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국문초록

6차원 다면체의 플래그벡터 순서쌍 ( )의 범위에 관한 연구

정 혜 경

지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

1970년과 1974년에 Grünbaum과  Barnette은 각각 4차원 다면체의 여

러 가지 형태의 플래그벡터 순서쌍의 특성에 관한 결과를 발표하였다. 

특히, Sjöberg 와 Ziegler는 최근 논문에서 4차원 다면체의 플래그벡터 

순서쌍 을 완벽하게 결정하였다. 본 논문에서는 Sjöberg 와 

Ziegler의 방법을 적용하여 6차원 다면체에서의 플래그벡터 순서쌍 

의 범위에 관한 새로운 결과를 제시했다.
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Ⅰ. Introduction

Our main concern of this thesis is a -dimensional convex 

polytope. For simplicity, throughout this thesis a -dimensional 

convex polytope will be called a d-polytope.

Let  be a -dimensional convex polytope. For each ≤  ≤ , 

let  denote the number of -dimensional faces of . The 

-vector  of  is defined to be 

  …

(refer to [5] for more details). Similarly, for any ⊆ …, 

let   denote the number of chains 

⊂⊂⋯⊂⊂

of faces of  with 

dim…dim

The flag vector of  is defined to be

⊂…


For the sake of simplicity, from now on we use the notation 

 … 
 instead of …

 for any subset … of 

… .
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For any two subsets  and  of … a pair 




, or simply 

, of flag numbers of  will be 

called a flag vector pair. 

More generally, for any , not necessarily mutually disjoint, 

subsets … of … a -tuple




…


or simply 

…

, of flag numbers of  will be called a flag 

vector -tuple.

For example, for a 2-dimensional triangle  it is easy to 

calculate the following components of -vector and flag vector of 

, as follows. 

        

and

        

As another example, if we take the polytope as a square □, then 

the flag -vector (□) of □ is given by

(□)=  

while the flag vector of □ is given by

  

The -vector and flag vector of  are one of fundamental 

combinatorial invariant of , and characterizing all possible 
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-vectors of convex polytopes has been one of the central 

problems in convex geometry. Moreover, it is easy to see that 

any -polytope  satisfies




≤ ≤  

Indeed, the first inequality follows since  equals to 


  times 

the sum of degrees of the vertices of  and since each vertex of 

 has degree ≥ .

Let   denote the set of all  -vectors of -polytopes, and let 


denote the projection of   onto the coordinates  and .  

Let

                     

     is a dpolytope

In [9], Steinitz completely determined all possible  -vectors of 

3-polytopes, as follows.

    

≤ ≤ 

By Euler’s relation, this enables us to actually determine all 

possible -vectors of 3-polytopes ([5]).

On the other hand, in [5] Grünbaum proved that the inequality
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


≤ ≤  

characterizes , with four exceptions. More precisely, he proved 

the following statement.

           

     ≤ ≤ ╲

In dimension 5, the situation is much more complicated. According 

to the paper [7] of Kusunoki and Murai, the set  turns out to 

be close to the set of integer points satisfying 




≤ ≤  

but there are not only a finite list of exceptions but also an infi

nite family of exceptions. 

Our aim of this paper is to provide some new results about the 

flag vector pairs  of 6-polytopes, as follows.

Theorem 1.1

Let  be a 6-polytope, and let 










 





Then, the flag vector pair  of 6-polytopes satisfies the following 

inequalities:
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





≤ ≤




The question of whether or not all vector pairs  satisfying the 

inequalities given in Theorem 1.1 are flag vector pairs of 6-polytopes is 

unknown, and the techniques of this paper is very much out of reach to 

answer such a question.

This thesis is organized as follows. 

In Chapter 2, we provide some preliminary material necessary for the 

proof of Theorem 1.1. In particular, we explain important definitions and 

facts such as cyclic polytopes and generalized Dehn-Sommerville equations 

which play an important role in the proof of our main results [1].

In Chapter 3, we give a proof of Theorem 1.1 by a series of lemmas. In 

this chapter, by using a similar method as in the proof of Theorem 1.1 we 

also give some bound for the flag vector pair , as 

follows.

≤  
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Ⅱ. Theoretical backgrounds

The aim of this chapter is to collect some definitions and to 

quickly review basic facts necessary for the proof of our results 

given in Chapter 3.

First, we begin with the definition of a cyclic polytope which 

plays an important role in many problems of convex geometry. To 

do so, let us define the moment curve in   by

   →   ↦ …
∈

([4]). For any   , the standard -th cyclic polytope with 

vertices, denoted by , was discovered by Caratheodory 

in the context of harmonic analysis ([4]). It is defined as the 

convex hull in  of  different points … on the moment 

curve  such that   ⋯. 

Recall that the set of all the faces (including the improper faces) 

of a (convex) polytope  is a partially ordered set (or simply 

poset), when  partially ordered by inclusion. Two polytopes are 

said to be combinatorial equivalent, or of the same combinatorial 

type, if they have isomorphic face posets. Cyclic polytopes 

are precisely those which are combinatorial equivalent to the 

standard cyclic polytope  ([6]).

The cyclic polytopes are the simplest examples of -dimensional 

neighborly polytopes, which means that  is the vertex set of a 

face of the polytope. Therefore, we have
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   for ≤ ≤⌊
⌋

Thanks to the Dehn-Sommerville equations in [1], the above 

formula for  determines the full -vector of . More 

precisely, the following lemma holds.

Lemma 2.1

The number of -faces of cyclic polytope  is given by

 
 

⌊
⌋
 
  


 

 

⌊
⌋

 
  



for  …. Here we used the convention that     for 

 .

Proof.

See [8] for the proof of Lemma 2.1.  

□

It is well known that every cyclic polytope is a simplicity 

polytope which means that all its facets are -simplifies. One 

way to see this is to know that every -tuple of points of 

the moment curve  is affined independent by the non-vanishing 

of the determinant of the Vandermonde matrix, so that each face 

of  has at most  vertices. 

Further, among all simplicity -polytopes  with  vertices the 

cyclic polytopes  has the maximal number of -faces for 

≤≤. That is, we have the following inequality ([8]).
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≤

for   …. Here the equality in the above inequality holds if 

and only if  is a neighborly polytope. In particular, since 

 




it follows that for a -polytope  with  vertices we have

≤




Similarly, for a -polytope  with  vertices it can be shown 

that

≤  






- 11 -

Ⅲ. Main Results

The aim of this chapter is to give a proof of Theorem 3.6 (or 

Theorem 1.1) by a series of lemmas. To do so, we begin with 

the proof of the following lemma.

Lemma 3.1

The flag vector pair  of a 6-polytope  satisfies the 

following inequality

                     

                   ≤≤

Proof. 

Since every vertex of a -polytope lies in at least  facets, we 

have   

≤  

On the other hand, it follows from [2] that for any -dimensional 

polytope with  vertices and for any ⊆  …            

            

≤ 

where  denotes the d-dimensional cyclic polytope with n 

vertices. Thus, for   we have          

≤   

where   . Note that the second equality in the above 
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equation holds because  and its dual 
 are both 

simplicial.

Now, we calculate , as follows ([3, Lemma 1.34]).

        








 




 


 








 







 

                  

  


 


 

                




Hence, we have

≤ 

 

This completes the proof of Lemma 3.1.                        □

We also need the following lemma which is well-known.

Lemma 3.2 [10, Wikipedia]

The solution of the polynomial   with ≠ is 

given by

     

































 







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















 

















 













By Lemma 3.2, it is straightforward to obtain the following 

lemma.

Lemma 3.3

Let 

  







Then, we have 

≥ 







Proof.

By Lemma 3.1, it is easy to see that the following inequality 

holds. 




≥

Note that 

≥ 

for  ≥ 


≈⋯. Thus, ≥  for any 

integer  ≥ . 

Note also that ≥≥.  Hence, by Lemma 3.2 or Maple 

program for cubic polynomials, it is easy to obtain the desired 
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inequality

≥ 







This completes the proof of Lemma 3.3.                           □

Proposition 3.4

The flag vector pair  satisfies the following inequality

≥ 







where  is the number given in Lemma 3.3.

Proof.  

Since ≤ 


, it is easy to obtain




≥≥ 







Thus,  should satisfy the following inequality
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≥ 







This completes the proof.                                       □

Proposition 3.5  

The flag vector pair  satisfies the following inequality

≤




Proof.

For the proof, recall frist

≤≤  
Thus, we have 


≥

So,  it follows that

≥


                           

On the other hand, it follows from Lemma 3.1 that we have

≤ 

Thus, it is easy to obtain

×


≤≤

That is, we have
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≤ 



⇔ ≤ 



⇔ ≤ 





⇔ ≤ 







It is immediate to see that this implies the desired inequality, as 

follows.

≤ 

 





 

 


 




 




  □

   By combining Propositions 3.4 and 3.5, we can obtain the 

following inequalities that are our main results of this thesis.

Theorem 3.6  

Let  be a 6-polytope, and let 

 









Then, the following inequalities hold.







≤ ≤




By using some similar arguments as above, we can also obtain 
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the following inequality.

Proposition 3.7

Let  be a 6-polytope. Then, for the flag vector pair 

 the following inequality holds 

≤  

Proof.

Let  be any facet of . Then clearly  is a 5-dimensional 

polytope. 

Thus, it is easy to obtain

≤  




This implies


⊆

≤ 



⊆


 



⊆



≤ 



⊆


 



⊆



where for the second inequality we used the following facts


 




≤ 

 




 ≥ 


⊆

  

Therefore, it follows that

≤ 









 



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By duality, we also have 

≤ 




as desired.                                                      □
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