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Chapter 1

Introduction

In toric geometry, there is a well-known one-to-one correspondence between
toric varieties and complete fans or underlying simplicial complexes, up to
certain equivalence relations (refer to [6] and [10]). This means that in order
to study toric varieties it suffices to study their corresponding fans or under-
lying simplicial complexes which are combinatorial and so somewhat more
tractable. Our primary goal in this thesis is to apply this strategy to classify
real quasi-toric varieties or more specifically real quasi-toric manifolds over
certain simplicial complexes.

In order to explain our results more precisely, we first need to set up
some notation and basic definitions, as follows. To do so, recall that a fan
in the vector space R™ is a collection of strongly convex rational cones such
that every face of cones and every intersection of a finite number of cones are
also in the fan. In addition, a fan is called complete if the union of all cones
covers the whole vector space R™, while a fan is called non-singular if one-
dimensional faces of each cone are unimodular in the lattice Z™ embedded
in R™. On the other hand, a fan is called simplicial if one-dimensional faces
of each cone are linearly independent in R™.

It is possible to think of a complete non-singular fan ¥ as a pair (Kx, )
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consisting of a underlying simplicial complex K and a characteristic map
A, where A is a map from the vertex set of K to the lattice Z™ obtained by
assigning a primitive integral vector to each vertex of K. Also, Ky (or X)
is called polytopal if there is an embedding of the geometric realization |Ky|
of K into R™ such that |Kx| is given by the boundary of the simplicial dual
polytope P* of a simple convex polytope P. If, in addition, P* contains
the origin and ¥ is given by the positive hulls of proper faces of P*, then
Ky, (or ¥) is said to be strongly polytopal. It is well known that the toric
variety associated to a strongly polytopal fan is projective. By abuse of
terminology, in this thesis we will just say that the corresponding fan or
underlying simplicial complex is projective. Recall also that a simplicial
complex K is fan-like if there is a complete fan ¥ whose underlying simplicial
complex Ky is exactly same as K.

In the papers [7] and [§], Davis and Januszkiewicz and Hattori and Ma-
suda generalized the notion of a toric manifold to several categories of man-
ifolds equipped with torus actions. Among other things, a torus manifold of
dimension 2n, first introduced in [§], is defined to be a closed orientable man-
ifold which admits an effective T"-action with the non-empty fixed point set.
Here, when S' denotes the unit circle of complex numbers in C, 7" means
the product (S')" of n copies of S'. By definition, any toric manifold is
clearly a torus manifold. On the other hand, a quasi-toric manifold of di-
mension 2n, first introduced in [7], is defined to be a closed smooth manifold

with an effective T™-action satisfying the following two conditions:

e The torus action is locally standard in that it is locally isomorphic to

the standard action of T on R2".

e The orbit space is homeomorphic to a simple convex polytope of di-
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mension n.

It is obvious to see that every quasi-toric manifold is a torus manifold.
There exist other general notions of a toric manifold such as the topological
toric manifold which will not be dealt with in this thesis (see [9] for more
details).

There are several general ways to construct a quasi-toric manifold. One
of them we want to present in this thesis goes as follows. That is, given a sim-
ple convex polytope P, let F denote the collection of all facets Fi, Fa, ..., Fiy,
of P, and let

A F =7

be a characteristic function on F such that
(1) A(F;) is a primitive vector for each i € [m] :={1,2,...,m}, and

(2) for a non-empty P; := NierF; for I C [m], A(F;)’s are linearly inde-

pendent over Q.

For a non-empty Py, we can form an abelian subgroup 77" of T™ generated
by A(F;)’s for i € I. Then one can construct a manifold X (P, \) by using

the quotient space

X(P,A)=(PxT")/ ~.
Here, the equivalence relation ~ on the product space P x T™ is given by
(z,t) ~ (y,s) if and only if z =y and t s € TP,

where I is a subset of [m] such that P; is the minimal face of P containing
x = y. The manifold X (P, \) is usually called a quasi-toric manifold, and, in

general, X is just an orbifold. Further, it admits a T™-action induced from
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the natural T™-action on the second factor of P x T™ whose orbit space is

P itself. Hence there is a quotient map
m: X(P,\) — P=X(P,\)/T".

For the sake of simplicity, we shall also use the notation X for X (P, \)
if there is no confusion. One typical example of a toric manifold can be
provided by the natural action of 7™ on the complex projective space CP"
associated to the n-simplex A™. See [3], [4], and [7] for more details.

Since the dual P* of P is a simplicial polytope, the characteristic map
A induces a complete non-singular characteristic map A on K := 9P* that
is a polytopal sphere, so that we can obtain a pair (K, \).

Instead of S! and T, one may repeat the above construction with Zy =
{0,1} and

Ly =779 X -+ X La

n times

to obtain a real quasi-toric manifold X (P, Ar) of dimension n for a char-
acteristic function A\g : F — Z§. However, note that the image A(F;) of
a characteristic function Ag is always primitive and that every linearly in-
dependent vectors in Z% is a part of a basis of Z3. So the quotient space
X (P, A\g) with the quotient map 7 : X (P, A\g) — P is always smooth. As
in the case of X(P,\), X(P,Ar) has a Zj-fixed point if and only if P has
a vertex. As in the case of X (P, \), we shall also use the notation Xg for
X (P, \r) if there is no confusion.

One example of a real quasi-toric manifold can be given by the natural
action of Z§ on the real projective space RP" associated to the n-simplex
A", When P is a simple convex polytope, Xg is very often called a small

cover in the literature (see [7]).

Collection @ chosun



There is a well-known operation, called a simplicial wedge operation,
from abstract simplicial complexes with n vertices to another abstract sim-
plicial complexes with n + 1 vertices (see [I] and [2]). That is, for a sim-
plicial complex K with n vertices and any sequence J = (j1,52,.-.,jn)
of positive integers we can construct a new simplicial complex K (J) with
d(J) = j1+ jo + - - - + jn vertices, called a simplicial wedge complexes. Such
a simplicial wedge complex K (J) is obtained inductively by starting from
K and applying the simplicial wedge operation to one of the vertices of K.
More specifically, as above let K be a fan-like simplicial complex in R™ with
vertices wi,ws, ..., wy, and let v = wy be a vertex of K. Then we can ob-
tain the simplicial wedge complex wedge,(K) := K(2,1,1,...,1) obtained
by applying the simplicial wedge operation to K at v.

Our main concern in this thesis is to investigate quasi-toric or real quasi-
toric manifolds over the simplicial wedge complexes K (J). It is well-known
that every simple polytope of dimension n with not more than n + 3 facets
has a corresponding standard Gale diagram on R? (see [5, Section 6] for
more details). It is also true that two simple polytopes of dimension n with
n + 3 facets are combinatorially equivalent to each other if and only if their
standard Gale diagrams coincide after some orthogonal transformation of
R? onto itself. This means that we can classify simple polytopes with n 4 3
facets in terms of their standard Gale diagrams in R2. This is exactly the
way we take in this thesis to quasi-toric manifolds, and first we consider the
regular 6-gon Py for the standard Gale diagram on R?. As a consequence,

first we can obtain the following result.

Theorem 1.1. Up to rotational symmetry of Ps and basis changes of 73,
any complete non-singular fans over Pg can be determined by one of the

following, not necessarily exclusive, seven characteristic matrices:
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\_(10101a
“\o11101)
(2)
101 a1l
A_(01 1 1>'
(3)
\_(10101a
“\o10101)
(4)
101011
)\_<01a101>'
()
v_(to1o10
“\01a111)
(6)
\_(1to01010
“\0101a1)
(7)
\_(1 011 atla
“\lot11o0 1 1)

Here, a is an arbitrary element of Zo = {0, 1}.

As an immediate consequence of Theorem [I.I} we have the following
classification of real quasi-toric manifolds over a simple convex polytope

whose dual boundary simplicial complex is FPs.

Corollary 1.2. Any real quasi-toric manifold over a simple convex polytope
whose dual boundary simplicial complex s Ps can be completely determined

by one of the seven characteristic matrices appearing in Theorem [1.1]
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Next we want to explicitly determine all possible complete non-singular
fans (or equivalently, real quasi-toric manifolds) corresponding to simplicial
wedge complexes Ps(J) of the regular 6-gon Ps. That is, our main theorem

is

Theorem 1.3. Up to rotational symmetry of Ps and basis changes of 73,
any complete non-singular fans over Pg(2,1,1,1,1,1) can be determined by

one of the following, not necessarily exclusive, ten characteristic matrices:

(1)
0 1 1 1 a
A= 0 1 01 0 1
1 1 0n 0 m
(2)
0101 a1 1
A= 001010 1
1 1.0 0n 0 m
(3)
01 01 0 1
A= 001 01 1
1 10 0 n 0 m
(4)
01 01011
A= 001l «a 1 0 1
1 10 0 n 0 m
(5)
01 001 010
A= 001 a1 1 1
11 0 0
(6)
01 0 1 1
A= 010111
1 1 0 0 1 1
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0 1
0 0
11

O = O
o O =
S — O
Q
S ~ o

—_
—_
—_
—_
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[an)}
—_
[an}
—
—_
—_

(10)

01 0110 1
1 1
1 10 0 0 a a

—
—_

A( )
D]
A( )
(1)

Here, a,n, and m are all arbitrary elements of Zs.

As an immediate consequence of Theorem we have the following
classification of real quasi-toric manifolds over a simple convex polytope

whose dual boundary simplicial complex is Ps(2,1,1,1,1,1).

Corollary 1.4. Any real quasi-toric manifold over a simple convex polytope
whose dual boundary simplicial complex is Ps(2,1,1,1,1,1) can be completely

determined by one of the ten characteristic matrices appearing in Theorem

3

We organize this paper, as follows. In Chapter [2, we briefly review basic
facts regarding simplicial wedge complexes.

In Chapter [3], we give proofs of Theorems and by the detailed
case-by-case analysis of the characteristic matrices over the regular 6-gon Fg

and its simplicial wedge complex Ps(2,1,1,1,1,1).

Y ) ) ) )
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Chapter 2

Simplicial wedge complexes

The aim of this chapter is to briefly collect basic facts necessary for the proof
of main results given in Chapter
A simplicial complex K on a finite set V is a collection of subsets of V'

satisfying
(1) if v € V, then {v} € K,
(2) ifc € K and 7 C 0, then 7 € K.

Each element o € K is called a face of K. V = [m] is a set of vertices.The
dimension of ¢ is defined by dim(o)=|o| — 1. The dimension of K is defined
by dim(K) = max{dim(c)| o € K}.

There is a useful way to construct new simplicial complexes from a given
simplicial complex. We briefly present the construction here. Let K be a
simplicial complex of dimension n — 1 on vertices V' = [m]| = {1,2,...,m}.
A subset 7 C V is called a non-face of K if it is not a face of K. A non-face
T is minimal if any proper subset of 7 is a face of K. Note that a simplicial
complex is determined by its minimal non-faces.

In the setting above, let J = (j1,...,Jm) be a sequence of positive inte-

gers. Denote by K(J) the simplicial complex on vertices

10

Collection @ chosun



{11,...,1j1,21,...,2j2,...,ml,...,mjm}

with minimal non-faces

{G)1,.-, (il)jil (i2)1, -, (ig)ji27 s ()1 (Zk)]zk}

for each minimal non-face {i1, ... i} of K.
There is another way to construct K (J) called the simplicial wedge con-
struction. Recall that for a face o of a simplicial complex K, the link of o

in K is the subcomplex
Lkxo:={re K|cUT€e K, oNT =02}

and the join of two disjoint simplicial complexes K; and K> is defined by
KixKy={01Uog | 01 € K1, 09 € K3}

Let K be a simplicial complex with vertex set [m] and fix a vertex i in
K. Let I denote a 1-simplex whose vertices are 71 and 49 and let 91 denote
the boundary complex of I consisting of two vertices i1 and is. Now, let
us define a new simplicial complex on m + 1 vertices, called the simplicial

wedge of K at i, denoted by wedge;(K), by

wedge; (K) = (I * Lkg{i}) U (81 x (K \ {i})),

where K \ {i} is the induced subcomplex with m — 1 vertices except i. The
operation itself is called the simlplicial wedge operation or the (simplicial)
wedging.

It is an easy observation to show that wedge;(K) = K(J) where J =
(1,...,1,2,1,...,1) is the m—tuple with 2 as the i—th entry. By consecutive

application of this construction starting from J = (1,...,1), we can produce

11
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K(J) for any J. Although there is some ambiguity to proceed from J =
(Ji,--ydm) to J" = (J1,-- - dj—1,Ji + 1, Jit1,-- -, Jm) if Ji > 2, we have no
problem since any choice of the vertex yields the same minimal non-faces of
the resulting complex wedge, (K (J)) = K(J') keeping in mind the original
definition of K(J). In conclusion, one can obtain a simplicial complex K (.J)
by successive simplicial wedge constructions starting from K, independent

of order of wedgings.

Example : Simplicial wedge complexes

1 2

1 2 2

Figure 2.2: Py — P4(2,1,1,1)

12
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T g
L N\
4
1 4
—2
i 3
2 3 5

Figure 2.3: P — P5(2,1,1,1,1)

2 3

Figure 2.4: Py — Ps(2,1,1,1,1,1)

13
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Chapter 3

Main results: Proofs of
Theorems (1.1 and 1.3

The aim of this chapter is to provide the proofs of Theorems [I.1] and [I.3]in
detail.

3.1 Proof of Theorem [1.1]

We begin with the proof of Theorem To do so, up to a basis change of
73 we may assume without loss of generality that the characteristic matrix

A has the following form. That is,

(101 by
N0 1 a c e 1)

By the positiveness of the characteristic matrix A , the following system of

equations
ctab=1
be+cd=1
d+ef=1

holds. Then we divide the proof into several cases, as follows.

14
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1. a = 0. In this case, the system of equations becomes

c=1
be+d=1
d+ef =1.

Thus,
be+ef =0,

e(b+f)=0.

(3) e=0, b+ f=0

o1 0101
“\o01010 1)

2. b= 0. Then the system of equations is reduced to

c=1
d=1
ef =0.

15
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v_(to1o010
“\0101a1)

3. a#0,b+# 0. Then, as above we have the following system of equations

c=0
et+cd=1
d+ef =1.

(1) e=1,d+f=1
(10 f+1 f
)‘_(0 1 1 1>'

To sum up, we can obtain the following theorem.

11
10

Theorem 3.1. Up to rotational symmetry of Ps and basis changes of 73,
any complete non-singular fans over Pg can be determined by one of the

following, not necessarily exclusive, seven characteristic matrices:

(1)
v_(to1o01y
_<011101>'
(2)
101 f11
A:<0101o1>'
? 10101 f
A:<01 101)'
W 101011
A:<01 1 1)'
(5)
A:<101010>
01 a1l 1 1)
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\_(1010 10

“\0101a1)
(7)

(1011 ft1f

“\o110 1 1)

Here, a and f denote an arbitrary element of Zo = {0,1}.

3.2 Proof of Theorem [1.3

Next we start the proof of Theorem . To do so, for each d with 1 < d <7
let Ay = (v1,v2,...,v6) be one of the seven cases as in Theorem We then
perform a wedge operation on the facet 1 and rename facets by 11, 19, 3,4, 5,
and 6. Let A be a characteristic matrix for the wedged polytope wedge; Ps =
Ps(2,1,1,1,1,1). Note that the facet {11,i,i+1},i € Zg, of Ps(2,1,1,1,1,1)
corresponds to a vertex of the boundary of the dual of Py(2,1,1,1,1,1),

where we choose 7 so that neither 7 nor 7 + 1 is same as 1.

Now we choose a basis of Z3 such that
e A\(1;) = (0,0,1)T,
e \(2) = (v],0)T, and

* A(3) = (v§,0)"

Then the matrix A for Ps(2,1,1,1,1,1) should be of the following form:

1, I, 2 3 4 5 6

0 V1 V2 V3 V4 V5 Vg

0

1 ni 0 0 ng N5 Ng AXT

A=

where n; is the unknown and j is not equal to ¢. It is easy to see that at

least we can obtain nq = 1. This is because we have
det(A(12)A(2)A(3)) = det(A(11)A(2)A(3)) =1

17
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by the positiveness of A. As a consequence, we have the following form for

the characteristic matrix:

< U1 V2 VU3 Vg U5 Vg >
1 0 0 ng N5 Ng 3%6
Starting from the above preliminary calculation, we can now determine

A for each seven characteristic matrices Ay as in Theorem [3.1

In case of (1) in Theorem observe first that A should be of the form

01010 1 f
A=10010 1 0 1
1 1 0 0 ng Ny MNg
Since
det(A(12)A(A)A(5)) = det(A(1)A(DA(B)) = 1
and
1 0 1
0 1 O0|=14+n5=1
1 ng nNs

by the positiveness of A, we have ns = 0. Therefore, the characteristic

matrix for the case (1) in Theorem [3.1]is of the form

f

0
1 1

01
A=100
11

S = O

1
0
0 Ny Ng

1
0
0
Similarly, in the case of (2) in Theorem [3.1] A should be of the form

0101 f 1 1
A= 0010 1 0 1
1100n4n5n6

Thus, it is easy to see that the characteristic matrix for the case (2) in

Theorem [3.1] is of the form

01
A=100
11

Collection @ chosun



The cases of (3) and (4) in Theorem can be dealt with in a similar
way. So these cases will be left to the reader.

For the case of (5) in Theorem as above A should be of the form

01 01 0 1 0
A=1 001 a 1 1 1
1 1 0 0 ng ny ng

1 0 1
0 1 1|=14n4+n5=1.
1 ng nNs

and
1 1 0
0 1 1|=1+n5+ng=1
1 ny nNg

by the positiveness of A.

It is now straightforward to obtain the following equations
nga=0, ng+n5s=0, ns+ng=0.

19
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If n5 = 0, then we have ng = 0 and ngy = 0. On the other hand, if ns = 1,
then we have ng = 1, ny = 1, and a = 0. Therefore, A for the case (5) in
Theorem [B.1] should be of the form

0 1
A=100
1

—
—_
O Q =
—
O = =
O = O

or
0

1
10 01

Similarly, in the case of (6) in Theorem [3.1) we can show that A is of the

—_
(e}
=

A=

—_ = =

0
1
1

= o O
[a)
—
[a)

form
0101 0 1 0
A= 001 01 a 1
1 1 00 N4 0 Ne
or
01 01010
A= 0010111
11 00111
Finally, for the case of (7) in Theorem as in the above cases we may

assume that )\ is of the form

0101 1 f+1 f
A=100 11 0 1 1
1 1 0 0 ng ns ne
Since
det(A(12)A(3)A(4)) = det(A(11)A(3)A(4)) =1
and

1 1
1 0j=14m=1
0 ny

—_ O =

by the positiveness of A, we can obtain ny = 0. Note that the following facts

hold:

20
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1 f+1 f 0 f+1 f
0 1 11=10 1 1}=1.
1 ns Neg 1 ns Ng

(f+1+N+ns+ne=1=f+1+f=1
by the positiveness of A.

Since 2f = 0, it follows from ns 4+ ng = 0 that we can set m = ns = ng.

Therefore, we can see that A for the case (7) in Theorem is of the form

01010 1 O
A= 0 0 1 0 1 1 1
1 100 0 m m
or
01011 0 1
A=1001 10 1 1
1 100 0 m m

Consequently, we can summarize the above calculations, as follow.

Theorem 3.2. Up to rotational symmetry of Ps and basis changes of 73,

any complete non-singular fans over Pg(2,1,1,1,1,1) can be determined by

one of the following ten characteristic matrices:

(1)

o
—
O =
—
~

—
—_
@)
ja)

n40n6

—_
—_
S

n40n6

21
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) |

f
1

0n6

1
0

0
1

01 01
1100”4

0010

-
-

)
).

1
0

0
1

11007140716

01 01

001 a

S — O
— = O
S —~H O
— 3 O
S~ O
— O
o O
N—————

I

\A

) |

S~
—
S~
— o O
S~ O
— O
o O
SN——
I
~<

o)_
).

1
a

0
1

0101
11 0 0 ng 0 ng

-

1

0010

S o~ o~
— —
S~ o~
— O O
S —H O
— O
o O
N—————

Il

~<

0
1

1
1

01010
00101

11000m’m)

-
-

1
1

0
1
1 1.0 0 0 m m

01011
00110

) |
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