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국문초록

플래그벡터 순서쌍  을 갖는 4차원 다면체의 구성에 관한 연구

김 지 우

지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

    차원 다면체의 보다 작은 차원의 면의 개수를 라 할 때, -벡터는 

   … 로 정의된다. Steinitz는 1906년에 3차원의 경우 -벡터에 관한 

결정 연구를 하였고, 그 후 Grünbaum은 1967년에 4차원에 관한 꼭짓점과 선분의 

개수로 이루어진 순서쌍 에 가능한 순서쌍을 찾았다. 또한 2018년 

Kusunoki와 Murai는 5차원 다면체에 대하여 로 나타나는 순서쌍을 증명하

였다. Sjöberg와 Ziegler는 2018년에 4차원의 경우 을 완벽하게 결정할 수 

있는 연구결과를 발표하였다. 본 논문은 4차원 다면체에 대응하는 면의 개수를 표

현하는 -벡터에 관한 연구로 Sjöberg와 Ziegler의 연구를 토대로 플래그 벡터쌍 

을 갖는 4차원 다면체를 구성하는 연구를 했다. 이를 위해,  Stacking, 

Truncating, cyclic polytope 상에서 일반적인 Stacking 및 Facet Splitting 등의 

기법을 사용하였다.
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1. Introduction

    For a -dimensional polytope , let   denote the number of 

dimensional faces of , and for ⊆ … , let   denote the 

number of chains ⊂⋯⊂ of faces of  with dim … dim. For 

the sake of simplicity, from now on we use the notation … 
 instead 

of …
 for any subset … of … . For instance, 

 will mean . The -vector of  is then   …   , and 

the flag vector of  is  ⊆ …  . Due to the Euler equation, the set 

of -vectors lies on a hyperplane in , and it spans this hyperplane by 

Grünbaum (see [4, Section 8.1] for more details). 

    In [6], Sjöberg and Ziegler published their work that completely 

determines the flag vector pair  of 4-dimensional polytopes. In order 

to obtain such results, they crucially applied the work [1] of Altshuler and 

Steinberg on 4-polytopes up to 8 vertices. Furthermore, they used the 

techniques of stacking, general stacking on cyclic polytopes, facet splitting, 

truncating, and so on for the construction of specific 4-dimensional 

polytopes.

    The goal of this thesis is to construct some explicit 4-dimensional 

polytopes for the flag vector pair (  ). In fact, our original motivation 

for this study was to completely determine the flag vector pairs   for 

4-polytopes, which is currently out of reach.
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    In order to achieve our goal, we first need to know the several 

formulas for the change of flag vector pairs   after the operations 

such as stacking, truncating, generalized stacking on cyclic polytopes, and 

facet splitting. In Chapter 2, we collect some basic facts and definitions 

necessary for all these constructions.

    In Chapter 3, we give some explicit constructions of 4-polytopes and 

determine the flag vector pairs  . More precisely, in Section 3.1 we 

make use of the stacking operation in order to construct examples of 

4-polytopes for some possible polytope pairs   . In Section 3.2, 

instead we use the truncating operation for some similar constructions as in 

Section 3.1.  Sections 3.3 and 3.4 are devoted to dealing with the examples 

which can be obtained through the operations of generalized stacking on 

cyclic polytopes and facet splittings.
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2. Theoretical backgrounds

    The aim of this chapter is to collect and to briefly explain some facts 

necessary for the discussion in Chapter 3. For more details, refer to [2] and 

[3, Chapter 1].

  2.1 polytopes

Definition 1.1

A convex polytope is the convex hull of a finite set of points in .

Definition 1.2  

A convex polyhedron  is an intersection of finitely many half-spaces in  :

 ∈ 〈〉≥   …

where ∈
, dual space of , are some linear functions and 

∈   …. A (convex) polytope is a bounded convex polyhedron.

Definition 1.3  

(1) The dimension of a polytope is the dimension of its affine hull. Unless 

otherwise stated we assume that any -dimensional polytope, or simply 

polytope,   is a subset in -dimensional ambient space  . 

(2) A supporting hyperplane of   is an affine hyperplane  which 

intersects   and for which polytope is contained in one of the two closed 

half-spaces determined by the hyperplane. 

(3) The intersection  ∩ is then called a face of the polytope. We also 
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regard the polytope   itself as a face; other faces are called proper 

faces. The boundary ∂  is the union of all proper faces of  . Each face 

of an -polytope is itself a polytope of dimension ≤ . 0-dimensional faces 

are called vertices, 1-dimensional faces are edges, and codimension one 

faces are facets.

Definition 1.4

A -polytope is said to be neighborly if each pair of vertices is joined by 

an edge.

  2.2 Cyclic polytope

Define the moment curve in  by 

   → ,  ↦    …
∈

For any , define the cyclic polytope  …  as the convex hull 

of  distinct points ,     …  , on the moment curve. It then 

follows from the Vandermonde determinant identity that no  points on 

the moment curve belong to a common affine hyperplane. Hence, 

 …  is a simplicial  polytope. It can be shown that  …

has exactly  vertices , the combinatorial type of cyclic polytope does 

not depend on the specific choice of the parameters  … , and 

 …   is a neighborly simplicial -polytope. We will denote the 

combinatorial cyclic -polytope with  vertices by . 
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[Figure 2.1] a few examples of cyclic polytopes
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  2.3 Upper Bound and Lower Bound theorems 

  

    The following statement, now known as the Upper Bound 

Conjecture(UBC), was suggested by Motzkin in 1957 in [8] and proved by 

P. McMullen in 1970 in [7].

Theorem 1.5 (UBC for simplical polytopes)

    For all simplicial -polytopes  with  vertices, the cyclic polytope 

 has the maximal number of -faces, ≤≤. That is, 

and

≤ for   ….

The equality in the above formula holds if and only if  is a neighborly 

polytope. 

Note that, since  is neighborly,

   for   …






 




Due to the Dehn-Sommerville equations, this determines the full -vector 

of .

Lemma 1.6 [4]

    The number of -faces of cyclic polytope  is given by


 







 




 



  

 







 




 


 

 …
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where we assume  for .

Proof. Using the identity 






 










 


 and the Dehn-Sommerville 

equations, we can calculate

 
 



 



 







 




 
 








 






 



 







 




 



  

 







 




 


 

□



- 8 -

3. Main Results

As mentioned above, the aim of this chapter is to give some explicit 

constructions of 4-polytopes and give their flag vector pairs   . In 

order to explicitly determine the flag vector pairs   , we provide 

some interesting formulas for the change of flag vector pairs  

after taking the operations of stacking, truncating, generalized stacking on 

cyclic polytopes, and facet splittings.

3.1 Stacking

   The operation of stacking turns out to be essential in finding examples 

of polytopes for all possible polytope pairs   . 

    Let  be a 4-polytope with at least one simplex facet , and let  be 

a point beyond  and beneath all other facets of . Let  conv
denote the convex hull of  and  (see Figure [3.1]). 
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[Figure 3.1] Stacking

It is easy to obtain that we have

  and   .

Thus, the following lemma holds.

Lemma 3.1 Let  be a 4-polytope with at least one simplex facet , and 

let  be a point beyond  and beneath all other facets of . Let 

 conv. Then the following identities hold.

 

 

 

The following generalized Dehn-Sommerville equations play an important 

role in this paper (see the paper [3, Theorem 2.1] of  Bayer and Billera.
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Lemma 3.2 Let  be a d-polytope and ⊆  … . Let 

 ⊆ such that    and such that there is no ∈ for 

which     . Then


  

 

  ∪ 
 .

Corollary 3.3 Let  be a 4-polytope. Then the following identity holds.

 

Proof. For the proof, we apply the generalized Dehn-Sommerville equations 

in Lemma 3.2 to the case of        , and  . In other words, 

by Lemma 3.2,  we have


  



  .

That is, it follows that









where in the second equality we used the fact that   . This implies 

  .

□
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By combining Corollary 3.3 with Lemma 3.1, we can obtain the following 

lemma.

Lemma 3.4 Let  and  be as in Lemma 3.1. Then the following identity 

hold.

 

Proof. By Lemma 3.1 and Corollary 3.3, it is straightforward to obtain









 

as desired.

□
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3.2 Truncating

    Let  be a 4-polytope with at least one simple vertex , and let 

denote the polytope obtained by truncating the simple vertex  from  (see 

[Figure 3.2]). 

[Figure 3.2] Truncating 

Then the following identities hold.

Lemma 3.5. Let  be a 4-polytope with at least one simple vertex , and 

let  denote the polytope obtained by truncating the simple vertex  from 

. Then we have

 

 

Proof. By its construction of truncation, the number of vertices decreases 

by three, while the flag number increases by 12. This completes the proof.

□
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Lemma 3.6 Let  and  be as in Lemma 3.5. Then we have

 

Proof. By Corollary 3.3 and Lemma 3.5, it follows that 







 

as desired.

□

    It is important to note that the polytopes obtained through the operation 

of stacking (resp. truncating) have a simplex facet (resp. a simple vertex) 

again. Therefore. we can repeat these two operations to stack vertices on 

simplex facets or to truncate simple vertices.

Theorem 3.7 Let  be a 4-polytope with a tetrahedral facet and a simple 

vertex, and let  be the polytope obtained by taking the stacking simplex 

facets  times and truncating simple vertices  times from . Then we 

have the following identity.

   

Proof. It is immediate to obtain the identity by Lemmas 3.1, 3.4, 3.5, and 

3.6.

□
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By Theorem 3.7, it is easy to show the following corollary.

Corollary 3.8 Let  and  be as in Theorem 3.7. Let . Then we 

have

   ≥ ≤ ≤

Example 3.9 As a concrete example, let us take  as a -simplex. Then, 

clearly   and   . Let  be the polytope obtained by taking the 

stacking simplex facets  times and truncating simple vertices  times from 

. By Corollary 3.8, we have

   

It has been shown in [9, Lemma 2.6] that the flag vector pair  of a 

4-polytope satisfies

≤≤

It is straightforward to check if the polytope  satisfies the above 

inequalities. Indeed, we have

 

 

On the other hand, since  , we have



  
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    For a 4-polytope with a square pyramid facet, we also have the 

following result.

Lemma 3.10 Let  be a 4-polytope with a square pyramid facet , and let 

 be a point beyond  and beneath all other facets of . Let 

 conv.
 

Theorem 3.11

Let  be a 4-polytope with a square pyramid facet , and let  be a point 

beyond  and beneath all other facets of . Let  conv. Then, 

we have

 

 

Proof. 







 

as desired.

□
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3.3 Generalized Stacking on cyclic polytopes

    In this section, we want to create some more polytopes with their 

polytopal pair   by using the generalized stacking on cyclic 

polytopes.

[Figure 3.3] universal edge 

    Note that every Cyclic 4-polytope with  vertices has edge that lie in 

exactly  facets. Such edges are called a universal edge (see [Figure 

3.3]). For example, a tetrahedron that is a cyclic polytope  has edges 

that lie in exactly  facets (see [Figure 3.4]).
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[Figure 3.4] universal edge  of 

    Now, for each     ⋯ , let  denote a polytope obtained 

from the cyclic polytope  with  vertices by taking the convex hull of  

 and a point , where  lies beyond  facets of  which share a 

universal edge. Let   ⋯ denote these  facets such that  and 

meet a common 2-face for each     ⋯ (see [Figure 3.5]). 

�  has one more vertex than , since  is obtained by taking 

the convex hull of  and .

� All other 


 facets of  that  lies beneath. Recall that the 

total number of facets of  is equal to 


.
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[Figure 3.5] universal edge 

[Figure 3.6] universal edge 
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� There are facets obtained by the convex hulls of  and 2-faces of 

which are contained both in a facet that  is beyond and a facet that  is 

beneath.

[Figure 3.7] facets beneath 

In fact, there are two types of these facets, as follows.

1) Two such facets for each of  facets  … which  lies 

beyond and which shares two 2-faces with other facets that  lies 

beneath (see [Figure 3.8]).

2) Three new facets for each of two facets  and  which  lies 

beyond and which share one 2-face with other facets which  lies 

beneath (see [Figure 3.9]).
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[Figure 3.8] 1) Two such facets for each of  facets

[Figure 3.9] 2) Three new facets for each of two facets
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Note that all these facets are simplices. Thus, for ≤ ≤ we have

 


×
×

 

Therefore, we can also obtain

 

 

 
 ×

   

 

Theorem 3.12 For ≤ ≤, let  denote the polytope obtained 

from the cyclic polytope  with  vertices by taking the convex hull of 

 and a point , where  lies beyond  facets of  sharing a 

universal edge. Then we have

   

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3.4 Facet splitting

    In this section, we generalize the stacking method more to look at the 

facet-splitting. In order to see the process more clearly, we will create a 

new facet in the dual polytope, instead of adding a new vertex to a 

polytope. The basic material of this section is largely taken from the paper 

[2] of Barnette.

    To obtain a facet-splitting, let consider a facet  of a 4-polytope 

and a hyperplane  which intersect the relative interior of  in a polygon 

. If the vertices of  lying on one side of  are only simple vertices, 

then separating the facet  into two new facets by the polygon  above 

(see [Figure 3.10]).

  

[Figure 3.10] Facet Splitting

we say that ′ is obtained from  by facet splitting.



- 23 -

    More concretely, we now want to split a facet  of the dual  of 

a cyclic polytope with  facets such that each facet has  vertices. It 

is known that those facets are all wedges over -gons, i.e., polytopes 

with two triangular 2-faces,  quadrilateral 2-faces, and two (-gon 

meeting in an edge (see, e. g., [Figure 3.11] for   case).

[Figure 3.11] Facet of 

    Let  be a 2-dimensional plane in the affine hull of  of , and 

let  be the intersection of  and . Recall that all vertices of  are 

simple. So we can obtain a new polytope by taking the facet-splitting of 

 along a hyperplane  containing  such that the only vertices of 

 on one side of  are vertices of  (see [Figure 3.12]). Here we 

take  in such a way that  dose not meet any vertices of , and 

 is an -gon for ≤≤. For this , let us denote by 

the polytope obtained by taking the facet-splitting.
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[Figure 3.12] Facet of  split by -gon

That  has one more facet and  more vertices than . Moreover, 

 has  more edges than . Thus, we obtain the following 

theorem.

Theorem 3.13 For ≤≤, let  denote the polytope obtained by 

taking the facet-splitting as above. Then we have

 

≡


where  denotes the dual of .

Proof. By its construction, it is clear that   .

On the other hand, since   , by Corollary 3.3 we 
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have

 

 

 

 

 

as desired.

□
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