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국 문 초 록

실토릭 공간의 단체작용에 관한 연구

  최  선

  지도교수 : 김 진 홍

  조선대학교 교육대학원 수학교육전공

  는 꼭지점의 집합  … 의 차원 단체이고 를 에 

단체작용을 하는 개의 원소로 이루어진 집합의 치환군 의 유한 

부분군이라 할 때, 선형사상   
→

의 핵 ker가 에 대하여 

불변이라 가정하자. 이 때,  는 ker의 실모멘트-앵글 다양체 

의 몫공간인 실토릭 다양체 ker에 작용한다. 이 논문에

서는 이러한 실토릭 다양체 ker에 단체 작용을 하는 유한군 

에 대한 구조 정리를 고찰하였다. 즉, 이 경우에는 가 위수가 2

인 원소를 항상 포함하고 있음을 증명하여 의 위수가 항상 짝수

라는 결과를 자세히 알아보았다.
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Chapter 1 

Introduction

  Our main concern in this thesis is the real moment-angle complex 

and its real toric space which have recently attracted much attention 

from many people working on toric topology (see [3], [4], and [7] for 

more details). Recall that the real toric variety is given by the fixed 

point set of a real toric variety under the involution defined by the 

complex conjugation. The real toric space is a notion which is a 

generalization of a real toric variety in algebraic geometry. By 

definition, any finite subgroup  of the permutation group acting 

simplicially on a simplicial complex  naturally acts on the real 

moment-angle complex associated to , and it further induces an 

action on the real toric space under a certain invariance condition 

of . 

  Our primary aim in this thesis is to survey the results in the 

paper [10] for the structure of the group  acting simplicially on the 

toric space. As a consequence, we can see a certain structure 

theorem of such a finite group  acting simplicially on the real toric 

space. In addition, in Chapter 2 we also quickly review some related 

material in [3], [4], and [6] necessary for explaining main results 

given in Chapters 3 and 4. 

  In order to explain our main results more precisely, let  be a 

simplicial complex on the vertex set    ⋯, and let  

and   denote the closed interval    and its boundary 

  , respectively. Roughly speaking, the real moment-angle 

complex  of  is defined as
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=
∈
  ⋯ ∈ 


∈

 for ∉

  Now, let  denote the finite group   under the natural 

addition. Then 
 acts on  


diagonally by the sign, and in turn 

it induces the action on the real moment-angle complex . Let 

  
→ 

 be a linear map with   . Then the   

associated to the pair   is defined by the quotient space /

ker. It is a well known fact that the action of ker on  is free 

if and only if  satisfies a certain regularity condition. To be more 

precise, let us denote by  the -th column of . Then we say 

that  satisfies a regularity condition if 

(1.1) ⋯ are linearly independent, whenever             

        …∈.

  Now, let  be a finite subgroup of the permutation group  on 

letters. We say that  acts simplicially on  if  acts on the vertex 

set [] of  as a subgroup of  in such a way that it preserves 

the simplices of . For example, let  be the 3-gon (or triangle) on 

the vertex set [3], and let  denote the permutation group acting on 

 on three vertices. Then  acts simplicially on . 

                              

                        =
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  On the other hand, let  be the 4-gon (or rectangle) on the 

vertex set [4], and let  denote the permutation group acting on 

by permuting four vertices.               

  

         

                    =

                                                               

  Then the action of  does not act simplicially on . This is 

because an element   ∈ permutes two vertices 2 and 3, fixing 

two other vertices 1 and 4. So the edge   maps to  that is 

not an edge of .

  Clearly by its construction any simplicial action of  induces an 

action on the real moment-angle complex . Moreover, such a 

-action on  induces an action on the quotient space /ker, 

whenever the kernel ker of  is invariant under  in that for any 

    ⋯ ∈ker and ∈, we have 

∙    ⋯ ∈ker .

  With these understood, the main result of this survey paper from 

[10] is to show that the following theorem for the structure of the 

finite group  acting simplicially on the real toric space holds.

Theorem 1.1 Let  be a simplicial complex of dimension  on 

the vertex set [] with   , and let  act simplicially on  as a 

subgroup of the permutation group  on  letters. Assume that the 
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kernel ker of a linear map   
→

 is invariant under  . Then 

the following statements hold:

(1) The action of  on  induces an action on the real toric 

space. 

(2)  always contains an element of order 2, and thus the order 

of  should be even.

  The first statement (1) of Theorem 1.1 is the restatement of a 

result given in [6, Theorem 2.3], while the second statement (2) of 

Theorem 1.1 is that of the main result in [10].

  One wide and well-known class of examples supporting the validity 

of Theorem 1.1 can be provided with the real toric associated to the 

Weyl chambers of classical groups, In these cases, the simplicial 

complexes are the Coxeter complexes of type  and the Weyl groups 

play the role of the finite groups  which preserve the kernel of a 

characteristic map (see [6, Chapter 3]). It is interesting to notice that 

all of the Weyl groups of classical groups always have an even order 

(see [9]).

  As an immediate consequence of Theorem 1.1, we can now state 

the following corollary.

Corollary 1.2 Let  be a simplicial complex of dimension  on 

the vertex set  with  , and let  act simplicially on  as a 

subgroup of the permutation group  on  letters. If the order of 

 is odd, then  cannot act simplicially on  so that the kernel  

ker of a linear map   
→

 is invariant under .

We organize this thesis, as follows. 

  In Chapter 2, we briefly summarize some notations and basic facts 

necessary for the proof of Theorem 1.1 given in Chapter 4. 
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Especially, we mainly collect basic facts regarding the moment-angle 

complexes as well as real moment-angle complexes.  Refer to an 

excellent paper [7] of Davis and Januszkiewicz and books [3], [4] of 

Buchstaber and Panov for more details.

  Chapter 3 is devoted to giving a proof of a key lemma which plays 

an important role in the proof of Theorem 1.1. 

  In Chapter 4, we give a proof of Theorem 1.1. To do so, we first 

establish a non-trivial homomorphism  from the finite group  to 

the homomorphism group Homker ker. With this homomorphism 

 in place, the proof of Theorem 1.1 immediately follows, as we can 

see in Chapter 4.

  Finally, in Chapter 5 we close this thesis by giving some nontrivial 

examples supporting the validity of the main result in this thesis.
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Chapter 2 

Real moment-angle complexes and real 

toric spaces

  The aim of this chapter is to quickly review some material 

regarding moment-angle complexes and real toric spaces which we 

are mainly concerned with. Refer to [1], [2], [3], and [4] for more 

details on real moment-angle complexes as well as moment-angle 

complexes.

2.1 Moment-angle complexes

  Let   …   be the set of facets of a polytope  . For each 

facet ∈, denote by  the one-dimensional coordinate subgroup 

of  ≅  corresponding to . Then we assign to every face  the 

coordinate subtorus

  
 ⊃

 ⊂
.

  Note that dim  codim. Recall that for every point ∈  we 

denoted by  the unique face containing  in the relative interior.

Definition 2.1. For any combinatorial simple polytope  , introduce 

the identification space

  
× ∼,

where  ∼   if and only if    and 
∈. This space is 

called a moment-angle manifold associated to the polytope  .
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  Then the free action of   on  ×  descends to an action on 

, with quotient  . Let   →
 be the orbit map. The action of 

  on  is free over the interior of  , while each vertex ∈ 

represents the orbit  with maximal isotropy subgroup of 

dimension .

Lemma 2.2. The space  is a smooth manifold of dimension 

  .

Proof: See [3, Lemma 6.2].

The following fact ([3, Proposition 6.4]) also holds to be true.

Lemma 2.3. Let  be two polytopes. If  ×, then the 

moment-angle manifold  is diffeomorphic to ×. Moreover, if 

 is a face of , then  is a submanifold of .

  For more interesting properties on moment-angle complexes, 

please refer to [1], [2], [3], and [4].

Now we give some examples of moment-angle complexes.

Example 2.4.

(1) Let  ∆ (the -simplex). Then  is homeomorphic to the 

sphere  . 

(2) The cubical complex ∆  constructed in [3, Construction 4.5] 

consists of  cubes  
. In this case, each  subset   



is homeomorphic to  

×  In particular, for    we obtain the 

representation of the 3-sphere   as a union of two solid toric 

 ×  and  × , glued by the identity diffeomorphism of their 

boundaries.
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  It is true that we can extend the definition of a moment-angle 

manifold associated to a given polytope to that associated to a 

simplicial complex. There are several equivalent ways to do so. In 

this thesis, we adopt one of them. 

  Indeed, let  be a simplicial complex of dimension  with the 

vertex set   …, and let   and   denote the unit disk in 

the complex plane  and its boundary   , respectively. For 

each ∈, let   


be a subspace of  


whose -th 

component   


is given by

  

 

 ∈

  ∉

Then the moment-angle complex  of K is defined to be

        

  

 

  

∈



 

 


∈
⋯∈ 


∈

 for ∉

  It can be shown that if  is a simplicial -sphere, then  is 

an -dimensional (closed) manifold. However,  is not a 

topological manifold, but just a simplicial complex, if  is not a 

simplicial sphere.

Next, we provide some examples of moment-angle complexes, as 

follows.

Example 2.5.

(1) Let  be a simplicial complex on the vertex set  so that 

∅. 
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Then we have 

 
×  ×  .

(2) More generally, let  denote the boundary of the 

-simplex . Then it is easy to see that there is a homeomorphism 

between  and  . Moreover, the diagonal subgroup     

of the -dimensional torus   acts freely on  
. So it is 

interesting to observe that we can obtain the complex projective 

space  by taking the quotient of   under the action of 

 .

2.2 Real moment-angle complexes

  Let  be a simplicial complex on the vertex set [m], and let  

and   denote the closed interval  and its boundary 

 , respectively. Let   


be a subspace of  


whose 

-th component   


is given by

  

 

 ∈

  ∉

Then the real moment-angle complex  of  is defined to be

        

  

 

  

∈



 

 


∈

⋯∈ 

∈

 for ∉

As in the case of moment-angle complexes, it can be shown that if 

 is a simplicial -sphere, then  is an -dimensional 
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(closed) manifold. However,  is not a topological manifold, but 

just a simplicial complex, if  is not a simplicial sphere.

Example 2.6. 

(1) Let  be a simplicial complex on the vertex set  so that 

∅. Then we have 

                     

 
×  ×    .

(2) Let K be a 3-gon on the vertex set [3] so that 

  ∅        . Then we have

                   

  
× ×  × ×  × ×   .
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2.3 Real toric spaces

   Let  denote the vector space  over  under the natural 

scalar multiplication, and let   
→

 be simply a linear map. Note 

that 
 acts on   diagonally, as follows.

(2.1)              
× → 

⋯ ⋯↦
⋯



  so that in turn it induces an action on the real moment-angle 

complex . Clearly any subgroup of 
 can be given by the 

kernel ker of a linear map   
→

 for  , and the quotient 

space ker is called the real toric space associated to the pair 

. It turns out that the action of ker on  is free if and only 

if  satisfies the regularity condition as below.

Lemma 2.7. The action of ker on  is free if and only if the 

condition (1.1) is satisfied.

Proof: (⇐) Let   … be a fixed point of  under the 

action of   …∈ker.  Then it follows from (2.1) that we 

have either   for all ∈ or   for all ∈. Now let ∈

be a simplex such that ∈   and let  denote the submatrix 

of  consisting of columns corresponding to . Let  denote the 

subvector of  corresponding to . Then, since ∈ker, we have

  .

  The fact that  acts freely on   implies that we have   for 

all ∈. Thus, we should have  . This means that  

and so we have   , as desired.

(⇒) Conversely, if (1.1)  does not hold, then for a simplex ∈
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there should be a point   … such that  , if ∈ and 

 , otherwise. Thus  is fixed under the action of ker.

This completes the proof of Lemma 2.7.                            □
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Chapter 3 

A key lemma

  A real toric space is a generalization of a more specific space 

which is defined as the quotient space ker for a characteristic 

map . Recall that a linear map    
→ 

 is called a characteristic 

map if it satisfies a certain regularity condition. That is, when we 

write the linear map  as an ×-matrix

(3.1)                    ⋯ ×

    ⋯  are linearly independent over  for any simplex 

⋯ in . Here each  is regarded as a column vector of 

size n, and the matrix in (3.1) is called the characteristic matrix.

  For a characteristic map , the quotient space ker is called 

a small cover (resp. real topological toric manifold) if  is a 

polytopal sphere (resp. star-shaped sphere). Refer to [7] and [8] for 

more details. Note also that any small cover is in turn a 

generalization of a real toric variety which is given by the fixed 

point set of a toric variety under the natural involution defined by 

the complex conjugation.

  Now, as before let  be a finite subgroup of the permutation 

group  on  letters. Recall that  acts simplicially on  if 

acts on the vertex set  of  as a subgroup of  in such a way 

that it preserves the simplices of . It is easy to see that any 

simplicial action of  induces an action on the real moment-angle 

complex . Moreover, it induces an action on the homology group

∗≅
∈Row
⊕ ∗ 
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where Row⊂ 
 denotes the row space of  and  denote the 

full subcomplex of  with its vertex set ⊆  . Here, we identify 

any element  of Row with an element  of  in the natural 

way. That is, for   ⋯∈Row, we set

  ∈≠.

  The following lemma and its proof plays an important role in the 

proof of our main Theorem 1.1 (see [6, Theorem 2.3]).

Lemma 3.1. Assume that ker is invariant under  in the sense 

that for any  ⋯∈ker and ∈, we have

∙ ⋯∈ker.

Then the action of  on  induces an action on the real toric 

space ker.

Proof: For the proof, let  and  be any  two elements of  such 

that   ∙ for some  ⋯∈ker. Then by (2.1) we have

(3.2)           ∙ ∙∙ ∙
⋯



 
⋯



 
′⋯

′

where ′  for each ∈. By assumption, note that

′  ′′⋯′

is an element of ker.

  On the other hand, it is also easy to obtain
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(3.3)            ′∙∙ ′∙⋯

 
′

′⋯
′

Thus it follows from (3.2) and (3.3) that we have ∙ ′∙∙

This implies that ∙ and ∙ represent the same element in 

ker

  Now, it is straightforward to show that there is a well-defined 

action of  on ker. This completes the proof of Lemma 3.1.    

                                                                    □



- 18 -

Chapter 4 

Main result : Proof of Theorem 1.1

  The aim of this chapter is to give a proof of Theorem 1.1, 

essentially following the paper [10]. To do so, we first need to prove 

the following proposition.

Proposition 4.1 Let  be a simplicial complex of dimension 

with the vertex set  and   and let  act simplicially on . 

Assume that ker is invariant under . Then there is a group 

homomorphism

 →Homkerker

  In particular, this implies that the invariance of  on ker

induces an action on ker.

Proof: Since  is a simplicial complex on the vertex set , it 

follows from definition that every singleton  is an element of 

for each ∈. In particular, if we let  ∈, then we have



 

   × ×⋯× 

  Thus we have an element

  ⋯∈

 

 ⊂.

   Let  be the finite subgroup of the permutation group  on 

letters, as before. Then we have ∙  for all ∈. Hence the 

equivalence class  in ker is fixed under the action of  on 

ker. Note that every component of 1 is not zero.
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  Next, we want to construct a homomorphism

 →Homker ker

as follows. To do so, note first that from the proof of Lemma 3.1 for 

any ∈ker and ∈ there is a unique element ′∈ker such that

∙∙ ′∙∙ ′∙,

where ′ is given by  for each ∈  ′ ∙. Since ker

is assumed to be invariant under , for each ∈ we can thus 

define

  ker→ker ↦′ ∙.

  Using the map , we now define a map

 →Homker ker ↦.

  It is easy to see that  is indeed a homomorphism we want. To be 

precise, for any two elements ∈ we have

(4.1)           ∙∙ ′
∙ ′∙.

  on the other hand, it is also true that

(4.2)            ∙∙  ∙∙

 ′∙
∙  ′∙



 ′
′∙′∙
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  Note that we have

(4.3)            ′
′
∙′

∙∙

By (4.1), (4.2), and (4.3), we have

(4.4)            ′
 ′

′
∙∙

  This means that  the map  is a homomorphism. To be precise, 

by (4.4) we have

     ′
∙∙

 ∙  ∙

 ∘ ∈ker

That is, we have

  ∘

,  is a homomorphism. This completes the proof of Proposition 

4.1.                                                                 □

  By using the invariance of  on ker, it is also possible to directly 

show that there is a well-defined action of  on ker. It is 

well-known that this will then induce a group homomorphism  as 

in the proof of Proposition 4.1. In view of the proof of Proposition 

4.1, the action of  on ker satisfies the property: for each ∈ker,

∙∙    ⋯  

  ⋯  

 ∙ ∈

  Finally, we are ready to prove Theorem 1.1 that goes as follows.
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Proof of Theorem 1.1: By Proposition 4.1, there is a group 

homomorphism

 →Homkerker

  Thus, we have an isomorphism

ker≅ Im⊂Homker ker

  Note that ker contains a subspace of 
 isomorphic to 

 and 

so ker is isomorphic to 
 for some  ≥ Hence Hom

(ker ker) is isomorphic to


⊗

≅


  Since the map  →Hom ker ker is non-trivial by definition, 

there should be an element of  whose image under  is 

non-trivial. That is, since the order of Hom(ker ker) is 


, it 

follows from the theorem of Lagrange that the order of Im is 

divisible by 2. Since we have

   kerker  Imker,

we see that the order of  should be also divisible by 2. Therefore,  

there exists an element of  whose order is equal to two, completing 

the proof of Theorem 1.1                                           □
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Chapter 5 

Examples

  In this chapter, we close this chapter with some simple examples, 

taken from [6],  including real toric varieties associated to the Weyl 

chambers of classical groups given in Chapter 1, which illustrates 

our main result.

Example 5.1. Let  be the 4-gon on the vertex set [4], and let 

be the  cyclic group of order 4 acting on  cyclically on four 

vertices. Let  be the characteristic map whose associated matrix is 

given by

    
   

.

  Then it is easy to see that the kernel ker is invariant under the 

action of . The real toric space associated to the pair  is 

actually the 2-dimensional torus    ×  and the induced action 

of  on   is generated by

   →  ↦

  At any rate, the order of  is four which is clearly even and 

contains an element  of order two.

Example 5.2. The Weyl group  of the classical groups of type 

 is the symmetric group , and let  denote the dual of the 

permutohedron of order . Here the vertex set  can be 

described by the -equivariant bijection between  and 
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∅. Under this bijection, it is known that  subsets 

… of  form a simplex of  if and only of they form 

nested chain of subsets up to permutations. We can also describe 

the characteristic map  by using the basis consisting of 

  , where  means the transposition in  and ∈. 

Then it can be shown as in [6, 3.1] that  acts simplicially on the 

real toric space 
 . Note that the order of  is  which is 

clearly even, as desired.
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