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1. Introduction

For a d-dimensional polytope P, let f;=f,(P) denote the number of i—
dimensional faces of P, and for S< {0, ...,d—1}, let fq=fg(P) denote the

number of chains F; C---C F, of faces of P with {dimF}, ..dmF, }=5. For

the sake of simplicity, from now on we use the notation filizmik(P) instead
of f{m%ﬂk}(P) for any subset {iysiy...,i,} of {0,1,2,...d—1}. For instance,
fo2(P) will mean fy 4 (P). The f-vector of P is then (fy fy ...f,—1), and
the flag vector of P is (fs)sg{a _a—1}- Due to the Euler equation, the set
of f-vectors lies on a hyperplane in R? and it spans this hyperplane by

Griinbaum (see [4, Section 8.1] for more details).

In [6], Sjoberg and Ziegler published their work that completely
determines the flag vector pair (f,.f,;) of 4-dimensional polytopes. In order
to obtain such results, they crucially applied the work [1] of Altshuler and
Steinberg on 4-polytopes up to 8 vertices. Furthermore, they used the
techniques of stacking, general stacking on cyclic polytopes, facet splitting,
truncating, and so on for the construction of specific 4-dimensional

polytopes.

The goal of this thesis is to construct some explicit 4-dimensional

polytopes for the flag vector pair (fy, f,,). In fact, our original motivation
for this study was to completely determine the flag vector pairs (fy, fy,) for

4-polytopes, which is currently out of reach.
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In order to achieve our goal, we first need to know the several
formulas for the change of flag vector pairs (fy f,,) after the operations
such as stacking, truncating, generalized stacking on cyclic polytopes, and
facet splitting. In Chapter 2, we collect some basic facts and definitions

necessary for all these constructions.

In Chapter 3, we give some explicit constructions of 4-polytopes and
determine the flag vector pairs (f,, fy,). More precisely, in Section 3.1 we
make use of the stacking operation in order to construct examples of
4-polytopes for some possible polytope pairs (fy, fp). In Section 3.2,
instead we use the truncating operation for some similar constructions as in
Section 3.1. Sections 3.3 and 3.4 are devoted to dealing with the examples
which can be obtained through the operations of generalized stacking on

cyclic polytopes and facet splittings.
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2. Theoretical backgrounds

The aim of this chapter is to collect and to briefly explain some facts
necessary for the discussion in Chapter 3. For more details, refer to [2] and

[3, Chapter 11].
2.1 polytopes

Definition 1.1

A convex polytope is the convex hull of a finite set of points in R".

Definition 1.2

A convex polyhedron P is an intersection of finitely many half-spaces in R™:
P= {xERn lyry=—a,i= 1,,,,,m}

where LE(R")", dual space of R", are some linear functions and

(3

a,€R,i=1,...m. A (convex) polytope is a bounded convex polyhedron.

Definition 1.3
(1) The dimension of a polytope is the dimension of its affine hull. Unless

otherwise stated we assume that any n-dimensional polytope, or simply n—
polytope, P" is a subset in n—dimensional ambient space R".
(2) A supporting hyperplane of P" is an affine hyperplane H which

intersects P" and for which polytope is contained in one of the two closed

half-spaces determined by the hyperplane.

(3) The intersection P"NH is then called a face of the polytope. We also

_3_
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regard the polytope P" itself as a face; other faces are called proper

faces. The boundary 6P" is the union of all proper faces of P". Each face
of an n-polytope i1s itself a polytope of dimension < n. O—dimensional faces
are called vertices, 1-dimensional faces are edges, and codimension one

faces are facets.

Definition 1.4
A d-polytope is said to be neighborly if each pair of vertices is joined by

an edge.

2.2 Cyclic polytope
Define the moment curve in R" by
2:R>RY t—z(t) = (4. ")ER™

For any m>n, define the cyclic polytope C,(t,, ....t,) as the convex hull
of m distinct points z(t;), t, <t, < .. <t , on the moment curve. It then
follows from the Vandermonde determinant identity that no (n+1) points on
the moment curve belong to a common affine hyperplane. Hence,
C,(ty, ... t,) is a simplicial n polytope. It can be shown that C,(t; ...t,)
has exactly m vertices z(t;), the combinatorial type of cyclic polytope does
not depend on the specific choice of the parameters ¢, ...,t,, and

Cn(tl, ..,,tm) 1S a neighborly simplicial n—-polytope. We will denote the

combinatorial cyclic n-polytope with m vertices by C,(m).
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;(4) G;(5) G (7)

[Figure 2.1] a few examples of cyclic polytopes
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2.3 Upper Bound and Lower Bound theorems

The following statement, now known as the Upper Bound
Conjecture(UBC), was suggested by Motzkin in 1957 in [8] and proved by
P. McMullen in 1970 in [7].

Theorem 1.5 (UBC for simplical polytopes)
For all simplicial n-polytopes P with m vertices, the cyclic polytope
C,(m) has the maximal number of i-faces, 2 <i <n—1. That is, f,(P)=m

n

and
f,(P) < f,(C,(m)) fori=2,. .,n—1.
The equality in the above formula holds if and only if P is a neighborly

polytope.

Note that, since C,(m) is neighborly,

f,(C,(m)) = (z —Tl) fori=0,..., [%} —1

Due to the Dehn-Sommerville equations, this determines the full f-vector

of C,(m).

Lemma 1.6 [4]

The number of i-faces of cyclic polytope C,(m) is given by

=Sy, 4o 8 e ey
1=—1,...,n—1
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where we assume (Zq))z 0 forp<g.

. . . —1
Proof. Using the identity [%}—i—l =n— [nQ

and the Dehn-Sommerville

equations, we can calculate

fi:an}On—ci—z‘)hnq

5] .

g

[%} q m—n+tqg—1 [ngl] n—p \(m—n+p—1
:qn(n—l—z‘)( " )+ Py (z+1—p)( ) )
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3. Main Results

As mentioned above, the aim of this chapter is to give some explicit

constructions of 4-polytopes and give their flag vector pairs (fy, fy,). In
order to explicitly determine the flag vector pairs (fy, fy), wWe provide
some interesting formulas for the change of flag vector pairs (fg, fo2)

after taking the operations of stacking, truncating, generalized stacking on

cyclic polytopes, and facet splittings.

3.1 Stacking

The operation of stacking turns out to be essential in finding examples

of polytopes for all possible polytope pairs (fy, fos)-

Let P be a 4-polytope with at least one simplex facet F, and let v be
a point beyond F and beneath all other facets of P. Let Q= conv({v}_JP)

denote the convex hull of v and P (see Figure [3.1]).
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Stacking

=

[Figure 3.1] Stacking

It is easy to obtain that we have
fo(Q)Zfo(P>+1 and fog(Q)Zf()g(P>+12-

Thus, the following lemma holds.

Lemma 3.1 Let P be a 4-polytope with at least one simplex facet F, and

let v be a point beyond F and beneath all other facets of P. Let

Q= conv({v}|_JP). Then the following identities hold.

fol@ = f,(P)+1,
f1(Q) =f,(P)+4,
fog(Q) fog( )+12

The following generalized Dehn-Sommerville equations play an important

role in this paper (see the paper [3, Theorem 2.1] of Bayer and Billera.
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Lemma 3.2 Let P be a d-polytope and S<{0,1, ..,d—1}. Let
{i,k}= S\UJ{—1,d} such that i < k—1 and such that there is no jES for

which 72 <j <k. Then

Y 1 g (P)= fo(P) A= (= 1)),

j=it1

Corollary 3.3 Let P be a 4-polytope. Then the following identity holds.

foo ==2fo+2f1 + fos

Proof. For the proof, we apply the generalized Dehn-Sommerville equations
in Lemma 3.2 to the case of S={0},i=0,k=4, and d=4. In other words,

by Lemma 3.2, we have

3
Z} 17, (P) =2, (P).

That 1s, it follows that

(= 1) for + (= 1) fop + (= 1) fgq
= for = fo2 T fos

=2f1 = foo T fo3

=2fo;

where in the second equality we used the fact that 2f; = f,,. This implies

foo == 2fo+2f 1 + fos -

_10_
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By combining Corollary 3.3 with Lemma 3.1, we can obtain the following

lemma.

Lemma 3.4 Let P and Q be as in Lemma 3.1. Then the following identity
hold.

f02<Q>:f02(P>+18-

Proof. By Lemma 3.1 and Corollary 3.3, it is straightforward to obtain

foe(Q) ==2f,(Q) +2f,(Q) + f(3(Q)
=—2(f,(P)+1)+2(f, (P)+4) + fo; (P)+ 12
=—2f,(P)—2+2f, (P)+8+ fy3(P)+12
=—2f(P)—=2+2f, (P)+8+ fo, (P) +2f, (P) —2f, (P) + 12

:fog(P>+18a

as desired.

_11_
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3.2 Truncating

Let P be a 4-polytope with at least one simple vertex v, and let @
denote the polytope obtained by truncating the simple vertex v from P (see

[Figure 3.21).

Truncating v
—

[Figure 3.2] Truncating

Then the following identities hold.

Lemma 3.5. Let P be a 4-polytope with at least one simple vertex v, and
let @ denote the polytope obtained by truncating the simple vertex v from

P. Then we have

fo(Q)Zfo(P>+3
f()g(Q)Zfog(P>+12-

Proof. By its construction of truncation, the number of vertices decreases
by three, while the flag number increases by 12. This completes the proof.

OJ

_12_
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Lemma 3.6 Let P and @ be as in Lemma 3.5. Then we have
f02<Q>:f02(P>+18-

Proof. By Corollary 3.3 and Lemma 3.5, it follows that
Fo2(Q) ==2f,(Q) +2f, (Q) + f3(Q)
=—2(f(P)+3)+2(f,(P)+6)+ (fo; (P)+12)
=—2f,(P)+2f,(P)+ fy,(P)+18

= foa(P)+18,

as desired.

It is important to note that the polytopes obtained through the operation
of stacking (resp. truncating) have a simplex facet (resp. a simple vertex)
again. Therefore. we can repeat these two operations to stack vertices on

simplex facets or to truncate simple vertices.

Theorem 3.7 Let P be a 4-polytope with a tetrahedral facet and a simple
vertex, and let @ be the polytope obtained by taking the stacking simplex
facets k times and truncating simple vertices ! times from P. Then we
have the following identity.

(o (@) £o (Q) = (fo (P) +k+3L, f,(P)+18k~+181).

Proof. It is immediate to obtain the identity by Lemmas 3.1, 3.4, 3.5, and
3.6.
]

_13_
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By Theorem 3.7, it is easy to show the following corollary.

Corollary 3.8 Let P and @ be as in Theorem 3.7. Let m=k+I. Then we
have

(foP)+m~+2L, fo, (P)+18m), k=m—1=0, 0<1<m.

Example 3.9 As a concrete example, let us take P as a 4-simplex. Then,
clearly f,=5 and fy,, =20. Let @ be the polytope obtained by taking the

stacking simplex facets k times and truncating simple vertices [ times from

P. By Corollary 3.8, we have

(f,(Q), £1,(Q) = (5-+m+21, 20+ 18m).

It has been shown in [9, Lemma 2.6] that the flag vector pair (fyf,,) of a

4-polytope satisfies
Af o < foo = 3fy(fo—3).

It is straightforward to check if the polytope @ satisfies the above

inequalities. Indeed, we have

3f,(Q(f,(Q)—3) =3(B+m+20)(2+m+21)
= 3m? +3m(4l+7) + 120 + 420+ 30.

On the other hand, since fOQ(Q) =20+18m, we have
3f0(Q)(f0(Q>_3>_f02(Q>
=3m’+3m(4l+1)+ 12 +421+10 > 0.

_14_
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For a 4-polytope with a square pyramid facet, we also have the

following result.

Lemma 3.10 Let P be a 4-polytope with a square pyramid facet F, and let

v be a point beyond F and beneath all other facets of P. Let
Q= conv({v}{P).
fo3(Q>:f03(P>+16

Theorem 3.11
Let P be a 4-polytope with a square pyramid facet F, and let v be a point
beyond F and beneath all other facets of P. Let Q= conv({v}{ JP). Then,

we have

fo(Q)Zfo(P>+1a
f02<Q>:f02(P>+24-

Proof. fy,(Q)=—2f,(Q)+2f,(Q)+ f3(Q)
=—2(f,(P)+1)+2(f, (P) +5) + (fy; (P) + 16)
=—2f,(P)+2f,(P)+ fy,(P)+24
=—2f,(P)+2f, (P)+2f(P)—2f, (P) + fy,(P) +24

= foo(P)+24

as desired.

_15_
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3.3 Generalized Stacking on cyclic polytopes

In this section, we want to create some more polytopes with their
polytopal pair (fy, f,) by using the generalized stacking on cyclic

polytopes.

[Figure 3.3] universal edge e

Note that every Cyclic 4-polytope with n vertices has edge that lie in
exactly n—2 facets. Such edges are called a universal edge (see [Figure

3.3]). For example, a tetrahedron that is a cyclic polytope C;(4) has edges

that lie in exactly 2 facets (see [Figure 3.4]).

_16_
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universal edze e of G"SI:*&:I in

dimension 3

[Figure 3.4] universal edge e of C;(4)

Now, for each i=1,2, ---,n—3, let R;(n) denote a polytope obtained
from the cyclic polytope C,(n) with n vertices by taking the convex hull of
C,(n) and a point v, where v lies beyond i facets of C,(n) which share a
universal edge. Let F}, F, -+, F; denote these ¢ facets such that F; and Fj

meet a common 2-face for each j=1,2, ---,i—1 (see [Figure 3.5]).

e R/(n) has one more vertex than C,(n), since R;(n) is obtained by taking

the convex hull of C,(n) and .

1
e All other 5n(n—3)—i facets of C,(n) that v lies beneath. Recall that the

. 1
total number of facets of C4(n) 1S equal to 5n(n—3).

_17_
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comrmon 2-face of 5 and /4
common £-face of 5 and 5,

g ' universal edge

[Figure 3.5] universal edge e

\ universal edge &

L >

[Figure 3.6] universal edge e

_18_
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 There are facets obtained by the convex hulls of v and 2-faces of C,(n)

which are contained both in a facet that v is beyond and a facet that v i1s

beneath.

facets beneath v

[Figure 3.7] facets beneath v

In fact, there are two types of these facets, as follows.

1) Two such facets for each of (i—2) facets F,, ..k which v lies

beyond and which shares two 2-faces with other facets that v lies
beneath (see [Figure 3.8]).

2) Three new facets for each of two facets F, and F; which v lies
beyond and which share one 2-face with other facets which v lies

beneath (see [Figure 3.9]).

_19_
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two new facets for type 1)

[Figure 3.8] 1) Two such facets for each of (i—2) facets

"These 3 2-faces give 3 new facets"

[Figure 3.9] 2) Three new facets for each of two facets

_20_
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Note that all these facets are simplices. Thus, for 1 <7 <n—3 we have

nn—3)

) ={[ "

—i)+2(z‘—2)+2><3}
=2n(n—3)—4i+8 —16+6 x4
=2n(n—3)+4i+8

Therefore, we can also obtain

oo B (n)) = fo3 (B, () +2f, (R, (n)) — 2f, (R, (n))
=2n(n—3)+4i+8+2f, (R, (n)) —2(n+1)

=@2n—6n+4i+8+n—m+12i+10—2n—2)
(f, (R,(n)) = f,(C,(n)) +2(i —3) +5+2x3)

z(g )—1—61'—6—1—11

=32 —9n +16i+16

Theorem 3.12 For 1<i<n—3, let R(n) denote the polytope obtained
from the cyclic polytope C,(n) with n vertices by taking the convex hull of

C,(n) and a point v, where v lies beyond i facets of C,(n) sharing a

universal edge. Then we have

_21_
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3.4 Facet splitting

In this section, we generalize the stacking method more to look at the
facet—splitting. In order to see the process more clearly, we will create a
new facet in the dual polytope, instead of adding a new vertex to a
polytope. The basic material of this section is largely taken from the paper

[2] of Barnette.

To obtain a facet—splitting, let consider a facet F of a 4-polytope P
and a hyperplane H which intersect the relative interior of F in a polygon
X. If the vertices of P lying on one side of H are only simple vertices,

then separating the facet F into two new facets by the polygon X above

(see [Figure 3.10]).

dmple vertex

/ amyple vertex

[Figure 3.10] Facet Splitting

we say that P is obtained from P by facet splitting.

_22_
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More concretely, we now want to split a facet F of the dual C*(n) of

a cyclic polytope with n facets such that each facet has 2(n—3) vertices. It
is known that those facets are all wedges over (n—2)-gons, i.e., polytopes
with two triangular 2-faces, n—>5 quadrilateral 2-faces, and two (n—2)-gon

meeting in an edge (see, e. g., [Figure 3.11] for n=7 case).

[Figure 3.11] Facet of C*(7)

Let G be a 2-dimensional plane in the affine hull of F of C4*(n) and
let X be the intersection of F and G. Recall that all vertices of C*(n) are

simple. So we can obtain a new polytope by taking the facet—splitting of

C/*(n) along a hyperplane H containing G such that the only vertices of
C*(n) on one side of H are vertices of F (see [Figure 3.12]). Here we
take H in such a way that G dose not meet any vertices of F, and
X=G[(F is an i-gon for 3 <i <n—2. For this G, let us denote by &,(i,n)

the polytope obtained by taking the facet—splitting.

_23_
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[Figure 3.12] Facet of q*(7) split by i-gon

That §,(i,n) has one more facet and i more vertices than C,*(n). Moreover,
6,(i;n) has 2 more edges than C*(n). Thus, we obtain the following

theorem.

Theorem 3.13 For 3 <i<n—2, let §(i,n) denote the polytope obtained by

taking the facet—splitting as above. Then we have

fo(6y*(@n)) =n+1,
f()g (50* (%n)) =2n> —8n+8i —2,

where §,;*(i,n) denotes the dual of §,(i,n).
Proof. By its construction, it is clear that f,(5,*(i,n)) =n+1.

On the other hand, since fu(6,*(i,n))=2n(n—3)+4i, by Corollary 3.3 we

_24_
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have

Fo2 (06%m)) = fo5(86% (6,m)) = 2 (6% (3,m)) + 2, (6,* (i,m))
=2n(n—3)+4i—2(n+1)+2f,(6,*(i,n))

=2n" —6n+4i —2n—2+2f,(5,*(i,n))

=2n" —8n+4i—2+2f, (6, (i,n))

=on? —8n+8i —2

as desired.

_25_
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