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Chapter 1

Introduction

There are various kinds of polytopes, and some of them can be
easily found in reality. It is well known that if the dimension of a
polytope equals O, then the polytope is a point, and if the dimension
of a polytope equals 1, then the polytope is the line segment It is
relatively easy to study polytopes of dimension less than or equal to
3, since it can be visualized in several ways. Here are some clear

examples of polytopes (see [Figure 1]).

D B

Tetrahedron Octahedron Cube

Icosahedron Dodecahedron
[Figure 1] Examples of polytopes
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On the other hand, it is not so easy to study polytopes of
dimension more than 3, and more worthwhile to study higher
dimensional polytopes. In view of these, in this paper we generally
deal with polytopes of dimension more than 3. Especially, in this
thesis we study polytopes whose dimensions are between 3 and 5

inclusive.

Let P be a d-dimensional polytope. For each 0<:<d—1, let

f;=7,P) be the number of i-dimensional faces of P. For a subset S

of {0,1,2,---,d—1}, let f4(P) denote the number of chains
FcF-CF
of faces F, 1<% =<, of P such that
{dimF] dimF, -+ ,dimF,} = S.
The f—vector of P is then defined to be

f(P): (f()’fp“'vfd—l)'

The F" is the set of all f—vectors of d-dimensional polytope, and
clearly Flcz

The flag vector of P is defined to be

(fS)Sg {0,1,-,d—1}"

For the sake of simplicity, from now on we use the notation fl.li?mik(P)
instead of f{i]7i27,,.7ik}(P) for each {iy,iye i, }C {0,1,2,,d—1}.

For any two subsets S5 and 5, of {0,1,2,---,d—1}, a pair
(fSI(P),fSZ(P)>, or simply (fsl,fs), of flag numbers of P will be called a
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flag vector pair. More generally, for any k, not necessary mutually
disjoint, subsets S,,.5, ---, .S, of {0,1,2,---,d—1} a k-tuple

(fgl(P)7f52(P)v' "7f5k(P))v

or simply (fs]’f52"”’fsk>7 of flag numbers of P will be called a flag
vector k—tuple As in the flag vectors, let us denote by HS“SW._,Sk the

projection of the flag vector <fS(P))SC{OA1A---.d—1} onto its coordinates

fsplsp - fs: We call (fg,f5+f5) a polytopal flag vector k-tuple if

<f517f52,. "’fé’k)

belongs to the image of the set all flag vectors of d-dimensional

polytopes under the projection map HSI,SZ,-~-SAA’ that is, if there is a d

—-polytope P such that
(fSI(P)’fS‘Z(P)’-“7fSk'(P)>: (f5]7f527"'7f5k> ’

For n>d, a cyclic polytope, denoted Cln,d) (or Cji(n)) is a convex
polytope given by the convex hull of n distinct points on a rational

normal curve in RY, Especially, (n,m) belongs to Hojd_l(Fd), and these

pairs must satisfy the U.B.T inequality.
m = fd—l(CZi(n» and n = fd—l(Ql(m))

It implies that cyclic polytopes Cj(n) have the largest possible
number of faces among all convex polytopes with a given dimension
and number of vertices.

The f-vectors of d-polytopes (d <3) have been much studied by
many mathematicians such as Steinitz, Griinbaum, Barnette-Reay and
Barnette, Sjoberg and Ziegler, and so on. While the f-vector set £
of 3-polytopes was completely determined by Steinitz in 1906 (see

Collection @ chosun



[7] for more details), any complete determination of all possible f
-vector of d-polytopes for d >4 is still illusive.

As some partial results, for d=4 the projections of the f-vector
set F*SZ' onto two of the four coordinates have been determined in
1967-1974 by Griinbaum, Barnette-Reay and Barnette in [1] and [2].
Moreover, Sjoberg and Ziegler in [6] determined all possible values of
the pairs (fo,fOS) of flag face numbers of 4-polytopes and Kusunoki
and Murai in [5] characterized all possible (fo,fl) pairs of the f
-vectors of b5—-polytopes.

However, in spite of the importance of higher dimensional cases of
d-polytope (d>4), the problem of completely determining their flag
vectors is still unknown. For this reason, in this paper we try to
determine new results about some obstructions of flag vector pairs
(fl,f04) of 5-polytopes. For this, a few techniques such as general
stacking, facet splitting of stacking, truncating, cyclic polytopse will be
crucially used for making new d-polytopes.

This paper 1s organized as follows. In Chapter 2, by using the
methods of stacking and truncating we study the d-polytopes, and
show some obstructions of the flag vector pairs (fpfw) for d=3 as
well as (fo,f03) for d=4. In Chapters 3 and 4, we give some proofs
of the following inequalities for flag vector pairs (f;.f,) of 5

-polytopes hold, as follows.
(1) For a given flag number f04(P), we have

5

Z(7+ 1+%f04(P)) < f,(P) < %f()zx(P)(fozx(P)_g)'

(2) For a given flag number fl(P), we have
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23+ VOTI6A,(P))< 04(P) < 7, (P~ 147, (P)+ 60

Note that the upper and lower bounds of the flag vector pairs

(fl,f04) given in (1) and (2) above very sharp, since there is an
explicit example, such as a 5-simplex with (fpfo4):(15,30), which

satisfies the equalities in (1) and (2).

(3) Let P be a 5-polytope with a 4-simplex and a simple vertex.
By truncating simple vertices [ times, and stacking vertices on a
simplex facet k times repeatedly, we can obtain a new b5-polytope

satisfying the following identity.
(£1(@): for (@) = (f,(P)+5k+101, f,,(P)+20k+201)

It is easy to check if these examples satisfy the inequalities in the

main results.
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Chapter 2

Stacking and truncating

The aim of this chapter is to set up some basic operations such as
stacking and truncating for our main results in Chapters 3 and 4.

What we mean by stacking i1s an operation to obtain a new
polytope formed as the smallest convex set containing a given
polytope and one more vertex. To be more precise, let P be a d
-polytope with a facet £ and a point v beyond F and beneath all
other facets. The operation of obtaining a new d-polytope
Q= conv(P U{v}) is called a stacking.

On the other hand, let P be a d-polytope with a vertex v, and let
H be a hyperplane intersecting the interior of P such that on one
side of H the only vertex of P is v. What we mean by truncating at
a vertex v is an operation of obtaining a new polytope by cutting off
the side of H that contains v (see from [Figure 2] to [Figure 9] for

more details about stacking and truncating).
2.1 Flag vectors of 3—polytopes

Now, let us show some explicit examples to illustrate the
procedure of stacking polytopes. In [Figure 2], each step shows the

procedure of stacking a cube.
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[Figure 2] Stacking of a cube

Let P be a cube and let @ be the polytope obtained by stacking
operation of P. By comparing P and ), we can directly show that the

following equations hold true.

fo(P)+1,
f1(P)+4,
fo(P)+3

fo(@)

Q)
/(@)

Here we obtain fQ(Q)ZfQ(P)+3 when we take the stacking

operation, since four more facets are created, but one facet

disappears.
The figure in [Figure 3] sequentially shows each step of stacking a

tetrahedron.
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[Figure 3] Stacking of a tetrahedron

Likewise, let P be a tetrahedron and let @ be the polytope
obtained by stacking operation of P. As above, by comparing P and

(), we can directly show that the following equations hold true.

fO(P)+ 17

f1(P)+3
fo(P)+2.

/1(Q)
/(@)

{fo(@)

The figure shown in [Figure 4] sequentially shows each step of

stacking a pyramid.
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[Figure 4] Stacking of a pyramid
Finally, let P be a pyramid and let @ be the polytope obtained by

stacking operation of P over a square facet. By comparing P and @,

we can directly show that the following equations hold true.

foP)+1,
f1(P)+4,
fo(P)+3

/1(Q)
/(@)

{fo(Q)

On the other hand, if we take the stacking operation of P over a

triangle facet, then we have the following equations.

folP)+1,
f(P)+3,
fo(P)+2

Q)

{fo(@)
£(Q)

To sum up, the figures in [Figure 5] show the results of polytopes

obtained by stacking cube, tetrahedron, and pyramid.
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[Figure 5] Polytopes obtained by taking the stacking

Next, let us show some examples to illustrate the procedure of
truncating polytopes. In [Figure 6], each step shows the procedure of

truncating of a tetrahedron.

[Figure 6] Truncating of a tetrahedron

For this, let P be a tetrahedron and let @ be the polytope obtained
by truncating operation of P. Then, we can directly show that the

following equations hold true.

_10_
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fol@)= fo(P)+2,
{fl(cz) f1(P)+3,
fQ(Q): fQ(P)+ 1

Here, we have obtained the above equation fO(Q)ZfO(P)+2 by

using the fact that, by the operation of truncating, three more facets
are created, but one facet disappears.
Next, in the example of [Figure 7], each step shows the procedure

of truncating of a pyramid.

[Figure 7] Truncating of a pyramid

For this, let P be a pyramid and let @ be the polytope obtained by
truncating operation of P. Once again, by comparing P and ¢, we can

directly show that the following equations hold true.

fo(P)+3,
f1(P)+4,
fo(P)+1

Q)

{fo(@)
/(@)

Now, in the example of [Figure 8], each step shows the procedure

of truncating of a triangular prism.

_11_
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[Figure 8] Truncating of a triangular prism

This time, let P be a triangular prism and let ¢ be the polytope
obtained by truncating operation of P. Then, we can directly show

that the following equations hold true.

folP)+2,
f1(P)+3,
fo(P)+1

f1(Q)
£,(Q)

{fo(@)

As a summary of the discussions above, the figures in [Figure 9]
show the results of polytopes obtained by truncating tetrahedron,

pyramid, and triangular prism.

% 4z

[Figure 9] Polytopes obtained by taking the truncating

_12_
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Now, we want to check the change of the flag vector pairs (fpfoz)

after the staking and truncating operations, in detail.

First, in case of stacking of a cube as in [Figure 2] we easily
check that if we let P be a cube and let ¢ be the polytope obtained
by stacking operation of /P, then we can directly show that the

following equations hold true.

f1(P) =12,
{foz(P) =f,(P) x3=8x3 =2.

Here we obtained foz(P): 24, since at each vertex exactly 3 facets
meet and fO(P) 1S equal to 8. It is easy to see that the following

equations hold true.

f1(Q =f,(P)+4=16,
foz(@) = (4x5)+(3x4)=32.

Next, for the case of truncating the triangular prism as in [Figure
8] we easily check that if we let P be a triangular prism and let @
be the polytope obtained by truncating operation of £, then the

following equations hold true.

fl(P) =9,
f(P)=f,(P)x3=6x3 =18

As 1n the previous case, we can easily calculate the flag vector
pair (f1(Q),f»(@)- Indeed, clearly f,(Q=f,(P)+3. Further, since f,(Q)

1s equal to 8 and at each vertex exactly three meet, we should have

{fl(cz) =12,
f02(Q) =f,(Q) x3=8x3 =24.

_13_
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2.2 Flag vector pairs (f,f,;) of 4-polytopes

In this chapter, we explain the stacking and truncating operation for
4-polytope. To do so, let P be a 4-polytope having at least one
simplex facet £, and let v be a point beyond F and beneath all other
facets of P. Let Q=conv({v}UP), i.e., let @ be the convex hull of P
and v. Then, as in the previous cases of 3-polytopes, we can

calculate the flag vector pair ( O(Q),f03(Q)), as follows.

fog(Q) = fo3(P)+ 12.

Let @ be a polytope obtained by truncating a simple vertex from a
polytope P. Then we calculate the flag vector pair(fO(Q),fog(Q)), as

follows.

{fo(Q) :fo(P) +3,
fos(Q) = fos(P)+12.

Note that the polytope obtained by stacking and truncating a
polytope with a simplex facet has a simple vertex and a simplex
facet, once again. This implies that we can repeatedly stack vertices
over simplex facets and truncate simple vertices. By truncating simple
vertices and stacking vertices on simplex facets inductively, starting

from a polytope with ( O(Q),f03(62)) with tetrahedral facet and simple

vertex, we obtain new polytopes with

(f0+2m+n, f03—|—12n) for n=0,0<m<n.

On the other hand, given a polytope P with a pyramid facet F let
v be a point beyond F' and beneath all other facets of P. As before,
let @=conv({v}UP). Then, we have

_14_

Collection @ chosun



fo(@ = fo(P)+1,
f()g(Q) = fog(P)+ 16.

See [6, Section 2.3] for more details.

_15_
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Chapter 3

Some obstructions of flag vector pairs
(f1, fou) of B-polytopes

In this chapter, we show some inequalities satisfied by the flag

vector pairs (f}, fy,) of 5-polytope. To do so, we begin with a recent

result of Griinbaum in [1].

Lemma 3.1. ([1, Theorem 10.4.1.])
The set of flag vector pairs (fo, f3) of 4-polytopes is equal to

Ho,g(FA>: (foafg)EZ215<f0<%f3(fg_3)a-
5§f3£%fo(fo_3)

Lemma 3.2.
The flag vector pair (f,(P),fy(P)) of a 5-polytope P satisfies the

following inequalities.
1
£1(P) = 2 fou (P, (P)=3)

Proof.

Let F* be any facet of a 5-polytope P. Then, it follows from [b,

Theorem 10.4.1.] of Griitnbaum that we have

T (FY < 2 1 By () =3) = 3G = 5, ()
INAIOEESDY fﬁ(F‘)—% >, o).
F'crp F'crp F'cp
dimF'=4 dim =4 dimF'=4

_16_
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k
Since Zx < ( EmZ)Q for any non-negative w; (1<i<k), it follows
i=1 i=1

from by the above inequality we have

Ftc P Flcp
dimF'=4 dimFi=4

F'cp
dimF'=4

f34(P): Z f3 [

> ol ) 3( )y fo(#))]

1 3
By considering the dual polytope P oof P, we can obtain
% ES 1 ES
21 (P) = fo (P) = 5 fou(P) (s (P)

Since P is an arbitrary polytope, so it its dual P Therefore, we

can obtain

11(P) = o (PN (P)=3),

as desired. This completes the proof.
[]

Lemma 3.3. (Generalized U.B.T and L.B.T equation [4, Lemma
1.34.])

The number of i—face of cyclic polytope Q(m) (or any neighborly

n-polytope with m vertices) is given by

[%} "53]
(b 2N s P 2 (|

where we assume

_17_
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p\_
=0 for p<
o or<a

and [a] denotes the Gauss symbol (greatest integer function) of a

rational number a .

Lemma 3.4.
The flag vector (f(P),fo,(P)) of a 5-polytope P satisfies the

following inequalities.
SfO(P) < f04(P) = 5(f()(P)_3)(fo(P)_4)

Here the second inequality becomes the equality if and only if P is
neighborly.

Proof.
For the proof, note first that every vertex of a d-polytope meets
at least d facets. Thus we have 5f,(P) < f,,(P), where the equality

holds if and only if P is a simple polytope.

On the other hand, it follows from that for any d-dimensional
polytope (¢ with n vertices (i.e.,anO(Q)) and for any subset
S < H{0,---,d—1} we have

where Czl(n) denotes the d-dimensional cyclic polytope with n:fO(Q)

vertices. Hence, for d=5 we have
f()4 = f04(cj5(n)):5f4(6§(n))

Here, the second equality holds because Cg(n) and its dual Cg(n)

are both simplicial, and the first inequality becomes an equality if and

only if P is neighborly.

_18_
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Now, we calculate by using the formula of Lemma 3.3.

3] |

f4(05(n)):2(3_4)(n—5+q—1)+ 0(?:g)@—5+p—1)

:2><q:20(g+q—6) ZQX((8—6)+(?—5)+(7;—4))

t
—_—
IS

p

n—5))

:2(1+(n—5)+%(n—4)(n—5))=2((n—4)(1+ ;

=(n—4)(n—3).

o = 5f4(6})(n)):5(f0—3)(fo—4).

This completes the proof.

Lemma 3.5. ([5, Theorem 1.2.])

Let Lz{(v, %v+1J ) D> 7} and G={(8,20),(9,25),(13,35)}.

Then,

& = {(v,e) : %v <e< (72})}\([/ UG).

Here, ¢ = {(f,(P), f,(P)) : Pisab5—polytope}, and la] denotes the

integer part of a rational number a.

Lemma 3.6.
The flag vector (1(P),f04(P)) of a b5-polytope P satisfies the

following inequalities.

fi(P) = %(7+ 1+%f04(P)) .

_19_
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Proof.

Let P be a 5-polytope. By Lemma 3.4, we have

Jor <5y =3)fy—4), fo—TfT12= éfm .

Thus, we have
1
S (P =1y (P)+12=—fo,(P) 2 0.

Since fO(P) 1s greater than or equal to 6, it is easy to obtain

1

fo(P) = 5(7+ \/49—48+%f04(}7) ): E

2(7+ 1+%f04(P)).

Recall now that by Lemma 3.5, we have

21P) = 1,(P)

2 1 4
Thus we obtain Efl (P) > 5(7—# \/1+Ef04 (P) ), which implies

fH(p) =

| o

(7+ 1+§f04(P)) :

This completes the proof.

By Lemmas 3.2 and 3.6, we can show the following Theorem 3.7.

Theorem 3.7.
Given a flag number f04(P) of a 5-polytope P, fl(P) satisfies the

following inequalities.

_20_
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%(7—# 1+%f04(P))§ fl(P) = ifOzL(P)(fOzL(P)

Lemma 3.8. (Generalized Dehn—-Sommerville equation [3, Theorem.
2.1.1D

Let P be a d-polytope, and let S<{0,1,2,---,d—1}.
Let {i,k}< SUU{—1,d} such that i<k—1 and such that there is no
JES such that i < j < k. Then, we have

E Y (P = @)= (=),

=i+1

Example 3.1.
@D Assume that d=5,5=1{0},i=0,k=5. Then, we have

0=for —JootSos—Sfoa =2/1 = Ffoa T Soz— Jos
@ Assume that d=4,5=1{0},i=0,k=4. Similarly, we have
Joo == 2fgT2f1 + fo3-

Lemma 3.9. ([1, Theorem 10.4.2.])
The set of flag vector (fo, fl) of 4-polytopes is equal to

1, ,(F') = {(fo,fl)e 7*:10<2f, < f, < %fo(fo—l)}
N\A(6,12),(7,14),(8,17),(10,20) } .

Lemma 3.10.
The flag vector 3 —tuple (f,(P), foo(P); fou(P)) of a 5-polytope P

satisfies the following satisfies the following inequality.

2f1(P)_f02(P)+f04(P) =0

_21_
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Proof.

Let P be a 5-polytope. Let F* be any facet of a b—-polytope P. By

Lemma 3.9, we have
f1(F4) = QfO(FA‘) > 10.
Thus, it is easy to obtain

f14 E fl (F) =2 E fo(F4 2f04(P)-

Fcp Ficp
dimF*=4 dimF'=4

By applying the duality, it is true that fu(P)=2f,(P). It also

follows from Lemma 3.8 and Example 3.1 that we have
foi(P) = fo1 (P) = foo (P) + [ (P)
=2/, (P) = fop (P)+ fo3(P)
> 2f, (P) = fo (P)+2f, (P).

0= 2f1(P)_f02(P)+fo4(P)'

This completes the proof.

Lemma 3.11.
The flag vector (f(P),f,(P)) of a 5-polytope P satisfies the

following inequalities.

fo2(P) < fou(Gi(n) =3f,(Cy(n)) < 6(f;(P)—6f,(P)+10)

Proof.
Let P be a 5-polytope. As in the proof of by Lemma 3.4, by

applying the upper bound theorem we can obtain

_22_
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fo2(P) = fou(Gy(n)) = 3£, (G5 (n)),

where f,(P)=n and the fact that Ci(n) is a simplicial polytope was

used in the last equality.

On the other hand, by using the formula of Lemma 3.3

5 =y
Flonm) = g(n 1—2)(?_n+q_1) Pg (z+1 p)(zl_nﬂ)_l)’

fore=1,---n—1

[E—]

it 1s straightforward to compute

LS T

Y

q=0\2/\q

(”2_4)+ 10><(g_6)+6><(71l 5)+3><(g 4)

_ %(n—4)(n—5)+10+6(n—5)+%(n—4)(n—5)

=2(n—4)(n—5)+10+6(n—>5)

= 92 (n®> —6n+10)

s f(P) < 6(f2(P)—6f,(P)+10)

Here we used the convention that (3)20 for g<i.

This completes the proof.

_23_
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Lemma 3.12.
The flag vector (f(P),fy,(P)) of a 5-polytope P satisfies the

following inequalities.

fou(P) = 2i(24f1(P) 410f, (P) +1,500)

Proof.

Let P be a 5-polytope. Then we have

f04(P) £_2f1(P)+f02(P) ('-'Lemma 3-10)

<—2f,(P)+6(f2(P)—6f,(P)+10) (" Lemma 3.11)
<=2/, (P)+6(op f1(P) =6 2 1, (P)+10) (' Lemma 3.5)

zﬂﬂmﬂ%ﬁm—%ﬂﬂ%@

o
25

82 ¢ (P)+60

ﬁ®—5

1 2
= o (24£1(P)—410f, (P) +1,500)
S fuP) = 21 (242 (P)—410f, (P) +1,500).

[]
Lemma 3.13.
The flag vector (f(P),f,(P)) of a 5-polytope P satisfies the

following inequalities.

fou(P) = %(3+ 9+167,(P) )

Proof.
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Let P be a 5-polytope. By Lemma 3.2,

F1(P) = 5 1 (P)foy(P)-3).

ie., 4f,(P) < fi,(P)(f,(P)—3)
That 1s, we have

Joi(P) =3/, (P)—4f,(P) = 0

S fo = %(3+ 9+16f,(P))

This completes the proof.
[]

By Lemmas 3.12 and 3.13, we can show the following Theorem
3.14.

Theorem 3.14.
Given a flag number f,(P) of a 5-polytope P, f,,(P) satisfies the

following inequalities.
1 1
5(3+ 9416/, (P) )< fo,(P) < 55 (24£1(P) = 4107, (P)+1,500).

In fact, it turns out that the upper bound of f,,(#) given in

Theorem 3.14 can be improved further by using the inequality in
Theorem 3.7.

Theorem 3.15.
Given a flag number f,(P) of a 5-polytope P, f,,(P) satisfies the

following inequalities.
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%(3+ 9+16f,(P) )< f,,(P) < %f%(P)—Mfl(PHGO

Proof.

It suffices to prove the upper bound of f04(P). To do so, first

recall that the following inequality from Theorem 3.7 holds.

5

Z(7+ 1+§f04(P) )S f1(P)

Thus, by solving the above inequality for f04(P) we can easily obtain

fou(P) = %fﬁ (P)—14f,(P)+60 .
Note that
%f% (P)—14/,(P)+60 < 2—15 (2412 (P)—410f,(P)+1,500)

with equality if and only if f,(P) > 15.

This completes the proof.
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Chapter 4

Constructions of 5—-polytopes with
(f1,fou) using stacking and truncating

The aim of this chapter is to provide some examples of 5
-polytopes whose flag vector pairs (f;,f,) satisfy the inequalities
Theorems 3.7 and 3.14 given in Chapter 3.

In order to construct such examples, we use the well-known
operations such as stacking and truncating. In many instances, these
operations turn out to be essential in finding new examples of
polytopes for possible polytopal pairs. To begin with, we have the

following lemma.

Lemma 4.1.

Let P be a b5-polytope with at least one simplex facet £, and let v
be a point beyond F' and beneath all other facets of P. Let @ be the
5-polytope obtained by stacking the vertex v over P, le,
@ = conv({v} UP). Then, we have the following identities.

{fl (Q) =f,(P) +5,
f04(Q):f04(P)+20(=5><5Q'1—5),

Proof.

By the way of the construction of @, it suffices to show the last
identity. To see it, note first that # is a 4-simplex with five vertices.
If we apply the stacking operation to P with such a vertex v over F,
then it is easy to see that the flag number f04(P) increase by 5X.C,
and decreases by 5. Thus, we have f04(Q):fO4(P)+20.

This completes the proof.
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Lemma 4.2.
Let P be a 5-polytope with at least on simple vertex v, and let R
be the 5-polytope obtained by truncating the vertex v from /F. Then,

we have the following identities.

[1(R) =f,(P) +10(
Joa(R) = f4,(P)+20(

5Ch)
5X,C —5).

Proof.

By the way of the construction of R, once again it suffices to
prove the last identity. To prove it, note first that by the truncating
operation we have 5 new vertices and these five new vertices are all

simple. Thus, the flag number f, increase by 5X5 and decreases by
5 coming from the old vertex v. This implies f04(R)=f04(P)+20.

This completes the proof.

]

Let P be a 5-polytope with a 4-simplex and a simple vertex. By
truncating simple vertices [ times and a stacking vertices on 4
-simplex facets k times repeatedly, we can obtain a new b5-polytope

() with the flag vector pair
(f1(@Q) fos (@)= (f, (P)+5k+ 101, fo, (P)+20k+200). (k= 0)
Let n=k+!l. Then, [=n—k and 0 <k <n,l >0, we have

(£1(@), f0u (@) = (f, (P) +5k+10L, f,,(P)+20k+201)
= (f, (P)+10(k+1)— 5k, fo,(P)+20(k+1))

= (f,(P)+10n—"5k fy,(P)+20n)

As a special case, let P be a 5-simplex. Then, the flag vector pair
(7, (P), fo,(P)) is equal to (15,30). Thus, we can obtain the flag vector
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pair
(£1(Q), f0,(@)) = (15+ 5k~ 101, 30 + 20k + 201)
=(10n—>5k+15,30+20n). (n=0,0<k<n)

One may directly check if the flag vector pair (fl(Q),f(M(Q))
satisfies the inequalities Theorems 3.7 and 3.15 in Chapter 3.
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