo=3) = fos = 2, —2f1 + foo-

Hence, we can show

foo S—2fo+2f1 +2£,(f,—3)
(3.1) ==2fy+fo(fo—1)+2/,(f,—3)

= 3fo(f0_3)'

Also, it follows from f,3 =4f, and f, =2f, that the identity
Sfos = 2fy—2f, T f,, implies
(3.2) for =2f,F2f, =6f, =30.

By (3.1) and (3.2), we now have
30 < 6f, < fo =3f,(f,—3)

[]
Note that f,(P) = 3f,(P)(f,(P)—3) if and only if P is neighborly. Thus,
if foo(P)<3f, (P)(f, ( )—3), then P is not neighborly, i.e.,
1 P
(3.3) 1P) = L1(P (P~ 1) 1= ( Oé ))—1.

Lemma 3.4 For each m&{1,2,3,4,5}, we have

fog ¢3fo(fo*3)
Proof. We prove this lemma by contradiction. So suppose
0 = 3/fo (fo —-3)

for some positive integer m with 1 <m<5. Then it follows from

Sjoberg and Ziegler [13] that we have

_’I’I_
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3fo(fo_3)_m:f02 ==2fyt2/1+ /o3
<—=2f,+2f +2f,(f,—3)—4
This implies the following inequality
2f, = fo(fo—1)+4—m.

That is, we should have

(3.4) fi= 5 +— 0 5

folfo—1) 4—m _ (f0)+ 4—m
Note that, since fy,(P) is assumed to be equal to 3f,(P)(f,(P)—3)—m

for 1<m <5, P is not neighborly. Thus, it follows from (3.3) that we
have

(3.5) fi(pP) < (fﬂép))ﬂ .

By (3.4) and (3.5), it is now immediate to obtain

(20)_’”7—4 <y < J;o)_l.

Therefore, if 1 <m <5, then we should have
1 /i
0] 0 - < _
(2) 1<(2) 2fl<(2) b

Clearly this is a contradiction.

U]
The cases of m=7,8,10,11 can be dealt with separately in a similar
fashion as above, so that we leave the proofs of those cases to a
reader (refer to the paper [10] of Kim and Park for more details).
By combining all of the results obtained so far, we can finish the proof

of Theorem 3.1.
L]

_’|2_
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Note that the bipyramid # over the tetrahedron contains a unique
non-edge so that P satisfies

(fo(P)f1(P). foo (P, fo (P)) = (6,14,48,32) and [y, =3/f,(f,—3)—6.
Hence, there exists a 4-polytope for which m=6 in Theorem 3.1 is
actually attained. This corrects the statement of Theorem 3.1 given in

[10], where the case of m=6 was also ruled out.

_’|3_
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IV. Examples of 4-polytopes with (f,, fo2) -
P, (16 < k < 26)

The aim of this chapter is to find some concrete examples satisfying
the results obtained in the paper [10] of Kim and Park, and thus to
provide some positive evidence for their results. In order to achieve our
goal, we make use of the examples listed by Fukuda, Miyata, and

Moriyama in [6].

In order to label all of the vertices of a 4-polytope with a given facet
list, we first label a bipyramid over a triangle or a square pyramid in
such a way that the labeling of the remaining tetrahedra fits well with
that of a bipyramid over a triangle or a square pyramid. Note also that
a 4-polytope with a given facet list cannot have only one square
pyramid as a facet. This is because the square pyramid has a square as
a facet, while a tetrahedron or a bipyramid over a triangle has only a

triangle as a facet.

4.1 P, case

In this section, we deal with P, case. For 8 eight vertices labeled
with 0,1,2,--,7, P 1s a 4-polytope with the following facet list:

[76543] [76521] [76420] [7542] [6531] [6431] [6410]
[6210] [5432] [5320] [5310] [5210] [4320] [4310]

(see Table 2.2 for more details). Thus it has 11 tetrahedra and 3
bipyramids over a triangle or 3 square pyramids. It turns out that there

are eight possibilities for P, with such a facet list.
Below, we list all eight possibilities for P, with the facet list, and by
explicitly calculating the value

m:?’fo(fo_g)_fogy

_’IA_
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we show that each case fits well with Theorem 3.1 of Kim and Park
and thus supports Theorem 3.1 positively. We will explain how to obtain
the value m only for the first case, in detail, and leave the details of

other cases to a reader.

(1) f,(P;) =28 with the followings edges:

o7, 47,27, 45, 25, 24, 56, 36, 16, 35, 15, 13, 46, 34,
14, 06, 04, 01, 26, 12, 02, 23, 05, 03, 67, 37,17, 07

2N LN, L S yah / . N
/ N\
\\ // N // \\\ 7 \\ // | \\ A
d Y
SN, LD SN N LA RN
| / / . /
)/ AN NP4 N/ N

[Figure 4.1] The first case of all facets of P

The value of f, and f,; can be obtained from Table 2.1, as follows.

fO(P16) =8, fos(Pw) =99, fl(P16) = 28,

Foo(Pig) = =2 (Pig) +2f, (Pig) + foy (Pyg),
Thus it is easy to obtain

Soo(Prg) = —2X8+2x28+59=199.

It follows from the equation fu,(Pg) = 3f(P)(fy(Ps)—3)—m that we
have m=21. Consequently, this case provides an example P, of a 4

-polytope which satisfies
Joo(Pg) = 3fO(P16)(fo(P16)_3)_21-

(2) f,(P,) =27 with the following edges:

57,47, 27,45, 25, 24, 56, 36, 16, 35, 15, 13, 46, 34,
14, 06, 04, 01, 26, 12, 02, 23, 05, 03, 67, 17, 07

_’|5_
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/ TN 7 N SN LD ,
/ . \ /
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[Figure 4.2] The second case of all facets of P
In this case, we have
Jo(Pg) =8, fo3(Pyg) =59, f1(Py) =27,
Thus, fo(Pg) = —2f,(P)+2f,( 16)+f03( ):97, and
m=23=3f,(P;)(f, (P, )= fo2(Ps).

(3) f,(Pg) =27 with the following edges:

o7, 47,27, 45, 25, 24, 56, 36, 16, 35, 15, 13, 46, 34,
14, 06, 04, 01, 26, 12, 02, 23, 05, 03, 37, 17, 67

/ N N N /
A 3 \ rd

i /N TN NS AN
P / \ /

[Figure 4.3] The third case of all facets of Py
In this case, we have
folPig) =8, fo3(Pg) =59, fi(Pg) =27,
Thus, fo(Pg) = —2f,(P)+2f,( 16)+f03( ):97, and
m=23=3f,(P)(f, (7 )= fua(Pg).

_’Ié_
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(4) f,(Pg) =27 with the following edges:

o7, 47,27, 45, 25, 24, 56, 36, 16, 35, 15, 13, 46, 34,
14, 06, 04, 01, 26, 12, 02, 23, 05, 03, 37, 17, 07

/{\Z AN /F\/ ah : )
\

5 4 4

/ Z ?\ h // <

\V

1

[Figure 4.4] The fourth case of all facets of Py
In this case, we have
jb(J%ﬁ) =8, fbs(}ﬁﬁ):: 59, fl(}ﬁa):: 27.
Thus, fo,(Pg) = —2f,(Py) +2f,(Pyg)+ o3 (Pg) =97, and
m=23=3f,(Ps)(f,(P1s)—3) = fr2(Pg).

(5) f,(Pg) =25 with the following edges:

o7, 47,27, 45, 25, 24, 56, 36, 16, 35, 15, 13, 46,
34, 14, 06, 04, 01, 26, 12, 02, 23, 05, 03, 67

SN N 4 yah 4

VR4

[Figure 4.5] The fifth case of all facets of P
In this case, we have

fo(P) =8, fiu(Pyg) =59, f,(Py) = 25.

_’|7_
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Thus, sz(}ﬂs) 2fb( 16)4"2f1( 10)4_fb5( ) 93, and
m=27= 3fb 16 (fb sz( )

6) f,(Pg) =28 with the following edges:

o7, 47,27, 45, 25, 24, 56, 36, 16, 35, 15, 13, 46, 34,
14, 06, 04, 01, 26, 12, 02, 23, 05, 03, 67, 37, 17, 07

", P S N / ﬁ\

Ao Ay

[Figure 4.6] The sixth case of all facets of Py
In this case, we have
folPig) =8, fo3(Pg) =59, f1(Py) = 28,
Thus, fo,(Pg) = —2f,(Py)+2f,( 16)+f03( )=99, and
m=21=3f,(P;)(f, (P, )= foo(Pyg).

(7) f,(Pg) =27 with the following edges:

o7, 47,27, 45, 25, 24, 56, 36, 16, 35, 15, 13, 46, 34,
14, 06, 04, 01, 26, 12, 02, 23, 05, 03, 37, 17, 07

A A AN AN L M
N4 N

_’|8_
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[Figure 4.7] The seventh case of all facets of Py
In this case, we have
Jo(Pg) =8, fos(Pg) =59, f,(Py) = 27.
Thus, fo(Pg) = —2f,(Pg)+2f,( 16)—i—f%( )297, and
m= 23—3fo 16 Uo foz( )

(8) f,(P;) =26 with the following edges:

o7, 47,27, 45, 25, 24, 56, 36, 16, 35, 15, 13, 46,
34, 14, 06, 04, 01, 26, 12, 02, 23, 05, 03, 67, 07

A A

[Figure 4.8] The eighth case of all facets of Py

In this case, we have
fO(P ) =38, fog(P ) =59, fl(Plﬁ) = 26.
Thus, fo(Pg) = —2f,(P)+2f,( 16)+f03( )295, and
m=25= 3fo 16 (fo foz( )

All of the above cases are consistent with the results of the thesis [10]
of Kim and Park. According to the results of the paper [13] of
Sjoberg-Ziegler, if f, =38, then f, should be equal to 28, which is the
maximum possible value. But in this case f;,, as well as f,; must also
have a maximum value. Note that the maximum value of fj, is 120,
while the maximum value of fy; is 80. The first and sixth cases are

ones which have f, =28. But our computations show that in their cases

_19_
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both f,, and f,; do not have the maximum value. This implies that the
first and sixth cases should be excluded from our results. Furthermore,
notice that the second, third, fourth, and seventh cases have the same

value m that is equal to 23. Therefore our results can be summarized,

as follows.
[Table 4.1] Py
fo f1 foz fos m:?’fo(fo_?’)_fm
25 93 59 m = 27
Py 8 26 95 59 m = 25
27 97 59 m = 23

4.2 P,; case

In this section, we deal with FP; case. For 8 eight vertices labeled
with 0,1,2,---,7, P; is a 4-polytope with the following facet list:

[76543] [76542] [73210] [63210] [7632] [7531] [7520]
[7510] [6431] [6420] [6410] [5431] [5420] [5410]

(see Table 2.2 for more details). Thus it has 10 tetrahedra and 4
bipyramids over a triangle or 4 square pyramids. It turns out that there
are seven possibilities for £;; with such a facet list, as follows.

(1) f,(P,,) =27 with the followings edges:

67, 37,27, 36, 26, 23, 57, 17, 35, 15, 13, 07, 25, 05,
02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 56, 03, 12

_20_
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5 N\ . / / N // v N
/ 7 7
£ 1 B >
A
4

[Figure 4.9] The first case of all facets of P

The value of f, and f,; can be obtained from Table 2.1, as follows.

fb( 17)'_ 8, fbs( 17) = 60, fH( )'_ 27,

/BQ( 17 ) 2fb( 17)*‘2fk( 17)%‘fb3( )
Thus it is easy to obtain

Foo(Py) = —2x8+2x27+60=98.

It follows from the equation fy,(P,)=3f,(P,)(f, (P, —m that we
have m=22. Consequently, this case provides an example P, of a 4

-polytope which satisfies

f02( 3f0 17 (f'() —22.
(2) f,(P,) =27 with the following edges:

67,37, 27, 36, 26, 23, 57, 17, 35, 15, 13, 07, 25, 05,
02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 47, 03, 12

[ . an / i b
4 F
R
/ AN
/ ! / 3% \\
/ 4 4

[Figure 4.10] The second case of all facets of P,

_2’|_
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In this case, we have

fo(P) =8, fo(Pr) =60, f(P,)=2T.
ThUS, f02(P17) 2f()( 17)+2f1( 17)+f03( ):98, and

m= 22“3fb 17(fb j%z( )

(3) f,(P,) =26 with the following edges:

67, 37, 27, 36, 26, 23, 57, 17, 35, 15, 13, 07, 25,
05, 02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 47, 12

4 / / ™ // il
4 ! / / /
/ 1 LY i
A4 g / AN
g -
\\2 W \\

[Figure 4.11] The third case of all facets of P,
In this case, we have

f()( 17)_8 f()g( 17)_60 fl( )_26
Thus, fu(P,) = —2/,(P;)+2f( 17)4_fb3( )::96’ and

m=24= 3f0 17 (fo foz( )

(4) f,(P,) =28 with the following edges:

67, 37, 27, 36, 26, 23, 57, 17, 35, 15, 13, 07, 25, 05,
02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 47, 56, 03, 12

_22_

Collection @ chosun



/ / N // A N
& / / / / P
// AN N\
1 N\ AN
A% 7 / AN N
24N
4 V4

[Figure 4.12] The fourth case of all facets of P,

In this case, we have

fO(P ):8; f()g(P ):60, fl(P17):28
Thus, fu(P,) = —2/,(P;)+2f( 17)+f03( ):100, and

m=20=3f, (P, )(f,(P )= foo (Prr).
(5) f,(P,) =26 with the following edges:

67, 37, 27, 36, 26, 23, 57, 17, 35, 15, 13, 07, 25,
05, 02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 03, 12

AN A AL D

ah

N/ Fa l/

b /1 , N\ 3
R S N/ AN #

%

2

A

[Figure 4.13] The fifth case of all facets of P,

In this case, we have

f()(P ):8, f()g(P ):60, fl(P17):26
Thus, fo(Py) = —2f(P;) +2f,( 17)+f03( ):96, and
m=24=3f, (P, )(f,(P )= oo (Prr).
- 23 -
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(6) f,(P,) =24 with the following edges:

67, 37,27, 36, 26, 23, 57, 17, 35, 15, 13, 07,
25, 05, 02, 01, 46, 16, 34, 14, 06, 24, 04, 45

VAN AN AN D
/ / % L
\ s A A

[Figure 4.14] The sixth case of all facets of P,

In this case, we have

f()(PU) = 8§, fOS(PN) = 60, fl(PN) =24,

Thus, fu,(P,) =

—2/o(Pp) +2f, (Pi;) + fos(P;) = 92, and

m=28 = 3f0(P17)(fO(P17)_3)_fo2(P17)'

(7) f,(P,) =25 with the following edges:

67, 37,27, 36, 26, 23, 57, 17, 35, 15, 13, 07, 25,
05, 02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 03

7 7

N\

7

/L

7

S

/ %

/N

-

[Figure 4.15] The seventh case of all facets

In this case, we have

fo(P) =8, fiu(Pn) =60, f (P,)=25.
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Thus, foo(P7) = =2fo(Py) +2f,(P7)+ fo3 (P;) =94, and
m=26= 3fo(P17)(fo<P17)_3)_f02(P17)-

These results can be summarized, as follows.

[Table 4.21 P,

fo f1 foz f03 m:3f0(f0*3)7f02
8 24 92 60 m = 28
8 25 94 60 m = 26
P17 _
8 26 96 60 m = 24
8 27 98 60 m = 22
4.3 P,y case

In this section, we deal with P case. For 8 eight vertices labeled
with 0,1,2,---,7, P¢ is a 4-polytope with the following facet list:

[76543] [76521] [7642] [7542] [6530] [6510] [6432] [6320]
[6210] [5430] [5421] [5410] [4321][4310] [3210]

(see Table 2.2 for more details). Thus it has 13 tetrahedra and 2
bipyramids over a triangle or 2 square pyramids. It turns out that there

are six possibilities for Pg with such a facet list, as follows.

(1) f,(Pg) =25 with the followings edges:

67,47, 27, 46, 26, 24, 57, 45, 25, 56, 36, 06, 395,
05, 03, 16, 15, 01, 34, 23, 02, 12, 04, 14, 13

_25_
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/] : A
/ N b

7 /1N /4

N/ / N

/ .

\/> N

[Figure 4.16] The first case of all facets of Py
The value of f, and f,; can be obtained from Table 2.1, as follows.
Jo(Pg) =8, fis(Pg) =62, f,(Py) =25,
fOQ( 1> 2f0( 18)+2fl( 18)+f03( )
Thus it is easy to obtain
foo(Prg) =
It follows from the equation fg,(Pyg) = 3f (P )(f, (P,

—2X8+2X25+62=096.
—m that we
have m=24. Consequently, this case provides an example Py of a 4
-polytope which satisfies

f02( 3f0 18 (f() —24.
(2) f,(Pyg) =27 with the followings edges

67,47, 27, 46, 26, 24, 57, 45, 25, 56, 36, 06, 35, 05,
03, 16, 15, 01, 34, 23, 02, 12, 04, 14, 13, 37, 17

/7 5 / /5\ / 5 /\
7~ 4 A / F
S/ AN s

N/ VN

LN, <

NI

[Figure 4.17] The second case of all facets of Py
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In this case, we have
Jo(Pg) =8, fis(Pg) =62, f,(Py) = 2T.
Thus, fo,(Pg) = —2f,(Pg) +2f, (Pg)+ f03( )=100, and
m=20= 3, (P)(/, (P )= fo2(Prg).

(3) f,(Pg) =25 with the followings edges:

67,47, 27, 46, 26, 24, 57, 45, 25, 56, 36, 06, 35,
05, 03, 16, 15, 01, 34, 23, 02, 12, 04, 14, 13

7
p /
vl N \\ < // B < <
2 / N / r
N4 \ N A N/ N %
; /
o \ / // \\ < '
\\ S N\ ,/ | N // \\ / \
; |/ £
TN
// // \\ & \\
<> N NV
/

[Figure 4.18] The third case of all facets of P

In this case, we have
Jo(Pg) =8, fos(Pg) =62, f(Py) = 25.
Thus, fp(Pg) = —2f(Pg)+2f,( 18)+f03( ) 96, and
m=24=3f,(P)(f, (P, )= foo(Pyg).

(4) f,(Pg) =27 with the followings edges:

67,47, 27, 46, 26, 24, 57, 45, 25, 56, 36, 06, 35, 05,
03, 16, 15, 01, 34, 23, 02, 12, 04, 14, 13, 37, 17

_27_
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[Figure 4.19] The fourth case of all facets of P
In this case, we have

fo(P) =8, fos(Ps) =62, f,(Py) = 21.
Thus, fu(Pg) = —2f,(Pg)+2f( 13)+f03( ):100, and
m=20=3f,(P)(f, (P )= foa(Prg).

(5) f,(Pg) =25 with the followings edges:

67,47, 27, 46, 26, 24, 57, 45, 25, 56, 36, 06, 35,
05, 03, 16, 15, 01, 34, 23, 02, 12, 04, 14, 13

/7 ; N / TN
/ | AN ;
S/ AN A
z >
LN
< A A

[Figure 4.20] The fifth case of all facets of Py

In this case, we have
fO(P ) =38, fo3 (P ) =62, fl(P18) = 25.
Thus, fo,(Pg) = —2f,(Pg)+2f,( 18)+f03( ):96, and
m=24=3f,(P)(/, (P, )= for (Prs)-

_28_
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(6) f,(Pg) =26 with the followings edges:

67,47, 27,46, 26, 24, 57, 45, 25, 56, 36, 06, 395,
05, 03, 16, 15, 01, 34, 23, 02, 12, 04, 14, 13, 17

/ 4 N 5 N / 4 /.
/ ,
Xel# / N N/
// AN // AN
\\ K / \\ . .

// 6 T
\\ /> : ;

[Figure 4.21] The sixth case of all facets of Py

In this case, we have
fO(P18) =8, fos(Pm) = 62, fl(P18) = 26.
—2fO(P18)+2f1(Plg)—i-fog(PlS)298, and
m=22=3f,(P)(f,(Ps) =3) = fo (Ps).

Thus, fu,(Pyg) =

These results can be summarized, as follows.

[Table 4.31 P,

fo i So2 fos m:?’fo(fo_?’)_foz
25 96 62 m =24
P 26 98 62 m = 22
27 100 62 m = 20
4.4 P, case

In this section, we deal with P, case. For 8 eight vertices labeled
with 0,1,2,--,7, P4 1s a 4-polytope with the following facet list:

[76543] [76542] [73210] [7631] [7621] [7530] [7520] [6431]
[6420] [6410] [6210] [5431] [5420] [5410] [5310]
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(see Table 2.2 for more details). Thus it has 12 tetrahedra and 3
bipyramids over a triangle or 3 square pyramids. It turns out that there

are four possibilities for P, with such a facet list.

(D f,(P,) =27 with the followings edges:

67, 37,17, 36, 16, 13, 27, 26, 12, 57, 07, 35, 05, 03,
25, 02, 46, 34, 14, 06, 24, 04, 01, 45, 15, 56, 23

i N L CIN. L

\\ Fa X // X // % / / AN 7

N s I\ AN

Y F N4 P . N
RN

\\\ \\\ “ 7

[Figure 4.22] The first case of all facets of P
The value of f, and f,; can be obtained from Table 2.1, as follows.
fo(Py) =8, fou(Pyg) =63, f,(Py,) =27,
Foo(Prg) = =2fo(Prg) +2f, (Pig)+ fo3 (Pyy),

Thus it is easy to obtain
Foo(Pg) = —2x8+2x27+63=101.

It follows from the equation fy,(Pg) = 3f,(Pg)(f, (P, —m that we
have m=19. Consequently, this case provides an example P, of a 4

-polytope which satisfies

fOQ( 19 _3f0 19 (fo —19.

(2) f,(Py) =26 with the following edges:

67, 37, 17, 36, 16, 13, 27, 26, 12, 57, 07, 35, 05,
03, 25, 02, 46, 34, 14, 06, 24, 04, 01, 45, 15, 47
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[Figure 4.23] The second case of all facets of P
In this case, we have
fo(Py) =8, fi3(Py) =63, f1(Py) = 26.
Thus, fo(Py) = —2f,(Pg)+2f,( 19)+f03( ):99, and
m=21=3f,(P,)(f, (7, )= f2(P).

(3) f,(Py) =28 with the following edges:

67, 37,17, 36, 16, 13, 27, 26, 12, 57, 07, 35, 05, 03,
25, 02, 46, 34, 14, 06, 24, 04, 01, 45, 15, 47, 56, 23

/7 7 1 /7 RN / 1 LY
/ / ///

e N N 1N N
/ AN N

V4 \

[Figure 4.24] The third case of all facets of P,
In this case, we have
fo(Prg) =8, fo3(Pg) =63, fi(Py) =28,
Thus, fo(Py) = —2f,(Py)+2f,( 19)4—f03( )=103, and
m=17=3f, (P )(f, (7, )= fua(Pg).
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(4) f(

Pw):

25 with the following edges:

67, 37, 17, 36, 16, 13, 27, 26, 12, 57, 07, 35, 09,

03, 25, 02, 46, 34, 14, 06, 24, 04, 01, 45, 15

A A A

/ /

r / /1N r 1 N
Y / / / / /
N F S N . kY P 5 P N r S N p

/ Y TN
/s X /7 / // N N
s
ra ! NV N NP4 . N

[Figure 4.25] The fourth case of all facets of P,

In this case, we have

Thus, fp(Py) = 2f0( 19)+2f1( 19)+f03( ):97’ and
m=23=3f,(P,)(f, (P, )= foo (Prg)-
These results can be summarized, as follows.
[Table 4.4] P,
fo f1 foo Jos m=3f,(fo—=3) = fo
8 25 97 63 m=23
P 26 99 63 m =21
27 101 63 m=19

4.5 P,, case
In this section, we deal with P, case. For 8 eight vertices labeled
with 0,1,2,--,7, P,, is a 4-polytope with the following facet list:

[76543] [7652] [7642] [7531] [7521] [7431] [7421] [6530]
[6521] [6510] [6430] [6420] [6210] [5310] [4310] [4210]
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(see Table 2.2 for more details). Thus it has 15 tetrahedra and 1
bipyramids over a triangle or 1 square pyramids. It turns out that there

are twelve possibilities for P,, with such a facet list.

() f,(Py) =26 with the followings edges:

67,57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45

2 Py ) AN / I\
\\ // \\ // \\ // N // \\ // . //
e Py o I / IN
\\ // \\ // - // \\ // \ // \\ //
RN
S/ P AN
< N
|/ NP4 N4 5

[Figure 4.26] The first case of all facets of Py,
The value of f, and f,; can be obtained from Table 2.1, as follows.
Fo(Py) =8, fo5(Py) = 65, f,(Py) = 26,
Foo(Pag) = —=2f(Po) T2, (Pyg) + fo3 (Pay),

Thus it is easy to obtain
Foo(Py) = —2x8+2x26+65=101.

It follows from the equation f,(Py) = 3fy(Py)(fy(Py)—3)—m that we
have m=19. Consequently, this case provides an example F,, of a 4

-polytope which satisfies
Joo(Pog) = 3o (Py )y (Poy) —3)—19.

(2) f,(Py) =26 with the following edges:

67,57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45
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/

[Figure 4.27] The second case of all facets of Py,
In this case, we have
Jo(Pay) =8, fo3(Pyy) =65, f1(Py) = 26.
Thus, fo(Py) = —2f,(Pyy) +2F, ( 20)+f03( ):101, and
_19_3f0 20 (f() fOZ( )

(3) f,(Py) =26 with the following edges:

67,57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45

/ S N\ / N // N\
A \
/ Ny o ah ’ N
P \
~ NN N

r .
/ \

[Figure 4.28] The third case of all facets of Py,
In this case, we have
fo(Pog) =8, fo3(Pyy) =65, f,(Py) = 26.
Thus, fi(Py) = —2f,(Py) +2f,( 20)+f03( ):101, and
m=19=3f,(Py)(f, (P )= foo (Pag).
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(4) f,(Py) =26 with the following edges:

67, 57,27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45

L D ,
7 ,

[Figure 4.29] The fourth case of all facets of P,

In this case, we have
foPoy) =8, fo3(Pog) = 65, f,(Py) = 26,
Thus, fo(Py) = —2f(Poy) +2f,(Pyy) + f13(Py) =101, and
m=19= 3£, (P )£y (Pyy) =3) = foo (Pyy).

(5) f,(Py) =26 with the following edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45

/. /1N 7 A e N
/
v s S /N / AN
/
N AN
/ 5

[Figure 4.30] The fifth case of all facets of Py
In this case, we have

fo(Py) =8, fiu(Py) =65, f,(Py) = 26.
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Thus, foQ(PQU) 2f()( 20)+2f1( 20>+f03( ):

_19_3f0 20 (fO

101, and

(6) f,(Py) =26 with the following edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45

/ /. N 4 N // N P
<<
/ i T an é 2N
\V AN
N . %
/ 8 \
[Figure 4.31] The sixth case of all facets of Py,
In this case, we have
fo(P ):8, fo3(P ):65, f1(P20):26-
Thus, fo,(Pyy) = =2, (Pyy) +2f,( 20)+fog( )=101, and
m=19= 3£, (Py)(fo(Pa) =3) = fn (Pyy).
(7)  f,(Py) =26 with the following edges
67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45
/ 5 /. N 5 / N // N
ANV N AN
/ N . / / N 4 / N
A% N
\ /.
% Y .
[Figure 4.32] The seventh case of all facets of P,
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In this case, we have

Fo(Py) =8, fo3(Pyy) = 65, f,(Py) = 26.
ThUS, f02(P20) 2f()( 20)+2f1( 20)+f03( ):101, and
_'19‘_’3fb 20 (fb sz( )

26 with the following edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13, 12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45

(8) f1(P20) =

// A N\ / N //
N/ AN R N\
// N\ 4 / / b / A
N/ / U Y AN
P 4 . / 7

/ % AN .

[Figure 4.33] The eighth case of all facets of P,

In this case, we have

f()( 20) =8, f()g( 20) = 65, fl( )_26
Thus, fu(Py) = —2fy(Py)+2f( 20)+f03( ):101’ and
_'19'_’3fb 20 (fb sz( )

(9) f,(Py) =26 with the following edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,

13, 12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45
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/7 N A B Y N //7
z <
. N, w ah ~
/ N
4\ / .
/ 4

[Figure 4.34] The ninth case of all facets of P,

In this case, we have

Thus, fo(

Py) =

fo Py

) =

8, fbg(}) )

2fo( Poy) 42, ( 20)+f03( )=

=65, f,(Py) = 26.
101, and
sz( )

=19=3/,(Py)(f, (P,
(10) f,(P,) =26 with the following edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45

7 7 7

/ S N\ / N //
z N
/ N, o ah ’ /
z <
4\\ / 5
/ ----»4

[Figure 4.35] The tenth case of all facets of Py,

In this case, we have

f()(P ):8, f()g(P ):65, fl(P2O):26
Thus, fiu(Py) = —2/y(Py)+2f,( 20)+f03( ):101’ and
_'19‘_’3fb 20 Qﬁ) sz( )
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(11) f,(P,) =26 with the following edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 45

AN R

/7 5 A 5 / //
< < <
/ i T an ’ N
U/ AN

/\

[Figure 4.36] The eleventh case of all facets of P,
In this case, we have
fo(on) =8, fos(on) = 69, f1(P20) = 26.
Thus, fo(Py) = —2f,(Pyy) +2f,(Pyy) + f43(Py) =101, and
m=19= 3£, (Py)(fo (Pyy) =3) = o2 (o).

(12) f,(P,,) =25 with the following edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02

/ /7\ / | /T\ // 7\,
NZAZ 7
/ N 7 A\ ’ 1N
U N AN
4\ / .
/ A

[Figure 4.37] The twelfth case of all facets of P,
In this case, we have

fo(Py) =8, fou(Py) =65, f,(Py) = 25.
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Thus, foo(Py) = —=2f(Pay) +2f, (L) + fo3(Pyy) =99, and
m:21:3f0(P20)(f0(P20)_3>_f02(P20)-

These results can be summarized, as follows.

[Table 4.51 Py,

fo f1 foz f03 m:3f0(.fo_3)_f02
P 25 99 65 m = 21
2 2 101 65 m=19

4.6 P, case

In this section, we deal with £, case. For 8 eight vertices labeled
with 0,1,2,---,7, P, 1s a 4-polytope with the following facet list:

[76543] [76542] [7632] [7531] [7521] [7320] [7310] [7210]
[6431] [6420] [6410] [6320] [6310] [5431] [5421] [4210]

(see Table 2.2 for more details). Thus it has 14 tetrahedra and 2
bipyramids over a triangle or 2 square pyramids. It turns out that there
are five possibilities for £, with such a facet list.

(1) f,(P,) =26 with the followings edges:

67, 37,27, 36, 26, 23, 57, 17, 35, 15, 13, 25, 12,
07,03, 02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 56

e / ¢ an i / \/\

N\ / \\\ // \\ // \\ // L // N\ /
i / / an 1N LN

<

N\ // . S/ \\ // \, // N / . //

/ /. ¢ N 7 % ~
™ N N
NV N ]

[Figure 4.38] The first case of all facets of P,
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The value of f;, and f,; can be obtained from Table 2.1, as follows.
fo(P21> =38, fos(P ) = 66, f1(P ) = 26,
foz(P2> 2f0( 21>+2f1( 21)+fo3( )

Thus it is easy to obtain
Foo(Py) = —2x842x26+66 = 102.

It follows from the equation fy,(2) = 3f,(Py)(f,(P. —m that we
have m=18. Consequently, this case provides an example P, of a 4

-polytope which satisfies

foz( 3f0 21 (fo —18.

(2) f,(Py) =26 with the followings edges:

67, 37,27, 36, 26, 23, 57, 17, 35, 15, 13, 25, 12,
07,03, 02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 47

/ ZIN. ah S # \>
RN VN / /
/. 21N 7 ah / i
/ N / \ s
\ %
// 21N S ’ { :
S/ AN ; N

[Figure 4.39] The second case of all facets of P,

In this case, we have
fo(Poy) =8, fo3(Py) =66, f,(Py)=26.
Thus, fy(Py) = —2f,(Py)+2f,( 21)+f03( ) 102, and
m=18= 3, (P )/, (P )= foo(Pyy).

(3) f,(P,) =27 with the followings edges:

67, 37,27, 36, 26, 23, 57, 17, 35, 15, 13, 25, 12, 07,
03, 02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 56, 47
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N / 7 LY
7 \ /
/ \ N Y A /\ N
% N / /
/ an &
ra
[Figure 4.40] The third case of all facets of P,
In this case, we have
Jo(Poy) =8, fo3(Py) =66, f(Py)=27.
Thus, fo(Py) = —2f,(Py)+2f( 21)+f03( 1) =104, and
m=16= 3, (P )/, (P )= for (Py).
(4) f,(P,) =25 with the followings edges:
67,37, 27, 36, 26, 23, 57,17, 35, 15, 13, 25, 12,
07,03, 02, 01, 46, 16, 34, 14, 06, 24, 04, 45
7N N / AN
A \ /
N

ks \ ) \ /\
N a

// AN 74 74

[Figure 4.41] The fourth case of all facets of P

In this case, we have

f()(P ):8, f()g(P ):66, fl(P21):25

Thus, foz(Pm) 2f0( Py)+2f( 21)+f03( ) 100, and

m= 20_3f0 21 (fo foz( )
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(5) f,(P,) =27 with the followings edges:

67, 37, 27, 36, 26, 23, 57, 17, 35, 15, 13, 25, 12, 07,
03, 02, 01, 46, 16, 34, 14, 06, 24, 04, 45, 56, 47

AR L an / LN
/ ) s
N \\ ra N 5 Fs N4 |/
N N . ah AN 21N
N\
N /’// AN / \\ // i N\ // . / X //
e P
AN ‘
* // h // 6 5 6 5 '

[Figure 4.42] The fifth case of all facets of Py

In this case, we have
fo(Poy) =8, fo3(Py) =66, f,(Py) =27,
—2f,(Py) +2f,(Py)+ fo3(Py) =104, and
m:16:3f0(P21)(fo(P21)_3)_f02(P21)'

Thus, fo,(Py) =

These results can be summarized, as follows.

[Table 4.61 P,

fo fi So2 Jo3 m:?’fovo_?’)_fm
8 25 100 66 m = 20
P, 26 102 66 m =18
27 104 66 m = 16
4.7 P,, case

In this section, we deal with £,, case. For 8 eight vertices labeled

with 0,1,2,---,7, P,, 1s a 4-polytope with the following facet list:

[7654] [7653] [7643] [7542] [7532] [7431] [7421] [7321] [6540]
[6530] [6431] [6410] [6310] [5420] [5320] [4210] [3210]
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(see Table 2.2 for more details). Thus it has only 17 tetrahedra. P,, is
simplicial, i.e., all facets are 3-simplexes. It turns out that there is only

one possibility for £,, with such a facet list.

(1) f,(P,,) =25 with the followings edges:

67, 57,47, 56, 46, 45, 37, 36, 35, 34, 27, 25, 24,
23,17, 14, 13, 12, 06, 05, 04, 03, 16, 01, 02

// \ o N / 4 // N\ // \
/
NP4 \ / rd 4
7 7 /

/ /s \/\ 4 / \ / . N /| / P

' N \ S/ 7 N/
// / N\ / i N\ // N //
N/ N ¢ N\ /

[Figure 4.43] The first case of all facets of P,
The value of f, and f,; can be obtained from Table 2.1, as follows.
Fo(Poy) =8, fu3(Pyy) = 68, f1(Py,) = 25,
Foo(Poy) = =2f(Pop) +2f, (Ppy) + f3 (Poy),

Thus it is easy to obtain
For(Pyy) = —2x842x25468 =102,

It follows from the equation fy,(Py) = 3f,(Py)(f,(P. —m that we
have m=18. Consequently, this case provides an example P,, of a 4

-polytope which satisfies

fOQ( 22 _3f0 22 (fo —18.

Since all facets are only tetrahedron, there is only one of the above for

P,,. This result can be summarized, as follows.
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[Table. 71 P,

fo f1 So2 So3 m:3f0(f0_3)_f02
P, 8 25 102 68 m =18

4.8 P,; case

In this section, we deal with PB,; case. For 8 eight vertices labeled
with 0,1,2,--,7, P, is a 4-polytope with the following facet list:

[76543] [7652] [7642] [7531] [7521] [7431] [7421] [6530] [6521]
[6510] [6430] [6420] [6210] [5310] [4321] [4320] [3210]

(see Table 2.2 for more details). Thus it has 16 tetrahedra and 1
bipyramids over a triangle or 1 square pyramids. It turns out that there

are six possibilities for P,; with such a facet list.

() f,(Py) =27 with the followings edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15, 13,
12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 23, 45

"\ N

P ) \ N rd . . \‘

&

N/ Y N N4 | A \\ V4
AN

/ Y // q / // N // \ S N\

AN 4

\\ v AN 4 AN 4 N \\ S NV
AN

a - \ / \/ // N

\\ P R P4 . Fa XA

[Figure 4.44] The first case of all facets of Py
The value of f;, and f,; can be obtained from Table 2.1, as follows.
Jo(Py) =8, fos(Py) =69, f,(Py) =27,
Foo(Pog) = = 2f(Py) +2f, (Pyy) + fo3 (Pos),
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Thus it is easy to obtain
For(Pyy) = —2x842x27469=107.

It follows from the equation fy,(Py) = 3f,(Py)(f,(P. —m that we
have m=13. Consequently, this case provides an example P,, of a 4

-polytope which satisfies

fOQ( 23)_3f0 23 (fo —13.

(2) f,(Py) =27 with the followings edges:

67,57, 27, 56, 26, 25, 47, 46, 24, 37,17, 35, 15, 13,
12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 23, 45

/ / \ // \ //\ / \ \
NS N 1 . N/

AN, LN yah SINC N

A% AN < Fa N/ |

A A A A D

ANV AN <\ / >

[Figure 4.45] The second case of all facets of P,
In this case, we have
Jo(Py) =8, fo5(Pys) =69, f,(Py) = 21.
Thus, fo(Py) = —2f,(Py) +2f,( 23)—i-f%( )2107, and
m=13= 3£, (Py)(f, (P )= for (Py3).

(3) f,(Py) =26 with the followings edges:

67,57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 23
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SIN /7\ I\
N \ /
2N 2N, JaR / 1N
AN 7
/1 / A ANC LD

/

[Figure 4.46] The third case of all facets of P,

In this case, we have
Fo(Py) =8, foz(Py3) =69, f,(Py) = 26.
Thus, fp(P) = —2f(Pyy) +2f,( 23)+f03( ):105, and
_15_3f0 23 (f() f02( )

(4) f,(Py) =27 with the followings edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15, 13,
12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 23,45

h /7\ /7\,

AN

A P4

/
<]

ol v (

NN N

> A

[Figure 4.47] The fourth case of all facets of P,

In this case, we have

f()(P ):8, f()g(P ):69, fl(P23):27
Thus, fiu(Py) = —2/fy(Py)+2f,( 23)+f03( ):107’ and
m=13= 31, (Py )/, (P, )= o2 (Pig).
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(5) f,(Py) =27 with the followings edges:

67,57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15, 13,

12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 23, 45

/71 i /7 yah /7\ /7\,
\4 / AN
7N / yan 4 21N
NN
/ / ,4 yah
N NV A

[Figure 4.48] The fifth case of all facets of P,

In this case, we have

fo(Py) =8, fiu(Py) =69, f,(Py) = 2T.
Thus, fy, (P23) = —2f0(P23)—|—2fl (P23)+f03(P23) =107, and
m=13= 3fo(P23)(fo(P23)_3)_f02(P23)'

(6) f,(Py) =26 with the followings edges:

67,57, 27, 56, 26, 25, 47, 46, 24, 37, 17, 35, 15,
13,12, 34, 14, 36, 06, 05, 03, 16, 01, 04, 02, 23

/] NN N A AN
\ S \ZL
N, S Vah 4 //T\
N \/
/ / p ‘ yah
N SNV A

[Figure 4.49] The sixth case of all facets of P,

In this case, we have

fo(Py) =8, fuiu(Py) =69, f,(Py) = 26.
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Thus, fo,(Pyy) = —=2f(Poy) +2f,(Pyy) + fo3(Py3) = 105, and
m:15:3f0(P23)(f0(P23)_3>_f02(P23)-

These results can be summarized, as follows.

[Table 4.8] Py,

fo f1 foz f03 m:3f0(f0_3)_f02
26 105 69 m =15

P23
27 107 69 m = 13

4.9 P,, case

In this section, we deal with £, case. For 8 eight vertices labeled
with 0,1,2,---,7, P,, 1s a 4-polytope with the following facet list:

[76543] [76542] [7631] [7621] [7531] [7520] [7510] [7210] [6430]
[6420] [6321] [6320] [5431] [5420] [5410] [4310] [3210]

(see Table 2.2 for more details). Thus it has 15 tetrahedra and 2
bipyramids over a triangle or 2 square pyramids. It turns out that there
are four possibilities for £,, with such a facet list.

(1) f,(P,) =28 with the followings edges:

67, 37,17, 36, 16, 13, 27, 26, 12, 57, 35, 15, 07, 25,
05, 02, 01, 46, 06, 34, 04, 03, 24, 23, 45, 14, 47, 56

7 7 7 7

.

/ / q / \ // \\ // \\

/ / )

AN ) A4 AN 7 NV
%

/ N, / // N // A N

N\
A% V7 AN AN 7 7
.

ks an TN

7 LN / s <

R ~ 74 | /

\\ // N/ N\ / \ 7

[Figure 4.50] The first case of all facets of P,
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The value of f;, and f,; can be obtained from Table 2.1, as follows.

ol
oo

}§4>::
P,) =
Thus it is easy to obtain

f02 (P24

8, fo3(Poy

) =

70, f,(P,,

2f0( 24>+2f1( 24)+f03( )

)= —2x8+2x28+70=110.

It follows from the equation fOQ(

= 3o (P

24 (fO

) =28,

—m that we

have m=10. Consequently, this case provides an example P, of a 4

-polytope which satisfies

@) £i(

}34)::

Soo (Pyy

= 3, (P,

24 (f()

27 with the followings edges:
67,37,17, 36, 16, 13, 27, 26, 12, 57, 35, 15, 07, 25,

—10.

05, 02, 01, 46, 06, 34, 04, 03, 24, 23, 45, 14, 56

7

/ / / \ // \\ // \\
N/ N VZN S/ /
/ / // A // \
N/ NP4 A% R E /
i CLN.

AN 4 AN ¢

[Figure 4.51] The second case of all facets of Py,

In this case, we have

fo(Poy) =8, fos(Pyy) =70, fi(Py,)=27.
Thus, fo(Py) = —2f,(P,,)+2f,( 24)—i—fog( ) 108, and

m=12= 3f,(P,,)(f,(P. )= Foo (Pay).
(3) f,(P,,) =27 with the followings edges:

67, 37, 17, 36, 16, 13, 27, 26, 12, 57, 35, 15, 07, 25,
05, 02, 01, 46, 06, 34, 04, 03, 24, 23, 45, 14, 47
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N

[Figure 4.52] The third case of all facets of P,
In this case, we have
Jo(Poy) =8, fo3(Pyy) =170, f1(Py,) =27,
Thus, fo(Py) = —2f,(Py,) +2f,( 24)+f03( ,) =108, and
m=12= 3£, (P,)(f, (. )= foo(Pay).

(4) f,(P,) =26 with the followings edges:

67, 37,17, 36, 16, 13, 27, 26, 12, 57, 35, 15, 07,
25, 05, 02, 01, 46, 06, 34, 04, 03, 24, 23, 45, 14

/

[Figure 4.53] The fourth case of all facets of P,
In this case, we have
fo(Poy) =8, fo3(Pyy) =70, fi(Py) = 26.
Thus, fo(Py) = —2f,(P,,)+2f,( 24)+f03( ) 106, and
m=14=3f,(P,)(f, (. )= oo (Pyy).
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These results can be summarized, as follows.

[Table 4.91 P,

fo f1 fog fog m:?’fo(fo_?’)_fOQ
P 26 106 70 m=14
. 27 108 70 m=12

4.10 P, case

In this section, we deal with £, case. For 8 eight vertices labeled
with 0,1,2,---7, P, is a 4-polytope with the following facet list:

[7654] [7653] [7643] [7542] [7532] [7431] [7421] [7321] [6542]
[6530] [6520] [6430] [6420] [5321] [5310] [5210] [4310] [4210]

(see Table 2.2 for more details). Thus it has only 18 tetrahedra. P,; is

simplicial, 1.e., all facets are 3-simplexes. It turns out that there is only

one possibility for £,; with such a facet list.

(1) f,(Py) =26 with the followings edges:

67,57, 47, 56, 46, 45, 37, 36, 35, 34, 27, 25, 24,
23,17, 14, 13, 12, 26, 06, 05, 03, 02, 04, 15, 01

N\
/ / / // N\ // \ 4
\\ // \\ // \\ // L // L // N\ //
/ 2N / // N // S 1N
' \\ // LN /,/ N Y, |/ %
R ™
ol /. | / AN // b // S 21N
™ / A4 NP4 7 \V N

[Figure 4.54] The first case of all facets of Py
The value of f;, and f,; can be obtained from Table 2.1, as follows.

fo(P25) =38, fog(P%) =172, f1(P25) = 26,
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fUZ(P25) 2f0( 25)+2fl< 25)+f03( )
Thus it is easy to obtain
Foo(Pys) = —2x842x26+72=108.

It follows from the equation f,(Py) = 3fy(Py)(fy(Py)—3)—m that we
have m=12. Consequently, this case provides an example F,, of a 4

-polytope which satisfies

fUQ( 25 _3f0 (fo 3)—12.

Since all facets are only tetrahedron, there is only one of the above for

P,;. This result can be summarized, as follows.

[Table 4.9] P

fo f1 So2 So3 m:3fo(fo_3)_f02
P,y 8 26 108 72 m =12

4.11 P,; case

In this section, we deal with P, case. For 8 eight vertices labeled
with 0,1,2,---,7, P, is a 4-polytope with the following facet list:

[76543] [7652] [7642] [7541] [7521] [7420] [7410] [7210] [6530]
[6521] [6510] [6432] [6320] [6210] [5431] [5310] [4320] [4310]

(see Table 2.2 for more details). Thus it has 17 tetrahedra and 1
bipyramids over a triangle or 1 square pyramids. It turns out that there

are four possibilities for P, with such a facet list.

() f,(Py) =27 with the followings edges:

67,57, 27, 56, 26, 25, 47, 46, 24, 17, 45, 15, 14, 12,
07, 04, 02, 01, 36, 06, 35, 05, 03, 16, 34, 23, 13
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p s ) W S
< 5

[Figure 4.55] The first case of all facets of Py
The value of f, and f,; can be obtained from Table 2.1, as follows.
Fo(Pag) =8, fus(Pog) = T3, f1(Py) = 27,
Foo(Pag) = = 2f(Pog) +2f, (Pyg) + fo3 (Pag),

Thus it is easy to obtain

Foo(Pyg) = —2x84+2x27+73=111.
It follows from the equation fy,(Py) = 3f,(Py)(f,(P. —m that we
have m=9. Consequently, this case provides an example Py of a 4
-polytope which satisfies

f02( 3f0 26 (fO —9.
(2) f,(Py) =28 with the followings edges

67,57, 27, 56, 26, 25, 47, 46, 24, 17, 45, 15, 14, 12,
07, 04, 02, 01, 36, 06, 35, 05, 03, 16, 34, 23, 13, 37

) e 7 /7\ /7/ 7 Ny
N / N
/ AN
/ SN N D
AN s

[Figure 4.56] The second case of all facets of Py
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In this case, we have

fo(Py) =8, foa(Py) =73, f,(Py) = 28.
Thus, fo,(Pyg) = =2 (Pyg) +2f, (Pyg) + f03( ):113, and
m="T7=3f,(Py)(f, (P, )= Foo (Pog ).

(3) f,(Py) =28 with the followings edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 17, 45, 15, 14, 12,

07, 04, 02, 01, 36, 06, 35, 05, 03, 16, 34, 23, 13, 37

7 /7 7 //7\ //7 7\

N/ g L / /
N // A

N/ / . / A%
. / / . /4 7

TN/ N A .

[Figure 4.57] The third case of all facets of Py

In this case, we have

f()( 26)_8 f()g( 26)_73 fl( )_28
Thus, fu(Py) = —2f,(Py) +2f,( 26)4_fb3( )::113’ and
m="T7=3f,(Py)(f, (P, )= foo (Pog).

(4) f,(Py) =28 with the followings edges:

67, 57, 27, 56, 26, 25, 47, 46, 24, 17, 45, 15, 14, 12,

07, 04, 02, 01, 36, 06, 35, 05, 03, 16, 34, 23, 13, 37
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AN
/ 5 / > / ah ’/ \\
\\// NV | |/ W4 |/
"\
/ / // A // A \
U/ ANV AN N4 L U/

[Figure 4.58] The fourth case of all facets of Py
In this case, we have
FoPos) =8, fo3(Pog) =73, f1(Py) = 28,
Thus, fuu(Py) = —2f,(Py) +2f,(Py)+ fos(Py) =113, and
m="T7=3f(Pos)(fy(Pog) —3) = [0 (Pog).

These results can be summarized, as follows.

[Table 4.10] Py

fo f1 So2 Sos m=3fo(fo_3)_f02

4.12 Summary of Our Results

As mentioned above, our goal of this paper is to set up a first step to

find a necessary and sufficient condition for the flag vector pair (f,f,)

of a 4-polytope to satisfy. To do so, we enumerated many specific

examples that satisfy the range of the flag vector pairs (f; /o)

suggested by the paper [10] of Kim and Park.
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As a consequence, we found that there are some concrete examples of
4-polytopes satisfying m=3f,(f,—3)— f,, with
9,12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28.

It is interesting to note that at least in our list there is no example of a

4-polytope whose value of 3f,(f,—3)—f, is exactly equal to 17.

Further, it is worth mentioning that there i1s a concrete example of

4-polytope whose 3]”0(}“0—3)—fo2 is equal to 9. Notice also that in our
list there are no examples of a 4-polytope whose value of
3fy(fo—3)—f, lies in the set {1,2,3,4,5,7,8,10,11}. This, in particular,
implies that our results perfectly fit well with the result of Kim and
Park in [10] (see Theorem 3.1).

Table 4.11 below shows our overall results of concrete examples that
we found in this thesis, based on the list provided by Fukuda, Miyata,
and Moriyama in [6] (see [Table 2.2]).
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[Table 4.11] Summary of our results

Collection @ chosun

fo f1 foz f03 m=3f0(f0—3)—f02

8 25 93 59 m =27

8 27 97 59 m = 23

8 24 92 60 m = 28

8 25 94 60 m = 26
P17

8 26 96 60 m =24

8 27 98 60 m = 22

8 25 96 62 m =24
P 8 26 98 62 m = 22

8 27 100 62 m = 20

8 25 97 63 m = 23
P 8 26 99 63 m =21

8 27 101 63 m = 19

8 25 99 65 m = 21
PQU

8 26 101 65 m =19

8 25 100 66 m = 20
Py, 8 26 102 66 m = 18

8 27 104 66 m = 16
P, 8 25 102 68 m = 18

8 26 105 69 m =15
P23

8 27 107 69 m =13

8 26 106 70 m =14
P24

8 27 108 70 m =12
P,y 8 26 108 72 m =12
Py 8 27 111 73 m =
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