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국문초록

플래그벡터 순서쌍  을 갖는 4차원 다면체의 구성에 관한 연구

김 지 우

지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

    차원 다면체의 보다 작은 차원의 면의 개수를 라 할 때, -벡터는 

   … 로 정의된다. Steinitz는 1906년에 3차원의 경우 -벡터에 관한 

결정 연구를 하였고, 그 후 Grünbaum은 1967년에 4차원에 관한 꼭짓점과 선분의 

개수로 이루어진 순서쌍 에 가능한 순서쌍을 찾았다. 또한 2018년 

Kusunoki와 Murai는 5차원 다면체에 대하여 로 나타나는 순서쌍을 증명하

였다. Sjöberg와 Ziegler는 2018년에 4차원의 경우 을 완벽하게 결정할 수 

있는 연구결과를 발표하였다. 본 논문은 4차원 다면체에 대응하는 면의 개수를 표

현하는 -벡터에 관한 연구로 Sjöberg와 Ziegler의 연구를 토대로 플래그 벡터쌍 

을 갖는 4차원 다면체를 구성하는 연구를 했다. 이를 위해,  Stacking, 

Truncating, cyclic polytope 상에서 일반적인 Stacking 및 Facet Splitting 등의 

기법을 사용하였다.
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1. Introduction

    For a -dimensional polytope , let   denote the number of 

dimensional faces of , and for ⊆ … , let   denote the 

number of chains ⊂⋯⊂ of faces of  with dim … dim. For 

the sake of simplicity, from now on we use the notation … 
 instead 

of …
 for any subset … of … . For instance, 

 will mean . The -vector of  is then   …   , and 

the flag vector of  is  ⊆ …  . Due to the Euler equation, the set 

of -vectors lies on a hyperplane in , and it spans this hyperplane by 

Grünbaum (see [4, Section 8.1] for more details). 

    In [6], Sjöberg and Ziegler published their work that completely 

determines the flag vector pair  of 4-dimensional polytopes. In order 

to obtain such results, they crucially applied the work [1] of Altshuler and 

Steinberg on 4-polytopes up to 8 vertices. Furthermore, they used the 

techniques of stacking, general stacking on cyclic polytopes, facet splitting, 

truncating, and so on for the construction of specific 4-dimensional 

polytopes.

    The goal of this thesis is to construct some explicit 4-dimensional 

polytopes for the flag vector pair (  ). In fact, our original motivation 

for this study was to completely determine the flag vector pairs   for 

4-polytopes, which is currently out of reach.
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    In order to achieve our goal, we first need to know the several 

formulas for the change of flag vector pairs   after the operations 

such as stacking, truncating, generalized stacking on cyclic polytopes, and 

facet splitting. In Chapter 2, we collect some basic facts and definitions 

necessary for all these constructions.

    In Chapter 3, we give some explicit constructions of 4-polytopes and 

determine the flag vector pairs  . More precisely, in Section 3.1 we 

make use of the stacking operation in order to construct examples of 

4-polytopes for some possible polytope pairs   . In Section 3.2, 

instead we use the truncating operation for some similar constructions as in 

Section 3.1.  Sections 3.3 and 3.4 are devoted to dealing with the examples 

which can be obtained through the operations of generalized stacking on 

cyclic polytopes and facet splittings.
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2. Theoretical backgrounds

    The aim of this chapter is to collect and to briefly explain some facts 

necessary for the discussion in Chapter 3. For more details, refer to [2] and 

[3, Chapter 1].

  2.1 polytopes

Definition 1.1

A convex polytope is the convex hull of a finite set of points in .

Definition 1.2  

A convex polyhedron  is an intersection of finitely many half-spaces in  :

 ∈ 〈〉≥   …

where ∈
, dual space of , are some linear functions and 

∈   …. A (convex) polytope is a bounded convex polyhedron.

Definition 1.3  

(1) The dimension of a polytope is the dimension of its affine hull. Unless 

otherwise stated we assume that any -dimensional polytope, or simply 

polytope,   is a subset in -dimensional ambient space  . 

(2) A supporting hyperplane of   is an affine hyperplane  which 

intersects   and for which polytope is contained in one of the two closed 

half-spaces determined by the hyperplane. 

(3) The intersection  ∩ is then called a face of the polytope. We also 
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regard the polytope   itself as a face; other faces are called proper 

faces. The boundary ∂  is the union of all proper faces of  . Each face 

of an -polytope is itself a polytope of dimension ≤ . 0-dimensional faces 

are called vertices, 1-dimensional faces are edges, and codimension one 

faces are facets.

Definition 1.4

A -polytope is said to be neighborly if each pair of vertices is joined by 

an edge.

  2.2 Cyclic polytope

Define the moment curve in  by 

   → ,  ↦    …
∈

For any , define the cyclic polytope  …  as the convex hull 

of  distinct points ,     …  , on the moment curve. It then 

follows from the Vandermonde determinant identity that no  points on 

the moment curve belong to a common affine hyperplane. Hence, 

 …  is a simplicial  polytope. It can be shown that  …

has exactly  vertices , the combinatorial type of cyclic polytope does 

not depend on the specific choice of the parameters  … , and 

 …   is a neighborly simplicial -polytope. We will denote the 

combinatorial cyclic -polytope with  vertices by . 
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[Figure 2.1] a few examples of cyclic polytopes
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  2.3 Upper Bound and Lower Bound theorems 

  

    The following statement, now known as the Upper Bound 

Conjecture(UBC), was suggested by Motzkin in 1957 in [8] and proved by 

P. McMullen in 1970 in [7].

Theorem 1.5 (UBC for simplical polytopes)

    For all simplicial -polytopes  with  vertices, the cyclic polytope 

 has the maximal number of -faces, ≤≤. That is, 

and

≤ for   ….

The equality in the above formula holds if and only if  is a neighborly 

polytope. 

Note that, since  is neighborly,

   for   …






 




Due to the Dehn-Sommerville equations, this determines the full -vector 

of .

Lemma 1.6 [4]

    The number of -faces of cyclic polytope  is given by
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where we assume  for .

Proof. Using the identity 






 










 


 and the Dehn-Sommerville 

equations, we can calculate

 
 



 



 







 




 
 








 






 



 







 




 



  

 







 




 


 

□
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3. Main Results

As mentioned above, the aim of this chapter is to give some explicit 

constructions of 4-polytopes and give their flag vector pairs   . In 

order to explicitly determine the flag vector pairs   , we provide 

some interesting formulas for the change of flag vector pairs  

after taking the operations of stacking, truncating, generalized stacking on 

cyclic polytopes, and facet splittings.

3.1 Stacking

   The operation of stacking turns out to be essential in finding examples 

of polytopes for all possible polytope pairs   . 

    Let  be a 4-polytope with at least one simplex facet , and let  be 

a point beyond  and beneath all other facets of . Let  conv
denote the convex hull of  and  (see Figure [3.1]). 
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[Figure 3.1] Stacking

It is easy to obtain that we have

  and   .

Thus, the following lemma holds.

Lemma 3.1 Let  be a 4-polytope with at least one simplex facet , and 

let  be a point beyond  and beneath all other facets of . Let 

 conv. Then the following identities hold.

 

 

 

The following generalized Dehn-Sommerville equations play an important 

role in this paper (see the paper [3, Theorem 2.1] of  Bayer and Billera.
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Lemma 3.2 Let  be a d-polytope and ⊆  … . Let 

 ⊆ such that    and such that there is no ∈ for 

which     . Then


  

 

  ∪ 
 .

Corollary 3.3 Let  be a 4-polytope. Then the following identity holds.

 

Proof. For the proof, we apply the generalized Dehn-Sommerville equations 

in Lemma 3.2 to the case of        , and  . In other words, 

by Lemma 3.2,  we have


  



  .

That is, it follows that









where in the second equality we used the fact that   . This implies 

  .

□
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By combining Corollary 3.3 with Lemma 3.1, we can obtain the following 

lemma.

Lemma 3.4 Let  and  be as in Lemma 3.1. Then the following identity 

hold.

 

Proof. By Lemma 3.1 and Corollary 3.3, it is straightforward to obtain









 

as desired.

□
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3.2 Truncating

    Let  be a 4-polytope with at least one simple vertex , and let 

denote the polytope obtained by truncating the simple vertex  from  (see 

[Figure 3.2]). 

[Figure 3.2] Truncating 

Then the following identities hold.

Lemma 3.5. Let  be a 4-polytope with at least one simple vertex , and 

let  denote the polytope obtained by truncating the simple vertex  from 

. Then we have

 

 

Proof. By its construction of truncation, the number of vertices decreases 

by three, while the flag number increases by 12. This completes the proof.

□
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Lemma 3.6 Let  and  be as in Lemma 3.5. Then we have

 

Proof. By Corollary 3.3 and Lemma 3.5, it follows that 







 

as desired.

□

    It is important to note that the polytopes obtained through the operation 

of stacking (resp. truncating) have a simplex facet (resp. a simple vertex) 

again. Therefore. we can repeat these two operations to stack vertices on 

simplex facets or to truncate simple vertices.

Theorem 3.7 Let  be a 4-polytope with a tetrahedral facet and a simple 

vertex, and let  be the polytope obtained by taking the stacking simplex 

facets  times and truncating simple vertices  times from . Then we 

have the following identity.

   

Proof. It is immediate to obtain the identity by Lemmas 3.1, 3.4, 3.5, and 

3.6.

□
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By Theorem 3.7, it is easy to show the following corollary.

Corollary 3.8 Let  and  be as in Theorem 3.7. Let . Then we 

have

   ≥ ≤ ≤

Example 3.9 As a concrete example, let us take  as a -simplex. Then, 

clearly   and   . Let  be the polytope obtained by taking the 

stacking simplex facets  times and truncating simple vertices  times from 

. By Corollary 3.8, we have

   

It has been shown in [9, Lemma 2.6] that the flag vector pair  of a 

4-polytope satisfies

≤≤

It is straightforward to check if the polytope  satisfies the above 

inequalities. Indeed, we have

 

 

On the other hand, since  , we have
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    For a 4-polytope with a square pyramid facet, we also have the 

following result.

Lemma 3.10 Let  be a 4-polytope with a square pyramid facet , and let 

 be a point beyond  and beneath all other facets of . Let 

 conv.
 

Theorem 3.11

Let  be a 4-polytope with a square pyramid facet , and let  be a point 

beyond  and beneath all other facets of . Let  conv. Then, 

we have

 

 

Proof. 







 

as desired.

□
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3.3 Generalized Stacking on cyclic polytopes

    In this section, we want to create some more polytopes with their 

polytopal pair   by using the generalized stacking on cyclic 

polytopes.

[Figure 3.3] universal edge 

    Note that every Cyclic 4-polytope with  vertices has edge that lie in 

exactly  facets. Such edges are called a universal edge (see [Figure 

3.3]). For example, a tetrahedron that is a cyclic polytope  has edges 

that lie in exactly  facets (see [Figure 3.4]).
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[Figure 3.4] universal edge  of 

    Now, for each     ⋯ , let  denote a polytope obtained 

from the cyclic polytope  with  vertices by taking the convex hull of  

 and a point , where  lies beyond  facets of  which share a 

universal edge. Let   ⋯ denote these  facets such that  and 

meet a common 2-face for each     ⋯ (see [Figure 3.5]). 

�  has one more vertex than , since  is obtained by taking 

the convex hull of  and .

� All other 


 facets of  that  lies beneath. Recall that the 

total number of facets of  is equal to 


.
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[Figure 3.5] universal edge 

[Figure 3.6] universal edge 
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� There are facets obtained by the convex hulls of  and 2-faces of 

which are contained both in a facet that  is beyond and a facet that  is 

beneath.

[Figure 3.7] facets beneath 

In fact, there are two types of these facets, as follows.

1) Two such facets for each of  facets  … which  lies 

beyond and which shares two 2-faces with other facets that  lies 

beneath (see [Figure 3.8]).

2) Three new facets for each of two facets  and  which  lies 

beyond and which share one 2-face with other facets which  lies 

beneath (see [Figure 3.9]).
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[Figure 3.8] 1) Two such facets for each of  facets

[Figure 3.9] 2) Three new facets for each of two facets
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Note that all these facets are simplices. Thus, for ≤ ≤ we have

 


×
×

 

Therefore, we can also obtain

 

 

 
 ×

   

 

Theorem 3.12 For ≤ ≤, let  denote the polytope obtained 

from the cyclic polytope  with  vertices by taking the convex hull of 

 and a point , where  lies beyond  facets of  sharing a 

universal edge. Then we have
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3.4 Facet splitting

    In this section, we generalize the stacking method more to look at the 

facet-splitting. In order to see the process more clearly, we will create a 

new facet in the dual polytope, instead of adding a new vertex to a 

polytope. The basic material of this section is largely taken from the paper 

[2] of Barnette.

    To obtain a facet-splitting, let consider a facet  of a 4-polytope 

and a hyperplane  which intersect the relative interior of  in a polygon 

. If the vertices of  lying on one side of  are only simple vertices, 

then separating the facet  into two new facets by the polygon  above 

(see [Figure 3.10]).

  

[Figure 3.10] Facet Splitting

we say that ′ is obtained from  by facet splitting.
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    More concretely, we now want to split a facet  of the dual  of 

a cyclic polytope with  facets such that each facet has  vertices. It 

is known that those facets are all wedges over -gons, i.e., polytopes 

with two triangular 2-faces,  quadrilateral 2-faces, and two (-gon 

meeting in an edge (see, e. g., [Figure 3.11] for   case).

[Figure 3.11] Facet of 

    Let  be a 2-dimensional plane in the affine hull of  of , and 

let  be the intersection of  and . Recall that all vertices of  are 

simple. So we can obtain a new polytope by taking the facet-splitting of 

 along a hyperplane  containing  such that the only vertices of 

 on one side of  are vertices of  (see [Figure 3.12]). Here we 

take  in such a way that  dose not meet any vertices of , and 

 is an -gon for ≤≤. For this , let us denote by 

the polytope obtained by taking the facet-splitting.
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[Figure 3.12] Facet of  split by -gon

That  has one more facet and  more vertices than . Moreover, 

 has  more edges than . Thus, we obtain the following 

theorem.

Theorem 3.13 For ≤≤, let  denote the polytope obtained by 

taking the facet-splitting as above. Then we have

 

≡


where  denotes the dual of .

Proof. By its construction, it is clear that   .

On the other hand, since   , by Corollary 3.3 we 
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have

 

 

 

 

 

as desired.

□
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