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I . Introduction

Our main concern of this thesis is a d-dimensional convex
polytope. For simplicity, throughout this thesis a d-dimensional

convex polytope will be called a d-polytope.

Let P be a d-dimensional convex polytope. For each 0 <: <d—1,

let f,(P) denote the number of i-dimensional faces of P. The f
-vector f(P) of P is defined to be

F(P) = (£, (P).f,(P),...f4-1(P))
(refer to [5] for more details). Similarly, for any S< {0,1,...,d—1},
let fg=fs(P) denote the number of chains

FCFCc---CF._,CE,
of faces of P with
{dimF,...,dimFE.}=S.
The flag vector of P is defined to be
(fS(P))SC{0,1,2,,,,,d71}'

For the sake of simplicity, from now on we use the notation

filiQ...ik(P) instead of f{il.,a.,...,z‘k}(P) for any subset {iyiy...;} of
{0,1,2,d_1}
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For any two subsets S, and S, of {0,1,2,...,d—1} a pair
(fSI(P),fSZ(P)), or simply (fsl,fSZ), of flag numbers of P will be

called a flag vector pair.

More generally, for any &k, not necessarily mutually disjoint,
subsets S,,5,...,5, of {0,1,2,...d—1} a k-tuple

(5 (P (Phonf s (P)).
or simply (fsl’fs;---’fsk)’ of flag numbers of P will be called a flag

vector k-tuple.

For example, for a 2-dimensional triangle A it is easy to
calculate the following components of f-vector and flag vector of

A, as follows.

fola)=3, f,(4)=3, f,(4) =1,
and

For(A) =6, f,(A) =3, f,(A)=3.

As another example, if we take the polytope as a square [, then

the flag f-vector f(CJ) of [ is given by
FO=(fof1) = (4,4),

while the flag vector of [] is given by

(fopfogafm) = (87474)-

The f-vector and flag vector of P are one of fundamental

combinatorial invariant of P, and characterizing all possible f

_4_
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-vectors of convex polytopes has been one of the central
problems in convex geometry. Moreover, it 1S easy to see that

any d-polytope P satisfies

L.P) < 1P < |

. . . 1 )
Indeed, the first inequality follows since fl(P) equals to B times

the sum of degrees of the vertices of P and since each vertex of
P has degree = d.

Let F? denote the set of all f -vectors of d-polytopes, and let
Hm.(Fd)denote the projection of F® onto the coordinates fi and f,.
Let

el = {(fo(P),f,(P)): P is a d— polytope}.

In [9], Steinitz completely determined all possible f -vectors of

3-polytopes, as follows.
3 3
g = (v,e):§v£e£3v—6.

By Euler’s relation, this enables us to actually determine all

possible f-vectors of 3-polytopes ([5]).

On the other hand, in [5] Griinbaum proved that the inequality
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characterizes ¢, with four exceptions. More precisely, he proved

the following statement.

et = {(v,e) S <e< (g)}\{(6,12),(4,14),(8,12),(10,20)}.

In dimension 5, the situation is much more complicated. According

to the paper [7] of Kusunoki and Murai, the set & turns out to

be close to the set of integer points satisfying

5

5P < £,(P) < (

’ fo(P))’

2

but there are not only a finite list of exceptions but also an infi

nite family of exceptions.

Our aim of this paper is to provide some new results about the

flag vector pairs (f;,f,;) of 6-polytopes, as follows.

Theorem 1.1

Let P be a 6-polytope, and let

1
113
A= |—648+108f(P) +12{81f5(P)* =972y (P) — 1200} 2}
Then, the flag vector pair (f,fs;) of 6-polytopes satisfies the following

inequalities:
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§+ 472+9 < f,(P) < %f05(P)(f05(P)—6)-

The question of whether or not all vector pairs (f.fy) satisfying the

inequalities given in Theorem 1.1 are flag vector pairs of 6-polytopes is
unknown, and the techniques of this paper is very much out of reach to

answer such a question.
This thesis is organized as follows.

In Chapter 2, we provide some preliminary material necessary for the
proof of Theorem 1.1. In particular, we explain important definitions and
facts such as cyclic polytopes and generalized Dehn-Sommerville equations

which play an important role in the proof of our main results [1].

In Chapter 3, we give a proof of Theorem 1.1 by a series of lemmas. In
this chapter, by using a similar method as in the proof of Theorem 1.1 we

also give some bound for the flag vector pair (fy,(P),fi(P)), as

follows.

Collection @ chosun



II. Theoretical backgrounds

The aim of this chapter is to collect some definitions and to
quickly review basic facts necessary for the proof of our results

given in Chapter 3.

First, we begin with the definition of a cyclic polytope which

plays an important role in many problems of convex geometry. To

do so, let us define the moment curve in RY by
- R — Rd, t— (tatga...atd)eRd

([4]). For any n>d, the standard d-th cyclic polytope with n
vertices, denoted by C,(t,ty....t,), was discovered by Caratheodory
in the context of harmonic analysis ([4]). It is defined as the
convex hull in R? of n different points a(t,),...,a(t,) on the moment

curve « such that ¢, <t, <---<t,.

Recall that the set of all the faces (including the improper faces)
of a (convex) polytope P is a partially ordered set (or simply
poset), when partially ordered by inclusion. Two polytopes are
saild to be combinatorial equivalent, or of the same combinatorial
type, if they have isomorphic face posets. Cyclic polytopes C;(n)
are precisely those which are combinatorial equivalent to the

standard cyclic polytope C,(t;,t,,..t,) ([6]).
The cyclic polytopes are the simplest examples of d-dimensional

neighborly polytopes, which means that is the vertex set of a

face of the polytope. Therefore, we have
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fcm=[" Joro=i= [ 4]

Thanks to the Dehn-Sommerville equations in [1], the above
formula for f,(C;(n)) determines the full f-vector of C,;(n). More

precisely, the following lemma holds.

Lemma 2.1

The number of i—faces of cyclic polytope C,(n) is given by

5] |2

pia= 5 B ety

for i=—1,0,..,d—1. Here we used the convention that (2)20 for

p <gq.
Proof.
See [8] for the proof of Lemma 2.1.

]
It 1s well known that every cyclic polytope 1is a simplicity
polytope which means that all its facets are (d—1)-simplifies. One
way to see this is to know that every (d+1)-tuple of points of
the moment curve « is affined independent by the non-vanishing
of the determinant of the Vandermonde matrix, so that each face

of C,(t,ty....t,) has at most d vertices.
Further, among all simplicity d-polytopes P with n vertices the

cyclic polytopes C,;(n) has the maximal number of i-faces for

2 <i<d—1. That is, we have the following inequality ([8]).
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fi(P) = £,(Cy(n))

for i=2,3,..,d—1. Here the equality in the above inequality holds if
and only if P is a neighborly polytope. In particular, since

nin—3)

f5(Cy(n)) = — 5

it follows that for a 4-polytope P with n vertices we have

n(n—3) '

f3(P) < 5

Similarly, for a 6-polytope P with n vertices it can be shown
that

_10_
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M. Main Results

The aim of this chapter is to give a proof of Theorem 3.6 (or
Theorem 1.1) by a series of lemmas. To do so, we begin with

the proof of the following lemma.

Lemma 3.1

The flag vector pair (fyfy) of a 6-polytope P satisfies the

following inequality

6f0 = fo5 < fo(fo_4)(fo_5)-

Proof.
Since every vertex of a d-polytope lies in at least d facets, we

have
615(P) < fos (P).

On the other hand, it follows from [2] that for any d-dimensional

polytope with n vertices and for any S<{0,1,2,..,d—1}

£(P) = £.(Cy(n)),

where C,(n) denotes the d-dimensional cyclic polytope with n

vertices. Thus, for d=6, we have
f()5(P) < fo5(06(n)) :6f5(06(n))7

where n=f,(P). Note that the second equality in the above

_11_
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equation holds because Cy(n) and its dual Ci(n) are both

simplicial.

Now, we calculate f;(Cyi(n)), as follows ([3, Lemma 1.34]).

f5(Cs(n)) %)1(5615)(716;rq1)+£;]0(2??:)(n6;p1)
_ na7)+(nz6)+(n;5 +(n;4)
nin—4)(n—5)

Hence, we have
f05(P) <nn—4)(n—5)

= fo(P)(fo(P) =4)(fo(P) = 5).

This completes the proof of Lemma 3.1. L]
We also need the following lemma which is well-known.

Lemma 3.2 [10, Wikipedia]

The solution of the polynomial az®+bz*+cx+d=0 with a=0 is

given by
1
N3
¥ obe d ¥oobe dy o o, e b 4|2
r=|(c gt o) |t o (o )
27a 6a 2a 27a 6a 2a 3a  9q
_12_
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3 3 2
b b d b

+((_ b _t b02 d B _t 02 9 c : 3)
27a 6a 2a 27a 6a 2a 3a  9q

By Lemma 3.2, it is straightforward to obtain the following

lemma.

Lemma 3.3
Let

1
A=\—648+108f,; +12(81f5 —972f,; —1200)°

C»D‘»—l

Then, we have

A 14
> —+ — .
f0_6+A+3

Proof.

By Lemma 3.1, it is easy to see that the following inequality

holds.
fo—9f5+20f,— fo5 = 0.
Note that
812 — 972t — 1200 = 0
144/21
for t> 6+Tx 13.128 ---. Thus, 81t2—972t—1200 >0 for any

integer t > 14.

Note also that f,, =6f, =42. Hence, by Lemma 3.2 or Maple

program for cubic polynomials, it is easy to obtain the desired

_13_
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inequality
A 14

> 4+ —+3.
fo= 6+A+3

This completes the proof of Lemma 3.3.

Flat-972a-12202,
Vaz ry

Proposition 3.4

The flag vector pair (f,,f,;) satisfies the following inequality

A 42
> 24 22
f1_2+A+9,

where A is the number given in Lemma 3.3.

Proof.
. 1 . .
Since f, = gfl’ it 1S easy to obtain

1 A 14
— > > — JR— .
3f1_f0_6+A+3

Thus, f, should satisfy the following inequality

_14_
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fi= §+472+9.

This completes the proof.

Proposition 3.5
The flag vector pair (fl,f05) satisfies the following inequality

< fo5(fo5_6) '

filp) < 228

Proof.

For the proof, recall frist

3fy < f < (“’;O)

Thus, we have

f(Q)_fo_zfl =0.

So, it follows that

14+4/1+8
fo= T

2
On the other hand, it follows from Lemma 3.1 that we have
6f0 = fos-
Thus, it 1s easy to obtain
1+ ,/1+8f,
6X#§ 6fo = fos

That 1s, we have

- 15 -
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1+ /148f, < = fus

fo5_1

O

S /1+8f; <
1 2

1 2
=8f = (§f05_1) — L

It is immediate to see that this implies the desired inequality, as

follows.

lfo5_1)2_1)

flé%((?)

]

By combining Propositions 3.4 and 3.5, we can obtain the

following inequalities that are our main results of this thesis.

Theorem 3.6
Let P be a 6-polytope, and let

1
1\3
A=\—648+108f 5 (P) +12(81fy;(P)* —972f s (P) —1200) *

Then, the following inequalities hold.

§+472+9 < f,(P) < %fo5(P)(fo5(P)_6)'

By using some similar arguments as above, we can also obtain

_16_
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the following inequality.

Proposition 3.7
Let P be a 6-polytope. Then, for the flag vector pair
(fou(P).fys(P)) the following inequality holds

foa (P) < (f052(P) .

Proof.
Let F be any facet of P. Then clearly F is a b-dimensional
polytope.

Thus, it is easy to obtain

This implies

IAGEE 3@—%2Mﬂ
FcP FcP FCP
< (X F =5 B fulP)
FEP FCP

where for the second inequality we used the following facts

Ex<2x> > 0,
Efo (P).

FcP

Therefore, it follows that

f15(P) = %fo5(P)2_%fo5(P)
= (PP = 1)

_17_
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By duality, we also have

Fos (P)(fo5(P) —1),

Do |

fou(P) =

as desired.

_18_
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