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Chapter 1

Introduction

In toric geometry, there is a well-known one-to-one correspondence between

toric varieties and complete fans or underlying simplicial complexes, up to

certain equivalence relations (refer to [6] and [10]). This means that in order

to study toric varieties it suffices to study their corresponding fans or under-

lying simplicial complexes which are combinatorial and so somewhat more

tractable. Our primary goal in this thesis is to apply this strategy to classify

real quasi-toric varieties or more specifically real quasi-toric manifolds over

certain simplicial complexes.

In order to explain our results more precisely, we first need to set up

some notation and basic definitions, as follows. To do so, recall that a fan

in the vector space Rm is a collection of strongly convex rational cones such

that every face of cones and every intersection of a finite number of cones are

also in the fan. In addition, a fan is called complete if the union of all cones

covers the whole vector space Rm, while a fan is called non-singular if one-

dimensional faces of each cone are unimodular in the lattice Zm embedded

in Rm. On the other hand, a fan is called simplicial if one-dimensional faces

of each cone are linearly independent in Rm.

It is possible to think of a complete non-singular fan Σ as a pair (KΣ, λ)
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consisting of a underlying simplicial complex KΣ and a characteristic map

λ, where λ is a map from the vertex set of K to the lattice Zm obtained by

assigning a primitive integral vector to each vertex of K. Also, KΣ (or Σ)

is called polytopal if there is an embedding of the geometric realization |KΣ|

of K into Rn such that |KΣ| is given by the boundary of the simplicial dual

polytope P ∗ of a simple convex polytope P . If, in addition, P ∗ contains

the origin and Σ is given by the positive hulls of proper faces of P ∗, then

KΣ (or Σ) is said to be strongly polytopal. It is well known that the toric

variety associated to a strongly polytopal fan is projective. By abuse of

terminology, in this thesis we will just say that the corresponding fan or

underlying simplicial complex is projective. Recall also that a simplicial

complex K is fan-like if there is a complete fan Σ whose underlying simplicial

complex KΣ is exactly same as K.

In the papers [7] and [8], Davis and Januszkiewicz and Hattori and Ma-

suda generalized the notion of a toric manifold to several categories of man-

ifolds equipped with torus actions. Among other things, a torus manifold of

dimension 2n, first introduced in [8], is defined to be a closed orientable man-

ifold which admits an effective Tn-action with the non-empty fixed point set.

Here, when S1 denotes the unit circle of complex numbers in C, Tn means

the product (S1)n of n copies of S1. By definition, any toric manifold is

clearly a torus manifold. On the other hand, a quasi-toric manifold of di-

mension 2n, first introduced in [7], is defined to be a closed smooth manifold

with an effective Tn-action satisfying the following two conditions:

• The torus action is locally standard in that it is locally isomorphic to

the standard action of Tn on R2n.

• The orbit space is homeomorphic to a simple convex polytope of di-
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mension n.

It is obvious to see that every quasi-toric manifold is a torus manifold.

There exist other general notions of a toric manifold such as the topological

toric manifold which will not be dealt with in this thesis (see [9] for more

details).

There are several general ways to construct a quasi-toric manifold. One

of them we want to present in this thesis goes as follows. That is, given a sim-

ple convex polytope P , let F denote the collection of all facets F1, F2, . . . , Fm

of P , and let

λ : F → Zn

be a characteristic function on F such that

(1) λ(Fi) is a primitive vector for each i ∈ [m] := {1, 2, . . . ,m}, and

(2) for a non-empty PI := ∩i∈IFi for I ⊂ [m], λ(Fi)’s are linearly inde-

pendent over Q.

For a non-empty PI , we can form an abelian subgroup Tn
I of Tn generated

by λ(Fi)’s for i ∈ I. Then one can construct a manifold X(P, λ) by using

the quotient space

X(P, λ) = (P × Tn)/ ∼ .

Here, the equivalence relation ∼ on the product space P × Tn is given by

(x, t) ∼ (y, s) if and only if x = y and t−1s ∈ Tn
I ,

where I is a subset of [m] such that PI is the minimal face of P containing

x = y. The manifold X(P, λ) is usually called a quasi-toric manifold, and, in

general, X is just an orbifold. Further, it admits a Tn-action induced from
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the natural Tn-action on the second factor of P × Tn whose orbit space is

P itself. Hence there is a quotient map

π : X(P, λ)→ P = X(P, λ)/Tn.

For the sake of simplicity, we shall also use the notation X for X(P, λ)

if there is no confusion. One typical example of a toric manifold can be

provided by the natural action of Tn on the complex projective space CPn

associated to the n-simplex ∆n. See [3], [4], and [7] for more details.

Since the dual P ∗ of P is a simplicial polytope, the characteristic map

λ induces a complete non-singular characteristic map λ on K := ∂P ∗ that

is a polytopal sphere, so that we can obtain a pair (K,λ).

Instead of S1 and Tn, one may repeat the above construction with Z2 =

{0, 1} and

Zn
2 = Z2 × · · · × Z2︸ ︷︷ ︸

n times

to obtain a real quasi-toric manifold X(P, λR) of dimension n for a char-

acteristic function λR : F → Zn
2 . However, note that the image λ(Fi) of

a characteristic function λR is always primitive and that every linearly in-

dependent vectors in Zn
2 is a part of a basis of Zn

2 . So the quotient space

X(P, λR) with the quotient map π : X(P, λR) → P is always smooth. As

in the case of X(P, λ), X(P, λR) has a Zn
2 -fixed point if and only if P has

a vertex. As in the case of X(P, λ), we shall also use the notation XR for

X(P, λR) if there is no confusion.

One example of a real quasi-toric manifold can be given by the natural

action of Zn
2 on the real projective space RPn associated to the n-simplex

∆n. When P is a simple convex polytope, XR is very often called a small

cover in the literature (see [7]).
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There is a well-known operation, called a simplicial wedge operation,

from abstract simplicial complexes with n vertices to another abstract sim-

plicial complexes with n + 1 vertices (see [1] and [2]). That is, for a sim-

plicial complex K with n vertices and any sequence J = (j1, j2, . . . , jn)

of positive integers we can construct a new simplicial complex K(J) with

d(J) = j1 + j2 + · · ·+ jn vertices, called a simplicial wedge complexes. Such

a simplicial wedge complex K(J) is obtained inductively by starting from

K and applying the simplicial wedge operation to one of the vertices of K.

More specifically, as above let K be a fan-like simplicial complex in Rm with

vertices w1, w2, . . . , wn, and let v = w1 be a vertex of K. Then we can ob-

tain the simplicial wedge complex wedgev(K) := K(2, 1, 1, . . . , 1) obtained

by applying the simplicial wedge operation to K at v.

Our main concern in this thesis is to investigate quasi-toric or real quasi-

toric manifolds over the simplicial wedge complexes K(J). It is well-known

that every simple polytope of dimension n with not more than n+ 3 facets

has a corresponding standard Gale diagram on R2 (see [5, Section 6] for

more details). It is also true that two simple polytopes of dimension n with

n+ 3 facets are combinatorially equivalent to each other if and only if their

standard Gale diagrams coincide after some orthogonal transformation of

R2 onto itself. This means that we can classify simple polytopes with n+ 3

facets in terms of their standard Gale diagrams in R2. This is exactly the

way we take in this thesis to quasi-toric manifolds, and first we consider the

regular 6-gon P6 for the standard Gale diagram on R2. As a consequence,

first we can obtain the following result.

Theorem 1.1. Up to rotational symmetry of P6 and basis changes of Z2
2,

any complete non-singular fans over P6 can be determined by one of the

following, not necessarily exclusive, seven characteristic matrices:
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(1)

λ =

(
1 0 1 0 1 a
0 1 1 1 0 1

)
.

(2)

λ =

(
1 0 1 a 1 1
0 1 0 1 0 1

)
.

(3)

λ =

(
1 0 1 0 1 a
0 1 0 1 0 1

)
.

(4)

λ =

(
1 0 1 0 1 1
0 1 a 1 0 1

)
.

(5)

λ =

(
1 0 1 0 1 0
0 1 a 1 1 1

)
.

(6)

λ =

(
1 0 1 0 1 0
0 1 0 1 a 1

)
.

(7)

λ =

(
1 0 1 1 a+ 1 a
0 1 1 0 1 1

)
.

Here, a is an arbitrary element of Z2 = {0, 1}.

As an immediate consequence of Theorem 1.1, we have the following

classification of real quasi-toric manifolds over a simple convex polytope

whose dual boundary simplicial complex is P6.

Corollary 1.2. Any real quasi-toric manifold over a simple convex polytope

whose dual boundary simplicial complex is P6 can be completely determined

by one of the seven characteristic matrices appearing in Theorem 1.1.

7



Next we want to explicitly determine all possible complete non-singular

fans (or equivalently, real quasi-toric manifolds) corresponding to simplicial

wedge complexes P6(J) of the regular 6-gon P6. That is, our main theorem

is

Theorem 1.3. Up to rotational symmetry of P6 and basis changes of Z3
2,

any complete non-singular fans over P6(2, 1, 1, 1, 1, 1) can be determined by

one of the following, not necessarily exclusive, ten characteristic matrices:

(1)

λ =

 0 1 0 1 0 1 a
0 0 1 0 1 0 1
1 1 0 0 n 0 m

 .

(2)

λ =

 0 1 0 1 a 1 1
0 0 1 0 1 0 1
1 1 0 0 n 0 m

 .

(3)

λ =

 0 1 0 1 0 1 a
0 0 1 0 1 0 1
1 1 0 0 n 0 m

 .

(4)

λ =

 0 1 0 1 0 1 1
0 0 1 a 1 0 1
1 1 0 0 n 0 m

 .

(5)

λ =

 0 1 0 1 0 1 0
0 0 1 a 1 1 1
1 1 0 0 0 0 0

 .

(6)

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 1 1
1 1 0 0 1 1 1

 .
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(7)

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 a 1
1 1 0 0 n 0 m

 .

(8)

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 1 1
1 1 0 0 1 1 1

 .

(9)

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 1 1
1 1 0 0 0 a a

 .

(10)

λ =

 0 1 0 1 1 0 1
0 0 1 1 0 1 1
1 1 0 0 0 a a

 .

Here, a, n, and m are all arbitrary elements of Z2.

As an immediate consequence of Theorem 1.3, we have the following

classification of real quasi-toric manifolds over a simple convex polytope

whose dual boundary simplicial complex is P6(2, 1, 1, 1, 1, 1).

Corollary 1.4. Any real quasi-toric manifold over a simple convex polytope

whose dual boundary simplicial complex is P6(2, 1, 1, 1, 1, 1) can be completely

determined by one of the ten characteristic matrices appearing in Theorem

1.3.

We organize this paper, as follows. In Chapter 2, we briefly review basic

facts regarding simplicial wedge complexes.

In Chapter 3, we give proofs of Theorems 1.1 and 1.3 by the detailed

case-by-case analysis of the characteristic matrices over the regular 6-gon P6

and its simplicial wedge complex P6(2, 1, 1, 1, 1, 1).
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Chapter 2

Simplicial wedge complexes

The aim of this chapter is to briefly collect basic facts necessary for the proof

of main results given in Chapter 3.

A simplicial complex K on a finite set V is a collection of subsets of V

satisfying

(1) if v ∈ V , then {v} ∈ K,

(2) if σ ∈ K and τ ⊂ σ, then τ ∈ K.

Each element σ ∈ K is called a face of K. V = [m] is a set of vertices.The

dimension of σ is defined by dim(σ)=|σ|−1. The dimension of K is defined

by dim(K) = max{dim(σ)| σ ∈ K}.

There is a useful way to construct new simplicial complexes from a given

simplicial complex. We briefly present the construction here. Let K be a

simplicial complex of dimension n − 1 on vertices V = [m] = {1, 2, . . . ,m}.

A subset τ ⊂ V is called a non-face of K if it is not a face of K. A non-face

τ is minimal if any proper subset of τ is a face of K. Note that a simplicial

complex is determined by its minimal non-faces.

In the setting above, let J = (j1, . . . , jm) be a sequence of positive inte-

gers. Denote by K(J) the simplicial complex on vertices
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{11, . . . , 1j1, 21, . . . , 2j2, . . . ,m1, . . . ,mjm}

with minimal non-faces

{(i1)1, . . . , (i1)ji1 , (i2)1, . . . , (i2)ji2 , . . . , (ik)1, . . . , (ik)jik}

for each minimal non-face {i1, . . . , ik} of K.

There is another way to construct K(J) called the simplicial wedge con-

struction. Recall that for a face σ of a simplicial complex K, the link of σ

in K is the subcomplex

LkKσ := {τ ∈ K| σ ∪ τ ∈ K, σ ∩ τ = ∅}

and the join of two disjoint simplicial complexes K1 and K2 is defined by

K1 ? K2 = {σ1 ∪ σ2 | σ1 ∈ K1, σ2 ∈ K2}

Let K be a simplicial complex with vertex set [m] and fix a vertex i in

K. Let I denote a 1-simplex whose vertices are i1 and i2 and let ∂I denote

the boundary complex of I consisting of two vertices i1 and i2. Now, let

us define a new simplicial complex on m + 1 vertices, called the simplicial

wedge of K at i, denoted by wedgei(K), by

wedgei(K) = (I ? Lkk{i}) ∪ (∂I ? (K \ {i})),

where K \ {i} is the induced subcomplex with m− 1 vertices except i. The

operation itself is called the simlplicial wedge operation or the (simplicial)

wedging.

It is an easy observation to show that wedgei(K) = K(J) where J =

(1, . . . , 1, 2, 1, . . . , 1) is the m−tuple with 2 as the i−th entry. By consecutive

application of this construction starting from J = (1, . . . , 1), we can produce
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K(J) for any J . Although there is some ambiguity to proceed from J =

(j1, . . . , jm) to J ′ = (j1, . . . , jj−1, ji + 1, ji+1, . . . , jm) if ji ≥ 2, we have no

problem since any choice of the vertex yields the same minimal non-faces of

the resulting complex wedgev(K(J)) = K(J ′) keeping in mind the original

definition of K(J). In conclusion, one can obtain a simplicial complex K(J)

by successive simplicial wedge constructions starting from K, independent

of order of wedgings.

Example : Simplicial wedge complexes

Figure 2.1: P3 → P3(2, 1, 1)

Figure 2.2: P4 → P4(2, 1, 1, 1)
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Figure 2.3: P5 → P5(2, 1, 1, 1, 1)

Figure 2.4: P6 → P6(2, 1, 1, 1, 1, 1)
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Chapter 3

Main results: Proofs of
Theorems 1.1 and 1.3

The aim of this chapter is to provide the proofs of Theorems 1.1 and 1.3 in

detail.

3.1 Proof of Theorem 1.1

We begin with the proof of Theorem 1.1. To do so, up to a basis change of

Z2
2 we may assume without loss of generality that the characteristic matrix

λ has the following form. That is,

λ =

(
1 0 1 b d f
0 1 a c e 1

)
.

By the positiveness of the characteristic matrix λ , the following system of

equations 
c+ ab = 1

be+ cd = 1

d+ ef = 1

holds. Then we divide the proof into several cases, as follows.
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1. a = 0. In this case, the system of equations becomes
c = 1

be+ d = 1

d+ ef = 1.

Thus,

be+ ef = 0,

e(b+ f) = 0.

(1) e = 1, b+ f = 0

λ =

(
1 0 1 0 1 f
0 1 1 1 0 1

)
.

(2) e = 0, b+ f = 1

λ =

(
1 0 1 f 1 1
0 1 0 1 0 1

)
.

(3) e = 0, b+ f = 0

λ =

(
1 0 1 0 1 f
0 1 0 1 0 1

)
.

2. b = 0. Then the system of equations is reduced to
c = 1

d = 1

ef = 0.

(1) e = 0, f = 1

λ =

(
1 0 1 0 1 1
0 1 a 1 0 1

)
.

(2) f = 0, e = 1

λ =

(
1 0 1 0 1 0
0 1 a 1 1 1

)
.
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(3) e = 0, f = 0

λ =

(
1 0 1 0 1 0
0 1 0 1 a 1

)
.

3. a 6= 0, b 6= 0. Then, as above we have the following system of equations


c = 0

e+ cd = 1

d+ ef = 1.

(1) e = 1, d+ f = 1

λ =

(
1 0 1 1 f + 1 f
0 1 1 0 1 1

)
.

To sum up, we can obtain the following theorem.

Theorem 3.1. Up to rotational symmetry of P6 and basis changes of Z2
2,

any complete non-singular fans over P6 can be determined by one of the

following, not necessarily exclusive, seven characteristic matrices:

(1)

λ =

(
1 0 1 0 1 f
0 1 1 1 0 1

)
.

(2)

λ =

(
1 0 1 f 1 1
0 1 0 1 0 1

)
.

(3)

λ =

(
1 0 1 0 1 f
0 1 0 1 0 1

)
.

(4)

λ =

(
1 0 1 0 1 1
0 1 a 1 0 1

)
.

(5)

λ =

(
1 0 1 0 1 0
0 1 a 1 1 1

)
.
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(6)

λ =

(
1 0 1 0 1 0
0 1 0 1 a 1

)
.

(7)

λ =

(
1 0 1 1 f + 1 f
0 1 1 0 1 1

)
.

Here, a and f denote an arbitrary element of Z2 = {0, 1}.

3.2 Proof of Theorem 1.3

Next we start the proof of Theorem 1.3. To do so, for each d with 1 ≤ d ≤ 7

let λd = (v1, v2, . . . , v6) be one of the seven cases as in Theorem 3.1. We then

perform a wedge operation on the facet 1 and rename facets by 11, 12, 3, 4, 5,

and 6. Let λ be a characteristic matrix for the wedged polytope wedge1P6 =

P6(2, 1, 1, 1, 1, 1). Note that the facet {11, i, i+1}, i ∈ Z6, of P6(2, 1, 1, 1, 1, 1)

corresponds to a vertex of the boundary of the dual of P6(2, 1, 1, 1, 1, 1),

where we choose i so that neither i nor i+ 1 is same as 1.

Now we choose a basis of Z3
2 such that

• λ(11) = (0, 0, 1)T ,

• λ(2) = (vT2 , 0)T , and

• λ(3) = (vT3 , 0)T

Then the matrix λ for P6(2, 1, 1, 1, 1, 1) should be of the following form:

λ =


11 12 2 3 4 5 6

0 v1 v2 v3 v4 v5 v6

0

1 n1 0 0 n4 n5 n6


4×7

,

where nj is the unknown and j is not equal to i. It is easy to see that at

least we can obtain n1 = 1. This is because we have

det(λ(12)λ(2)λ(3)) = det(λ(11)λ(2)λ(3)) = 1
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by the positiveness of λ. As a consequence, we have the following form for

the characteristic matrix:(
v1 v2 v3 v4 v5 v6

1 0 0 n4 n5 n6

)
3×6

.

Starting from the above preliminary calculation, we can now determine

λ for each seven characteristic matrices λd as in Theorem 3.1.

In case of (1) in Theorem 3.1, observe first that λ should be of the form

λ =

 0 1 0 1 0 1 f
0 0 1 0 1 0 1
1 1 0 0 n4 n5 n6

 .

Since

det(λ(12)λ(4)λ(5)) = det(λ(11)λ(4)λ(5)) = 1

and ∣∣∣∣∣∣
1 0 1
0 1 0
1 n4 n5

∣∣∣∣∣∣ = 1 + n5 = 1

by the positiveness of λ, we have n5 = 0. Therefore, the characteristic

matrix for the case (1) in Theorem 3.1 is of the form

λ =

 0 1 0 1 0 1 f
0 0 1 0 1 0 1
1 1 0 0 n4 0 n6

 .

Similarly, in the case of (2) in Theorem 3.1 λ should be of the form

λ =

 0 1 0 1 f 1 1
0 0 1 0 1 0 1
1 1 0 0 n4 n5 n6

 .

Thus, it is easy to see that the characteristic matrix for the case (2) in

Theorem 3.1 is of the form

λ =

 0 1 0 1 f 1 1
0 0 1 0 1 0 1
1 1 0 0 n4 0 n6

 .
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The cases of (3) and (4) in Theorem 3.1 can be dealt with in a similar

way. So these cases will be left to the reader.

For the case of (5) in Theorem 3.1, as above λ should be of the form

λ =

 0 1 0 1 0 1 0
0 0 1 a 1 1 1
1 1 0 0 n4 n5 n6

 .

Note then that the following elementary facts hold:

•

det(λ(12)λ(3)λ(4)) = det(λ(11)λ(3)λ(4)) = 1.

• ∣∣∣∣∣∣
1 1 0
0 a 1
1 0 n4

∣∣∣∣∣∣ = 1 + n4a = 1.

•

det(λ(12)λ(4)λ(5)) = det(λ(11)λ(4)λ(5)) = 1.

• ∣∣∣∣∣∣
1 0 1
0 1 1
1 n4 n5

∣∣∣∣∣∣ = 1 + n4 + n5 = 1.

•

det(λ(12)λ(5)λ(6)) = det(λ(11)λ(5)λ(6)) = 1,

and ∣∣∣∣∣∣
1 1 0
0 1 1
1 n5 n6

∣∣∣∣∣∣ = 1 + n5 + n6 = 1

by the positiveness of λ.

It is now straightforward to obtain the following equations

n4a = 0, n4 + n5 = 0, n5 + n6 = 0.
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If n5 = 0, then we have n6 = 0 and n4 = 0. On the other hand, if n5 = 1,

then we have n6 = 1, n4 = 1, and a = 0. Therefore, λ for the case (5) in

Theorem 3.1 should be of the form

λ =

 0 1 0 1 0 1 0
0 0 1 a 1 1 1
1 1 0 0 0 0 0


or

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 1 1
1 1 0 0 1 1 1

 .

Similarly, in the case of (6) in Theorem 3.1 we can show that λ is of the

form

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 a 1
1 1 0 0 n4 0 n6


or

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 1 1
1 1 0 0 1 1 1

 .

Finally, for the case of (7) in Theorem 3.1, as in the above cases we may

assume that λ is of the form

λ =

 0 1 0 1 1 f + 1 f
0 0 1 1 0 1 1
1 1 0 0 n4 n5 n6

 .

Since

det(λ(12)λ(3)λ(4)) = det(λ(11)λ(3)λ(4)) = 1

and ∣∣∣∣∣∣
1 1 1
0 1 0
1 0 n4

∣∣∣∣∣∣ = 1 + n4 = 1

by the positiveness of λ, we can obtain n4 = 0. Note that the following facts

hold:
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•

det(λ(12)λ(5)λ(6)) = det(λ(11)λ(5)λ(6)) = 1.

• ∣∣∣∣∣∣
1 f + 1 f
0 1 1
1 n5 n6

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 f + 1 f
0 1 1
1 n5 n6

∣∣∣∣∣∣ = 1.

•

(f + 1 + f) + n5 + n6 = 1 = f + 1 + f = 1

by the positiveness of λ.

Since 2f = 0, it follows from n5 + n6 = 0 that we can set m = n5 = n6.

Therefore, we can see that λ for the case (7) in Theorem 3.1 is of the form

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 1 1
1 1 0 0 0 m m


or

λ =

 0 1 0 1 1 0 1
0 0 1 1 0 1 1
1 1 0 0 0 m m

 .

Consequently, we can summarize the above calculations, as follow.

Theorem 3.2. Up to rotational symmetry of P6 and basis changes of Z3
2,

any complete non-singular fans over P6(2, 1, 1, 1, 1, 1) can be determined by

one of the following ten characteristic matrices:

(1)

λ =

 0 1 0 1 0 1 f
0 0 1 0 1 0 1
1 1 0 0 n4 0 n6

 .

(2)

λ =

 0 1 0 1 f 1 1
0 0 1 0 1 0 1
1 1 0 0 n4 0 n6

 .
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(3)

λ =

 0 1 0 1 0 1 f
0 0 1 0 1 0 1
1 1 0 0 n4 0 n6

 .

(4)

λ =

 0 1 0 1 0 1 1
0 0 1 a 1 0 1
1 1 0 0 n4 0 n6

 .

(5)

λ =

 0 1 0 1 0 1 0
0 0 1 a 1 1 1
1 1 0 0 0 0 0

 .

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 1 1
1 1 0 0 1 1 1

 .

(6)

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 a 1
1 1 0 0 n4 0 n6

 .

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 1 1
1 1 0 0 1 1 1

 .

(7)

λ =

 0 1 0 1 0 1 0
0 0 1 0 1 1 1
1 1 0 0 0 m m

 .

λ =

 0 1 0 1 1 0 1
0 0 1 1 0 1 1
1 1 0 0 0 m m

 .
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