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국문초록

4차원 다면체의 특정한 플래그벡터 순서쌍의 결정에 관한 연구

박 나 리
지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

  

  본 논문은 4차원 다면체의 면의 개수를 표현하는 플래그벡터에 관한 연구이

다. 2018년에 Sjöberg와 Ziegler는 4차원 다면체의 플래그벡터 순서쌍 ()

을 완벽하게 결정하는 연구결과를 발표하였다. Sjöberg와 Ziegler는 이 연구결

과를 얻기 위해 Altshuler와 Steinberg의 최대 8개의 꼭짓점을 갖는 4차원 다

면체에 관한 연구결과를 이용하였다. 이에 본 연구는 이와 같은 연구를 심도 

있게 이해하고, 이를 바탕으로 기존의 연구 방법을 확장하여 4차원 다면체의 

플래그벡터 순서쌍  ,  ,  ,  의 범위에 관한 새로운 

결과를 제시하였다.



- 3 -

Ⅰ. Introduction and Main Results

For a -dimensional polytope , let    denote the number of 

dimensional faces of . One of the fundamental combinatorial invariants 

of  is its -vector … , which we are mainly concerned with 

in this thesis. The Euler-Poincare formula gives the well-known 

restriction on the -vectors of simplicial polytopes. Another well-known 

restriction on the -vectors for simplicial polytopes is the so-called 

Dehn-Sommerville equations. In [9], McMullen conjectured some 

characterization of the -vectors of simplicial polytopes, and then it has 

been verified by Stanley in [11] and Billera-Lee in [4]. However, 

currently any complete characterization of the -vectors of all simplicial 

polytopes is very much out of reach.

There is another combinatorial invariant for convex polytopes, called the 

flag vector, which are not relatively well known but obviously 

generalizes the notion of the -vector. That is, for  ⊆  … , let 

    denote the number of chains 

 ⊂  ⊂⋯⊂    ⊂ 

 of faces of  with 

dim … dim . 

For the sake of simplicity, from now on we use the notation  … 
 

instead of  … 
 for any subset … of … . For 

instance,  will mean . Note that the -vector of  is then 
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  …  , while the flag vector of  is defined to be 

  ⊆  …  . 

The set of all -vectors of -dimensional polytopes will be denoted by 

 . Clearly   is a subset of . Let 
 denote the projection of 

-vector of ∈  onto the coordinates  and . Then ∈
 is 

called a polytopal pair if there is a -polytope  with     and  

    If ∈  , then these pairs must satisfy the 

well-known upper bound theorem saying 

≤  ,  ≤  ,

where  denotes a -dimensional cyclic polytope with  

vertices([5]). For the moment curve in   defined by

   →   ↦ …∈

and for any   , the standard -th cyclic polytope with  vertices, 

denoted by , is defined as the convex hull in  of  

different points …  on the moment curve  such that 

   ⋯ . Cyclic polytopes  are precisely those which are 

combinatorial equivalent to the standard cyclic polytope  (see 

[7] for more details).

In a similar vein, for any two subsets  and  of …, a pair 




, or simply 


, of flag numbers of  will be called a 

flag vector pair. More generally, for any , not necessarily mutually 

disjoint, subsets … of …, a -tuple
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…


or simply 


…
, of flag numbers of  will be called a flag 

vector -tuple.

As in the -vectors, let us denote by …
 the projection of the flag 

vector   ⊆  …   onto its coordinates 


…
. We call 




…
 a polytopal flag vector -tuple if 


…

 belongs to 

the image of the set of all flag vectors of -dimensional polytopes 

under the projection map …
, that is, if there is a -polytope  

such that




…
  


…

.

In [6], recently Sjöberg and Ziegler showed a remarkable result that 

completely determines the flag vector pair  of any 4-dimensional 

polytopes. In order to obtain such results, they crucially used the work 

[1] of Altshuler and Steinberg on 4-polytopes up to 8 vertices. 

Furthermore, they used the techniques of stacking, general stacking on 

cyclic polytopes, facet splitting, truncating, and so on for the 

construction of specific 4-dimensional polytopes.

The goal of this thesis is to give some necessary conditions for other 

remaining vector pairs such as  ,  ,  ,   to be 

flag vector pairs of -dimensional convex polytopes. 
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Our main results go as follows.

Theorem 1.1 The flag vector pair     of a -polytope 

 satisfies the following two conditions:

(1)  ≥  and for ∈,  ≠   .

(2)  ≤  ≤  . 

Recall that a convex polytope  is called neighborly (or 2-neighborly) if 

any pair of vertices of  is connected by an edge, forming a complete 

graph. So any non-neighborly polytope  should have at least one pair 

of vertices of  which do not form an edge.

Theorem 1.2 The flag vector pair     of a 

non-neighborly 4-polytope  satisfies the inequalities






 ≤  ≤ 


 .

Theorem 1.3 The flag vector pair     of a  

4-polytope  satisfies the inequalities

   ≤  ≤   .

Theorem 1.4 The flag vector     of a non-neighborly 

4-polytope  satisfies the inequalities



- 7 -






 
≤  ≤   .

It would be interesting to investigate whether or not there are some  

examples which achieve the lower and upper bounds given in Theorems 

1.1, 1.2, 1.3, and 1.4. We also remark that some obstructions for flag 

vector pairs   of 5-polytopes have been proved in [6]. To be a 

little more precise, certain bounds of the flag number  of a 

5-polytope have been shown in terms of a given flag number . The 

upper bounds given in [6] are not optimal, even though the lower 

bounds are very sharp. On the other hand, recently very sharp and 

optimal upper and lower bounds for  and  have been finally 

obtained in [8].

This thesis is organized as follows. 

In Chapter 2, we collect some notation, definitions, and preliminary facts 

in order to prove our main theorems given in Chapter 3. 

In Chapter 3, we give some necessary conditions for vector pairs such 

as  ,  ,  ,   to be flag vector pairs of 

4-dimensional convex polytopes. To be more precise, in Section 3.1 we 

give a proof of Theorem 1.1 for vector pair  . To do so, we use 

the method of a case-by-case analysis. Section 3.2 is devoted to giving 

a proof of Theorem 1.2 for vector pair  , while Section 3.2 deals 
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with the case of vector pair   and there we provide a proof of 

Theorem 1.3. Finally, in Section 3.4, we give some bounds for vector 

pair  .
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Ⅱ. Preliminaries

This chapter briefly describes some important theorems necessary for 

understanding the proof of our main results given in the next section. In 

addition, we set up some notation and definitions. 

First, we begin with summarizing the well-known facts about the 

-vector of convex polytopes, in particular, 4-dimensional polytopes. 

Theorem 2.1 (Grünbaum, [7, Theorem 10.4.1]). The set of -vector 

pairs () of 4-polytopes is equal to

∏   ∈   ≤  ≤ 


  ≤  ≤ 


 .

Theorem 2.2 (Grünbaum, [7, Theorem 10.4.2]). The set of -vector 

pairs () of 4-polytopes is equal to

∏   ∈   ≤  ≤  ≤ 


     

.

Theorem 2.3 (Generalized Dehn-Sommerville equation, [3, Theorem 

2.1]) Let  be a -polytope, and let  ⊆ ⋯. Let

⊆ ∪ such that    and ∃ ∈ such that     . Then, 

we have

 
   

 

   ∪     .
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Theorem 2.4 (Sjöberg and  Ziegler, [8, Theorem 2.5]). There exists a 

4-polytope  with    and    if and only if the following 

two conditions hold:

(1)  and  are integers satisfying

 ≤  ≤  ≤  ,

 ≠  ∈.

(2) () is not one of the 18 exceptional pairs

(6, 24), (6, 25), (6, 28),

(7, 28), (7, 30), (7, 31),

        (7, 33), (7, 34), (7, 37), (7, 40),

        (8, 33), (8, 34), (8, 37), (8, 40),

           (9, 37), (9, 40), (10, 40), (10, 43).

Theorem 2.5 (Bayer, [2, Theorem 1.3 and 1.4]). The flag vector of 

every 4-polytope satisfies the inequalities 

     ≥  and    ≥ .
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Ⅲ. Proofs of Main Results

The aim of this chapter is to give proofs of our main Theorems 1.1, 

1.2, 1.3, and 1.4. 

3.1 The flag vector pair   for 4-polytopes

In this section, we prove a series of lemmas in order to characterize 

the following set 

∏   ∈   is a polytope

We begin with the following lemma.

Lemma 3.1.1 For    or , the flag vector of every -polytope 

satisfies the equalities:

(1) For   , we have

      .

(2) For   , we have

   .

Proof. (1) For the proof, we use the Generalized Dehn-Sommerville 

equation ([3, Theorem 2.1] or Theorem 2.3) with      , and   . 

Then it is straightforward to obtain 
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      and   

∴      

(2) Once again, we apply the Generalized Dehn-Sommerville equation 

([3, Theorem 2.1] or Theorem 2.3) with          and   . 

Then we can obtain


  



     

     and   

∴    

□

As an immediate consequence, we have the following result.

Corollary 3.1.2

The flag vector of every 4-polytope satisfies the inequalities 

 ≤  ≤    ≥ .

Proof. Recall that it follows from Sjöberg and Ziegler ([8, Theorem 2.5] 

or Theorem 2.4) that

 ≤  ≤  .

By combining the above inequalities with the identity in Lemma 3.1.1 

(2), we can obtain 

                     ≤  

              ∴ ≤   

≤   
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where in the last inequality we used Theorem 2.2 (or Grünbaum [2, 

Theorem 10.4.2]). Thus, we have

                     ≤    

     

Also, it follows from  ≥  and  ≥  that we have

     ≥  ⇒  ≥   ≥ .

□

As a consequence,

∏  ⊆ ∈   ≤  ≤   ≥ .

Note that     if and only if  is neighborly. Thus, if 

   , then  is not neighborly, 

i.e.   


   

 

3.1.1  ≤  ≤  case

The aim of this subsection is to prove the following lemma.

Lemma 3.1.3 The following statement holds.

  ≠  for   .

Proof. We prove this lemma by contradiction. So suppose

   

for some integer  ≤  ≤ . Then it follows from Sjöberg and Ziegler 

([8, Theorem 2.5] or Theorem 2.4) that we have
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≤   

Once again, by [8, Theorem 2.5] or Theorem 2.4 recall also that 

 ≠ 

for ∈. Thus, we have

 ≥       

 
  

   

 
  

∴ ≥

 



 

  




Note also that since       ,  is not neighborly. Thus

  

  .

Thus, we have



  


≤   

  .

Therefore, if  ≤  ≤ , then we have



     

   


≤   

  .

This implies that there does not exist a  4-polytope  such that

   ,   

This is a contradiction.

□

3.1.2    or    case

In this subsection, we exclude the case of    and   . Note that if 

 6 or 7, then we have 
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≤   

  .

∴  

   .

In this case,       or      .

In order to deal with this case, we first need to recall that if there is a 

pair of vertices of a polytope not forming an edge, then such an edge 

is called a non-edge (See [Figure 3.1] and [Figure 3.2]). 

[Figure 3.1] [Figure 3.2]

Since   

    in our case, there is a unique pair    of vertices of 

 not forming an edge. That is, there is a unique non-edge. Thus, let  

be any facet of  which is not a simplex. Then  should contain the 

unique non-edge.
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Lemma 3.1.4  should have only five vertices. 

Proof. Suppose  has more than five vertices of  for which every two 

vertices form an edge. But there does not exist any 3-polytope 

satisfying such a property.

□

Lemma 3.1.5 There are only two combinatorial types of 3-polytopes 

with five vertices, the square pyramid or the bipyramid over a triangle 

(see [Figure 3.3] and [Figure 3.4]).

 [Figure 3.3] 

Bipyramid over a 

triangle
[Figure 3.4]

Square pyramid

Lemma 3.1.6

     .
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Proof. Only the bipyramid over a triangle contains exactly a non-edge.  

As a consequence,  is a polytope with one bipyramid facet and 

remaining   ≥  tetrahedral facets. In particular, every 2-dimensional 

faces of  is a triangle. For the proof, it suffices to observe the 

following identity

 

  
 .

□

Lemma 3.1.7 The following statements hold.

(1)  ≠ .

(2)  ≠ .

Proof. (2) Since   , it is true that  ≡  mod . Thus, we have

 ≠   

(1) Since   ≡  mod , we have

 ≠   ≡  mod .

□

3.1.3    or    case

In this subsection, we deal with the case of    and   . If 

 ≤  ≤ , then we have 
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≤   

  .

∴   

    or   

   .

By the arguments given in the previous subsections, if   

   ,  

then P has only two non-edges. Let   be any 3-dimensional face of 

. Then we have 

 

    ≤    ≤     

∴    , and so    .

That is, any non-tetrahedral facet is a polytope with 5 vertices: the 

bipyramid over a triangle or the square pyramid. Anyway, once again 

any 2-dimensional face is a triangle.  Hence, it follows from Lemma 

3.1.6 that we have

     ,

and so at least we have  ≠   . In fact, it can be shown 

that under the condition of   

    we also have

 ≠    .

To be precise, it follows from Theorem 2.5 that we have

  ≥ .

Thus, it is straightforward to obtain

   

 
  

≥    

which is a contradiction1).
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The case of   

    can be dealt with in a similar way to show that 

 ≠    and      .

Note, however, that in this case it is not possible to show

 ≠    

by the arguments as above.

3.1.4    or    case

Finally, we deal with the case of    and   .

Lemma 3.1.8 The following statements hold.

(1)  ≠    .

(2)  ≠   .

Proof. If  ≤  ≤  then we have



     

   


≤   

  .

∴   

    or   

    or   

    .

(1) If   

    or   

   , then it follows from the previous 

arguments that  ≡  mod .

∴  ≠  

 ≠  

1) This observation is due to Professor Nam Kwon Kim.
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∴   

    ≤  ≤ 

(2) Assume that

∴  

    ≤  ≤ 

Let   be any facet of . Then,   has at most 3 non-edges. Hence,

 

    ≤    ≤    

∴    .

(i) Assume     and   has 12 edges and 3 non-edges. There are 

two such combinatorially different 3-polytopes, which are both simplicial 

(See [Figure 3.1] and [Figure 3.2]). Let  denote the number of 

tetrahedral facets of . Then

      ≡  mod 

∴  ≠   

 ≠    

(ii) By the previous case,  has non-tetrahedral facets, all of them with 

five vertices. Since there are at most 3 non-edges, we cannot have 

more than three non-tetrahedral facets. So we have two cases:

 (a) The non-tetrahedral facets of  are 3 bipyramids over a triangle.

 (b) The non-tetrahedral facets of  are two square bipyramids and  

one bipyramid over a triangle.

In case of (a),  

 
  ( number of tetrahedral facets)
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∴      

≡  mod 

∴ ≠   

 ≠    

In case of (b),  

 
 

∴    

≡  mod 

∴ ≠   

 ≠    

□

To sum up all of the previous results, we can obtain the following 

theorem (Theorem 1.1).

Theorem 3.1.9 The flag vector pair     of a 

4-polytope  satisfies the following two conditions:

(1)  ≥  and for ∈,  ≠   .

(3)  ≤  ≤  .

3.2 The flag vector pairs   for 4-polytopes

The aim of this subsection is to give a proof of the following theorem 

(Theorem 1.2).

Theorem 3.2.1 The flag vector pair     of a 
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4-polytope  satisfies the inequalities






 ≤  ≤ 


 .

Proof. Recall first that 

(1)      (∵ Lemma 3.1.1 (2))

(2)   ≥  (∵[2, Theorem 1.3 and 1.4] or Theorem 2.5)

By (2), we can obtain

  ≤ 


.

Similarly, by (1) it is easy to obtain

    

≥   




∴


 ≥   ie  ≤ 




Recall also from Sjöberg and Ziegler [8, Theorem 2.5](or Theorem 2.4) 

that 

(3)  ≥ 

(4)  ≤  .

Thus, it is not difficult to obtain

   


 ≥ 

∴ ≥ 

 




 
.

∴ ≥ 




 
This completes the proof of Theorem 3.2.1.

□
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3.3 The flag vector pairs   for 4-polytopes

The aim of this subsection is to give a proof of the following theorem 

(Theorem 1.3).

Theorem 3.3.1 The flag vector pair     of a 

4-polytope  satisfies the inequalities

   ≤  ≤   .

Proof. Recall first that 

(1)   ≥  (∵ Bayer [2, Theorem 1.3 and 1.4] or Theorem 2.5)

(2)  ≤   (∵ Grünbaum [7, Theorem 10.4.2] or Theorem 2.2)

Thus by (2) it is easy to obtain

   ≥  ⇒  ≥ 


 

Also, it follows from (1) that

 ≤ 

≤ 

Recall also from Sjöberg and Ziegler [8, Theorem 2.5] (or Theorem 2.4) 

that we have  ≥  . Thus it follows from

 ≥ 


 

that we can obtain

 ≥  ≥  .

On the other hand, by using the identity     (Lemma 

3.1.1(2)) and  ≥ , we have
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≥   

  

 

That is, we can obtain

   ≤ .

This completes the proof of Theorem 3.3.1.

□

3.4 The flag vector pairs   for 4-polytopes

The aim of this subsection is to give a proof of Theorem 3.4.2 

(Theorem 1.4). 

First, we begin with the following theorem.

Theorem 3.4.1 The flag vector     of a 4-polytope  

satisfies the inequalities

   ≤  ≤   .

Proof. By the identity 

    (Lemma 3.1.1 (2)),

it is straightforward to obtain 
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≥     

   

Moreover, it is also true that

    

≤     

   

This completes the proof of Theorem 3.4.1.

□

Actually, if we combine Theorem 1.2 with Theorem 1.3, we can improve 

the upper and lower bounds for  given in Theorem 3.4.1, as follow

s2).

Theorem 3.4.2 The flag vector     of a 

non-neighborly 4-polytope  satisfies the inequalities






 
≤  ≤   .

Proof. To show it, we crucially make use of Theorems 1.2 and 1.3. 

Indeed, it follows from Theorems 1.2 and 1.3 that we have

 ≤ 


 ≤ 


  

   

On the other hand, by using Theorems 1.2 and 1.3 once again it is also 

not difficult to obtain 

2) This result has been motivated by the discussion with Professor Nam Kwon Kim.
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 ≥ 




 
≥ 




 

This completes the proof of Theorem 3.4.2.

□

Notice that for any  ≥  we have

   ≥   

and






 
≥  

Therefore,  for any non-neighborly 4-polytope  Theorem 3.4.2 gives 

better lower and upper bounds for  in terms of  than those given 

in Theorem 3.4.1.
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