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Chapter 1

Introduction

Our main concern in this thesis is the real moment-angle complex
and its real toric space which have recently attracted much attention
from many people working on toric topology (see [3], [4], and [7] for
more details). Recall that the real toric variety is given by the fixed
point set of a real toric variety under the involution defined by the
complex conjugation. The real toric space is a notion which is a
generalization of a real toric variety in algebraic geometry. By
definition, any finite subgroup G of the permutation group acting
simplicially on a simplicial complex K naturally acts on the real
moment-angle complex associated to K, and it further induces an
action on the real toric space under a certain invariance condition
of G.

Our primary aim in this thesis is to survey the results in the
paper [10] for the structure of the group G acting simplicially on the
toric space. As a consequence, we can See a certain structure
theorem of such a finite group G acting simplicially on the real toric
space. In addition, in Chapter 2 we also quickly review some related
material in [3], [4], and [6] necessary for explaining main results

given in Chapters 3 and 4.

In order to explain our main results more precisely, let K be a
simplicial complex on the vertex set [m]:={1,2, ---,m}, and let D!
and S denote the closed interval [—1,1] and its boundary
aD'={—1,1}, respectively. Roughly speaking, the real moment-angle
complex RZy of K is defined as
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= U {(xl, Ty ---,xm)e(Dl)mme S%fori &z a}.

Now, let Z, denote the finite group {0,1} under the natural

addition. Then Z," acts on (Dl)m diagonally by the sign, and in turn
it induces the action on the real moment-angle complex RZ,. Let
A:Z)'— Z) be a linear map with m > n. Then the real toric space
associated to the pair (K, A) is defined by the quotient space RZ/
ker A. It is a well known fact that the action of kerA on RZ, is free

if and only if A satisfies a certain regularity condition. To be more
precise, let us denote by A(i) the i-th column of A. Then we say
that A satisfies a regularity condition if

(1.1)  X(iy),A(y),---,A(4;) are  linearly  independent,  whenever

{ipiga...vil}eK-

Now, let G be a finite subgroup of the permutation group S, on m

letters. We say that G acts simplicially on K if G acts on the vertex
set [m] of K as a subgroup of S, in such a way that it preserves

the simplices of K. For example, let K; be the 3-gon (or triangle) on
the vertex set [3], and let S, denote the permutation group acting on

K; on three vertices. Then S; acts simplicially on K;.

1
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On the other hand, let K, be the 4-gon (or rectangle) on the
vertex set [4], and let S, denote the permutation group acting on K,

by permuting four vertices.

1 2

® *
K,=

o 3

4 3

Then the action of S, does not act simplicially on K,. This is
because an element g=(23)E.S, permutes two vertices 2 and 3, fixing

two other vertices 1 and 4. So the edge {1,2} maps to {1,3} that is
not an edge of K,.

Clearly by its construction any simplicial action of G induces an
action on the real moment-angle complex RZ,. Moreover, such a G

-action on RZ, induces an action on the quotient space RZ,/ker A,

whenever the kernel kerA of A is invariant under G in that for any

z= (21 20 -+, zg(m)) Ekerd and g= G, we have

g * 2= (20 Zy2p 5 Zym) EKEr A

With these understood, the main result of this survey paper from
[10] is to show that the following theorem for the structure of the

finite group G acting simplicially on the real toric space holds.
Theorem 1.1 Let K be a simplicial complex of dimension n—1 on

the vertex set [m] with m > n, and let G act simplicially on K as a

subgroup of the permutation group S,, on m letters. Assume that the

Collection @ chosun



kernel ker A of a linear map A: Z"—Z) is invariant under G. Then

the following statements hold:
(1) The action of G on K induces an action on the real toric
space.
(2) G always contains an element of order 2, and thus the order
of G should be even.

The first statement (1) of Theorem 1.1 is the restatement of a
result given in [6, Theorem 2.3], while the second statement (2) of
Theorem 1.1 is that of the main result in [10].

One wide and well-known class of examples supporting the validity
of Theorem 1.1 can be provided with the real toric associated to the
Weyl chambers of classical groups, In these cases, the simplicial
complexes are the Coxeter complexes of type R and the Weyl groups
play the role of the finite groups G which preserve the kernel of a
characteristic map (see [6, Chapter 3]). It is interesting to notice that
all of the Weyl groups of classical groups always have an even order
(see [9]).

As an immediate consequence of Theorem 1.1, we can now state

the following corollary.

Corollary 1.2 Let K be a simplicial complex of dimension n—1 on

the vertex set [m] with m >n, and let G act simplicially on K as a
subgroup of the permutation group S,, on m letters. If the order of

G i1s odd, then G cannot act simplicially on K so that the kernel

ker A of a linear map A : Z,"—Z, is invariant under G.

We organize this thesis, as follows.

In Chapter 2, we briefly summarize some notations and basic facts
necessary for the proof of Theorem 1.1 given in Chapter 4.
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Especially, we mainly collect basic facts regarding the moment-angle
complexes as well as real moment-angle complexes. Refer to an
excellent paper [7] of Davis and Januszkiewicz and books [3], [4] of
Buchstaber and Panov for more details.

Chapter 3 is devoted to giving a proof of a key lemma which plays
an important role in the proof of Theorem 1.1.

In Chapter 4, we give a proof of Theorem 1.1. To do so, we first
establish a non-trivial homomorphism ¥ from the finite group G to
the homomorphism group Hom(ker A, ker A). With this homomorphism
¢ in place, the proof of Theorem 1.1 immediately follows, as we can
see in Chapter 4.

Finally, in Chapter 5 we close this thesis by giving some nontrivial
examples supporting the validity of the main result in this thesis.
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Chapter 2
Real moment-angle complexes and real

toric spaces

The aim of this chapter is to quickly review some material
regarding moment-angle complexes and real toric spaces which we
are mainly concerned with. Refer to [1], [2], [3], and [4] for more
details on real moment-angle complexes as well as moment-angle

complexes.

2.1 Moment-angle complexes

Let F'= {Fl, ,Fm} be the set of facets of a polytope P". For each

facet F,.£F, denote by T}, the one-dimensional coordinate subgroup

of T¥= T™ corresponding to F;. Then we assign to every face FE the

coordinate subtorus

Ty= 1 7, c T".

F,DF

Note that dim 7 =codim E. Recall that for every point ¢=P" we

denoted by E(qg) the unique face containing ¢ in the relative interior.

Definition 2.1. For any combinatorial simple polytope P", introduce

the identification space

Z,= (1" P")/ ~,

where (t,,p)~ (tyq) if and only if p=g¢ and tt, '€ Ty, This space is

Q-

called a moment-angle manifold associated to the polytope P".
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Then the free action of T on T!'x P" descends to an action on

Zp, with quotient P". Let p:Z,—>P" be the orbit map. The action of

T"™ on Z, is free over the interior of P", while each vertex vEP"

represents the orbit p '(v) with maximal isotropy subgroup of

dimension n.

Lemma 2.2. The space Z, is a smooth manifold of dimension

m+n.
Proof: See [3, Lemma 6.2].

The following fact ([3, Proposition 6.4]) also holds to be true.

Lemma 2.3. Let P,P, be two polytopes. If P=P, X P, then the

moment-angle manifold Zp is diffeomorphic to Z, X Z,. Moreover, if

Fis a face of P, then Z, is a submanifold of Z,.

For more interesting properties on moment-angle complexes,
please refer to [1], [2], [3], and [4].

Now we give some examples of moment-angle complexes.

Example 2.4.
(1) Let P"=A" (the n-simplex). Then Z, is homeomorphic to the
(2n+1)—sphere §*"*1,

(2) The cubical complex (A" constructed in [3, Construction 4.5]

consists of (n+1) cubes (. In this case, each subset B, = pfl(Cf)

1S homeomorphic to (Dg)nxsl. In particular, for n =1 we obtain the
representation of the 3-sphere S° as a union of two solid toric

D*<8' and S'xD? glued by the identity diffeomorphism of their

boundaries.
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It is true that we can extend the definition of a moment-angle
manifold associated to a given polytope to that associated to a
simplicial complex. There are several equivalent ways to do so. In
this thesis, we adopt one of them.

Indeed, let K be a simplicial complex of dimension n—1 with the
vertex set [m]=1{1,2,..,m}, and let D? and S' denote the unit disk in
the complex plane C and its boundary aD?=S"', respectively. For
each €K, let (DQ,Sl)U be a subspace of (Dg)m whose i-th

component (D287

7

1S given by

(DQ Sl)q: DQ,iEUa
’ Sl, 1 & 0.

7

Then the moment-angle complex Z, of K is defined to be

cEK

— U{ (s, ) € (DY 12,6 8 ori 2 o).

It can be shown that if K is a simplicial (n—1)-sphere, then Z is
an (m+n)-dimensional (closed) manifold. However, Z, is not a

topological manifold, but just a simplicial complex, if K is not a
simplicial sphere.

Next, we provide some examples of moment-angle complexes, as

follows.

Example 2.5.

(1) Let K be a simplicial complex on the vertex set [2] so that

K={{1},{2},2}.

_10_
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Then we have
Zy=D*< S JS'x D*= §°.

(2) More generally, let K=0A denote the boundary of the (m—1)
-simplex A. Then it is easy to see that there is a homeomorphism

between Z, and S§?m~1 Moreover, the diagonal subgroup A(7T™) =S"!
of the m-dimensional torus 7™ acts freely on Z,=S5"""' So it is
interesting to observe that we can obtain the complex projective
space CP™ by taking the quotient of S$*""! under the action of
A(T™).

2.2 Real moment-angle complexes

Let K be a simplicial complex on the vertex set [m], and let D'

and S” denote the closed interval [—1,1] and its boundary
oD'={—1,1}, respectively. Let (D',S°)° be a subspace of (D')" whose

i-th component (Dl,SO)? is given by
(Dl So)q: D' i<o,
o SY i o

Then the real moment-angle complex RZ, of K is defined to be

= {(xl,xg,---,xm)E(Dl)mmiE SYfori & a}.

As in the case of moment-angle complexes, it can be shown that if
K is a simplicial (n—1)-sphere, then RZ, is an n-dimensional

_11_
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(closed) manifold. However, RZ, is not a topological manifold, but

just a simplicial complex, if K is not a simplicial sphere.

Example 2.6.

(1) Let K be a simplicial complex on the vertex set [2] so that
K={{1},{2},2}. Then we have

®
N @

RZ;=D'x S| JS*x D'= =s'.

(2) Let K be a 3-gon on the vertex set [3] so that
K={a,{1},{2}, {3},{1,2},{2,3},{3,1}}. Then we have

1

K=
® @
3 2
RZ;= D'<x D'x S JS"x D'x D'|_JD'x §"< D'= — g2
- 12 -

Collection @ chosun



2.3 Real toric spaces

Let Z, denote the vector space {0,1} over Z, under the natural
scalar multiplication, and let A:Z]"—Z) be simply a linear map. Note

that ZJ" acts on (D) diagonally, as follows.

(2.1) Zy' < (DY) (D")™

((217' "7Zm)7 (xp' 7xm))'—>((_ ]-)lep' "7(_ ]-) mxm)v

so that in turn it induces an action on the real moment-angle
complex RZy. Clearly any subgroup of Z;" can be given by the
kernel kerA of a linear map A:Z)"—Z; for m>mn, and the quotient
space RZ/ker A is called the real toric space associated to the pair
(K,A). It turns out that the action of kerA on RZy is free if and only

if A satisfies the regularity condition as below.

Lemma 2.7. The action of kerA on RZ is free if and only if the

condition (1.1) is satisfied.

Proof: (<) Let p=(x,os...,z,,) be a fixed point of RZ, under the
action of ¢=1(9,9....9,,)EkerA. Then it follows from (2.1) that we
have either ¢, =0 for all i€[m] or z;=0 for all i[m]. Now let c€EK
be a simplex such that pe(D',5%° and let A, denote the submatrix
of A consisting of columns corresponding to o. Let g, denote the
subvector of g corresponding to o. Then, since g&kerA, we have
Alg) = 4,9, + Ay~ 091 - = 0.

The fact that Z, acts freely on S" implies that we have g; =0 for

all i€ [m]—o. Thus, we should have A,g, =0. This means that g, =0

and so we have ¢g=0, as desired.

(=) Conversely, if (1.1) does not hold, then for a simplex cEK

_13_
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there should be a point p=(z,,2,,....,7,,) such that z;=0, if i€c and
x; =0, otherwise. Thus p is fixed under the action of kerA.

This completes the proof of Lemma 2.7. L]

_14_
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Chapter 3

A key lemma

A real toric space is a generalization of a more specific space

which is defined as the quotient space RZg/ker A for a characteristic

map A. Recall that a linear map A: Z)—Z] is called a characteristic

map if it satisfies a certain regularity condition. That is, when we

write the linear map A4 as an n Xm-matrix

(3.1) A=AMA2) - Am—=1)A(m)), ., .»
A(i,), A(iy), -+, A(i,) are linearly independent over Z, for any simplex

{iig---yi,} in K. Here each A(i) is regarded as a column vector of

size n, and the matrix in (3.1) is called the characteristic matrix.
For a characteristic map A, the quotient space RZ./ker A is called

a small cover (resp. real topological toric manifold) if K is a
polytopal sphere (resp. star-shaped sphere). Refer to [7] and [8] for
more details. Note also that any small cover is in turn a
generalization of a real toric variety which is given by the fixed
point set of a toric variety under the natural involution defined by
the complex conjugation.

Now, as before let G be a finite subgroup of the permutation
group S, on m letters. Recall that G acts simplicially on K if G

acts on the vertex set [m] of K as a subgroup of S in such a way

that it preserves the simplices of K. It is easy to see that any
simplicial action of G induces an action on the real moment-angle

complex RZ,. Moreover, it induces an action on the homology group

H,(RZ;Q) = P H, (K Q),
SERow(A)

_15_
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where Row(A)C Z" denotes the row space of A and Ky denote the

full subcomplex of K with its vertex set S< [m]. Here, we identify
any element S of Row(A) with an element Iy of [m] in the natural

way. That is, for S=(s;,55,5,,)ERow(A), we set
Iy= {iE [m]|si = 0}.

The following lemma and its proof plays an important role in the
proof of our main Theorem 1.1 (see [6, Theorem 2.3]).

Lemma 3.1. Assume that ker A is invariant under G in the sense

that for any z=(z,2y,2,,)Eker and ¢= G, we have
g* Z:(Zg(l)azg(g),'",Zg(m))eker/l.

Then the action of G on RZy; induces an action on the real toric

space RZ./ker A.

Proof: For the proof, let x and y be any two elements of RZ, such

that 2 =2 « y for some z=/(z,2, .2, )Eker A. Then by (2.1) we have

(32) ge*xr=ge- (Z ° y):g ° ((_]—)Zlyv"'v(_l)zmym)
= ((=1)" Yy, e (= 1)y )
= ((_ ]-)Zlyg(l)v' "7(_ ]-)Zmyg(m))v

where 2 =z, for each i€[m]. By assumption, note that

’

z = (2’172,2,' ",Z,m)

is an element of kerA.
On the other hand, it is also easy to obtain

_16_
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(3.3) 2o lg e y) =2 W) yger Yyim)
= ((_ 1)Zlyg(1)7(_ 1)22yg(2)7' "7(_ 1)Zmyg(m))'

Thus it follows from (3.2) and (3.3) that we have g+ z=2 « (g * x).
This implies that g« x and g « y represent the same element in
RZ/ker A.

Now, it is straightforward to show that there is a well-defined

action of G on RZg/ker A. This completes the proof of Lemma 3.1.
[]

_17_
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Chapter 4

Main result : Proof of Theorem 1.1

The aim of this chapter is to give a proof of Theorem 1.1,
essentially following the paper [10]. To do so, we first need to prove
the following proposition.

Proposition 4.1 Let K be a simplicial complex of dimension n—1

with the vertex set [m] and m >n, and let G act simplicially on K.
Assume that kerA is invariant under . Then there is a group

homomorphism
U : G—Hom (ker A,kerA).

In particular, this implies that the invariance of G on kerA

induces an action on ker A.

Proof: Since K is a simplicial complex on the vertex set [m], it
follows from definition that every singleton {i} is an element of K
for each i=[m]. In particular, if we let ¢ ={1}&K, then we have

(D',5")7 = D'x §%x-..x §°.

Thus we have an element
1= (171771)6 (le i())o - RZK

Let G be the finite subgroup of the permutation group S, on m

letters, as before. Then we have g« 1=1 for all ¢g=G. Hence the

equivalence class [1] in RZg/ker A is fixed under the action of G on

RZi/ker A. Note that every component of 1 is not zero.

_’]8_
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Next, we want to construct a homomorphism
¥ : G—Hom (ker A, ker A),

as follows. To do so, note first that from the proof of Lemma 3.1 for
any z&ker A and g& G there is a unique element z'gEkerA such that

gelzel)=F,e(ge1)=2, 1,

where 2, (i) is given by z,, for each i€[m] i,z =g « z. Since kerA

Is assumed to be invariant under G, for each g&G we can thus
define

W(g) : ker A—ker A, zl—>z'g=g . 2.

Using the map ¥, we now define a map

U: G—Hom(ker A, ker A), g-—>%¥(g).

It is easy to see that ¥ is indeed a homomorphism we want. To be
precise, for any two elements g,,g,< G we have

(4.1) (g192) * (2 ¢ 1):'2,9192(9192 * 1):’2’9192 - 1.

on the other hand, it is also true that

(4.2) ((g195) * )z e 1) =g (g, » (2 1)
91(2,92 *\gs * 1))291(2,9 . 1)
(Z,,) 1

.
N
.

_19_
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Note that we have

(4.3) () = s 2y =g (g, + 2).

(4.4) 2 _(Z’ )’91 =g ° (92 * Z)

This means that the map ¥ is a homomorphism. To be precise,
by (4.4) we have

¥(g,9,)(2) =W(gy9,)(2) =2, , =gy * (g5 * 2)

=g, » W(g,)(2)) =g, » (W(g,)(2))
ZW(gl) ° W(gg)(z), zEKker A.

That is, we have
L-D(glgg) :y?(g1) ° Lp(gg),

i.e., ¥ i1s a homomorphism. This completes the proof of Proposition
a.1. -

By using the invariance of G on kerA, it is also possible to directly
show that there is a well-defined action of G on kerA. It is
well-known that this will then induce a group homomorphism ¥ as
in the proof of Proposition 4.1. In view of the proof of Proposition
4.1, the action of G on ker A satisfies the property: for each zEker A,

91 ° (92 +z)= (292(91(1))’292(91(2))"" Zgz(gl(m)))
- (29291(1)’29291 20" Zgzgl (m))
= (9291) * % 91:9:€ G-

Finally, we are ready to prove Theorem 1.1 that goes as follows.

_20_
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Proof of Theorem 1.1: By Proposition 4.1, there is a group

homomorphism
¥ : G—Hom (ker A,ker A).
Thus, we have an isomorphism

G/ker W = Im¥ < Hom (ker A, ker A).

Note that ker A contains a subspace of Z," isomorphic to Z," " and

so kerA is isomorphic to Zi. for some [>=m—n. Hence Hom

(ker A, ker A) is isomorphic to
Ziwzl =7t

Since the map ¥:G—Hom (ker A,ker A) is non-trivial by definition,
there should be an element of G whose image under V¥ is

non-trivial. That is, since the order of Hom(ker A,ker A) is 212, it
follows from the theorem of Lagrange that the order of Im¥ is
divisible by 2. Since we have

|G| = |G/kerWlker¥| = Im¥|ker?],

we see that the order of G should be also divisible by 2. Therefore,

there exists an element of G whose order is equal to two, completing
the proof of Theorem 1.1 L]

_21_
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Chapter 5

Examples

In this chapter, we close this chapter with some simple examples,
taken from [6], including real toric varieties associated to the Weyl
chambers of classical groups given in Chapter 1, which illustrates

our main result.

Example 5.1. Let K, be the 4-gon on the vertex set [4], and let G
be the cyclic group of order 4 acting on K, cyclically on four

vertices. Let A be the characteristic map whose associated matrix is
given by

(101%
0101/

Then it is easy to see that the kernel ker A is invariant under the

action of G. The real toric space associated to the pair (K,,A) is

actually the 2-dimensional torus 7%= $'x<S' and the induced action

of G on T? is generated by
g: TQ*)T% (x7y)'_>(_y7x)

At any rate, the order of G is four which is clearly even and

contains an element ¢* of order two.

Example 5.2. The Weyl group W, of the classical groups of type
A, is the symmetric group §,,,, and let K, denote the dual of the

permutohedron of order n+1. Here the vertex set V, can be

described by the §,,,-equivariant bijection between V, and

n

_22_
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ot _ {1 +1],»}. Under this bijection, it is known that k subsets
Jpsdos..n,, Of [n+1] form a simplex of K, if and only of they form

nested chain of subsets up to permutations. We can also describe

the characteristic map A, by wusing the basis consisting of
e, = (1k)w,, where (1k) means the transposition in $,,, and w,EV, .
Then it can be shown as in [6, 3.1] that W, acts simplicially on the

real toric space Xffn. Note that the order of W, is (n+1)! which is

clearly even, as desired.

_23_
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