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Chapter 1

Introduction

Torus actions on topological spaces are classical and have very rich the-
ory. In particular, the algebro-geometric part of the theory is usually
called toric geometry and studies the geometry of toric varieties which
has been greatly developed by Danilov, Oda, Fulton, and Ewald (see
(7], [11], [10], and [9]). One special feature of toric geometry is that
the orbit space of the torus action carries a very rich combinatorial
structure. In other words, in many cases studying the combinatorics
of the orbit space provides the most efficient and useful way to un-
derstand the topology of a toric space itself. Moreover, this procedure
can be completely reversed. It means that the equivariant topology
of a torus action very often makes us to understand and prove many
combinatorial results of the orbit space.

A toric variety of complex dimension n is a normal algebraic variety
with an algebraic action of torus (C*)" with one dense orbit which ex-
tends to the variety itself. In [8], Davis and Januszkiewicz introduced a
topological analogue, called the quasi-toric manifold, of a non-singular
toric variety in algebraic geometry, and the geometry and topology of
quasi-toric manifolds has become one of the most interesting topics in
toric topology. An n-dimensional convex polytope is called simple if
the number of codimension-one faces (or facets) meeting at each ver-
tex is exactly equal to n. Roughly speaking, a quasi-toric manifold
of dimension 2n is a smooth closed manifold with a locally standard
(S")"-action whose orbit space is a simple convex polytope of dimen-
sion n. In [8], there is also one important (S')™-space Zk, called the
moment-angle complex, for each simplicial complex on the vertex set

[m] :={1,2,...,m}.
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A family of closed manifolds is called cohomologically rigid if a co-
homology ring isomorphism implies a diffeomorphism for any two man-
ifolds in the family. Recently, in [4] Buchstaber, Erokhovets, Masuda,
and Park show the cohomological rigidity for 6-dimensional manifolds
defined by 3-dimensional polytopes. To be more precise, they con-
sider the class of 3-dimensional combinatorial simple polytopes, differ-
ent from the 3-simplex, whose facets do not form 3-belts as well as
4-belts. Those 3-dimensional class is called the Pogorelov class, and it
turns out that they are simple polytope with only 5-gonal and 6-gonal
facets.

The main aim of this thesis is to extend the results of Buchstaber,
Erokhovets, Masuda, and Park to certain simple polytopes of dimen-
sion 4. To do so, we first introduce a notion of the generalized Pogorelov
class consisting of certain 4-dimensional simple polytopes which is anal-
ogous to that of 3-dimensional simple polytopes. Let P be a convex
polytope of dimension n. P is called a flag polytope if every collection
of its pairwise intersecting facets has a nonempty intersection. A k-belt
in P is a cyclic sequence

Bk:(Fi Ek)

137
of k > 3 facets in which pairs of consecutive facets (including { F}, , F;, })
are adjacent, other pairs of facets do not intersect, and no three facets
have a common vertex.

The Pogorelov class P consists of simple 3-dimensional polytopes
which are flag and do not have 4-belts of facets. It is not difficult
to see that, in particular, any polytopes in P do not have triangular
and quadrangular facets. On the other hand, the generalized Pogorelov
class first introduced in this thesis is the collection of simple 4-polytopes
P> which are generalized flag, and do not contain generalized 6-helts,
and H'(K;) = 0 with |J|. Here K or Kp (resp. K;) denotes the
dual complex (resp. full subcomplex) of a simple convex polytope .
In particular, above two conditions translate to the absence of 3-belts
and 4-belts. Moreover, it is easy to see that any convex polytope in
the Pogorelov class belongs to the generalized Pogoelov class.

With these understood, our main result is

Theorem 1.1. Let P be a simple 4-polytope such that

(1) it does not have any generalized 4-belts,

“Collection @ chosun



(2) it does not have any generalized 6-belts, and
(3) HY(K,) =0 for |J| =1T.
Assume that there is a ring isomorphism
H(Zc,) & H'(Zc,)

for some other simple 4-polytope P' Then P’ also satisfies the above
three conditions (1). (2), and (3).

We organize this thesis, as follows. In Chapter 2, we give precise
definitions of the generalized flag polytope and generalized k-belt in
a simple polytope. As mentioned ahove, a generalized analogue of
Pogorelov class P is the collection of simple 4-polytope P which are
generalized flag, and do not contain generalized 6-belt, and satisfies
HY(K;) =0 with |J| = 7.

In Chapter 3, we review some definitions and basic properties of
Tor-algebra and Koszul algebra. There are isomorphisms

H*(Z) = Torgu, ... v (K[K], K)

as multi-graded commutative algebras, and H*(R*(K)) is also isomor-
phic to H*(2x) as cohomology algebras. We explain all of these facts
precisely in Chapter 3.

Finally, in Chapter 4 we state and prove our main results regarding
the B-rigidity of certain 4-dimensional polytopes.
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Chapter 2

Generalized Pogorelov
classes

The primary aim of this chapter is to introduce the notion of the gen-
eralized Pogorelov classes which plays an important role throughout all
of this thesis.

First, we briefly explain the definition of convex polyhedron P first.
A convex polyhedron P is an intersection of finitely many half-spaces
in some R™:

P={zeR": (liz) > —a; i=1,-+- ,m},

where [; € (R")* are some linear functions and a; € R, i =1,--- ,m.
A (convex) polytope is a hounded convex polyhedron. A set of m > n
hyperplanes (l;,z) = —a;. [; € R")*, z € R", a; € R, i =1,---.m
is in general position if no point belongs to more than n hyperplanes.
That is, there are exactly n facets meeting at each vertex of P". Such
polytopes are called simple. Note that cach face of a simple polytope
is again a simple polytope.

Next, we give the definition of a flag polytope. Refer to [5] and [6]
for more details.

Definition 2.1. A simple polytope P is called flag if ‘every collection
of its pairwise intersecting facets has a non-empty intersection.

For example, when the facets are all one-dimensional case, note that
the boundaries OA? and 917 of the 2-simplex A? and the square I?,
respectively, are flag complexes. On the other hand, it is easy to see
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that A® is not a flag complex, while 12 is a flag complex. Note also
that the n-simplex A™ (n > 3) is not a flag complex.

Figure 2.1: Flag polytopes.

Figure 2.2: Examples of non-flag or flag polytopes.

For the purposes of this thesis, we need the notion of a generalized
flag polytope, as follows.

Definition 2.2. A simple polytope P is called a generalized flag poly-
tope if every collection of its triply intersecting facets has a non-empty
intersection. '

A 3-simplex A? is not a generalized flag ploytope, so that every
generalized flag polytope is not always flag. However, it follows from
its definition that every flag polytope is always a generalized flag one.
Note also that the square /? is a generalized flag polytope as well as a
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Figure 2.3: An example of a non-flag polytope.

flag one by the very definition. On the other hand, the 2-simplex A?
is a generalized flag, but not simply flag, polytope by Definitions 2.1
and 2.2.

L

Wrevonvsnn

.-

*
*
®
%

Figure 2.4: A generalized flag polytope.

It is not difficult to see that the 3-cube I* is a generalized flag
polytope. More generally, the n-dimensional cube I" (n > 1) is a
generalized flag polytope.
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Recall that a k-belt in a simple polytope is a cyclic sequence
Bl\":(Fle”':P‘l;k): k“23

facets in which pairs of consecutive facets including {F;,, I, } are ad-
jacent, other pairs of facets do not intersect, and no three facets have
a common vertex. We also need the notion of a generalized k-belt, as
follows.

Definition 2.3. A generalized k-belt in a simple polytope is a cyclic
sequence (I, -+, F;,) of k > 4 facets such that

(1) every triple of three consecutive facets is adjacent,
(2) other triples of facets do not intersect, and
(3) no four facets have a common vertex.

Next, we have the following lemma.

Lemma 2.4. A simple 4-polytope P # A* is a generalized flag polytope
if and only if it does not contain a generalized 4-belt.

Proof. (=) suppose that P contains a generalized 4-belt, that is, there
exists an a cyclic sequence (Fy, Fy, Fy, Fy) of facets such that

(1) Fj, Fiyy, and F; are adjacent for ¢ mod 4,
(2) other triples of facets do not intersect, and

(3) FiNFyNF;NFy has no common vertex, that is, FyNFaNF3NFy =
.

Then {Fy, Fy, Fy, Fy} is a collection of facets with triply intersecting
facets such that Fy N Fy N Fy; N Fy = &. This immediately implies that
P is not a generalized flag polvtope.

(<) Suppose that P is not a generalized flag polytope. Then there
exists a collection of triply intersecting facets whose intersection is
empty, that is, there exists an {F). Fy,--- , F,} of facets such that
for any distinct 4,j. k € [m] = {1,2,--- ,m}

FNF,NF,=@and [|F=2.

i=1
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Note that m > 4 and all facets of a simple convex polytope are trans-
verse. Thus, F; N F; N F}, (# @) consists of common edges.

Assume first that m > 5. If some (ollectlon {F.,,Fi,, Fi,, F;,} hasan
empty intersection, then {F;,, F},, F},, F;,} will be a Generahzed 4-belt
we want to find. On the other hand, if any collection {F},. F,,, F},, F}, }
happens to have a non-empty intersection, then there should be another
facet Fj different from all of F,, F},, I}, , and F}, such that the collection

21

{ 119 12’ E4*Fj}

has an empty intersection. This is because our simple convex polytope
P is not equal to A?. Hence, we may assume without loss of generality
that m = 4. This implies that {Fy, Fy, F3, Fy} forms a generalized
4-belt for P. This completes the proof of Lemma 2.4. O

Recall that the Pogorelov class consists of simple 3-dimensional
polytopes which are flag and do not have 4-belts of facets. Now, we
generalize the notion of a generalized Pogorelov class, as follows.

Definition 2.5. A generalized Pogorelov class P is the collection of
simple 4-polytopes P which are generalized flag, and do not contain
generalized 6-belts, and H'(K,;) = 0 with |J| = 7.

Note that this definition is equivalent to the condition that a simple
4-polytope P # A* does not contain any generalized 4-belts and 6-
belts.

As in the usual Pogorelov class, we have the following lemma.

Lemma 2.6. For a simple 4-polytope P € P, there are no A3 or I3
facets in P, where A? denotes the 3-simplex and I® denotes the cube
of dimension 3.

Proof. Suppose that P has A% as a facet. Then, there is a collection
{F, Fz, Fy, Fy} of facets around A? with triply intersecting facets such
that ﬂz 1 Fi = @ (see 2.5). Hence, P is not a genelallzed flag. This is
a contradiction.

On the other hand, suppose that P has I as a facet Then, there is
a generalized 6-belt, that is, there is a cyclic sequence (F, Fy, -« - , Fy)
satisfying three conditions in the definition of a generalized 6-belt (see
2.6). But clearly this is a contradiction, completing the proof of Lemma
2.6. O
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Figure 2.6: I®

The following lemma also plays a role in this thesis.

Lemma 2.7. For any three distinct facets F;, F;, and Fy of a simple
4-polytope P € P. there exists an v ¢ F; U F; U Fy.

Proof. Take any facet Fj such that F; # F;, F};, F},. Then, F; has at most
one 2-dimensional common face with F;. F};, and F}, respectively. But,
it follows from Lemma 2.7 that there exist at least 7 2-dimensional
faces in F). Thus. there exists at least one 2-dimensional face of F}
which does not lie in F; U F; U Fy. This clearly implies that there exists

10
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an r € Fj such that = ¢ I, U F; U Fy. This completes the proof. [
As a consequence, we have the following lemma.

Lemma 2.8. Let P be a simple 4-polytope. Then, P is a generalized
flag if and only if each facet F of P is surrounded by a generalized
k-belt.

Proof. (=) Suppose that P is a generalized flag polytope. Let F be
any facet of P, and let B = (Fj,,--- , F},) be a cyclic sequence of facets
of P adjacent to a facet F' such that three consecutive facets intersect.
Clearly, such a sequence B exists, since P is simple and so exactly four
facets meet at each vertex. Note that k > 4 and that if k = 4, then
P ~ A* since F;, N---N F;, # @ and is a vertex of P. But this
is a contradiction. Recall that A? is not a generalized flag polytope.
Now. if k& > 5, then it follows from the proof of Lemma 2.6 that £ > 7.
Furthermore, by the way of the choice any four of B does not intersect.
Thus, B is a generalized k-belt.

(<) We first the case that P ~ A*. Then P is not a generalized
flag polytope and no face of A? is surrounded by a k-belt (k = 4, in
fact), since all four surrounding facets should meet as a vertex and so
they cannot be a 4-belt. Thus, in this case (<=) holds to be true.

Next, assume that P % A? and that P is not a generalized flag
polytope. Then there should be a generalized 4-belt

(Fi F; Fia' Fi4)‘

11 2?

Let I := Fj,. Then, we see that Fj,, F;, and Fj, are all adjacent to F
by the definition of 4-belt. But, since F; NF;,, NF,, N F;, = &, F,,, F,,
and F;, are not consecutive, this implies that we cannot surround F' by
using a k-belt. This is because in order to surround F by consecutive

facets, we would have
FﬂFh mF’/"z N F/s OFM 7é 2.

for some facets Fj,, F},, Fj,, and F};, of P. So P would not be simple.
But this is a contradiction. O

Finally, we need the following lemma for the proof of our main
Theorem 1.1.

il
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Lemma 2.9. For any facet F; of a generalized flag 4-polytope P, there
is another facet Fy such that F; N F; = @.

Proof. By the above Lemma 2.8, each facet F; is surrounded by a k-
belt Bi. Note that 9P — By consists of three dimensional components.
So we can always choose any F} in the interior of the components of
0P — By is possible. which will prove the lemma. O

12
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Chapter 3

Cohomology of
moment-angle complexes

In this chapter, we quickly review the cohomology of moment-angle
complexes. Here we consider the cohomology with coefficients in K.
Let Afuy, -+ ,uy] denote the exterior algebra on m generators over K
satisfying the relations

42 — it ad
u; =0, wu; = —uju;.

The Koszul complex, or the Koszul algebra, of the face ring K[K] is
defined to be the differential Z ¢ Z"-graded algebra

(Alug, -+ ,unm © K[K], d),
where the multi-degrees of u; and v; are
(—1,2¢;) = —eg + 2¢;. and (0,2¢;) =0 ey + 2¢;,

respectively, and
du; = v;, dv; = 0.

Then, the cohomology of (Aluy, -+, u,] @ K[K], d) is called the Tor-
algebra, denoted Torgj,.... | (K[K], K). Notice that there is also a
Z & Z™-grading on -

Torge, - ,om] (K[K], K)
inherited from Afuy, -+, u,] @ K[K]. It is known that
H™(Zx) = Torgu, ... v, (K[K], K)

13
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as multi-graded commutative algebras, and

H_i.Z](Z/C) O Tor_i’QJ (K[K]a K)’

Kv1,e um]

where J = (j1.-++ ,jm) € Z™ and |J| = j1 + -+ + jm. Furthermore. we
have

H(Zc) = P H (2.

—i+2|J|=1

Let
R*(K) = Aluy, - ,um] ® KK]/(v? =u0;,=0, 1 <5 <m),

where K is a simplicial complex as the vertex set [m] = {1,2,--- ,m}.
Then, R*(K) is a finite-dimensional vector space over K, even though
Alug, -+ ,uy] ® K[K] is infinite-dimensional over K. Note that there
is an isomorphism of cohomology algebras

H*(R*(K)) = H"(Zk).

For J = {Ji, -+ ,jx} C [m]. we denote by v, the square-free monomial
Vi, Uk € Koy, oo, o).
Similarly, we let uy = wji.--+ ,u, € Afug, -+, up]. We use
ugvy = uy ¥ vy

in Alug, -+, up) ® K[K]. Then, it follows from the definition of R*(K)
that R*(K) has a finite K-basis of square-free monomials u vy, where
J C ml,leK,and JNI=@. For J C [m], K; ={l € K|] C J}
is called the full subcomplex of IC. It is known that

A1 (K) = Torg? (KK, K)

Klv1, \vm]

and that o o
H—Z‘QJ(ZK) ~ H|J|—z—1(ICJ)

Thus we can obtain
HI(ZK) o @ Hl-lJl“l(]CJ).

JC[m)

14
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as k-modules. Here we have | = —i+2|J|. In fact, a simple computation

shows
H(zo) = @ B2
—i+2|J|=l
- D 1K)
—i+2|J|=l
= @f[IJH(l—?IJI)—l(;CJ)
JC[m]
= P 7k,
JC[m]

As a consequence. we have
H*(Zc) = €D H*(K)),
JC[m]

as a ring isomorphism, and the ring structure is given by

ﬁk—lll—l(}CI) 2 H=VI1(KC,)

— f[k_’_l_ll‘_“]l_l(}C[UJ) forIn.J =@,
which is induced from the simplicial inclusion

Ky +— K; * K.

Now, we recall the following general fact which appears in [5, Propo-
sition 2.20].

Proposition 3.1. H3(Zy) is freely generated by the cohomology classes
(wv;] for pairs (i, ), i # j such that {i,j} ¢ K. Moreover, if K = Kp
for a simple polytope P. then [u;v;] corresponds to pairs of non-adjacent
facets Iy and TI';.

For an illustration of Proposition 3.1, we give an example, as follows.

Example 3.2. Let K be the union of two segments. Then nontrivial
integral cohomology groups of Zi are given with a basis represented
by algebra R*(K). Then we can find that

H%Z¢) = @ HO(K)) = 2z

[ J]=2

15
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Next we have the following computational result.

Proposition 3.3. Let P be a simple 4-polytope with m facets, and let
K = Kp be the dual simplicial complex of P. Then. we have

(H'(K,)

o

Z, k=0,

Dyt H(KS) © D= H'(K,), 1<1<5,

EB1J|=l—1 f{O(lC.,) o ®M:l—2 i:’rl(lc./)

@|J|:/—1 ﬁ“(’CJ) © @m:z—zﬁ]q@)
EB ®‘J‘=l—3 Hz(}CJ) EB ®‘J|=l~4 H‘;(}C‘]), 8 S l S m + 3
L0, otherwise,
where Zp = Zyx = Zk,.
Proof. By definition, we can show the following facts.
(1)
H“(Zp) _ @ ﬁ“*"]l*](ICJ)
JC[m)]
= @ oY1)
JC[m)]
= HYK,) ~ Z
(2)
H'(Zp) = @ HVI7(Ky)
JC[m]
= P 5K
JC[m]

{“/Collection @ chosun

H(K,) ® H'(KCy) (= 0).
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H*(Zp) = @ H*V(K))

JC[m)]
= @ ﬁl—IJI(}CJ)
JC[m)]
- P e @K
|J|=0 |J|=1
(HY(Ky) = Z, 1=0.

D=1 HO(K)) © D=2 HY(K,). 1<1<5,

@i.li:l—l HO(FJ) 52 @|,1|:1_2 Hl(’CJ)
® @M:las H*(K;), 6<1<7,

Byje HOKS) & @yymea H'(KY)

H'(Zp) = ¢ ® @y H(K)) & Dyym s H(KY), 8<I<m+1,

Do H'(Ks) & By HA(K))

® DBysjem_2 H(Ks). [ =m +2,
@‘J\:m FI2(’CJ> ® @\ﬂ:mfl HS(ICJ)* l=m+3,

Z\ l:'nl+4,

L0, otherwise.

= @|J|:2~1:1ﬁ1*1:“(}CJ) ® @].ﬂ:():?—?ﬁIUCJ) ® -

HZe) = @ AU = @ V)
JCim)

: IChm]
= P HNK) @ @ aK) @ @ AK).

|J]=3 |J|=4 |J|=5

17
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H(Zp) = @ HV7K) = @ AV (Ky)

JC[m) JC[m)]

= P rKk/) 2 @ HYK) & @ H(K)

|J|=3 |J|=4 |J|=5

o @ K.

|J|=6

H(2p) = @ H V(K

JC[m)]

- P BK) e PEK) 2 @ HK)

|J|=4 |J|=5 |J|=6

e P k).

|J|=7

H(Zp) = €P HVI(K))
!

JCm

- o @HK) » PH(K) o P HK)

|J|=5 |J|=6 |J|=7

e P HK)).

|J|=8
For ¢ <1 <m+ 3, we can show the theorem in a similar way.
Finally, for the case of [ = m + 4 we have
H™4(Zp) = Z.
This is because Zp is smooth manifold for P polytope. Here, note that

HT”+4(ZP) — @ ﬁﬂL—[.]l-{-B(’CJ).

JC[m]
This completes the proof of Proposition 3.3. O

Remark 3.4. As a consequence of the above computations, we can see
that all non-trivial products in H*(Zp) are of the form

18
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(1) HYK;) ® H(K;) — HY (Ku)) InJ # 2,

(2) H(Kp) © H'(K;) — H*(Krg), or
HO(’CI) ® H? (’C 1) — f[d(}Cp) =7, or
HY(K;) ® H (iqm]_,) — BKp)2Z.

Note that H 3(K;) = 0if K, is 3-dimensional and has a boundary.

19



Chapter 4

Main results: Proof of
Theorem 1.1

The aim of this chapter is to give a proof of our main Theorem 1.1.
To do so, let P be a generalized flag 4-polytope, and let £ = Kp
be the dual simplicial complex of dimension 3. Assume that the above

two maps
(1) HY(K;) ® H°(K;) — HYKpus) INJ# @, and
(2) ”0( 1) ® :]1( J) — HX(Kpy), or
H“(KI) ® H*(K —I) = H'fi(/Cp)%Z, or
H'(K;) ® H! (’C[m — H3(Kp) = Z

are surjective. Then, we have the following lemma that is analogous to
Lemma 4.5 of the paper [4].

Lemma 4.1. Let P and Kp be as above. Then the ring
= @ 7K
JC[m)]
is multiplicatively generated by @Jg[m] HO(K ;).
We also need the following lemma.

Lemma 4.2. A simple 4-polytope P # A* with m facets is generalized-
flag if and only if any non-trivial cohomology class in H™ 3(Zp) is
decomposable. As a consequence, if H" *(Zp) = 0. then either P is
generalized-flag or P ~ A*.

20
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Proof. (=) Suppose that P is not a generalized flag polytope. Then,
there is a generalized 4-belt {F}y, Fjs. Fj3, Fj4}. Equivalently, there is
a minimal missing 3-face J = {Jji,J2,js. ja}. This gives a non-zero
cohomology class

a€ H"(Zp) c H'""(Zp) = H(Z2p)
represented by, say, 1, - ;050053054 Note that
d(ujr - vj1---vj4) = 'vf-l'ng oy =0,
Now, consider the Poincare duality pairing
H™3(2Zp) @ H'(Zp) — H™(Zp) = Z
which restricts to
H~(m=5)2(m|=J) o, H_1‘2'](Zp) = H—("l—4)-2[7'1](zp) ~ 7

Let 8 € H-(m=3)2(ml=))(Zp) ¢ H™=3(2Zp) such that a-f is a generator
of H=m=92ml(z,) =~ 7 Note that

H-(m—s)z({m]—J)(ZP) o ﬁ()(,c[m]_])
and that H "(IC[,,,,,]_J) has no indecomposable element. Hence, we have
found an in-decomposable element 3 € H™3(Zp).

Next, suppose that P is a generalized flag polytope. It follows from
Proposition 3.3 that

Hm~3(zp) o @ ﬁO(ICJ) & @ ﬁl(]CJ)

|J|=m—4 |J|=m—5

o P K)o @ HK).
|J|=m—6 |J|=m—7

By considering the Poincare duality pairing

F]()(]CJ) X EQ(K:[m]—J) — F[B(}C[m]) =7

and K being generalized-flag, note that ]’EIQ(IC[.,”‘]*J) = 0 for |J| = m—4,
since there is no missing faces with 4 vertices. Thus, we can obtain

P HK,) =0,

|J[=m—4
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and so we have

H™(Zp) = @ HY(K,)) @ @ H*(K)) & @ HA(K).

|J|=m—5 [J][=m—6 |J|=m~—T7

This implies that each non-zero element of H™ 3(Zp) is decomposable.
O

Theorem 4.3. let P be a generalized flag 4-polytope. Assume that
there is a ring isomorphism

H*(2p) = H*(Zp)

for some other simple 4-polytope P'. Then, P’ is also generalized-flag.
Thus, the property of being a generalized flag 4-polytope is B-rigid.

Proof. Suppose that P’ # A" is not generalized flag. Then, there is
a non-trivial indecomposable element in

Hm—S(ZP) ~ Hm—:j(ZPl>.

Thus, there is also an indecomposable element in H™ 3(Zp). This
implies that P cannot be a generalized flag polytope. This is a con-
tradiction. Now, it remains to show that P’ # A If P/ ~ A%
then P’ has 5 facets. Since H*(Zp) = H*(Zp), J — H. P has also
5 facet. Hence m = 5, that is, P ~ A% up to the combinatorial
equivalence. Note that A* is not a generalized flag polytope. But it is
again a contradiction. O

In order to deal with 6-belts, we need the following lemma.

Lemma 4.4. Let P be a simple 4-polytope such that 1~11(’CJ) =0 for
|J| = 7. The product H*(Zp) ® H*(Zp) — H°(Zp) is trivial if
and only if P does not have any 6-belt.

Proof. (=) Suppose that P has a 6-belt, say {F}1,---, Fig}. Then, by

the definition of a 6-belt there is a corresponding 2-cycle {iy, iy, -+ ,ig}
in Kp that forms an octahedron. That is, we have the following Figure
4.1

Hence, {1,2,5} ¢ K = Kp and {3,4,6} ¢ K. Thus, we have a
non-trivial product

HO(IC{Lz,s}) & ﬁ](lc{a,z;,s}) — F[:S(]C{l.z---,ﬁ})-
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Figure 4.1

(<) Suppose that there is a non-trivial product
HY(Zp) @ HY(Zp) — HY(Zp).
Note that
Mz = @ mk)e @ k)o@ k) o K,

|J]=5C[m] [J[=6 |J]=7 |J|=8

and that elements of 170(IC_;) are indecomposable. By assumption,
H'(K;) =0 for |J| = 7. Thus, we have

e (zp) = @ K, e P K, o @ HK,).

|7|=5 |J|=6 |J]=8

Note that an element of H*(K,) with |J| = 5 can be decomposed
into a product if and only if there should be a product

H(Ky) ® HA(Ky) — HY(Ky)
with [J;| = 2 (resp. 3) and |Jo| = 3 (resp. 2) such that J = J;|JJa

and J;(J> = @. We next need to consider the following two cases
separately.
1) |Ji] = 2 and |J3| = 3 case;
HY(K;,) C H*(Zp) and HX(K,,) € HS(Zp)

23

)Collection @ chosun



This does not give a product of H*(Zp) ® H°(Zp) — H°(Zp).
2) |Ji| = 3 and |J| = 2 case;

H(K,) C HYZp) and HX(K,,) € H®(Zp).

But we have H2(K,) = 0, since K, with |J;| = 2 is a 1-dimensional
simplicial complex. Thus, this case does not vield a non-trivial product
of

H4(Zp) & HE(ZP) — HQ(ZP),

either.
As a consequence, this case does not yield a non-trivial product of

H4(ZP) &® HS(ZP) =} HQ(ZP)

Hence, it follows from H2(K;) with |J| = 6 that we should have a
6-belt.
This completes the proof of Lemma 4.4. O

Remark 4.5. We remark that an argument similar to the proof of
Lemma 4.4 does not rule out the case of H'(K;) for |J| = 7. This
is because it is possible for

ﬁO(ICJ']) ® ﬁ()(}CJ2> — gl(’CJ)

with J = J;J J; and J; () Jo = @ such that |J;| = 3 and |Jo| = 4 to
give a non-trivial product of

HY(Z2p) ® H*(Zp) — H°(Zp).

Theorem 4.6. Let P be a simple 4-polytope without generalized 6-belts
such that H'(KC;) = 0 with |.J| = 7. Assume there is a ring isomorphism

H*(Zp) = H*(Zp)

for some other simple 4-polytope P'. Then, P’ also does not have any
6-belts.

Proof. The proof follows immediately form the above Lemma 4.4. [

Finally, we can conclude this thesis with the following theorem
(Theorem 1.1).
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Theorem 4.7. Let P be a simple 4-polytope such that

(1) it does not have any generalized 4-belts.

(2) it does not have any generalized 6-belts. and

(3) HYK,) =0 for |J] = 1.
Assume that there is a ring isomorphism

H*(2p) = H'(Zp)

for some other simple 4-polytope P'. Then P’ also satisfies the above
three conditions (1), (2), and (3).
Proof. The proof follows immediately from Theorems 4.3 and 4.7. O

Finally, it remains to prove Lemma 4.1 given at the beginning of
this chapter. To do so, we begin with recalling a definition. That is,
an element in a graded ring is called decomposable if it can be written
as a sum of non-trivial products of elements of non-zero degree.

Now, we want to give a proof of the following claim.

Lemma 4.8. Let P be a 4-polytope. and let be its dual simplicial com-
plex. Then, the ring H*(Zp) = @ng] H*(Ky) is multiplicatively
generated by €D ;i) HO(K,).

To show this Lemma 4.8, we want to show that each non-trivial

cohomology class in H'(K;) € H*(Zp) is decomposable, that is, the
product map

P HKy) @ H'(Kp) — H'(Ki)
I=1,J1

with I; N I # @ is surjective.

To prove it, we first set up some notations, as follows. Assume that
P has the facets Fy,-- -, F),. and we identify the set {Fy,---, F,} of
facets with [m]. For I C [m], we set

P = | JF; € 8P

iel
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Recall that there are Poincafe duality isomorphisms

.H3_L'(.P[,0P[) = Hi(’C]),
where
0Py ={x € P | thereexistsaj¢ I ; v € F;, i=0,1,2.3}.

As in the case of 3-polytope, P; is just a disjoint union of several 3-
handlebodies with some smaller 3-handlebodies deleted, and 9P; is a
disjoint union of several 2-spheres. In terms of the cellular homology
theory, H;(P;,0F;) has the following interpretation. That is, let

Py o= P,,U.-,UP,k

that is the decomposition of P; into its connected components. Then,
the following statements are true:

(1) H3(P;,0F;) is a free abelian group with a basis of homology
classes

[Ps] = D[Rl 1<k

s € 1y

(2) Hy(Pr.OP) = @, Hy(Pp,0Py) and Hy(Ppy, 0Pp) is a free
abelian group with a basis consisting of 2-dimensional surfaces
whose boundaries lic on JP;;.

(3) Hi(Pr,0P)) = @, Hi(P;;.0Py;) and each Hy(Pp;.0Py) is a
free abelian group with rank one less than the number of bound-
ary components of 0F;;.

(4) Ho(P;,0P;) = Z,if I = [m], and 0, otherwise.
Let A

_ , Hi(Py,0P)), i=0,1,2,
'Hi quP =
e {Hj(P"OP’)KZiEI[Fi”a i =
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Then, we have
H;_;(P;,0P) = H'(K;), i=0,1,2,3,

and so

@Ub (Kn) ® HY(K,) — H'(K;)

I=Ty

can be re-written as

(4.1) P Hs(Pr,,0P,) ® Hy(Pr,,0P,) — Hy(Pp.oPy),
=1L L

where

[Prr] ® [Prg] — [Pr» N Prgl.

[1=[%U...UI;"1 and[z:[;U...U];z’

where 1 < p < sy, 1 < g < sy for some sy, 59 € N,

Here,

[P O Pyg] = [fi] + -+ [f+];

where each f; is represented by a 2-dimensional surface S; in PIP N P,g
whose boundaries lic on dP;p U 9Pps. Let W) be the handlol)ody in
P; bounded by S; whose boundaries lie on 0P, and let Wy be the
complement of W in P;. We assume that W;, i = 1,2 consists of facets
of P. So that

W, C Py, i=12and I,Ub: I

Let
0= [fs] € Hy(Pp,,0Pr), i=1,2.

sel;

Then, a;-a; = [f;]. This implies that the map (4.1) should be surjective.
This completes the proof of Lemma 4.1.
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