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[ . Introduction and Main Results

For a d-dimensional polytope P, let ijfi(P) denote the number of 7—

dimensional faces of P. One of the fundamental combinatorial invariants
of P is its f-vector (fofl,,,,,fd,l), which we are mainly concerned with
in this thesis. The Euler—-Poincare formula gives the well-known
restriction on the f-vectors of simplicial polytopes. Another well-known
restriction on the f-vectors for simplicial polytopes is the so-—called
Dehn-Sommerville equations. In [9], McMullen conjectured some
characterization of the f-vectors of simplicial polytopes, and then it has
been verified by Stanley in [11] and Billera-Lee in [4]. However,
currently any complete characterization of the f-vectors of all simplicial

polytopes i1s very much out of reach.

There is another combinatorial invariant for convex polytopes, called the
flag vector, which are not relatively well known but obviously
generalizes the notion of the f-vector. That is, for S< {0, ...,d—1}, let
fs=7Fs(P) denote the number of chains

FcFcwCF_ CF
of faces of P with

{dim £, ...dim £ }=S.

For the sake of simplicity, from now on we use the notation fil,i%ik(P)
instead of f{i“i%ﬂk}(P) for any subset {iyiy....7,} of {0,1,2,...d—1}. For

instance, fo;(P) will mean f, 4 (P). Note that the f-vector of P is then
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(fos f1o . fu_y), while the flag vector of P is defined to be

(fS)Sg {0, ..d—1}"

The set of all f-vectors of d-dimensional polytopes will be denoted by

F?. Clearly F' is a subset of Z%. Let Hi’j(Fd) denote the projection of f

-vector of PEF" onto the coordinates f; and /;- Then (n,m)EIIiyj(F"') is
called a polytopal pair if there is a d-polytope P with f,(P)=n and
f,(P)=m. If (nm)EIl,, (F"), then these pairs must satisfy the
well-known upper bound theorem saying
m < f,_(Gn)), n< f,_,(Cy(m)),
where C,(n) denotes a d-dimensional cyclic polytope with n
vertices([5]). For the moment curve in R? defined by
a:R->R ti (e, 1) ER?
and for any m > d, the standard d-th cyclic polytope with n vertices,

denoted by C(’i(tl,tQ,...t ), is defined as the convex hull in R of n

n

different points «(t),...,a(t,) on the moment curve « such that
t, <t, <---<t,. Cyclic polytopes C,(n) are precisely those which are
combinatorial equivalent to the standard cyclic polytope Czj(tl,tQ,...tn) (see

[7] for more details).

In a similar vein, for any two subsets S and S, of {0,1,2,..,d—1}, a pair

(f5,(P).fs,(P), or simply (fs.fs), of flag numbers of P will be called a

flag vector pair. More generally, for any k, not necessarily mutually

disjoint, subsets S,5...,5, of {0,1,2,....d—1}, a k-tuple

_4_

Collection @ chosun



(o (PLr (Pt (P)
or simply (fsl?fs;---’fsk)v of flag numbers of P will be called a flag

vector k-—tuple.

As in the f-vectors, let us denote by HSpSz- 5, the projection of the flag

vector  (fggc (o, a—1y oOnto its coordinates fg.fg....fq. We call
(f5:fss.nfs) a polytopal flag vector k-tuple if (fg.fq.....f) belongs to
the image of the set of all flag vectors of d-dimensional polytopes
under the projection map HSUSZ,...,SA,’ that is, if there is a d-polytope P

such that
(Fo (PLf (P g (PN = (Fg F oS )

In [6], recently Sjoberg and Ziegler showed a remarkable result that
completely determines the flag vector pair (fo,fog) of any 4-dimensional
polytopes. In order to obtain such results, they crucially used the work
[1] of Altshuler and Steinberg on 4-polytopes up to & vertices.
Furthermore, they used the techniques of stacking, general stacking on
cyclic polytopes, facet splitting, truncating, and so on for the

construction of specific 4-dimensional polytopes.

The goal of this thesis is to give some necessary conditions for other
remaining vector pairs such as (fy fo2), (foofos) (F1fo2), (Fifos) to be

flag vector pairs of 4-dimensional convex polytopes.

Collection @ chosun



Our main results go as follows.

Theorem 1.1 The flag vector pair (fy, foy) = (fo(P).fs(P)) of a 4-polytope

P satisfies the following two conditions:

(D) f, =6 and for k€1{1,2,3,4,5,6,7,8,10,11}, fu, = 3f,(f,—3) — k.

(2) 6fy < foo <3fo(fy—3)

Recall that a convex polytope P is called neighborly (or Z2-neighborly) if
any pair of vertices of P is connected by an edge, forming a complete
graph. So any non-neighborly polytope P should have at least one pair

of vertices of P which do not form an edge.

Theorem 1.2 The flag vector pair (foy fo3) = (fa(P)fe3(P) of a

non-neighborly 4-polytope P satisfies the inequalities

[63+4f,,
2(3+ ?)fo)<f05 - f02 .

Theorem 1.3 The flag vector pair (f},fp)=(1(P).fu(P) of a
4-polytope P satisfies the inequalities

fi 201+ \/148F,) < foa <6/, —3(1+ /1+8F,).

Theorem 1.4 The flag vector (f,fo) = (f,(P),fy3(P)) of a non-neighborly

4-polytope P satisfies the inequalities
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TL+4f, +8,/1+8f
6+2\/ . L < fy < Af, -2+ J1+8F)).

3

It would be interesting to investigate whether or not there are some
examples which achieve the lower and upper bounds given in Theorems
1.1, 1.2, 1.3, and 1.4. We also remark that some obstructions for flag

vector pairs (f; fo,) of 5-polytopes have been proved in [6]. To be a
little more precise, certain bounds of the flag number f,, of a
5-polytope have been shown in terms of a given flag number f,. The

upper bounds given in [6] are not optimal, even though the lower
bounds are very sharp. On the other hand, recently very sharp and

optimal upper and lower bounds for f, and f, have been finally

obtained in [8].
This thesis is organized as follows.

In Chapter 2, we collect some notation, definitions, and preliminary facts

in order to prove our main theorems given in Chapter 3.

In Chapter 3, we give some necessary conditions for vector pairs such
as (f()’ f02)) (f()g_’f()g); (fl,fog), (f17f03) to be ﬂag vector pairs of

4-dimensional convex polytopes. To be more precise, in Section 3.1 we

give a proof of Theorem 1.1 for vector pair (f, fy,). To do so, we use

the method of a case—-by—case analysis. Section 3.2 is devoted to giving

a proof of Theorem 1.2 for vector pair (fy, f,;), while Section 3.2 deals
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with the case of vector pair (f, fp,) and there we provide a proof of

Theorem 1.3. Finally, in Section 3.4, we give some bounds for vector

pair (f; fo3)-
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II. Preliminaries

This chapter briefly describes some important theorems necessary for
understanding the proof of our main results given in the next section. In

addition, we set up some notation and definitions.

First, we begin with summarizing the well-known facts about the f

-vector of convex polytopes, in particular, 4-dimensional polytopes.

Theorem 2.1 (Griinbaum, [7, Theorem 10.4.1]). The set of f-vector

pairs (f,,f;) of 4-polytopes is equal to

H0,3(F4>:{(fo>f3)622:5 <f, = %f3(f3_3),5 <f; = %fo(fo_?’)}-

Theorem 2.2 (Griinbaum, [7, Theorem 10.4.2]). The set of f-vector
pairs (f,,f,) of 4-polytopes is equal to
1
I, = {(fo’fl)EZQ 10<2f, < f, < Efo(fo—l)}

—{(6,12),(7,14),(8,17),(10,20) }.

Theorem 2.3 (Generalized Dehn-Sommerville equation, [3, Theorem
2.11) Let P be a d-polytope, and let S<{0,1,2,---,d—1}. Let
{i,k}€ SU{—1,d} such that i<k—1 and A jES suchthati<j<k. Then,

we have

B g (P = P - (1,

j=i+1
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Theorem 2.4 (Sjoberg and Ziegler, [8, Theorem 2.5]). There exists a
4-polytope P with f,(P)=f, and f;(P)=f,; if and only if the following
two conditions hold:
(1) f, and fy; are integers satisfying

20 < 4f, < fo3 = 2f,(f,—3),

foz = 2fo(fo—3)—k, k={1,2,3,5,6,9,13}.

(2) (fy.fo3) is not one of the 18 exceptional pairs

(6, 24), (6, 25), (6, 28),

(7, 28), (7, 30), (7, 31),

(7, 33), (7, 34), (7, 37), (7, 40),

(8, 33), (8, 34), (8, 37), (8, 40),

(9, 37), (9, 40), (10, 40), (10, 43).

Theorem 2.5 (Bayer, [2, Theorem 1.3 and 1.4]). The flag vector of

every 4-polytope satisfies the inequalities

Joo—=3faTf1—4f, 710 =0 and —6f,+6f, — fy, = 0.

_’IO_
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II. Proofs of Main Results

The aim of this chapter is to give proofs of our main Theorems 1.1,

1.2, 1.3, and 1.4.

3.1 The flag vector pair (f, fy) for 4-polytopes

In this section, we prove a series of lemmas in order to characterize

the following set

Iy 2 (F) = {(fo,f02)622 | Pisa 4—p01ytope}
We begin with the following lemma.

Lemma 3.1.1 For d=4 or 5, the flag vector of every d-polytope
satisfies the equalities:
(1) For d=5, we have
0=2f1=fortfozs—Jou-
(2) For d=4, we have

Jor == 2f+2f 1+ fos.

Proof. (1) For the proof, we use the Generalized Dehn-Sommerville
equation ([3, Theorem 2.1] or Theorem 2.3) with §={0},i=0, and k=5.

Then it is straightforward to obtain

_’I’I_
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4

Z]l(—l)j’lf{o,j} = fo—=(=1"""1)
f01]:f02+f03_f04 =0 and fo, =2/,
S 0=2f—footSfos—Sfos
(2) Once again, we apply the Generalized Dehn-Sommerville equation

([3, Theorem 2.1] or Theorem 2.3) with S={0},i=0,k=4 and f,, = 2f,.

Then we can obtain

3

E(_l)jilf{()_’j} = f()(l_(_l)zlioil)
j=1
Jor —fooTfos =2/ and foy =21,

Sofoe = 2f 0 H2f T fos

As an immediate consequence, we have the following result.

Corollary 3.1.2
The flag vector of every 4-polytope satisfies the inequalities

6fy < foo < 3fo(fo—3), fo =5.

Proof. Recall that it follows from Sjoberg and Ziegler ([8, Theorem 2.5]
or Theorem 2.4) that

Afy < foz < 2f0(fo—3).
By combining the above inequalities with the identity in Lemma 3.1.1

(2), we can obtain
Jos =2f0—2f1 T /e §2fo(fo_3)

S S S—2fy F2f +2f,(f,—3)
S_2fo +fo(fo_1)+2fo(fo_3)7

_’|2_
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where in the last inequality we used Theorem 2.2 (or Griinbaum [2,

Theorem 10.4.2]). Thus, we have

f02 §_2f0+000)2 _fo +2(f0)2_6fo
:3(fo)2_9f0 :3f0(fo_3)-

Also, it follows from f,; =4f, and f; =2f, that we have

Fos =2f0—2f 1+ fon ZAfy = foy = 2f+2f, = 6,

As a consequence,
1'[0702(17'4) < {(n,m)EZ% | 6n <m < 3n(n—3),n > 5}.
Note that fg, =3f,(f,—3) if and only if P is neighborly. Thus, if

for <3fy(fy,—3), then P is not neighborly,

Le. f <%fo(fo_1):(j;0)

3.1.1 1< k<5 case

The aim of this subsection is to prove the following lemma.

Lemma 3.1.3 The following statement holds.
foo #3fo(fy—3)—k, for k=1,2,3,4,5.
Proof. We prove this lemma by contradiction. So suppose
So2 :3f0(f0_3)_]“3
for some integer 1 <k<5. Then it follows from Sjoberg and Ziegler

([8, Theorem 2.5] or Theorem 2.4) that we have

_’|3_
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3f0(f0_3)_k:f02 =2fot2f, + fo3

—2fy+2f, +2f,(f, —3)—4.
Once again, by [8, Theorem 2.5] or Theorem 2.4 recall also that

foz = 2fo(fo—3)—k
for k={1,2,3,5,6,9,13}. Thus, we have

<

2fy = 2f, =2/ (fo—3) +4+ £, 3f,—9) =k k>0
=3f5—9f, —2f3 +6f, +2f +4—k
:f?)_fo+(4_k)
folfo=1)  4—k f 4—k
R = "9 +—.
h=—g (2)+ 2
Note also that since f,, =3f,(f,—3)—k k>0, P is not neighborly. Thus

Thus, we have

Therefore, if 1 <k=<5, then we have

1
°—1<(f0)——§ <(0).
(2 2 2 S 2
This implies that there does not exist a 4-polytope P such that

foo =3f(fy—3)—k, k=1,2,3,4,5
This is a contradiction.

3.1.2 k=6 or k=7 case

In this subsection, we exclude the case of k=6 and k=7. Note that if
k=6 or 7, then we have

_’IA_
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o<t <t
)

In this case, fy, =3f,(f,—3) =6 or fy, =3f,(f,—3)—1.

In order to deal with this case, we first need to recall that if there is a
pair of vertices of a polytope not forming an edge, then such an edge

is called a non—-edge (See [Figure 3.1] and [Figure 3.21).

I non-edge

/ non-edge

[Figure 3.11] [Figure 3.2]

Since f, 2(20) —1 in our case, there is a unique pair vy, v, of vertices of

P not forming an edge. That is, there is a unique non-edge. Thus, let F
be any facet of P which is not a simplex. Then Z should contain the

unique non-edge.

_15_
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Lemma 3.1.4 F should have only five vertices.

Proof. Suppose F has more than five vertices of F for which every two
vertices form an edge. But there does not exist any J3-polytope

satisfying such a property.

Lemma 3.1.5 There are only two combinatorial types of 3-polytopes
with five vertices, the square pyramid or the bipyramid over a triangle

(see [Figure 3.3] and [Figure 3.4]).

[Figure 3.3]

Bipyramid ra
ipyratic ove [Figure 3.4]

Square pyramid

triangle

Lemma 3.1.6
for = 3f, = 6t+9.

_16_
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Proof. Only the bipyramid over a triangle contains exactly a non-edge.
As a consequence, P is a polytope with one bipyramid facet and
remaining ¢ (t >0) tetrahedral facets. In particular, every 2-dimensional
faces of P is a triangle. For the proof, it suffices to observe the
following identity

4 +6
fo=—p— =243,

Lemma 3.1.7 The following statements hold.
(1) foo =3fo(fy—3)—6.
(2) foo #3fy(fy—3)—T.

Proof. (2) Since fy, = 3f,, it is true that f,, = 0mod 3. Thus, we have

f02 ¢3fo(f0_3)_7'

(1) Since fy, =6t+9=3mod6, we have

Foa #3f,(fy—3) — 6= 0mod 6.

3.1.3 k=8 or k=9 case

In this subsection, we deal with the case of k=8 and k=9. If

8 <k <9, then we have

_’|7_
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(20)_3<(20)_%<f1 <(20)'
'”fl:(;)_l or fl:(zo)_z

By the arguments given in the previous subsections, if f1:(20)_2,

then P has only two non-edges. Let F® be any 3-dimensional face of

P. Then we have

(fo(f))—Q < F(F) < 3f,(F*)— 6.

o fo(F?) <6, and so f,(F®) =5.
That 1s, any non-tetrahedral facet is a polytope with 5 vertices: the
bipyramid over a triangle or the square pyramid. Anyway, once again
any 2-dimensional face i1s a triangle. Hence, it follows from Lemma
3.1.6 that we have
Joo = 3f,(f4=3) =9,

and so at least we have f,, #3f,(f,—3)—8. In fact, it can be shown

that under the condition of f; —(20) —2 we also have

for #= 3fo(fo—3)—09.
To be precise, it follows from Theorem 2.5 that we have
—6f,+6f, = fo-
Thus, it is straightforward to obtain

fo(f;—l)_2)

—6f, +6f, =—6f0~|—6( =3f,(f,—3)—12

= foo :3f0(f0_3)_97

which is a contradictionl),

_’|8_
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The case of f :(J;o)_ 1 can be dealt with in a similar way to show that

Note, however, that in this case it is not possible to show
fo2 7 3fo(fo_3) -9

by the arguments as above.
3.1.4 k=10 or k=11 case

Finally, we deal with the case of k=10 and k=11.

Lemma 3.1.8 The following statements hold.
(1) foo # 3£, (f, —3) — 10.
(2) foo =3fy(f,—3) — 11.

Proof. If 10 < k <11, then we have

(20 _4<(20)_%<f1 <(20)'

.'.flz(;)—l or flz(fo)—Q or f1:( 0)—3 :

(1) If f1=(20)1 or f1:(20)2, then it follows from the previous

arguments that f,, = 3 mod 6.

5o fog #= 30 (fy —3) — 10,
Foo #3f(fy—3)—11.

1) This observation is due to Professor Nam Kwon Kim.

_19_
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s fy :(20)—3,10<k; <11

(2) Assume that

S f1=

J;O)—s,msk < 11.

Let F® be any facet of P. Then, F® has at most 3 non-edges. Hence,

( o<2F3>)_3 < [ (F) < 3f,(F)—6

s f(FP) <1
(1) Assume fO(FS) =6 and F® has 12 edges and 3 non-edges. There are
two such combinatorially different 3-polytopes, which are both simplicial
(See [Figure 3.1] and [Figure 3.2]). Let t denote the number of

tetrahedral facets of P. Then

for =3fy = 3(2t+4) =6t+12= 0 mod 6.

o for # 310 (fo—3) — 10,
Joo #3fy(fy—3) —11.

(i) By the previous case, P has non-tetrahedral facets, all of them with
five vertices. Since there are at most 3 non—edges, we cannot have

more than three non-tetrahedral facets. So we have two cases:

(a) The non-tetrahedral facets of P are 3 bipyramids over a triangle.
(b) The non-tetrahedral facets of P are two square bipyramids and

one bipyramid over a triangle.

4t +18
2

In case of (a), f,= = 2t4+9 (¢:=number of tetrahedral facets)

_20_

Collection @ chosun



S foo = 3fy = 3(2t+9) =6t +27
= 3 mod 6.

S fog #= 31 (fo—3) — 10,
f02 ¢3fo(fo_3) —11.

4t +8+6
In case of (b), f,= — T 2AFT.

S foy =3f, =6t+21
= 3 mod 6.

" foo #3fo(fy—3) — 10,
foo #3fo(fo—=3) —11.

To sum up all of the previous results, we can obtain the following
theorem (Theorem 1.1).

Theorem 3.1.9 The flag vector pair (fy fo)=(f(P).fyu(P) of a

4-polytope P satisfies the following two conditions:

(1) f, =6 and for kE{1,2,3,4,5,6,7,8,10,11}, f,, #3f,(f,—3) — k.

(3) 6fo Sfoz S3fo(fo_3>

3.2 The flag vector pairs (fy, fo3) for 4-polytopes

The aim of this subsection is to give a proof of the following theorem

(Theorem 1.2).

Theorem 3.2.1 The flag vector pair (fo fy3)= Fp(P)fe(P) of a
- 2’I -
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4-polytope P satisfies the inequalities
63+4fy, 2
2(3+ ‘/T)< fos < 5 fne -

Proof. Recall first that
(D) foa=/Ffos—2(fo—f1) (o Lemma 3.1.1 (2))
(2) =6(fy—f1)—fp =0 (- [2, Theorem 1.3 and 1.4] or Theorem 2.5)

By (2), we can obtain

fo_f1 S_%foz-

Similarly, by (1) it is easy to obtain
So2 :fo3_2(fo_f1)
1
2fozz""gfm
2 . 2
"§f02 = fozo 1-ew fo3 = gfoz-

Recall also from Sjoberg and Ziegler [8, Theorem 2.5](or Theorem 2.4)
that

(3) fo3 =41,

(4) 1,y < 3f,(f,—3)—09.

Thus, it is not difficult to obtain

(f0)2—3f0—3—éf02 >0

_ 1 63+4f,
e M
P /63%%)

This completes the proof of Theorem 3.2.1.

3

_22_

Collection @ chosun



3.3 The flag vector pairs (f, fy,) for 4-polytopes

The aim of this subsection is to give a proof of the following theorem

(Theorem 1.3).

Theorem 3.3.1 The flag vector pair (f,fep)=((P),f(P) of a
4-polytope P satisfies the inequalities

fi 201+ \148F,) < foa <6f, =301+ /1+8F,).

Proof. Recall first that
(1) =6(f,—f,) = fyp (- Bayer [2, Theorem 1.3 and 1.4] or Theorem 2.5)
(2) 2f, < fo(fy—1) (~o Griinbaum [7, Theorem 10.4.2] or Theorem 2.2)

Thus by (2) it is easy to obtain

foP=fo=2fiz0= [, = %(14— 1+8f,).

Also, it follows from (1) that

Joo == 6,16/
<—3(1+ /1+8f,)+6f,

Recall also from Sjoberg and Ziegler [8, Theorem 2.5] (or Theorem 2.4)

that we have f; =4f,. Thus it follows from

fo = %<1+ 1+8/,)

that we can obtain
fog =4f, = 2014 /1+8f,).
On the other hand, by using the identity f,, =—2f,+2f, +f,; (Lemma

3.1.1(2)) and f, =2f,, we have
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Joo == 2fo T2/ + fo3
—fi+2f, 201+ \/1+8f,)
=2(1+/14+8f,)+ 71,

That is, we can obtain

fi 21+ 148f,) < foo

This completes the proof of Theorem 3.3.1.

3.4 The flag vector pairs (f, fo3) for 4-polytopes

The aim of this subsection is to give a proof of Theorem 3.4.2

(Theorem 1.4).
First, we begin with the following theorem.

Theorem 3.4.1 The flag vector (f},fy)=(f,(P),fy;(P)) of a 4-polytope P
satisfies the inequalities

— 134 1+8f)) < fo3 <5f, =31+ /1+8f,).

Proof. By the identity
for =2fy +2f, +fos (Lemma 3.1.1 (2)),

it is straightforward to obtain
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Jos =2fo—2f1F [
> 14 1+8f, —2f, +f, +2(1+ /1+8f,)
= —f, 31+ /1+8f,).

Moreover, it is also true that

Sfos =2fy—2f1 + fo
< fi—2f,+6f, —3(1+ /1+8F,)
=5f, —3(1+ /1+8f,)

This completes the proof of Theorem 3.4.1.

[]
Actually, if we combine Theorem 1.2 with Theorem 1.3, we can improve
the upper and lower bounds for fy; given in Theorem 3.4.1, as follow

s2),

Theorem 3.4.2 The flag vector (f, fu)=1(P),fs(P) of a

non—neighborly 4-polytope P satisfies the inequalities

T1+4F, +84/1+8
6+2\/ /\ /\

3 < fos <4Af,—2(14 /1+8f)).

Proof. To show it, we crucially make use of Theorems 1.2 and 1.3.

Indeed, it follows from Theorems 1.2 and 1.3 that we have
2 2
s = 5 fo = 56/, 30+ 1+87)))
=4f, —2(1+ /1+8f,).
On the other hand, by using Theorems 1.2 and 1.3 once again it is also

not difficult to obtain

2) This result has been motivated by the discussion with Professor Nam Kwon Kim.
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T1+4f +8,/1+8
>6+2\/ /i ; /1

This completes the proof of Theorem 3.4.2.

Notice that for any f;, =10 we have
4f, =21+ \14+8f,) =5f, —3(1+ /1+8f,)

and

T1+4f, +8+/1+8
6+2\/ / 2

3 >—f,+3(01+ 1+8F,).

Therefore, for any non-neighborly 4-polytope P Theorem 3.4.2 gives

better lower and upper bounds for f,; in terms of f, than those given

in Theorem 3.4.1.

_26_

Collection @ chosun



References

[1] A. Altshuler and L. Steinberg, FEnumeration of the
quasisimplicial 3-spheres and 4-polyvtopes with eight vertices,

Pacific Journal of Mathematics 113 (1984), 269-288.

[2] M. M. Bayer, 7he extended {-vectors of 4-polytopes, 1.
Combinatorial Theory Ser. A 44 (1987), 141-151.

[3] M. M. Bayer and L. J. Billera, Generalized Dehn-Sommerville
relations for polytopes, spheres and Eulerian partially

ordered sets, Invent. Math. 79 (1985), 143-157.

[4] L Billera and C. Lee, A proof of the sufficiency of McMullen's
conditions for f-vectors of simplicial polytopes, J. Comb. Theory Ser. A

31 (1981), 227-255.

[5] V. M. Buchstaber and T. E. Panov, 7Zorus actions and their
applications n topology and combinatorics, American

Mathematical Society, 2002.

[6] H. B. Cho and J. H. Kim, On some obstructions of flag vector pairs

(f1sfos) of b-polytopes, Involve, A Mathematical Journal 12 (2019),

1183-1192.

_27_

Collection @ chosun



[7] B. Grinbaum, Convex polytopes, Springer, 1967.

[8] H. K. Jeong and J. H. Kim, On some optimal bounds for certain flag

vector pairs of polytopes, preprint (2019).

[9] P. McMullen, 7The number of faces of simplicial polytopes, Israel J.

Math. 9 (1971), 559-571.

[10] H. Sjoberg and G. M. Ziegler, Characterizing face and flag
vector pairs for polytopes, To appear in Discrete and Computational

Geometry.

[11] R. Stanley, 7he number of faces of a simplicial convex polytope,

Advances in Math. 35 (1980), 236-238.

_28_

Collection @ chosun



	Ⅰ. Introduction and Main Results
	Ⅱ. Preliminaries 
	Ⅲ. Proofs of Main Results
	3.1 The flag vector pair  for 4-polytopes
	3.2 The flag vector pairs  for 4-polytopes
	3.3 The flag vector pairs  for 4-polytopes
	3.4 The flag vector pairs  for 4-polytopes

	References


<startpage>7
Ⅰ. Introduction and Main Results 3
Ⅱ. Preliminaries  9
Ⅲ. Proofs of Main Results 10
 3.1 The flag vector pair  for 4-polytopes 11
 3.2 The flag vector pairs  for 4-polytopes 21
 3.3 The flag vector pairs  for 4-polytopes 23
 3.4 The flag vector pairs  for 4-polytopes 24
References 27
</body>

