©creative

 ccommons

 ccommons
 $\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이차적 저작물을 작성할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

C)Collection

2018년 2월
교육학석사(수학)학위논문

On the simplicial actions of real toric spaces

조선대학교 교육대학원
수학교육전공
최 선

On the simplicial actions of real toric spaces

실토릭 공간의 단체 작용에 관한 연구

2018년 2월

> 조선대학교 교육대학원
> 수학교육전공
> 최 선

On the simplicial actions of real toric spaces

지도교수 김 진 홍

이 논문을 교육학석사(수학교육)학위 청구논문으로
제출함.

2017년 10월

조선대학교 교육대학원

수학교육전공
최 선
최선의 교육학 석사학위 논문을 인준함.
심사위원장 조선대학교 교수 정 윤 태 인
심사위원 조선대학교 교수 김 남 권 인
심사위원 조선대학교 교수 김 진 홍 인

조선대학교 교육대학원

CONTENTS

국문초록

1. Introduction 3
2. Real moment-angle complexes and real toric spaces 8
2.1 Moment-angle complexes 10
2.2 Real moment-angle complexes 11
2.3 Real toric spaces 13
3. A key lemma 15
4. Main result: Proof of
Theorem 1.1 18
5. Examples 22

국 문 초 록

실토릭 공간의 단체작용에 관한 연구

최 선

지도교수 : 김 진 홍
조선대학교 교육대학원 수학교육전공
K 는 꼭지점의 집합 $\{1,2, \ldots, m\}$ 의 $n-1$ 차원 단체이고 G 를 K 에 단체작용을 하는 m 개의 원소로 이루어진 집합의 치환군 S_{m} 의 유한 부분군이라 할 때, 선형사상 $\Lambda: Z_{2}^{m} \rightarrow Z_{2}^{n}$ 의 핵 $\operatorname{ker} \Lambda$ 가 G 에 대하여 불변이라 가정하자. 이 때, G 는 $\operatorname{ker} \Lambda$ 의 실모멘트-앵글 다양체 $R Z_{K}$ 의 몫공간인 실토릭 다양체 $R Z_{K} / \operatorname{ker} \Lambda$ 에 작용한다. 이 논문에 서는 이러한 실토릭 다양체 $R Z_{K} / \operatorname{ker} \Lambda$ 에 단체 작용을 하는 유한군 G 에 대한 구조 정리를 고찰하였다. 즉, 이 경우에는 G 가 위수가 2 인 원소를 항상 포함하고 있음을 증명하여 G 의 위수가 항상 짝수 라는 결과를 자세히 알아보았다.

Chapter 1 Introduction

Our main concern in this thesis is the real moment-angle complex and its real toric space which have recently attracted much attention from many people working on toric topology (see [3], [4], and [7] for more details). Recall that the real toric variety is given by the fixed point set of a real toric variety under the involution defined by the complex conjugation. The real toric space is a notion which is a generalization of a real toric variety in algebraic geometry. By definition, any finite subgroup G of the permutation group acting simplicially on a simplicial complex K naturally acts on the real moment-angle complex associated to K, and it further induces an action on the real toric space under a certain invariance condition of G.

Our primary aim in this thesis is to survey the results in the paper [10] for the structure of the group G acting simplicially on the toric space. As a consequence, we can see a certain structure theorem of such a finite group G acting simplicially on the real toric space. In addition, in Chapter 2 we also quickly review some related material in [3], [4], and [6] necessary for explaining main results given in Chapters 3 and 4.

In order to explain our main results more precisely, let K be a simplicial complex on the vertex set $[m]:=\{1,2, \cdots, m\}$, and let D^{1} and S^{0} denote the closed interval $[-1,1]$ and its boundary $\partial D^{1}=\{-1,1\}$, respectively. Roughly speaking, the real moment-angle complex $R Z_{K}$ of K is defined as

$$
\begin{aligned}
& R Z_{K}:=\left(\underline{D^{1}}, \underline{S^{0}}\right)^{K} \\
&=\bigcup_{\sigma \in K}\left\{\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in\left(D^{1}\right)^{m} \mid x_{i} \in S^{0} \text { for } i \notin \sigma\right\} .
\end{aligned}
$$

Now，let Z_{2} denote the finite group $\{0,1\}$ under the natural addition．Then Z_{2}^{m} acts on $\left(D^{1}\right)^{m}$ diagonally by the sign，and in turn it induces the action on the real moment－angle complex $R Z_{K}$ ．Let $\Lambda: Z_{2}^{m} \rightarrow Z_{2}^{n}$ be a linear map with $m>n$ ．Then the real toric space associated to the pair (K, Λ) is defined by the quotient space $R Z_{K} /$ $\operatorname{ker} \Lambda$ ．It is a well known fact that the action of $\operatorname{ker} \Lambda$ on $R Z_{K}$ is free if and only if Λ satisfies a certain regularity condition．To be more precise，let us denote by $\lambda(i)$ the i－th column of Λ ．Then we say that Λ satisfies a regularity condition if
（1．1）$\lambda\left(i_{1}\right), \lambda\left(i_{2}\right), \cdots, \lambda\left(i_{l}\right)$ are linearly independent，whenever $\left\{i_{1}, i_{2}, \ldots, i_{l}\right\} \in K$.

Now，let G be a finite subgroup of the permutation group S_{m} on m letters．We say that G acts simplicially on K if G acts on the vertex set［ m ］of K as a subgroup of S_{m} in such a way that it preserves the simplices of K ．For example，let K_{3} be the 3－gon（or triangle）on the vertex set［3］，and let S_{3} denote the permutation group acting on K_{3} on three vertices．Then S_{3} acts simplicially on K_{3} ．

On the other hand, let K_{4} be the 4 -gon (or rectangle) on the vertex set [4], and let S_{4} denote the permutation group acting on K_{4} by permuting four vertices.

Then the action of S_{4} does not act simplicially on K_{4}. This is because an element $g=(23) \in S_{4}$ permutes two vertices 2 and 3 , fixing two other vertices 1 and 4. So the edge $\{1,2\}$ maps to $\{1,3\}$ that is not an edge of K_{4}.

Clearly by its construction any simplicial action of G induces an action on the real moment-angle complex $R Z_{K}$. Moreover, such a G -action on $R Z_{K}$ induces an action on the quotient space $R Z_{K} /$ ker Λ, whenever the kernel ker Λ of Λ is invariant under G in that for any $z=\left(z_{1}, z_{2}, \cdots, z_{g(m)}\right) \in \operatorname{ker} \Lambda$ and $g \in G$, we have

$$
g \bullet z:=\left(z_{g(1)}, z_{g(2)}, \cdots, z_{g(m)}\right) \in \operatorname{ker} \Lambda .
$$

With these understood, the main result of this survey paper from [10] is to show that the following theorem for the structure of the finite group G acting simplicially on the real toric space holds.

Theorem 1.1 Let K be a simplicial complex of dimension $n-1$ on the vertex set [m] with $m>n$, and let G act simplicially on K as a subgroup of the permutation group S_{m} on m letters. Assume that the
kernel ker Λ of a linear map $\Lambda: Z_{2}^{m} \rightarrow Z_{2}^{n}$ is invariant under G. Then the following statements hold:
(1) The action of G on K induces an action on the real toric space.
(2) G always contains an element of order 2 , and thus the order of G should be even.

The first statement (1) of Theorem 1.1 is the restatement of a result given in [6, Theorem 2.3], while the second statement (2) of Theorem 1.1 is that of the main result in [10].

One wide and well-known class of examples supporting the validity of Theorem 1.1 can be provided with the real toric associated to the Weyl chambers of classical groups, In these cases, the simplicial complexes are the Coxeter complexes of type R and the Weyl groups play the role of the finite groups G which preserve the kernel of a characteristic map (see [6, Chapter 3]). It is interesting to notice that all of the Weyl groups of classical groups always have an even order (see [9]).

As an immediate consequence of Theorem 1.1, we can now state the following corollary.

Corollary 1.2 Let K be a simplicial complex of dimension $n-1$ on the vertex set $[m]$ with $m>n$, and let G act simplicially on K as a subgroup of the permutation group S_{m} on m letters. If the order of G is odd, then G cannot act simplicially on K so that the kernel ker Λ of a linear map $\Lambda: Z_{2}^{m} \rightarrow Z_{2}^{n}$ is invariant under G.

We organize this thesis, as follows.

In Chapter 2, we briefly summarize some notations and basic facts necessary for the proof of Theorem 1.1 given in Chapter 4.

Especially, we mainly collect basic facts regarding the moment-angle complexes as well as real moment-angle complexes. Refer to an excellent paper [7] of Davis and Januszkiewicz and books [3], [4] of Buchstaber and Panov for more details.

Chapter 3 is devoted to giving a proof of a key lemma which plays an important role in the proof of Theorem 1.1.

In Chapter 4, we give a proof of Theorem 1.1. To do so, we first establish a non-trivial homomorphism Ψ from the finite group G to the homomorphism group $\operatorname{Hom}(\operatorname{ker} \Lambda$, $\operatorname{ker} \Lambda)$. With this homomorphism Φ in place, the proof of Theorem 1.1 immediately follows, as we can see in Chapter 4.

Finally, in Chapter 5 we close this thesis by giving some nontrivial examples supporting the validity of the main result in this thesis.

Chapter 2

Real moment-angle complexes and real toric spaces

The aim of this chapter is to quickly review some material regarding moment-angle complexes and real toric spaces which we are mainly concerned with. Refer to [1], [2], [3], and [4] for more details on real moment-angle complexes as well as moment-angle complexes.

2.1 Moment-angle complexes

Let $F=\left\{F_{1}, \ldots, F_{m}\right\}$ be the set of facets of a polytope P^{n}. For each facet $F_{i} \in F$, denote by $T_{F_{i}}$ the one-dimensional coordinate subgroup of $T^{F} \cong T^{m}$ corresponding to F_{i}. Then we assign to every face E the coordinate subtorus

$$
T_{E}=\prod_{F_{i} \supset E} T_{F_{i}} \subset T^{F} .
$$

Note that $\operatorname{dim} T_{E}=\operatorname{codim} E$. Recall that for every point $q \in P^{n}$ we denoted by $E(q)$ the unique face containing q in the relative interior.

Definition 2.1. For any combinatorial simple polytope P^{n}, introduce the identification space

$$
Z_{P}=\left(T^{F} \times P^{n}\right) / \sim,
$$

where $\left(t_{1}, p\right) \sim\left(t_{2}, q\right)$ if and only if $p=q$ and $t_{1} t_{2}^{-1} \in T_{E(q)}$. This space is called a moment-angle manifold associated to the polytope P^{n}.

Then the free action of T^{m} on $T^{F} \times P^{n}$ descends to an action on Z_{P}, with quotient P^{n}. Let $\rho: Z_{P} \rightarrow P^{n}$ be the orbit map. The action of T^{m} on Z_{P} is free over the interior of P^{n}, while each vertex $v \in P^{n}$ represents the orbit $\rho^{-1}(v)$ with maximal isotropy subgroup of dimension n.

Lemma 2.2. The space Z_{P} is a smooth manifold of dimension $m+n$.

Proof: See [3, Lemma 6.2].

The following fact ([3, Proposition 6.4]) also holds to be true.

Lemma 2.3. Let P_{1}, P_{2} be two polytopes. If $P=P_{1} \times P_{2}$, then the moment-angle manifold Z_{P} is diffeomorphic to $Z_{P_{1}} \times Z_{P_{2}}$. Moreover, if F is a face of P, then Z_{F} is a submanifold of Z_{P}.

For more interesting properties on moment-angle complexes, please refer to [1], [2], [3], and [4].

Now we give some examples of moment-angle complexes.

Example 2.4.

(1) Let $P^{n}=\Delta^{n}$ (the n-simplex). Then Z_{P} is homeomorphic to the $(2 n+1)$-sphere $S^{2 n+1}$.
(2) The cubical complex $C\left(\Delta^{n}\right)$ constructed in [3, Construction 4.5] consists of $(n+1)$ cubes C_{v}^{n}. In this case, each subset $B_{v}=\rho^{-1}\left(C_{v}^{n}\right)$ is homeomorphic to $\left(D^{2}\right)^{n} \times S^{1}$. In particular, for $n=1$ we obtain the representation of the 3 -sphere S^{3} as a union of two solid toric $D^{2} \times S^{1}$ and $S^{1} \times D^{2}$, glued by the identity diffeomorphism of their boundaries.

It is true that we can extend the definition of a moment-angle manifold associated to a given polytope to that associated to a simplicial complex. There are several equivalent ways to do so. In this thesis, we adopt one of them.

Indeed, let K be a simplicial complex of dimension $n-1$ with the vertex set $[m]=\{1,2, \ldots, m\}$, and let D^{2} and S^{1} denote the unit disk in the complex plane C and its boundary $\partial D^{2}=S^{1}$, respectively. For each $\sigma \in K$, let $\left(D^{2}, S^{1}\right)^{\sigma}$ be a subspace of $\left(D^{2}\right)^{m}$ whose i-th component $\left(D^{2}, S^{1}\right)_{i}^{\sigma}$ is given by

$$
\left(D^{2}, S^{1}\right)_{i}^{\sigma}=\left\{\begin{array}{l}
D^{2}, i \in \sigma \\
S^{1}, i \notin \sigma
\end{array}\right.
$$

Then the moment-angle complex Z_{K} of K is defined to be

$$
\begin{aligned}
Z_{K} & :=\left(\underline{D^{2}}, \underline{S^{1}}\right)^{K}=\bigcup_{\sigma \in K}\left(\underline{D^{2}}, \underline{S^{1}}\right)^{\sigma} \\
& =\bigcup_{\sigma \in K}\left\{\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in\left(D^{2}\right)^{m} \mid x_{i} \in S^{1} \text { for } i \notin \sigma\right\} .
\end{aligned}
$$

It can be shown that if K is a simplicial $(n-1)$-sphere, then Z_{K} is an $(m+n)$-dimensional (closed) manifold. However, Z_{K} is not a topological manifold, but just a simplicial complex, if K is not a simplicial sphere.

Next, we provide some examples of moment-angle complexes, as follows.

Example 2.5.

(1) Let K be a simplicial complex on the vertex set [2] so that $K=\{\{1\},\{2\}, \varnothing\}$.

$$
K=\stackrel{\bullet}{1}
$$

$$
2
$$

Then we have

$$
Z_{K}=D^{2} \times S^{1} \bigcup S^{1} \times D^{2}=S^{3} .
$$

(2) More generally, let $K=\partial \Delta$ denote the boundary of the $(m-1)$ -simplex Δ. Then it is easy to see that there is a homeomorphism between Z_{K} and $S^{2 m-1}$. Moreover, the diagonal subgroup $\Delta\left(T^{m}\right)=S^{1}$ of the m-dimensional torus T^{m} acts freely on $Z_{K}=S^{2 m-1}$. So it is interesting to observe that we can obtain the complex projective space $C P^{m}$ by taking the quotient of $S^{2 m-1}$ under the action of $\Delta\left(T^{m}\right)$.

2.2 Real moment-angle complexes

Let K be a simplicial complex on the vertex set [m], and let D^{1} and S^{0} denote the closed interval $[-1,1]$ and its boundary $\partial D^{1}=\{-1,1\}$, respectively. Let $\left(D^{1}, S^{0}\right)^{\sigma}$ be a subspace of $\left(D^{1}\right)^{m}$ whose i-th component $\left(D^{1}, S^{0}\right)_{i}^{\sigma}$ is given by

$$
\left(D^{1}, S^{0}\right)_{i}^{\sigma}=\left\{\begin{array}{l}
D^{1}, i \in \sigma \\
S^{0}, i \notin \sigma
\end{array}\right.
$$

Then the real moment-angle complex $R Z_{K}$ of K is defined to be

$$
\begin{aligned}
R Z_{K} & :=\left(\underline{D^{1}}, \underline{S^{0}}\right)^{k}=\bigcup_{\sigma \in K}\left(\underline{D^{1}}, \underline{S^{0}}\right)^{\sigma} \\
& =\bigcup_{\sigma \in K}\left\{\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in\left(D^{1}\right)^{m} \mid x_{i} \in S^{0} \text { for } i \notin \sigma\right\} .
\end{aligned}
$$

As in the case of moment-angle complexes, it can be shown that if K is a simplicial $(n-1)$-sphere, then $R Z_{K}$ is an n-dimensional
(closed) manifold. However, $R Z_{K}$ is not a topological manifold, but just a simplicial complex, if K is not a simplicial sphere.

Example 2.6.

(1) Let K be a simplicial complex on the vertex set [2] so that $K=\{\{1\},\{2\}, \varnothing\}$. Then we have

$$
K=1
$$

$$
R Z_{K}=D^{1} \times S^{0} \bigcup S^{0} \times D^{1}=\square=S^{1}
$$

(2) Let K be a 3-gon on the vertex set [3] so that $K=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{3,1\}\}$. Then we have

$$
R Z_{K}=D^{1} \times D^{1} \times S^{0} \bigcup S^{0} \times D^{1} \times D^{1} \bigcup D^{1} \times S^{0} \times D^{1}=\square=S^{2}
$$

2.3 Real toric spaces

Let Z_{2} denote the vector space $\{0,1\}$ over Z_{2} under the natural scalar multiplication, and let $\Lambda: Z_{2}^{m} \rightarrow Z_{2}^{n}$ be simply a linear map. Note that Z_{2}^{m} acts on $\left(D^{1}\right)^{m}$ diagonally, as follows.

$$
\begin{align*}
& Z_{2}^{m} \times\left(D^{1}\right)^{m} \rightarrow\left(D^{1}\right)^{m} \tag{2.1}\\
& \left(\left(z_{1}, \cdots, z_{m}\right),\left(x_{1}, \cdots, x_{m}\right)\right) \mapsto\left((-1)^{z_{1}} x_{1}, \cdots,(-1)^{z_{m}} x_{m}\right),
\end{align*}
$$

so that in turn it induces an action on the real moment-angle complex $R Z_{K}$. Clearly any subgroup of Z_{2}^{m} can be given by the kernel ker Λ of a linear map $\Lambda: Z_{2}^{m} \rightarrow Z_{2}^{n}$ for $m>n$, and the quotient space $R Z_{K} / \operatorname{ker} \Lambda$ is called the real toric space associated to the pair (K, Λ). It turns out that the action of $\operatorname{ker} \Lambda$ on $R Z_{K}$ is free if and only if Λ satisfies the regularity condition as below.

Lemma 2.7. The action of $\operatorname{ker} \Lambda$ on $R Z_{K}$ is free if and only if the condition (1.1) is satisfied.

Proof: (\Leftarrow) Let $p=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a fixed point of $R Z_{K}$ under the action of $g=\left(g_{1}, g_{2}, \ldots, g_{m}\right) \in \operatorname{ker} \Lambda$. Then it follows from (2.1) that we have either $g_{i}=0$ for all $i \in[m]$ or $x_{i}=0$ for all $i \in[m]$. Now let $\sigma \in K$ be a simplex such that $p \in\left(D^{1}, S^{0}\right)^{\sigma}$ and let Λ_{σ} denote the submatrix of Λ consisting of columns corresponding to σ. Let g_{σ} denote the subvector of g corresponding to σ. Then, since $g \in \operatorname{ker} \Lambda$, we have

$$
\Lambda(g)=\Lambda_{\sigma} g_{\sigma}+\Lambda_{[m]-\sigma} g_{[m]-\sigma}=0 .
$$

The fact that Z_{2} acts freely on S^{0} implies that we have $g_{i}=0$ for all $i \in[m]-\sigma$. Thus, we should have $\Lambda_{\sigma} g_{\sigma}=0$. This means that $g_{\sigma}=0$ and so we have $g=0$, as desired.
(\Rightarrow) Conversely, if (1.1) does not hold, then for a simplex $\sigma \in K$
there should be a point $p=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ such that $x_{i}=0$, if $i \in \sigma$ and $x_{i}=0$, otherwise. Thus p is fixed under the action of $\operatorname{ker} \Lambda$.
This completes the proof of Lemma 2.7.

Chapter 3

A key lemma

A real toric space is a generalization of a more specific space which is defined as the quotient space $R Z_{K} / \operatorname{ker} \Lambda$ for a characteristic map Λ. Recall that a linear map $\Lambda: Z_{2}^{m} \rightarrow Z_{2}^{n}$ is called a characteristic map if it satisfies a certain regularity condition. That is, when we write the linear map Λ as an $n \times m$-matrix

$$
\begin{equation*}
\Lambda=(\lambda(1) \lambda(2) \cdots \lambda(m-1) \lambda(m))_{n \times m} \tag{3.1}
\end{equation*}
$$

$\lambda\left(i_{1}\right), \lambda\left(i_{2}\right), \cdots, \lambda\left(i_{k}\right)$ are linearly independent over Z_{2} for any simplex $\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$ in K. Here each $\lambda(i)$ is regarded as a column vector of size n , and the matrix in (3.1) is called the characteristic matrix.

For a characteristic map Λ, the quotient space $R Z_{K} /$ ker Λ is called a small cover (resp. real topological toric manifold) if K is a polytopal sphere (resp. star-shaped sphere). Refer to [7] and [8] for more details. Note also that any small cover is in turn a generalization of a real toric variety which is given by the fixed point set of a toric variety under the natural involution defined by the complex conjugation.

Now, as before let G be a finite subgroup of the permutation group S_{m} on m letters. Recall that G acts simplicially on K if G acts on the vertex set $[m]$ of K as a subgroup of S_{m} in such a way that it preserves the simplices of K. It is easy to see that any simplicial action of G induces an action on the real moment-angle complex $R Z_{K}$. Moreover, it induces an action on the homology group

$$
H_{*}\left(R Z_{K} ; Q\right) \cong \bigoplus_{S \in \operatorname{Row}(\Lambda)} \tilde{H}_{*-1}\left(K_{S} ; Q\right),
$$

where $\operatorname{Row}(\Lambda) \subset Z_{2}^{m}$ denotes the row space of Λ and K_{S} denote the full subcomplex of K with its vertex set $S \subseteq[m]$. Here, we identify any element S of $\operatorname{Row}(\Lambda)$ with an element I_{S} of $[m]$ in the natural way. That is, for $S=\left(s_{1}, s_{2}, \cdots, s_{m}\right) \in \operatorname{Row}(\Lambda)$, we set

$$
I_{S}=\left\{i \in[m] \mid s_{i} \neq 0\right\} .
$$

The following lemma and its proof plays an important role in the proof of our main Theorem 1.1 (see [6, Theorem 2.3]).

Lemma 3.1. Assume that $\operatorname{ker} \Lambda$ is invariant under G in the sense that for any $z=\left(z_{1}, z_{2}, \cdots, z_{m}\right) \in$ ker and $g \in G$, we have

$$
g \bullet z=\left(z_{g(1)}, z_{g(2)}, \cdots, z_{g(m)}\right) \in \operatorname{ker} \Lambda .
$$

Then the action of G on $R Z_{K}$ induces an action on the real toric space $R Z_{K} / \operatorname{ker} \Lambda$.

Proof: For the proof, let x and y be any two elements of $R Z_{K}$ such that $x=z \cdot y$ for some $z=\left(z_{1}, z_{2}, \cdots, z_{m}\right) \in \operatorname{ker} \Lambda$. Then by (2.1) we have

$$
\begin{align*}
g \cdot x & =g \cdot(z \cdot y)=g \cdot\left((-1)^{z_{1}} y, \cdots,(-1)^{z_{m}} y_{m}\right) \tag{3.2}\\
& =\left((-1)^{z_{g(1)}} y_{g(1)}, \cdots,(-1)^{z_{g(m)}} y_{g(m)}\right) \\
& =\left((-1)^{z_{1}} y_{g(1)}, \cdots,(-1)^{z_{m}^{\prime}} y_{g(m)}\right),
\end{align*}
$$

where $z^{\prime}=z_{g(i)}$ for each $i \in[m]$. By assumption, note that

$$
z^{\prime}:=\left(z_{1}^{\prime}, z_{2}^{\prime}, \cdots, z_{m}^{\prime}\right)
$$

is an element of $\operatorname{ker} \Lambda$.
On the other hand, it is also easy to obtain

$$
\begin{align*}
z^{\prime} \cdot(g \bullet y) & =z^{\prime} \cdot\left(y_{g(1)}, y_{g(2)}, \cdots, y_{g(m)}\right) \tag{3.3}\\
& =\left((-1)^{z_{1}} y_{g(1)},(-1)^{z_{2}} y_{g(2)}, \cdots,(-1)^{z_{m}^{\prime}} y_{g(m)}\right) .
\end{align*}
$$

Thus it follows from (3.2) and (3.3) that we have $g \cdot x=z^{\prime} \cdot(g \cdot x)$. This implies that $g \cdot x$ and $g \cdot y$ represent the same element in $R Z_{K} / \operatorname{ker} \Lambda$.

Now, it is straightforward to show that there is a well-defined action of G on $R Z_{K} / \operatorname{ker} \Lambda$. This completes the proof of Lemma 3.1.

Chapter 4

Main result : Proof of Theorem 1.1

The aim of this chapter is to give a proof of Theorem 1.1, essentially following the paper [10]. To do so, we first need to prove the following proposition.

Proposition 4.1 Let K be a simplicial complex of dimension $n-1$ with the vertex set $[m]$ and $m>n$, and let G act simplicially on K. Assume that $\operatorname{ker} \Lambda$ is invariant under G. Then there is a group homomorphism

$$
\Psi: G \rightarrow \operatorname{Hom}(\operatorname{ker} \Lambda, \operatorname{ker} \Lambda)
$$

In particular, this implies that the invariance of G on $\operatorname{ker} \Lambda$ induces an action on $\operatorname{ker} \Lambda$.

Proof: Since K is a simplicial complex on the vertex set $[m]$, it follows from definition that every singleton $\{i\}$ is an element of K for each $i \in[m]$. In particular, if we let $\sigma=\{1\} \in K$, then we have

$$
\left(\underline{D^{1}}, \underline{S^{0}}\right)^{\sigma}=D^{1} \times S^{0} \times \cdots \times S^{0} .
$$

Thus we have an element

$$
1=(1,1, \cdots, 1) \in\left(\underline{D^{1}}, \underline{S^{0}}\right)^{\sigma} \subset R Z_{K}
$$

Let G be the finite subgroup of the permutation group S_{m} on m letters, as before. Then we have $g \cdot 1=1$ for all $g \in G$. Hence the equivalence class [1] in $R Z_{K} / \operatorname{ker} \Lambda$ is fixed under the action of G on $R Z_{K} / \operatorname{ker} \Lambda$. Note that every component of 1 is not zero.

Next, we want to construct a homomorphism

$$
\Psi: G \rightarrow \operatorname{Hom}(\operatorname{ker} \Lambda, \operatorname{ker} \Lambda),
$$

as follows. To do so, note first that from the proof of Lemma 3.1 for any $z \in \operatorname{ker} \Lambda$ and $g \in G$ there is a unique element $z_{g}^{\prime} \in \operatorname{ker} \Lambda$ such that

$$
g \bullet(z \cdot 1)=z_{g}^{\prime} \cdot(g \cdot 1)=z_{g}^{\prime} \cdot 1,
$$

where $z_{g}^{\prime}(i)$ is given by $z_{g(i)}$ for each $i \in[m], i . e ., z_{g}^{\prime}=g$ • z. Since $\operatorname{ker} \Lambda$ is assumed to be invariant under G, for each $g \in G$ we can thus define

$$
\Psi(g): \operatorname{ker} \Lambda \rightarrow \operatorname{ker} \Lambda, z \mapsto z_{g}^{\prime}=g \bullet z
$$

Using the map Ψ, we now define a map

$$
\Psi: G \rightarrow \operatorname{Hom}(\operatorname{ker} \Lambda, \operatorname{ker} \Lambda), g \mapsto \Psi(g) .
$$

It is easy to see that Ψ is indeed a homomorphism we want. To be precise, for any two elements $g_{1}, g_{2} \in G$ we have

$$
\begin{equation*}
\left(g_{1} g_{2}\right) \cdot(z \cdot 1)=z_{g_{1} g_{2}}^{\prime}\left(g_{1} g_{2} \cdot 1\right)=z_{g_{1} g_{2}}^{\prime} \cdot 1 . \tag{4.1}
\end{equation*}
$$

on the other hand, it is also true that

$$
\begin{align*}
\left(\left(g_{1} g_{2}\right) \cdot\right)(z \cdot 1) & =g_{1}\left(g_{2} \cdot(z \cdot 1)\right) \tag{4.2}\\
& =g_{1}\left(z_{g_{2}}^{\prime} \cdot\left(g_{2} \cdot 1\right)\right)=g_{1}\left(z_{g_{2}}^{\prime} \cdot 1\right) \\
& =\left(z_{g_{2}}^{\prime}\right)^{\prime} \cdot z_{g_{1}}^{\prime} \cdot 1 .
\end{align*}
$$

Note that we have

$$
\begin{equation*}
\left(z_{g_{2}}^{\prime}\right)_{g_{1}}^{\prime}=g_{1} \cdot z_{g_{2}}^{\prime}=g_{1} \cdot\left(g_{2} \cdot z\right) . \tag{4.3}
\end{equation*}
$$

By (4.1), (4.2), and (4.3), we have

$$
\begin{equation*}
z_{g_{1} g_{2}}^{\prime}=\left(z_{g_{2}}^{\prime}\right)_{g_{1}}^{\prime}=g_{1} \cdot\left(g_{2} \cdot z\right) . \tag{4.4}
\end{equation*}
$$

This means that the map Ψ is a homomorphism. To be precise, by (4.4) we have

$$
\begin{aligned}
\Psi\left(g_{1} g_{2}\right)(z) & =\Psi\left(g_{1} g_{2}\right)(z)=z_{g_{1} g_{2}}^{\prime}=g_{1} \cdot\left(g_{2} \cdot z\right) \\
& =g_{1} \cdot\left(\Psi\left(g_{2}\right)(z)\right)=g_{1} \cdot\left(\Psi\left(g_{2}\right)(z)\right) \\
& =\Psi\left(g_{1}\right) \circ \Psi\left(g_{2}\right)(z), \quad z \in \operatorname{ker} \Lambda .
\end{aligned}
$$

That is, we have

$$
\Psi\left(g_{1} g_{2}\right)=\Psi\left(g_{1}\right) \circ \Psi\left(g_{2}\right),
$$

i.e., Ψ is a homomorphism. This completes the proof of Proposition 4.1.

By using the invariance of G on ker Λ, it is also possible to directly show that there is a well-defined action of G on ker Λ. It is well-known that this will then induce a group homomorphism Ψ as in the proof of Proposition 4.1. In view of the proof of Proposition 4.1, the action of G on $\operatorname{ker} \Lambda$ satisfies the property: for each $z \in \operatorname{ker} \Lambda$,

$$
\begin{aligned}
g_{1} \bullet\left(g_{2} \cdot z\right) & =\left(z_{g_{2}\left(g_{1}(1)\right),}, z_{g_{2}\left(g_{1}(2)\right)}, \cdots z_{g_{2}\left(g_{1}(m)\right)}\right) \\
& =\left(z_{g_{2} g_{1}(1)}, z_{g_{2} g_{1}(2)}, \cdots z_{g_{2} g_{1}(m)}\right) \\
& =\left(g_{2} g_{1}\right) \cdot z, \quad g_{1}, g_{2} \in G .
\end{aligned}
$$

Finally, we are ready to prove Theorem 1.1 that goes as follows.

Proof of Theorem 1.1: By Proposition 4.1, there is a group homomorphism

$$
\Psi: G \rightarrow \operatorname{Hom}(\operatorname{ker} \Lambda, \operatorname{ker} \Lambda) .
$$

Thus, we have an isomorphism

$$
G / \operatorname{ker} \Psi \cong \operatorname{Im} \Psi \subset \operatorname{Hom}(\operatorname{ker} \Lambda, \operatorname{ker} \Lambda)
$$

Note that ker Λ contains a subspace of Z_{2}^{m} isomorphic to Z_{2}^{m-n} and so $\operatorname{ker} \Lambda$ is isomorphic to Z_{2}^{l} for some $l \geq m-n$. Hence Hom (ker $\Lambda, \operatorname{ker} \Lambda$) is isomorphic to

$$
Z_{2}^{l} \otimes Z_{2}^{l} \cong Z_{2}^{l^{2}}
$$

Since the map $\Psi: G \rightarrow \operatorname{Hom}(\operatorname{ker} \Lambda, \operatorname{ker} \Lambda)$ is non-trivial by definition, there should be an element of G whose image under Ψ is non-trivial. That is, since the order of $\operatorname{Hom}(\operatorname{ker} \Lambda$, $\operatorname{ker} \Lambda)$ is $2^{l^{2}}$, it follows from the theorem of Lagrange that the order of $\operatorname{Im} \Psi$ is divisible by 2. Since we have

$$
|G|=|G / \operatorname{ker} \Psi||\operatorname{ker} \Psi|=|\operatorname{Im} \Psi||\operatorname{ker} \Psi|,
$$

we see that the order of G should be also divisible by 2 . Therefore, there exists an element of G whose order is equal to two, completing the proof of Theorem 1.1

Chapter 5

Examples

In this chapter, we close this chapter with some simple examples, taken from [6], including real toric varieties associated to the Weyl chambers of classical groups given in Chapter 1, which illustrates our main result.

Example 5.1. Let K_{4} be the 4 -gon on the vertex set [4], and let G be the cyclic group of order 4 acting on K_{4} cyclically on four vertices. Let Λ be the characteristic map whose associated matrix is given by

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Then it is easy to see that the kernel ker Λ is invariant under the action of G. The real toric space associated to the pair $\left(K_{4}, \Lambda\right)$ is actually the 2-dimensional torus $T^{2}=S^{1} \times S^{1}$ and the induced action of G on T^{2} is generated by

$$
g: T^{2} \rightarrow T^{2},(x, y) \mapsto(-y, x)
$$

At any rate, the order of G is four which is clearly even and contains an element g^{2} of order two.

Example 5.2. The Weyl group $W_{A_{n}}$ of the classical groups of type A_{n} is the symmetric group S_{n+1}, and let $K_{A_{n}}$ denote the dual of the permutohedron of order $n+1$. Here the vertex set $V_{A_{n}}$ can be described by the S_{n+1}-equivariant bijection between $V_{A_{n}}$ and
$2^{[n+1]}-\{[n+1], \varnothing\}$. Under this bijection, it is known that k subsets $J_{1}, J_{2}, \ldots, J_{k}$ of $[n+1]$ form a simplex of $K_{A_{n}}$ if and only of they form nested chain of subsets up to permutations. We can also describe the characteristic map $\Lambda_{A_{n}}$ by using the basis consisting of $e_{k}:=(1 k) w_{1}$, where $(1 k)$ means the transposition in S_{n+1} and $w_{1} \in V_{A_{n}}$. Then it can be shown as in $[6,3.1]$ that $W_{A_{n}}$ acts simplicially on the real toric space $X_{A_{n}}^{R}$. Note that the order of $W_{A_{n}}$ is $(n+1)$! which is clearly even, as desired.

References

[1] A. Bahri, M. Bendersky, F.R. Cohen, and S. Gitler, The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces, Adv. Math. 225 (2010), 1634-1668.
[2] A. Bahri, M. Bendersky, F.R. Cohen, and S. Gitler, Operations on poly hedral products and a new topological construction of infinite families of toric manifolds, Homology, Homotopy, and Applications 17 (2015), 137-160; arXiv:1011.0094.
[3] V. Buchstaber and T. Panov, Torus actions and their applications in topology and combinatorics, Univ, Lecture Series 24, Amer. Math. Soc., Providence, 2002
[4] V. Buchstaber and T. Panov, Toric topology, Math. Surv. Mono. 204, Amer. Math. Soc., 2015.
[5] S. Choi, S. Kaji, and S. Theriault, Homotopy decomposition of a suspended real toric manifold, Bol. Soc. Mat. Mex. 23 (2017), 153-161.
[6] S. Cho, S. Choi, and S. Kaji, Geometric representations of finite groups on real toric spaces, preprint (2017); arXiv:1704.08591v1.
[7] M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 61 (1991), 417-451.
[8] H. Ishida, Y. Fukukawa, and M. Masuda, Topological toric manifolds, Moscow Math. J. 13 (2013), 57-98.
[9] J. E. Humphreys, Reflection groups and Coxeter groups, Camb. Stud. Adv. Math. 29, Cambridge Univ. Press, 1990.
[10] J. H. Kim, On the simplicial actions on real toric spaces, preprint (2017).

