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국 문 초 록

5차원 다면체의 플래그벡터 순서쌍  의 필요조건에 

관한 연구

 
  조 혜 빈

  지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

플래그벡터란 일반적인 차원의 다면체에 대응하는 면의 개수를 

표현하는 벡터를 의미한다. 플래그벡터는 3차원의 경우에 많은 학

자들에 의해 연구들이 잘 알려져 있다. 반면, 4차원 이상의 고차원 

플래그벡터를 다루는 것은 중요한 문제임에도 불구하고 아직까지도 

학자들에게 많이 연구되어지지 않고 있다. 이러한 이유로 본 연구

에서는 5차원 플래그벡터에 관한 연구를 진행하기 위해 3, 4차원 

플래그벡터의 일부에 관한 연구 결과를 이용하여 5차원 플래그벡터 

순서쌍  의 부등식을 결론으로 도출하고자 한다. 더 나아가 

앞에서 다룬 이러한 부등식들이 일반적인 경우에도 성립하는가 확

인하기 위해, 스태킹과 트런케이팅 과정을 통해 플래그벡터 순서쌍 

 을 5차원 다면체에 대해 구체적으로 구성하였다. 그 결과, 

아래와 같은 3가지 결과가 성립함을 보였다.

(1)  가 5차원 다면체일 때, 플래그벡터 성분 의 값이 

주어지면 아래와 같은 부등식이 성립하며, 의 범위를 

결정할 수 있다. 
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

 




   ≤ ≤ 


  

(2)  가 5차원 다면체일 때, 플래그벡터 성분 의 값이 

주어지면 아래와 같은 부등식이 성립하며,  의 범위를

결정할 수 있다. 




 ≤≤ 






(3) 5차원 다면체가 한 개의 4차원 단순체와 단순꼭짓점을 갖고 

있을 때,  번 트런케이팅과  번 스태킹을 시행할 경우 다음과

같은 새로운 5차원 다면체  의 플래그벡터 순서쌍  의

관계식을 얻을 수 있다.

  
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Chapter 1

Introduction 

There are various kinds of polytopes, and some of them can be 

easily found in reality. It is well known that if the dimension of a 

polytope equals 0, then the polytope is a point, and if the dimension 

of a polytope equals 1, then the polytope is the line segment It is 

relatively easy to study polytopes of dimension less than or equal to 

3, since it can be visualized in several ways. Here are some clear 

examples of polytopes (see [Figure 1]).
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On the other hand, it is not so easy to study polytopes of 

dimension more than 3, and more worthwhile to study higher 

dimensional polytopes. In view of these, in this paper we generally 

deal with polytopes of dimension more than 3. Especially, in this 

thesis we study polytopes whose dimensions are between 3 and 5 

inclusive. 

Let  be a -dimensional polytope. For each ≤≤ let 

  be the number of -dimensional faces of  For a subset  

of   ⋯  let  denote the number of chains

 ⊂ ⋯⊂

of faces  ≤ ≤ of  such that 

dimdim ⋯  dim  

The  vector of  is then defined to be 

 ⋯ 

The  is the set of all -vectors of -dimensional polytope, and 

clearly ⊆ 

The flag vector of  is defined to be

 ⊆ ⋯ 

For the sake of simplicity, from now on we use the notation ⋯ 
 

instead of  ⋯ for each ⋯⊂⋯.

For any two subsets  and  of   ⋯ , a pair 

 or simply  of flag numbers of  will be called a 
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flag vector pair. More generally, for any , not necessary mutually 

disjoint, subsets   ⋯  of ⋯ a -tuple

⋯
 

or simply ⋯ of flag numbers of  will be called a flag 

vector -tuple As in the flag vectors, let us denote by ⋯   the 

projection of the flag vector  ⊆ ⋯  onto its coordinates 



⋯

 We call ⋯ a polytopal flag vector -tuple if

⋯

belongs to the image of the set all flag vectors of -dimensional 

polytopes under the projection map ⋯  , that is, if there is a 

-polytope  such that  

⋯ ⋯ 

For ≥, a cyclic polytope, denoted  (or ) is a convex 

polytope given by the convex hull of  distinct points on a rational 

normal curve in  . Especially,  belongs to   
 and these 

pairs must satisfy the U.B.T inequality. 

≤  and ≤ 
 

It implies that cyclic polytopes  have the largest possible 

number of faces among all convex polytopes with a given dimension 

and number of vertices.

The -vectors of -polytopes ≤ have been much studied by 

many mathematicians such as Steinitz, Grünbaum, Barnette-Reay and 

Barnette, Sjöberg and Ziegler, and so on. While the -vector set   

of -polytopes was completely determined by Steinitz in 1906 (see 
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[7] for more details), any complete determination of all possible 

-vector of -polytopes for ≥ is still illusive. 

As some partial results, for    the projections of the -vector 

set  ⊆ onto two of the four coordinates have been determined in 

1967-1974 by Grünbaum, Barnette-Reay and Barnette in [1] and [2]. 

Moreover, Sjöberg and Ziegler in [6] determined all possible values of 

the pairs    of flag face numbers of -polytopes and Kusunoki 

and Murai in [5] characterized all possible    pairs of the 

-vectors of -polytopes.

However, in spite of the importance of higher dimensional cases of 

-polytope (≥), the problem of completely determining their flag 

vectors is still unknown. For this reason, in this paper we try to 

determine new results about some obstructions of flag vector pairs 

   of -polytopes. For this, a few techniques such as general 

stacking, facet splitting of stacking, truncating, cyclic polytopse will be 

crucially used for making new -polytopes.

This paper is organized as follows. In Chapter 2, by using the 

methods of stacking and truncating we study the -polytopes, and 

show some obstructions of the flag vector pairs    for   as 

well as    for   In Chapters 3 and 4, we give some proofs 

of the following inequalities for flag vector pairs   of 

-polytopes hold, as follows.

 

(1) For a given flag number  we have

  



 




 ≤≤ 




(2) For a given flag number  we have
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


 ≤≤ 






Note that the upper and lower bounds of the flag vector pairs 

 given in (1) and (2) above very sharp, since there is an 

explicit example, such as a -simplex with  , which 

satisfies the equalities in (1) and (2).

(3) Let  be a -polytope with a 4-simplex and a simple vertex. 

By truncating simple vertices  times, and stacking vertices on a 

simplex facet  times repeatedly, we can obtain a new -polytope  

satisfying the following identity.

    

   

It is easy to check if these examples satisfy the inequalities in the 

main results. 
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Chapter 2 

Stacking and truncating

The aim of this chapter is to set up some basic operations such as 

stacking and truncating for our main results in Chapters 3 and 4. 

What we mean by stacking is an operation to obtain a new 

polytope formed as the smallest convex set containing a given 

polytope and one more vertex. To be more precise, let  be a 

-polytope with a facet  and a point  beyond  and beneath all 

other facets. The operation of obtaining a new -polytope 

conv ∪ is called a stacking.

On the other hand, let  be a -polytope with a vertex  and let 

 be a hyperplane intersecting the interior of  such that on one 

side of  the only vertex of  is  What we mean by truncating at 

a vertex  is an operation of obtaining a new polytope by cutting off 

the side of  that contains  (see from [Figure 2] to [Figure 9] for 

more details about stacking and truncating).

 2.1 Flag vectors of 3-polytopes

Now, let us show some explicit examples to illustrate the 

procedure of stacking polytopes. In [Figure 2], each step shows the 

procedure of stacking a cube.
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Let  be a cube and let  be the polytope obtained by stacking 

operation of . By comparing  and , we can directly show that the 

following equations hold true. 











 

 
 

Here we obtain  when we take the stacking 

operation, since four more facets are created, but one facet 

disappears.

The figure in [Figure 3] sequentially shows each step of stacking a 

tetrahedron.
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Likewise, let  be a tetrahedron and let  be the polytope 

obtained by stacking operation of . As above, by comparing  and 

, we can directly show that the following equations hold true.











 

 
 

The figure shown in [Figure 4] sequentially shows each step of 

stacking a pyramid.
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Finally, let  be a pyramid and let  be the polytope obtained by 

stacking operation of  over a square facet. By comparing  and , 

we can directly show that the following equations hold true.











 

 
 

On the other hand, if we take the stacking operation of  over a 

triangle facet, then we have the following equations.











 

 
 

To sum up, the figures in [Figure 5] show the results of polytopes 

obtained by stacking cube, tetrahedron, and pyramid.
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Next, let us show some examples to illustrate the procedure of 

truncating polytopes. In [Figure 6], each step shows the procedure of 

truncating of a tetrahedron.

For this, let  be a tetrahedron and let  be the polytope obtained 

by truncating operation of . Then, we can directly show that the 

following equations hold true.
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









 

 
 

Here, we have obtained the above equation   by 

using the fact that, by the operation of truncating, three more facets 

are created, but one facet disappears.

Next, in the example of [Figure 7], each step shows the procedure 

of truncating of a pyramid.

For this, let  be a pyramid and let  be the polytope obtained by 

truncating operation of . Once again, by comparing  and , we can 

directly show that the following equations hold true.











 

 
 

Now, in the example of [Figure 8], each step shows the procedure 

of truncating of a triangular prism.
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This time, let  be a triangular prism and let  be the polytope 

obtained by truncating operation of . Then, we can directly show 

that the following equations hold true.











 

 
 

As a summary of the discussions above, the figures in [Figure 9] 

show the results of polytopes obtained by truncating tetrahedron, 

pyramid, and triangular prism.
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Now, we want to check the change of the flag vector pairs   

after the staking and truncating operations, in detail.

First, in case of stacking of a cube as in [Figure 2] we easily 

check that if we let  be a cube and let  be the polytope obtained 

by stacking operation of , then we can directly show that the 

following equations hold true.

     ×   ×   

Here we obtained , since at each vertex exactly 3 facets 

meet and  is equal to 8. It is easy to see that the following 

equations hold true. 

    ×× 

Next, for the case of truncating the triangular prism as in [Figure 

8] we easily check that if we let  be a triangular prism and let  

be the polytope obtained by truncating operation of , then the 

following equations hold true.

    ×   ×   

As in the previous case, we can easily calculate the flag vector 

pair  Indeed, clearly  Further, since  

is equal to 8 and at each vertex exactly three meet, we should have

     ×  ×   
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 2.2 Flag vector pairs   of 4-polytopes

In this chapter, we explain the stacking and truncating operation for 

-polytope. To do so, let  be a -polytope having at least one 

simplex facet , and let  be a point beyond  and beneath all other 

facets of . Let  conv∪, i.e., let  be the convex hull of  

and  Then, as in the previous cases of -polytopes, we can 

calculate the flag vector pair   as follows.

  

Let  be a polytope obtained by truncating a simple vertex from a 

polytope . Then we calculate the flag vector pair as 

follows.

  

Note that the polytope obtained by stacking and truncating a 

polytope with a simplex facet has a simple vertex and a simplex 

facet, once again. This implies that we can repeatedly stack vertices 

over simplex facets and truncate simple vertices. By truncating simple 

vertices and stacking vertices on simplex facets inductively, starting 

from a polytope with  with tetrahedral facet and simple 

vertex, we obtain new polytopes with

 
 
for

 
≥ ≤≤

On the other hand, given a polytope  with a pyramid facet  let 

 be a point beyond  and beneath all other facets of . As before, 

let conv∪  Then, we have
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  

See [6, Section 2.3] for more details.
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Chapter 3

Some obstructions of flag vector pairs

  of 5-polytopes

In this chapter, we show some inequalities satisfied by the flag 

vector pairs   of -polytope. To do so, we begin with a recent 

result of Grünbaum in [1]. 

Lemma 3.1. ([1, Theorem 10.4.1.]) 

The set of  flag vector pairs    of -polytopes is equal to

 


 









∈ℤ  ≤ ≤



≤ ≤















Lemma 3.2.  

The flag vector pair  of a -polytope  satisfies the 

following inequalities. 

≤ 




Proof.

Let   be any facet of a -polytope . Then, it follows from [5, 

Theorem 10.4.1.] of Grünbaum that we have 


≤ 





  



   






∴ 
 ⊂
dim  


≤ 




 ⊂
dim  


  




 ⊂
dim  


 
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Since 
 




 ≤

  




 for any non-negative  ≤≤, it follows 

from by the above inequality we have

  
 ⊂
dim  


≤ 

 




  ⊂
dim  




  ⊂

dim  







 



  




By considering the dual polytope   of , we can obtain 


 

≤ 







Since  is an arbitrary polytope, so it its dual   Therefore, we 

can obtain

≤ 




  

as desired. This completes the proof.

□

Lemma 3.3. (Generalized U.B.T and L.B.T equation [4, Lemma 

1.34.]) 

The number of -face of cyclic polytope  (or any neighborly 

-polytope with  vertices) is given by




 







 






    







 






 

f or    ⋯ 

 

where we assume 
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    f or  

and  denotes the Gauss symbol (greatest integer function) of a 

rational number  

Lemma 3.4. 

The flag vector  of a -polytope  satisfies the 

following inequalities.

≤≤

Here the second inequality becomes the equality if and only if  is 

neighborly.

Proof. 

For the proof, note first that every vertex of a -polytope meets 

at least  facets. Thus we have ≤ where the equality 

holds if and only if  is a simple polytope. 

On the other hand, it follows from that for any -dimensional 

polytope  with  vertices (i.e., ) and for any subset 

 ⊂⋯ we have

 ≤
 

where  denotes the -dimensional cyclic polytope with  

vertices. Hence, for    we have

 ≤ 


Here, the second equality holds because   and its dual 
 

are both simplicial, and the first inequality becomes an equality if and 

only if  is neighborly.
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Now, we calculate by using the formula of Lemma 3.3.

 
 







 






   







 






 

×
 



  × 


 


 
 




 




 

        ∴  ≤        

This completes the proof.                      

□

Lemma 3.5. ([5, Theorem 1.2.]) 

Let  ⌊ ⌋  　≥ and   
Then,

    

≤≤ ╲∪

Here,       is a polytope and ⌊⌋ denotes the 

integer part of a rational number .

Lemma 3.6.  

The flag vector   of a -polytope  satisfies the 

following inequalities.

≥ 

 




  
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Proof. 

Let  be a -polytope. By Lemma 3.4, we have

 ≤  
≥ 


 

Thus, we have 


 


≥ 

Since  is greater than or equal to 6, it is easy to obtain

≥ 

 




  

 




  

Recall now that by Lemma 3.5, we have




≥

 Thus we obtain 


≥ 

 




  which implies

≥ 

 




  

     

This completes the proof.

□

By Lemmas 3.2 and 3.6, we can show the following Theorem 3.7. 

Theorem 3.7.  

Given a flag number  of a 5-polytope   satisfies the 

following inequalities.
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

 




 ≤≤ 




Lemma 3.8. (Generalized Dehn-Sommerville equation [3, Theorem. 

2.1.]) 

Let  be a -polytope, and let ⊆⋯ 

Let ⊆⊔ such that     and such that there is no 

∈ such that     Then, we have


  

 

  ∪  
  

Example 3.1.

 ① Assume that           Then, we have

   

 ② Assume that           Similarly, we have

  

Lemma 3.9. ([1, Theorem 10.4.2.]) 

The set of flag vector   of -polytopes is equal to

 


  ∈ℤ  ≤ ≤ ≤




╲ 

Lemma 3.10.  

The flag vector 3 -tuple    of a -polytope  

satisfies the following satisfies the following inequality. 

≤



- 22 -

Proof. 

Let  be a -polytope. Let   be any facet of a -polytope   By 

Lemma 3.9, we have 


≥

≥
  

Thus, it is easy to obtain

 
 ⊂
dim  


≥ 

 ⊂
dim  


 

    

By applying the duality, it is true that ≥ It also 

follows from Lemma 3.8 and Example 3.1 that we have

 

 

≥

∴ ≥

    

This completes the proof.

□

Lemma 3.11.  

The flag vector  of a -polytope  satisfies the 

following inequalities.

≤  ≤


Proof. 

Let  be a -polytope. As in the proof of by Lemma 3.4, by 

applying the upper bound theorem we can obtain
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≤ 

where  and the fact that  is a simplicial polytope was 

used in the last equality.

On the other hand, by using the formula of Lemma 3.3 


 

 







 






    







 






 

f or  ⋯

 

it is straightforward to compute

 
 







 






    







 






 


 





   





 

   


 × 


× 


× 


 







 

  

      

           ∴ ≤
    

Here we used the convention that     f or  
This completes the proof.

□
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Lemma 3.12.  

The flag vector  of a -polytope  satisfies the 

following inequalities.

≤






Proof.

Let  be a -polytope. Then we have

   
≤ ∵Lemma 

≤
 ∵Lemma 

≤



×


 ∵Lemma 

 























∴ ≤






□

Lemma 3.13.  

The flag vector  of a -polytope  satisfies the 

following inequalities.

≥ 


 

Proof. 
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 Let  be a -polytope. By Lemma 3.2,

 

≤ 



ie ≤

That is, we have


 ≥

∴ ≥


 

This completes the proof.

□

By Lemmas 3.12 and 3.13, we can show the following Theorem 

3.14.

Theorem 3.14. 

Given a flag number  of a -polytope   satisfies the 

following inequalities.




 ≤≤






In fact, it turns out that the upper bound of  given in 

Theorem 3.14 can be improved further by using the inequality in 

Theorem 3.7.

Theorem 3.15.

Given a flag number  of a -polytope   satisfies the 

following inequalities.
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


 ≤≤ 





Proof.

It suffices to prove the upper bound of . To do so, first 

recall that the following inequality from Theorem 3.7 holds.



 




 ≤

Thus, by solving the above inequality for  we can easily obtain 

≤ 


 

Note that 





≤






with equality if and only if ≥

This completes the proof.

□
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Chapter 4

Constructions of 5-polytopes with 

 using stacking and truncating

The aim of this chapter is to provide some examples of 

-polytopes whose flag vector pairs  satisfy the inequalities 

Theorems 3.7 and 3.14 given in Chapter 3. 

In order to construct such examples, we use the well-known 

operations such as stacking and truncating. In many instances, these 

operations turn out to be essential in finding new examples of 

polytopes for possible polytopal pairs. To begin with, we have the 

following lemma.

Lemma 4.1.

Let  be a -polytope with at least one simplex facet   and let  

be a point beyond  and beneath all other facets of . Let  be the 

-polytope obtained by stacking the vertex  over  i.e, 

  conv∪  Then, we have the following identities.

     ×

Proof.

By the way of the construction of  it suffices to show the last 

identity. To see it, note first that  is a -simplex with five vertices. 

If we apply the stacking operation to  with such a vertex  over  

then it is easy to see that the flag number  increase by × 

and decreases by 5. Thus, we have   

This completes the proof.

□
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Lemma 4.2.

Let  be a -polytope with at least on simple vertex  and let  

be the -polytope obtained by truncating the vertex  from . Then, 

we have the following identities.

      ×

 

Proof.

By the way of the construction of  once again it suffices to 

prove the last identity. To prove it, note first that by the truncating 

operation we have 5 new vertices and these five new vertices are all 

simple. Thus, the flag number  increase by × and decreases by 

5 coming from the old vertex . This implies    

This completes the proof.

□

Let  be a -polytope with a -simplex and a simple vertex. By 

truncating simple vertices  times and a stacking vertices on 

-simplex facets  times repeatedly, we can obtain a new -polytope 

 with the flag vector pair

 

   ≥

Let  . Then,    and ≤≤ ≥, we have 

   

  

  

As a special case, let  be a -simplex. Then, the flag vector pair 

 is equal to  Thus, we can obtain the flag vector 
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pair 

   

   ≥≤≤

One may directly check if the flag vector pair  

satisfies the inequalities Theorems 3.7 and 3.15 in Chapter 3.
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