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국 문 초 록

실토릭 공간의 단체작용에 관한 연구

  최  선

  지도교수 : 김 진 홍

  조선대학교 교육대학원 수학교육전공

  는 꼭지점의 집합  … 의 차원 단체이고 를 에 

단체작용을 하는 개의 원소로 이루어진 집합의 치환군 의 유한 

부분군이라 할 때, 선형사상   
→

의 핵 ker가 에 대하여 

불변이라 가정하자. 이 때,  는 ker의 실모멘트-앵글 다양체 

의 몫공간인 실토릭 다양체 ker에 작용한다. 이 논문에

서는 이러한 실토릭 다양체 ker에 단체 작용을 하는 유한군 

에 대한 구조 정리를 고찰하였다. 즉, 이 경우에는 가 위수가 2

인 원소를 항상 포함하고 있음을 증명하여 의 위수가 항상 짝수

라는 결과를 자세히 알아보았다.
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Chapter 1 

Introduction

  Our main concern in this thesis is the real moment-angle complex 

and its real toric space which have recently attracted much attention 

from many people working on toric topology (see [3], [4], and [7] for 

more details). Recall that the real toric variety is given by the fixed 

point set of a real toric variety under the involution defined by the 

complex conjugation. The real toric space is a notion which is a 

generalization of a real toric variety in algebraic geometry. By 

definition, any finite subgroup  of the permutation group acting 

simplicially on a simplicial complex  naturally acts on the real 

moment-angle complex associated to , and it further induces an 

action on the real toric space under a certain invariance condition 

of . 

  Our primary aim in this thesis is to survey the results in the 

paper [10] for the structure of the group  acting simplicially on the 

toric space. As a consequence, we can see a certain structure 

theorem of such a finite group  acting simplicially on the real toric 

space. In addition, in Chapter 2 we also quickly review some related 

material in [3], [4], and [6] necessary for explaining main results 

given in Chapters 3 and 4. 

  In order to explain our main results more precisely, let  be a 

simplicial complex on the vertex set    ⋯, and let  

and   denote the closed interval    and its boundary 

  , respectively. Roughly speaking, the real moment-angle 

complex  of  is defined as
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                    

 

 



=
∈
  ⋯ ∈ 


∈

 for ∉

  Now, let  denote the finite group   under the natural 

addition. Then 
 acts on  


diagonally by the sign, and in turn 

it induces the action on the real moment-angle complex . Let 

  
→ 

 be a linear map with   . Then the   

associated to the pair   is defined by the quotient space /

ker. It is a well known fact that the action of ker on  is free 

if and only if  satisfies a certain regularity condition. To be more 

precise, let us denote by  the -th column of . Then we say 

that  satisfies a regularity condition if 

(1.1) ⋯ are linearly independent, whenever             

        …∈.

  Now, let  be a finite subgroup of the permutation group  on 

letters. We say that  acts simplicially on  if  acts on the vertex 

set [] of  as a subgroup of  in such a way that it preserves 

the simplices of . For example, let  be the 3-gon (or triangle) on 

the vertex set [3], and let  denote the permutation group acting on 

 on three vertices. Then  acts simplicially on . 

                              

                        =
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  On the other hand, let  be the 4-gon (or rectangle) on the 

vertex set [4], and let  denote the permutation group acting on 

by permuting four vertices.               

  

         

                    =

                                                               

  Then the action of  does not act simplicially on . This is 

because an element   ∈ permutes two vertices 2 and 3, fixing 

two other vertices 1 and 4. So the edge   maps to  that is 

not an edge of .

  Clearly by its construction any simplicial action of  induces an 

action on the real moment-angle complex . Moreover, such a 

-action on  induces an action on the quotient space /ker, 

whenever the kernel ker of  is invariant under  in that for any 

    ⋯ ∈ker and ∈, we have 

∙    ⋯ ∈ker .

  With these understood, the main result of this survey paper from 

[10] is to show that the following theorem for the structure of the 

finite group  acting simplicially on the real toric space holds.

Theorem 1.1 Let  be a simplicial complex of dimension  on 

the vertex set [] with   , and let  act simplicially on  as a 

subgroup of the permutation group  on  letters. Assume that the 
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kernel ker of a linear map   
→

 is invariant under  . Then 

the following statements hold:

(1) The action of  on  induces an action on the real toric 

space. 

(2)  always contains an element of order 2, and thus the order 

of  should be even.

  The first statement (1) of Theorem 1.1 is the restatement of a 

result given in [6, Theorem 2.3], while the second statement (2) of 

Theorem 1.1 is that of the main result in [10].

  One wide and well-known class of examples supporting the validity 

of Theorem 1.1 can be provided with the real toric associated to the 

Weyl chambers of classical groups, In these cases, the simplicial 

complexes are the Coxeter complexes of type  and the Weyl groups 

play the role of the finite groups  which preserve the kernel of a 

characteristic map (see [6, Chapter 3]). It is interesting to notice that 

all of the Weyl groups of classical groups always have an even order 

(see [9]).

  As an immediate consequence of Theorem 1.1, we can now state 

the following corollary.

Corollary 1.2 Let  be a simplicial complex of dimension  on 

the vertex set  with  , and let  act simplicially on  as a 

subgroup of the permutation group  on  letters. If the order of 

 is odd, then  cannot act simplicially on  so that the kernel  

ker of a linear map   
→

 is invariant under .

We organize this thesis, as follows. 

  In Chapter 2, we briefly summarize some notations and basic facts 

necessary for the proof of Theorem 1.1 given in Chapter 4. 
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Especially, we mainly collect basic facts regarding the moment-angle 

complexes as well as real moment-angle complexes.  Refer to an 

excellent paper [7] of Davis and Januszkiewicz and books [3], [4] of 

Buchstaber and Panov for more details.

  Chapter 3 is devoted to giving a proof of a key lemma which plays 

an important role in the proof of Theorem 1.1. 

  In Chapter 4, we give a proof of Theorem 1.1. To do so, we first 

establish a non-trivial homomorphism  from the finite group  to 

the homomorphism group Homker ker. With this homomorphism 

 in place, the proof of Theorem 1.1 immediately follows, as we can 

see in Chapter 4.

  Finally, in Chapter 5 we close this thesis by giving some nontrivial 

examples supporting the validity of the main result in this thesis.
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Chapter 2 

Real moment-angle complexes and real 

toric spaces

  The aim of this chapter is to quickly review some material 

regarding moment-angle complexes and real toric spaces which we 

are mainly concerned with. Refer to [1], [2], [3], and [4] for more 

details on real moment-angle complexes as well as moment-angle 

complexes.

2.1 Moment-angle complexes

  Let   …   be the set of facets of a polytope  . For each 

facet ∈, denote by  the one-dimensional coordinate subgroup 

of  ≅  corresponding to . Then we assign to every face  the 

coordinate subtorus

  
 ⊃

 ⊂
.

  Note that dim  codim. Recall that for every point ∈  we 

denoted by  the unique face containing  in the relative interior.

Definition 2.1. For any combinatorial simple polytope  , introduce 

the identification space

  
× ∼,

where  ∼   if and only if    and 
∈. This space is 

called a moment-angle manifold associated to the polytope  .



- 9 -

  Then the free action of   on  ×  descends to an action on 

, with quotient  . Let   →
 be the orbit map. The action of 

  on  is free over the interior of  , while each vertex ∈ 

represents the orbit  with maximal isotropy subgroup of 

dimension .

Lemma 2.2. The space  is a smooth manifold of dimension 

  .

Proof: See [3, Lemma 6.2].

The following fact ([3, Proposition 6.4]) also holds to be true.

Lemma 2.3. Let  be two polytopes. If  ×, then the 

moment-angle manifold  is diffeomorphic to ×. Moreover, if 

 is a face of , then  is a submanifold of .

  For more interesting properties on moment-angle complexes, 

please refer to [1], [2], [3], and [4].

Now we give some examples of moment-angle complexes.

Example 2.4.

(1) Let  ∆ (the -simplex). Then  is homeomorphic to the 

sphere  . 

(2) The cubical complex ∆  constructed in [3, Construction 4.5] 

consists of  cubes  
. In this case, each  subset   



is homeomorphic to  

×  In particular, for    we obtain the 

representation of the 3-sphere   as a union of two solid toric 

 ×  and  × , glued by the identity diffeomorphism of their 

boundaries.
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  It is true that we can extend the definition of a moment-angle 

manifold associated to a given polytope to that associated to a 

simplicial complex. There are several equivalent ways to do so. In 

this thesis, we adopt one of them. 

  Indeed, let  be a simplicial complex of dimension  with the 

vertex set   …, and let   and   denote the unit disk in 

the complex plane  and its boundary   , respectively. For 

each ∈, let   


be a subspace of  


whose -th 

component   


is given by

  

 

 ∈

  ∉

Then the moment-angle complex  of K is defined to be

        

  

 

  

∈



 

 


∈
⋯∈ 


∈

 for ∉

  It can be shown that if  is a simplicial -sphere, then  is 

an -dimensional (closed) manifold. However,  is not a 

topological manifold, but just a simplicial complex, if  is not a 

simplicial sphere.

Next, we provide some examples of moment-angle complexes, as 

follows.

Example 2.5.

(1) Let  be a simplicial complex on the vertex set  so that 

∅. 
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                 

Then we have 

 
×  ×  .

(2) More generally, let  denote the boundary of the 

-simplex . Then it is easy to see that there is a homeomorphism 

between  and  . Moreover, the diagonal subgroup     

of the -dimensional torus   acts freely on  
. So it is 

interesting to observe that we can obtain the complex projective 

space  by taking the quotient of   under the action of 

 .

2.2 Real moment-angle complexes

  Let  be a simplicial complex on the vertex set [m], and let  

and   denote the closed interval  and its boundary 

 , respectively. Let   


be a subspace of  


whose 

-th component   


is given by

  

 

 ∈

  ∉

Then the real moment-angle complex  of  is defined to be

        

  

 

  

∈



 

 


∈

⋯∈ 

∈

 for ∉

As in the case of moment-angle complexes, it can be shown that if 

 is a simplicial -sphere, then  is an -dimensional 
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(closed) manifold. However,  is not a topological manifold, but 

just a simplicial complex, if  is not a simplicial sphere.

Example 2.6. 

(1) Let  be a simplicial complex on the vertex set  so that 

∅. Then we have 

                     

 
×  ×    .

(2) Let K be a 3-gon on the vertex set [3] so that 

  ∅        . Then we have

                   

  
× ×  × ×  × ×   .
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2.3 Real toric spaces

   Let  denote the vector space  over  under the natural 

scalar multiplication, and let   
→

 be simply a linear map. Note 

that 
 acts on   diagonally, as follows.

(2.1)              
× → 

⋯ ⋯↦
⋯



  so that in turn it induces an action on the real moment-angle 

complex . Clearly any subgroup of 
 can be given by the 

kernel ker of a linear map   
→

 for  , and the quotient 

space ker is called the real toric space associated to the pair 

. It turns out that the action of ker on  is free if and only 

if  satisfies the regularity condition as below.

Lemma 2.7. The action of ker on  is free if and only if the 

condition (1.1) is satisfied.

Proof: (⇐) Let   … be a fixed point of  under the 

action of   …∈ker.  Then it follows from (2.1) that we 

have either   for all ∈ or   for all ∈. Now let ∈

be a simplex such that ∈   and let  denote the submatrix 

of  consisting of columns corresponding to . Let  denote the 

subvector of  corresponding to . Then, since ∈ker, we have

  .

  The fact that  acts freely on   implies that we have   for 

all ∈. Thus, we should have  . This means that  

and so we have   , as desired.

(⇒) Conversely, if (1.1)  does not hold, then for a simplex ∈
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there should be a point   … such that  , if ∈ and 

 , otherwise. Thus  is fixed under the action of ker.

This completes the proof of Lemma 2.7.                            □
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Chapter 3 

A key lemma

  A real toric space is a generalization of a more specific space 

which is defined as the quotient space ker for a characteristic 

map . Recall that a linear map    
→ 

 is called a characteristic 

map if it satisfies a certain regularity condition. That is, when we 

write the linear map  as an ×-matrix

(3.1)                    ⋯ ×

    ⋯  are linearly independent over  for any simplex 

⋯ in . Here each  is regarded as a column vector of 

size n, and the matrix in (3.1) is called the characteristic matrix.

  For a characteristic map , the quotient space ker is called 

a small cover (resp. real topological toric manifold) if  is a 

polytopal sphere (resp. star-shaped sphere). Refer to [7] and [8] for 

more details. Note also that any small cover is in turn a 

generalization of a real toric variety which is given by the fixed 

point set of a toric variety under the natural involution defined by 

the complex conjugation.

  Now, as before let  be a finite subgroup of the permutation 

group  on  letters. Recall that  acts simplicially on  if 

acts on the vertex set  of  as a subgroup of  in such a way 

that it preserves the simplices of . It is easy to see that any 

simplicial action of  induces an action on the real moment-angle 

complex . Moreover, it induces an action on the homology group

∗≅
∈Row
⊕ ∗ 
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where Row⊂ 
 denotes the row space of  and  denote the 

full subcomplex of  with its vertex set ⊆  . Here, we identify 

any element  of Row with an element  of  in the natural 

way. That is, for   ⋯∈Row, we set

  ∈≠.

  The following lemma and its proof plays an important role in the 

proof of our main Theorem 1.1 (see [6, Theorem 2.3]).

Lemma 3.1. Assume that ker is invariant under  in the sense 

that for any  ⋯∈ker and ∈, we have

∙ ⋯∈ker.

Then the action of  on  induces an action on the real toric 

space ker.

Proof: For the proof, let  and  be any  two elements of  such 

that   ∙ for some  ⋯∈ker. Then by (2.1) we have

(3.2)           ∙ ∙∙ ∙
⋯



 
⋯



 
′⋯

′

where ′  for each ∈. By assumption, note that

′  ′′⋯′

is an element of ker.

  On the other hand, it is also easy to obtain
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(3.3)            ′∙∙ ′∙⋯

 
′

′⋯
′

Thus it follows from (3.2) and (3.3) that we have ∙ ′∙∙

This implies that ∙ and ∙ represent the same element in 

ker

  Now, it is straightforward to show that there is a well-defined 

action of  on ker. This completes the proof of Lemma 3.1.    

                                                                    □
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Chapter 4 

Main result : Proof of Theorem 1.1

  The aim of this chapter is to give a proof of Theorem 1.1, 

essentially following the paper [10]. To do so, we first need to prove 

the following proposition.

Proposition 4.1 Let  be a simplicial complex of dimension 

with the vertex set  and   and let  act simplicially on . 

Assume that ker is invariant under . Then there is a group 

homomorphism

 →Homkerker

  In particular, this implies that the invariance of  on ker

induces an action on ker.

Proof: Since  is a simplicial complex on the vertex set , it 

follows from definition that every singleton  is an element of 

for each ∈. In particular, if we let  ∈, then we have



 

   × ×⋯× 

  Thus we have an element

  ⋯∈

 

 ⊂.

   Let  be the finite subgroup of the permutation group  on 

letters, as before. Then we have ∙  for all ∈. Hence the 

equivalence class  in ker is fixed under the action of  on 

ker. Note that every component of 1 is not zero.
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  Next, we want to construct a homomorphism

 →Homker ker

as follows. To do so, note first that from the proof of Lemma 3.1 for 

any ∈ker and ∈ there is a unique element ′∈ker such that

∙∙ ′∙∙ ′∙,

where ′ is given by  for each ∈  ′ ∙. Since ker

is assumed to be invariant under , for each ∈ we can thus 

define

  ker→ker ↦′ ∙.

  Using the map , we now define a map

 →Homker ker ↦.

  It is easy to see that  is indeed a homomorphism we want. To be 

precise, for any two elements ∈ we have

(4.1)           ∙∙ ′
∙ ′∙.

  on the other hand, it is also true that

(4.2)            ∙∙  ∙∙

 ′∙
∙  ′∙



 ′
′∙′∙


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  Note that we have

(4.3)            ′
′
∙′

∙∙

By (4.1), (4.2), and (4.3), we have

(4.4)            ′
 ′

′
∙∙

  This means that  the map  is a homomorphism. To be precise, 

by (4.4) we have

     ′
∙∙

 ∙  ∙

 ∘ ∈ker

That is, we have

  ∘

,  is a homomorphism. This completes the proof of Proposition 

4.1.                                                                 □

  By using the invariance of  on ker, it is also possible to directly 

show that there is a well-defined action of  on ker. It is 

well-known that this will then induce a group homomorphism  as 

in the proof of Proposition 4.1. In view of the proof of Proposition 

4.1, the action of  on ker satisfies the property: for each ∈ker,

∙∙    ⋯  

  ⋯  

 ∙ ∈

  Finally, we are ready to prove Theorem 1.1 that goes as follows.
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Proof of Theorem 1.1: By Proposition 4.1, there is a group 

homomorphism

 →Homkerker

  Thus, we have an isomorphism

ker≅ Im⊂Homker ker

  Note that ker contains a subspace of 
 isomorphic to 

 and 

so ker is isomorphic to 
 for some  ≥ Hence Hom

(ker ker) is isomorphic to


⊗

≅


  Since the map  →Hom ker ker is non-trivial by definition, 

there should be an element of  whose image under  is 

non-trivial. That is, since the order of Hom(ker ker) is 


, it 

follows from the theorem of Lagrange that the order of Im is 

divisible by 2. Since we have

   kerker  Imker,

we see that the order of  should be also divisible by 2. Therefore,  

there exists an element of  whose order is equal to two, completing 

the proof of Theorem 1.1                                           □
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Chapter 5 

Examples

  In this chapter, we close this chapter with some simple examples, 

taken from [6],  including real toric varieties associated to the Weyl 

chambers of classical groups given in Chapter 1, which illustrates 

our main result.

Example 5.1. Let  be the 4-gon on the vertex set [4], and let 

be the  cyclic group of order 4 acting on  cyclically on four 

vertices. Let  be the characteristic map whose associated matrix is 

given by

    
   

.

  Then it is easy to see that the kernel ker is invariant under the 

action of . The real toric space associated to the pair  is 

actually the 2-dimensional torus    ×  and the induced action 

of  on   is generated by

   →  ↦

  At any rate, the order of  is four which is clearly even and 

contains an element  of order two.

Example 5.2. The Weyl group  of the classical groups of type 

 is the symmetric group , and let  denote the dual of the 

permutohedron of order . Here the vertex set  can be 

described by the -equivariant bijection between  and 
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∅. Under this bijection, it is known that  subsets 

… of  form a simplex of  if and only of they form 

nested chain of subsets up to permutations. We can also describe 

the characteristic map  by using the basis consisting of 

  , where  means the transposition in  and ∈. 

Then it can be shown as in [6, 3.1] that  acts simplicially on the 

real toric space 
 . Note that the order of  is  which is 

clearly even, as desired.
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