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국문초록

6차원 다면체의 플래그벡터 순서쌍 ( )의 범위에 관한 연구

정 혜 경

지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

1970년과 1974년에 Grünbaum과  Barnette은 각각 4차원 다면체의 여

러 가지 형태의 플래그벡터 순서쌍의 특성에 관한 결과를 발표하였다. 

특히, Sjöberg 와 Ziegler는 최근 논문에서 4차원 다면체의 플래그벡터 

순서쌍 을 완벽하게 결정하였다. 본 논문에서는 Sjöberg 와 

Ziegler의 방법을 적용하여 6차원 다면체에서의 플래그벡터 순서쌍 

의 범위에 관한 새로운 결과를 제시했다.
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Ⅰ. Introduction

Our main concern of this thesis is a -dimensional convex 

polytope. For simplicity, throughout this thesis a -dimensional 

convex polytope will be called a d-polytope.

Let  be a -dimensional convex polytope. For each ≤  ≤ , 

let  denote the number of -dimensional faces of . The 

-vector  of  is defined to be 

  …

(refer to [5] for more details). Similarly, for any ⊆ …, 

let   denote the number of chains 

⊂⊂⋯⊂⊂

of faces of  with 

dim…dim

The flag vector of  is defined to be

⊂…


For the sake of simplicity, from now on we use the notation 

 … 
 instead of …

 for any subset … of 

… .
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For any two subsets  and  of … a pair 




, or simply 

, of flag numbers of  will be 

called a flag vector pair. 

More generally, for any , not necessarily mutually disjoint, 

subsets … of … a -tuple




…


or simply 

…

, of flag numbers of  will be called a flag 

vector -tuple.

For example, for a 2-dimensional triangle  it is easy to 

calculate the following components of -vector and flag vector of 

, as follows. 

        

and

        

As another example, if we take the polytope as a square □, then 

the flag -vector (□) of □ is given by

(□)=  

while the flag vector of □ is given by

  

The -vector and flag vector of  are one of fundamental 

combinatorial invariant of , and characterizing all possible 
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-vectors of convex polytopes has been one of the central 

problems in convex geometry. Moreover, it is easy to see that 

any -polytope  satisfies




≤ ≤  

Indeed, the first inequality follows since  equals to 


  times 

the sum of degrees of the vertices of  and since each vertex of 

 has degree ≥ .

Let   denote the set of all  -vectors of -polytopes, and let 


denote the projection of   onto the coordinates  and .  

Let

                     

     is a dpolytope

In [9], Steinitz completely determined all possible  -vectors of 

3-polytopes, as follows.

    

≤ ≤ 

By Euler’s relation, this enables us to actually determine all 

possible -vectors of 3-polytopes ([5]).

On the other hand, in [5] Grünbaum proved that the inequality
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≤ ≤  

characterizes , with four exceptions. More precisely, he proved 

the following statement.

           

     ≤ ≤ ╲

In dimension 5, the situation is much more complicated. According 

to the paper [7] of Kusunoki and Murai, the set  turns out to 

be close to the set of integer points satisfying 




≤ ≤  

but there are not only a finite list of exceptions but also an infi

nite family of exceptions. 

Our aim of this paper is to provide some new results about the 

flag vector pairs  of 6-polytopes, as follows.

Theorem 1.1

Let  be a 6-polytope, and let 










 





Then, the flag vector pair  of 6-polytopes satisfies the following 

inequalities:
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≤ ≤




The question of whether or not all vector pairs  satisfying the 

inequalities given in Theorem 1.1 are flag vector pairs of 6-polytopes is 

unknown, and the techniques of this paper is very much out of reach to 

answer such a question.

This thesis is organized as follows. 

In Chapter 2, we provide some preliminary material necessary for the 

proof of Theorem 1.1. In particular, we explain important definitions and 

facts such as cyclic polytopes and generalized Dehn-Sommerville equations 

which play an important role in the proof of our main results [1].

In Chapter 3, we give a proof of Theorem 1.1 by a series of lemmas. In 

this chapter, by using a similar method as in the proof of Theorem 1.1 we 

also give some bound for the flag vector pair , as 

follows.

≤  
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Ⅱ. Theoretical backgrounds

The aim of this chapter is to collect some definitions and to 

quickly review basic facts necessary for the proof of our results 

given in Chapter 3.

First, we begin with the definition of a cyclic polytope which 

plays an important role in many problems of convex geometry. To 

do so, let us define the moment curve in   by

   →   ↦ …
∈

([4]). For any   , the standard -th cyclic polytope with 

vertices, denoted by , was discovered by Caratheodory 

in the context of harmonic analysis ([4]). It is defined as the 

convex hull in  of  different points … on the moment 

curve  such that   ⋯. 

Recall that the set of all the faces (including the improper faces) 

of a (convex) polytope  is a partially ordered set (or simply 

poset), when  partially ordered by inclusion. Two polytopes are 

said to be combinatorial equivalent, or of the same combinatorial 

type, if they have isomorphic face posets. Cyclic polytopes 

are precisely those which are combinatorial equivalent to the 

standard cyclic polytope  ([6]).

The cyclic polytopes are the simplest examples of -dimensional 

neighborly polytopes, which means that  is the vertex set of a 

face of the polytope. Therefore, we have
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   for ≤ ≤⌊
⌋

Thanks to the Dehn-Sommerville equations in [1], the above 

formula for  determines the full -vector of . More 

precisely, the following lemma holds.

Lemma 2.1

The number of -faces of cyclic polytope  is given by

 
 

⌊
⌋
 
  


 

 

⌊
⌋

 
  



for  …. Here we used the convention that     for 

 .

Proof.

See [8] for the proof of Lemma 2.1.  

□

It is well known that every cyclic polytope is a simplicity 

polytope which means that all its facets are -simplifies. One 

way to see this is to know that every -tuple of points of 

the moment curve  is affined independent by the non-vanishing 

of the determinant of the Vandermonde matrix, so that each face 

of  has at most  vertices. 

Further, among all simplicity -polytopes  with  vertices the 

cyclic polytopes  has the maximal number of -faces for 

≤≤. That is, we have the following inequality ([8]).
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≤

for   …. Here the equality in the above inequality holds if 

and only if  is a neighborly polytope. In particular, since 

 




it follows that for a -polytope  with  vertices we have

≤




Similarly, for a -polytope  with  vertices it can be shown 

that

≤  
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Ⅲ. Main Results

The aim of this chapter is to give a proof of Theorem 3.6 (or 

Theorem 1.1) by a series of lemmas. To do so, we begin with 

the proof of the following lemma.

Lemma 3.1

The flag vector pair  of a 6-polytope  satisfies the 

following inequality

                     

                   ≤≤

Proof. 

Since every vertex of a -polytope lies in at least  facets, we 

have   

≤  

On the other hand, it follows from [2] that for any -dimensional 

polytope with  vertices and for any ⊆  …            

            

≤ 

where  denotes the d-dimensional cyclic polytope with n 

vertices. Thus, for   we have          

≤   

where   . Note that the second equality in the above 
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equation holds because  and its dual 
 are both 

simplicial.

Now, we calculate , as follows ([3, Lemma 1.34]).

        








 




 


 








 







 

                  

  


 


 

                




Hence, we have

≤ 

 

This completes the proof of Lemma 3.1.                        □

We also need the following lemma which is well-known.

Lemma 3.2 [10, Wikipedia]

The solution of the polynomial   with ≠ is 

given by
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By Lemma 3.2, it is straightforward to obtain the following 

lemma.

Lemma 3.3

Let 

  







Then, we have 

≥ 







Proof.

By Lemma 3.1, it is easy to see that the following inequality 

holds. 




≥

Note that 

≥ 

for  ≥ 


≈⋯. Thus, ≥  for any 

integer  ≥ . 

Note also that ≥≥.  Hence, by Lemma 3.2 or Maple 

program for cubic polynomials, it is easy to obtain the desired 
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inequality

≥ 







This completes the proof of Lemma 3.3.                           □

Proposition 3.4

The flag vector pair  satisfies the following inequality

≥ 







where  is the number given in Lemma 3.3.

Proof.  

Since ≤ 


, it is easy to obtain




≥≥ 







Thus,  should satisfy the following inequality
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≥ 







This completes the proof.                                       □

Proposition 3.5  

The flag vector pair  satisfies the following inequality

≤




Proof.

For the proof, recall frist

≤≤  
Thus, we have 


≥

So,  it follows that

≥


                           

On the other hand, it follows from Lemma 3.1 that we have

≤ 

Thus, it is easy to obtain

×


≤≤

That is, we have
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≤ 



⇔ ≤ 



⇔ ≤ 





⇔ ≤ 







It is immediate to see that this implies the desired inequality, as 

follows.

≤ 

 





 

 


 




 




  □

   By combining Propositions 3.4 and 3.5, we can obtain the 

following inequalities that are our main results of this thesis.

Theorem 3.6  

Let  be a 6-polytope, and let 

 









Then, the following inequalities hold.







≤ ≤




By using some similar arguments as above, we can also obtain 
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the following inequality.

Proposition 3.7

Let  be a 6-polytope. Then, for the flag vector pair 

 the following inequality holds 

≤  

Proof.

Let  be any facet of . Then clearly  is a 5-dimensional 

polytope. 

Thus, it is easy to obtain

≤  




This implies


⊆

≤ 



⊆


 



⊆



≤ 



⊆


 



⊆



where for the second inequality we used the following facts


 




≤ 

 




 ≥ 


⊆

  

Therefore, it follows that

≤ 
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By duality, we also have 

≤ 




as desired.                                                      □
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