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Chapter 1

Introduction

Our main aim of this thesis is to characterize the properties of a multi-fan
and its associated multi-polytope in terms of the so-called winding numbers.
A multi-fan is a generalization of an ordinary fan which has been introduced
by Hattori and Masuda in the [4]. Similar but more restricted notions were
previously introduced by Karshon and Tolman in [5] and also by Khovanskii
and Pukhlikov in [6]. Tt was called a twisted polytope by Karshon and
Tolman, and a virtual polytope by Khovanskii and Pukhlikov.

One importance of the notion of a multi-fan lies in the fact that we can
associate a multi-polytope of dimension n to a torus manifold of dimension 2n
with an effective action of the n-dimensional torus 7. So this correspondence
is at least surjective, but its injectivity is not yet obvious. However, if we
restrict our attention to the class of ordinary polytopes, then it is known that
this correspondence is bijective, up to certain equivalence (refer to [2], 3, &]).

One crucial difference between a multi-fan and an ordinary fan is that
in case of a multi-fan the maximal cones can overlap several times but also
appears repeatedly. So we need to keep track of the occurrence of the maxi-
mal cones by using the notion of the weight function. Associated to a given
multi-polytope P, Hattori and Masuda have also defined a function DHp,

called the Duistermaat-Heckman function, which is completely analogous to
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the case of an ordinary polytope.

As expected, it turns out that the Duistermaat-Heckman function also
reflects the important property of a multi-polytope that some maximal cones
can appear repeatedly and also overlap several times. Moreover, it is easy to
see that the Duistermaat-Heckman function of an ordinary polytope P has
the value equal to one for each point in the interior of P and vanishes outside
of it. This calculation indicates some strong possibility that one may detect
an ordinary polytope in terms of the Duistermaat-Heckman function. This is
a starting point of the thesis [1], which shows the validity of our expectation
in detail.

In the paper [4], Hattori and Masuda have also introduced the function
WNp, called the winding number, of a multi-polytope P. In some sense, the
winding number WN, has more geometric meanings than the Duistermaat-
Heckman function DHp. Namely, one can figure out more easily how many
times certain maximal cones overlap and appear repeatedly. Furthermore, it
has been shown in [4] that the Duistermaat-Heckman function coincides with
the winding number. Hence, it follows from a result of [I] that the winding
number WNp of an ordinary polytope P has the value equal to one for each
point in the interior of P and vanishes outside of it. The aim of this thesis
is to give a direct proof of this fact.

In order to describe our main result, we first need to set up some ter-
minology and notation, in more detail. Indeed, let N be a lattice of rank n
which is isomorphic to Z", and let M be the dual lattice Hom(N,Z). Let
Ng = N ®z R, and let Mz = Hom(Ng,R). A multi-polytope P is a pair
(A, F) of an n-dimensional multi-fan A = (2, C,w*) and an arrangement
F = {F;} of affine hyperplanes F; in the dual space Mg with the same index
set as the set of one-dimensional cones in A.

The primary aim of this thesis is to give some criteria for a multi-fan to

be an ordinary fan in terms of the winding numbers. As said before, a cone
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in a multi-polytope can appear more than one time with different indices. If
a maximal cone in C'(X) appears more than one time with different indices,
then we shall assume that the weight function w has the same value for each

repeated maximal cone. With these understood, our main result is

Theorem 1.1. Let A = (X, C,w¥) be a complete and simplicial multi-fan
such that the weight function w = w™ —w™ is not zero, and P be its associated

multi-polytope. As a geometric realization, then A is an ordinary fan if and

only if the winding number WNp defined over V := Mg\ U?Zl F; satisfies

1, wePnV,

0, otherwise

We organize this thesis, as follows. In Chapter [2] we collect some basic
material about ordinary fans and set up notations necessary for the rest of
this thesis. Chapter [3|explains how to define a multi-fan as well as some easy
exmaples, in detail. In Chapter [d, we compare two important notions of this
thesis: an ordinary polytope and a multi-polytope. In the same chapter, we
also provide many examples in order to help readers to understand certain
similarities and differences between ordinary polytopes and multi-polytopes.
In Chapter [f], we briefly explain how to define the Duistermaat-Heckman
function of a multi-polytope. This chapter is necessary only for the proof of
Theorem [I.T], but we do not pursue it in this thesis, in more detail. Finally,
Chapter [] is devoted to giving the proof of Theorem [I.1]
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Chapter 2

Ordinary fans

The aim of this chapter is to collect basic material about ordinary fans and
set up notations necessary for the rest of this thesis.

To do so, let N be a lattice of rank n which is isomorphic to Z". We denote
the real vector space N ® R by Nr. A subset o of Ny is called a strongly
convex rational polyhedral cone with apex at the origin if there exists a finite

number of vectors vq,...,v,, in N such that
o={rv+ 4+ ruv,|r € Rand r; >0 for all i},

and
onN(—o)={0}.

Here what we mean by rational is that it is generated by vectors in the lattice
N, and a cone is said to be strong if it contains no line through the origin. As
usual, we often call a strongly convex rational polyhedral cone in Ng simply
a cone in N.

The dimension dim o of a cone ¢ is defined to be the dimension of the
linear spanned by vectors in . A subset 7 of ¢ is called a face of o if there

is a linear function
l: NR — R
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such that [ takes nonnegative values on ¢ on 7 = [71(0) N o. A cone is

regarded as a face of itself, while others are called proper faces.

Definition 2.1. A fan A in N is a set of a finite number of strongly convex

rational polyhedral cones in N such that

(1) Each face of a cone in A is also a cone in A,

(2) The intersection of two cones in A is a face of each.

Definition 2.2. A fan A is said to be complete if the union of cones in A

covers the entire space Ng.

A cone is called simplicial if it is generated by linearly independent vec-
tors. If the generating vector can be taken as a part of a basis of N, then

the cone is called non-singular.

Definition 2.3. A fan A is said to be simplicial (resp. non-singular) if every

cone in A is simplicial (resp. non-singular).

Let us denote by Cone (N) the set of all cones in N. An ordinary fan is a
subset of Cone (V). The set Cone (N) has a partial ordering < defined by :
7 X vif7is aface of v, and 7 < v if and only if 7 is a proper face of v. The
cone {0} consisting of the origin is the unique minimum element if Cone(N).

On the other hand, let ¥ be a partial ordering finite set with a unique
minimum element. We denote the strict partial ordering by < and the mini-
mum element by *. An example of ¥ used later is an abstract simplicial set
with an empty set added as a member, which we call an augmented simplicial
set. In this case the partial ordering is defined by the inclusion relation and
the empty set is the unique minimum element which may be considered as a
(—1)-simplex.

Suppose that there is a map

C': 3 — Cone (N)

6
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such that

(1) C(x) = {0},
(2) If I < J for I,J € %, then C(I) < C(J),

(3) For any J € ¥ the map C restricted on {/ € ¥ | I < J} is an isomor-
phism of ordered sets onto { K € Cone(N) | K < C(J)}.

For an integer m such that 0 < m <n we set
2 .={Tey | dimC(I) =m}

One can check that (™ does not depend on C. When ¥ is an augmented
simplicial set, I € ¥ belongs to ™ if and only if the cardinality || of I is
m, namely [ is an (m — 1)-simplex. Therefore, even if ¥ is not an augmented
simplicial set, we use the notation || for m when I € £™. The image C(X)
is a finite set of cones in N. We may think of a pair (3, C) as a set of cones
in N labeled by the ordered set . Cones in an ordinary fan intersect only at
their faces, but cones in C(X) may overlap, even the same cone may appear
repeatedly with different labels. The pair (X, C) is almost what we call a
multi-fan, but we incorporate a pair of weight functions on cones in C'(X) of

the highest dimension n = rank N. More precisely, we consider two functions
wi : Z(n) — ZZO

We assume that wt(I) > 0 or w=(I) > 0 for every I € 2™,

* are called weight functions, and have its ori-

These two functions w
gin from geometry. In fact, if M is a torus manifold of dimension 2n and
it M;,,---,M,, are characteristic submanifolds such that their intersection

contains at least one T"-fixed point, then the intersection

My = (M, I={ir,... i}

ij el
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consists of a finite number of T"-fixed points. At each fixed point p € M| the
tangent space T, has two orientations; one is endowed by the orientation of
M and the other comes from the intersection of the oriented sub-manifolds
M;,. If we denote the ratio of the above two orientations by ¢,, then the
number w™(I) can be thought of the number of points p € M; with €, = +1,

and similarly for w™ (7). In this thesis, only the difference

plays an important role, as we can see in later chapters.
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Chapter 3

Multi-fans

In this chapter, we briefly recall some basic terminology and definitions nec-
essary for later discussion. Most of the material of this chapter is taken from
the paper [4].

We begin with the definition of a multi-fan, as follows.

Definition 3.1. We call a triple A := (3, C, w*) a multi-fan in N. We define
the dimension of A to be the rank of N (or the dimension of N ).

Since an ordinary fan A in NV is a subset of Cone (NV), one can view it as
a multi-fan by taking ¥ = A, C' = the inclusion map, w" =1, and w™ = 0.
In a similar way as in the case of ordinary fans, we say that a multi-fan
A = (3,0, w*) is simplicial (resp. non-singular) if every cone in C(X) is

simplicial (resp. non-singular). The following lemma holds.

Lemma 3.2. A multi-fan A = (X, C,w*) is simplicial if and only if 3 is

1somorphic to an augmented simplicial set as partially ordered sets.

For the case of multi-fans, the definition of completeness is more involved
than that of an ordinary fan. Asin the case of ordinary fans, the completeness
of a multi-fan might be defined to be the union of cones in C(X) covers the

entire space Ng, but it turns out that it is not so useful.
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V2 Y V2 Vi1

A ra
%él‘ V4 Va
V3 Vi
ordinary-fan multi-fan

Figure 3.1: Examples of an ordinary fan and a multi-fan

In order to obtain more consistent and useful definition of the complete-
ness of a multi-fan, we first need to introduce an intermediate notion of
pre-completeness, as follows. A vector v € Ny is called generic if v does
not lie on any linear subspace spanned by a cone in C'(X) of dimension less
than n. For a generic vector v, we set d, = Xyconw(/), where the sum is

understood to be zero if there is no such /.

Vs V3

Figure 3.2: A complete non-singular multi-fan

Example 3.3. Here is an example of a complete non-singular multi-fan of

degree two. Let vy, ..., v5 be integral vectors shown in Figure 3.2, where the

10
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dots denote lattice points. The vectors are rotating around the origin twice

in counterclockwise. We take

N=Ao {1}, {55 {1, 2}, {2,3}, {3, 4}, {4,5}, {5, 1}},
define C' : ¥ — Cone (N) by
C({i}) = the cone spanned by v,
C({i,i+ 1}) = the cone spanned by v; and v;,1,
where ¢ = 1,...,5 and 6 is understood to be 1, and take w® such that

w = 1 on every two dimensional cone. Then A = (X, C,w?*) is a complete

non-singular two-dimensional multi-fan with deg (A) = 2.

With this understood, we are ready to give a definition of a complete

multi-fan.

Definition 3.4. We call a multi-fan A = (2, C,w?*) of dimension n pre-
complete if £ = 0 and the integer d,, is independent of the choice of generic
vectors v. We call this integer the degree of A and denote it by deg (A).

Note that for an ordinary fan, pre-completeness is the same as complete-
ness.

Assume n = dim A > 1. For each {i} € (), the projected multi-fan
Ay = gy, Crays wﬁ}), which we abbreviate as A; = (%;, C;, wi), is defined
on the quotient vector space V\V; of V' by the one-dimensional subspace V;
spanned by v;.

To define the compeleteness for a multi-fan A\, we need to define a pro-
jected multi-fan with respect to an element in . We do it as follows. For
each K € X, we set

Yp={JeX K< J}

It inherits the partial ordering from 32, and K is the unique minimum element
in ¥g. A map
Ck : B — Cone( N

11
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sending J € Yx to the cone C(J) projected on (N))g satisfies the three

properties above required for C. We difine two functions
Wit E%_IKD cx® Lq

to be the restrictons of w* to E%_‘Kl). The triple Ak = (U, Cx,wi™) is
multi-fan in N and this is the desired projected multi-fan with respect to
K € 3. When A is an ordinary fan, this definition agrees with the previous

one.

Definition 3.5. A pre-compelete multi-fan A = (X, C,w*) is said to be
complete if the projected multi-fan A is pre-complete for any K € > .

Example 3.6. Here is an example of a multi-fan which is pre-complete but

not complete. Let vy, -+, v5 be vectors shown in next Figure [3.3] We take

=V1:V4

V3

Figure 3.3: pre-complete

Y= {¢7 {1}7 SE) {5}’ {17 2}7 {27 3}7 {37 1}7 {4a 5}}’
define C': 33 — Cone(N) as in Example [3.3 and take w® such that

w({1,2}) = 2,w({2,3}) = L,w({3,1}) = Lw({4,5}) = — L.

12
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Then A = (%, C,w*) is a two-dimensional multi-fan which is pre-complete
(in fact, deg(A) = 1) but not complete because the projected multi-fan Ay

for i # 3 is not pre-complete.

13
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Chapter 4

Polytopes and multi-polytopes

The aim of this chapter is to collect some fundamental facts regarding or-
dinary polytope and multi-polytopes. This chapter largely depends on the
paper [4].

A convex polytope P in V* = Hom (V, R) is the convex hull of a finite set
of points in V*. It is the intersection of a finite number of half space in V*
separated by affine hyperplanes, so that there are a finite number of nonzero

vectors vy, - -+ ,vg in V' and real numbers ¢y, - - - , ¢4 such that
P={ueV"| (u,u;) < for all i},

where ( , ) denotes the natural pairing between V* and V.
A polytope gives rise to a multi-fan in this way, and note that a convex
polytope gives rise to a complete fan. Conversely, we now start with a com-

plete multi-fan A = (3, C,w®*). To do so, let HP(V*) be the set of all affine
hyperplanes in V'*.

Definition 4.1. Let A = (3,C,w?*) be a complete multi-fan and let F :
Y — HP(V*) be a map such that the affine hyperplane F(I) is perpendic-
ular to the half line C'(I). That is, any element in C(/) takes a constant on
F(I). We call a pair (A, F) a multi-polytope, and denote it by P. The di-

14
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mension of a multi-polytope P is defined to be the dimension of the multi-fan

A. We say that a multi-polytope P is simple if A is simplicial.

Example 4.2. A convex polytope determines a complete fan together with
an arrangement of affine hyperplanes containing the facets of the polytope,

so it uniquely determines a multi-polytope.

Example 4.3. Associated with the multi-fan in Example|3.3] one obtains the
arrangement of lines with a suitable choice of the map F. The pentagon pro-
duces the same arrangement of lines and can be viewed as a multi-polytope as
explained in Example above, but these two multi-polytopes are different
because the underlying multi-fans are different; one is a multi-fan of degree
two while the other is an ordinary fan. The reader will find a star-shaped

figure in the former multi-polytope.

F({5})

Figure 4.1: Multi-polytope for

15
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Chapter 5

Duistermaat-Heckman
functions

Before giving a proof of our main Theorem in Chapter [0 in this chapter
we review the definition of the Duistermaat-Heckman function associated
to a complete and simplicial multi-polytope which is closely related to the
notion of the winding number.

A multi-polytope P = (A, F) defines an arrangement of affine hyper-
planes in V*. Then we can associate with P a function on V* minus the
affine hyperplanes when P is simple. This function is locally constant and
Guillemin-Lerman-Sternberg formula tells us that it agrees with the density
function of a Duistermaat-Heckman measure when P arises from a moment
map.

From now on, every multi-polytope P in this thesis will be assumed to
be simple, so that the multi-fan A = (3, C,w*) is complete and simplicial
unless otherwise stated. As before, we may assume that X consists of subsets
of {1,---,d} and XM = {{1},--- ,{d}}, and denote by v; a nonzero vector
in the one-dimensional cone C({i}). To simplify notation, we denote F({i})
by F; and set

Fy:=()Fifor I €X.

el

16
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Then F7 is an affine space of dimension n — |I|. In particular, if |I| = n (i.e.,
I € (), then F} is a point, denoted by u;.

Suppose now that I € X(™. Then the set {v; | i € I'} forms a basis of
V. Denote its dual basis of V* by {u! | i € I}, i.e., (ul,v;) = &;;, where §;;
denotes the Kronecker delta. Take a generic vector v € V. Then (ul,v) # 0
forall I € ™ and i € I. Set

I

1 : I
(_1)1 — (_1)#{iel|(uf,vj)>0}’ and (uI)Jr — U, lf <uiavj> > O,
—u;, if (u;,v;) <O0.

We denote by C*(I)*" the cone in V* spanned by (u!)™’s (i € I) with apex

at uy, and by ¢y its characteristic function.

Definition 5.1. We define a function DHp on V*\ U?:l F; by

DHp := Y (=1)'w(I)¢r,

Iex(®)

and call it the Duistermaat-Heckman function associated with P.

Note that the function DHp depends on the choice of the generic vector
v € V. But it turns out that it is independent of v on V*\ |J F;. This is the
reason why we restricted the domain of the function to V*\ | £i.

In case of dim P = 1, it is more easier to see the independence of a generic
vector v for the Duistermaat-Heckman function, as the following example

shows.

Example 5.2. Suppose that dim P = 1, and identify V with R. So V* is
also identified with R. Let E be the subset of {1,...,d} such that i € F
if and only if C'({i}) is the half line consisting of nonnegative real numbers.

Then the completeness of A means that

(5.1) Yo w({ih) =) w({i}) = deg(A).

icE i¢E

17
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Take a nonzero vector v. Since V* is identified with R, each affine hyperplane
F; is nothing but a real number. Suppose that v is toward the positive

direction. Then

, -1, ifieFk
(5.2) GRS S
1, ifi ¢ F,
and the support of the characteristic function ¢y;, is the half line given by
{ueR|F, <u}.

Therefore

(5.3) DHp(w)= Y —w({ih+ D w({i}).

i€EE s.t. Fj<u i¢E s.t. Fi<u

for u € R\ U F;. If u is sufficiently small, then the sum above is empty, so it
is zero. If u is sufficiently large, then the the sum is also zero by . Hence
the support of the function DHp is bounded.

Now, suppose that v is toward the negative direction. Then (—1)¥} above
is multiplied by —1 and the inequality < above turns into >. Therefore, we

have

(5.4) DHp(u)= > w{@i+ >  (—w({i}).
i€E st. u<F i¢E st u<F;
By subtracting the right hand side of (5.4]) from that of (5.3]), we can obtain
=y w({i}) + ) w{i}),
i€E i¢E
which is zero by (5.1)). This shows that the function DHp is independent of
v when dim P = 1.

Assume n = dim A > 1. For each {i} € %" recall that the pro-
jected multi-fan Agy = (E{i},C{i},wﬁ}), denoted by A; = (34, Ci, wT), can

18
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be defined on the quotient vector space V\V; of V' by the one-dimensional
subspace V; spanned by v;. Since A is complete and simplicial, so is A;. We

then identify the dual space (V/V;)* with
(V*); == A{u e V*|{u,v;) =0}

in a natural way. We choose an element f; € F; arbitrarily and translate F;
onto (V*); by —fi. If {i,j} € X® then F} intersects F; and their intersection
will be translated into (V*); by —f;. This observation leads us to consider
the map

F,:3; - HP((V"),)

sending {j} € 251) to F; N F} translated by —f;. The pair P; = (A;, F;) is a
multi-polytope in (V/V;)* = (V*),.

Let I € X(™ such that i € I. Since (ul,v;) = d;,ul for j # i is an
element of (V*);, which we also regard as an element of (V/V;)* through
the isomorphism (V/V;)* = (V*);. We denote the projection image of the
generic element v € V on V/V; by 9. Then we have (7,u}) = (v,u}) for

j # i, where u} at the left-hand side is viewed as an element of (V/V;)*,

while the one at the right-hand side is viewed as an element of (V*);. Since
(0,uf) = (v,uf) # 0 for j # i, we use U to define DHp,.
The following lemma which is called a wall crossing formula plays an

important role in the proof of Theorem [L.1] given in Chapter [6]

Theorem 5.3 (Wall crossing formula). Let F' be one of F;’s. Let u, and ug
be elements in V*\ Ule F; such that the segment from u, to ug intersects
the wall F' transversely at 1 and does not intersect any other F; # F. Then

we have
DHPi (ua) - DHPz (uﬁ) = Z SigIl(Ug = Uq, vi>DHPi (:U“ - fz)

i F=F

19
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Proof. For the sake of simplicity, we assume that there is only one 7 such
thath F; = F. We may assume that (ug — 4, v;) is positive without loss of

generality. We can see one possible example in Figure [5.1]

Figure 5.1: Wall crossing formula

It follows from the definition of DHp that the difference between DH(u,,)
and DH(ug) arises from the cones C*(I)*’s for I € (™ such that i € I and

(ur,v) < (u,v). In fact, one sees that
DH(uq) + ) sign(uf, v)(=1)'w(I)¢;(1) = DHp(us),
I

where I runs over the elements as above. Since sign(u!, v)(—1)! = —(—1)\{#}

and w(I) = w;(I\{i}), the equality above turns into
DH(uq) — DHp(ug) Y (1), (1\{i}) 1 (1)-

Here ¢;(1) may be viewed as the value at u of the characteristic function of
the cones in F; with apex u; spanned by (uf)*’s (j € I,j # 4). This show
that the right-hand side at the equality above agrees with DHp, (1 — f;),

proving the theorem. 0

20
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Chapter 6

Proof of Theorem [1.1; winding
numbers

The aim of this chapter is to give a proof of Theorem [I.Il To do so, as
before we assume that the multi-polytope P with its associated multi-fan
A = (3, F,w%) is simple and that ¥ is an augmented simplicial set consisting
of subsets of {1,2,--- d}. As in the Duistermaat-Heckman functions, the
winding numbers we deal with in this chapter is a locally constant function
on Mg\ ngl .

Before starting the proof, we first set up some basic notations and def-
initions. Choose an orientation on Ng, and fix it once and for all. Let
I = {iy,iy,--+,i,} € X™. Then I is said to have a positive orientation if
the ordered basis {v;,, vy, -+, v;,} gives the chosen orientation of V', and is

said to have a negative orientation, otherwise. We also define

() (1,49, yin),  if (iy,49,+-- ,4,) has a positive orientation,
—(i1,49,++ ,in), 1if {i1,i9,-- ,i,) has a negative orientation.

It can be shown that the completeness of A implies that
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is a cycle in the chain complex of the simplicial set ¥. In fact, the following

lemma holds.

Lemma 6.1. If a simplicial multi-fan A is complete, then ) ;s w(I)(I)

1s a cycle, and, moreover, the converse also holds.

Proof. To prove it, we first need to show that

To do so, write

YowlIDh =) Y wl){).

Iex(m) =1 jerexn(n)

For each I € (™ with i € I, we also write (1), as follows.

<I> = €<i7j1aj27 e 7jn—1>7

where ¢ = 1 or —1. Then e(ji, ja, -+ , jn—1) defines an oriented (n — 2)-
simplex (7\{i}) in ©""Y. Thus we have
(6.1)
d
o D win ) =)0 > wii
Iex() =1 iclex(™)

— Z Z wi(N){(J), wi(J)=w(l)and J = I\{i},

=1 jex{n=b

= > Y. wd)] )

Jex(n=1) \ I>J with Iex(®)

> 2, wl)

Jex(n=1) \T1>J with Iex(n) veC(I)

+ > w(l) | (J).

I>J with Iex(™ veC(I)
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Here v is a suitable chosen generic vector. Now, note that the completeness
of A implies that

ed- Y wn-— Y
I>J with Iex(™) weC(I) I>J with I€X(™) v¢C(I)
since A is pre-complete for each J € X1, Thus it follows from (6.1]) that
we have
o Y w)) | =o.
Iex()

Conversely, since ), qm w(I)(I) is a cycle, the equation (6.1)) implies

that for each J € (1

> w(l) = — > w(I).
I>J with Iex(™) veC(I) I>J with Iex(™) v¢C(I)
But this implies that for each J € £~V the projected multi-fan (A, X, wf)

is pre-complete. Therefore, A is also complete (refer to [4], Section 2).
This completes the proof of Lemma [6.1] O

Definition 6.2. We shall denote by [A] the homology class that the cycle
> resim W(I)(I) defines in the reduced homology H, 1(%;Z).

Let S be the realization of the first barycentric subdivision of ¥. For each
i €{1,2,---,d}, we denote by S; the union of simplices in S which contains
the vertex {i}, and let S; = NM;¢;S; for I € 3. Note that the boundary 95S; of
S; can be identified with the realization of the first barycentric subdivision of
Yi, where ¥; is the augmented simplicial set of the projected multi-fan A; =
(34, Cs,wi) in Mr/(Mg);. Then, as before the cycle [A;] defines an element,
in }N[n,z(Zi, 7) = F[n,z(@Si; 7)) with respect to the compatible orientation.

The following lemma holds ([4], Lemma 6.1).
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Lemma 6.3. Under the compositions of the following maps

Hy (S;2) 2 H, (S, S\SS:Z) =

> H, 1(Si,05:7) 5 Ho 5(35:;Z),
the (n — 1)-cycle [A] is mapped to the (n — 2)-cycle [A;]

We also have the following lemma ([4], Lemma 6.2).
Lemma 6.4. The following statements hold.

(a) The multi-polytope P gives rise to a continuous map

VS — UL F,C Mg

under which St is mapped to Fy for each I € X.

Vi

W1

Fz2

V2

V3

V3

Figure 6.1

(b) The map v induces a homomorphism

Uy Hy1(S;2) =2 Hy (2, 7) — Hyy(Mg — {u}; Z)
for each u € Mg\ UL, Fj.
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We shall denote by [Mg—{u}] the fundamental class in H,_1 (Mg —{u};Z)
for each u € Mg\ UL, F;.

Definition 6.5. For each u € Mg\ UL, F;, we define an integer WNp(u) by
U+ ([A]) = WNp (u)[Mg — {u}],

and WNp(u) is called the winding number of the multi-polytope P = (A, F)

around u.

Remark 6.6. (a) If u is an element in one of the unbounded regions of
Mg\ UL, F;, then v,([A]) is homologous to zero. Thus the winding

number WNp(u) is always equal to zero.

(b) WNp(u) is a locally constant function on Mg\ UL, Fj, since [Mg —
{up}] is homologous to [Mg — {u;}], when ug and u; lie on the same

component of Mg\ UL, F;.

(¢) WNp(u) is independent of the choice of an orientation of V, since
reversing the orientation of V' changes the fundamental classes [A] and
[Mg — {u}] simultaneously by —[A] and —[Mg — {u}].

We orient F; so that the juxtaposition of a normal vector of F; to Fj is
oriented positively. Then ¢) maps a pair (S;, 05;) into a pair (F;, F; —{u}) for
any u € F; — Ujezgl) F;. Moreover, when we identify F; with (Mg); through
the translation by —f;, up to homotopy the map |gs, agrees with the map
constructed from the projected multi-polytope P; = (4A;, F;). Hence we have

Ua([As]) = WNp, (1 — fi)[Fs — {u}],

where v is an intersection point of the line segment ~ staring from v € V

with F}, if it is not empty. Then the following lemma holds ([4], Lemma 6.4).
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Lemma 6.7. For each u € V := Mg\ UL, F;, we have
WNp(u) = Y sign{y,vi) WNp, (1 — fi).
i with F;ny#£0
By using Lemmal6.7] it is immediate to obtain a wall crossing formula for

the winding numbers, as in the case of the Duistermaat-Heckman functions.

Theorem 6.8. Let F' denote one of the hyperplanes F;. Let u, and ug be
two elements in Mg\ UL, F; such that the segment y from u, to ug intersects
the wall F' transversely at pu, and does not intersect any other I; # F. Then,

we have
WNp(ua) = WNp(ug) = > sign{ug — tta, ve) WNp, (11 — f2).
k with Finy#£0
Proof. Let v, (resp. v5) be a line segment starting from u, (resp. ug) such
that the ending point of 7, coincides with that of 3. Then we may take
Y = Ya — V8, and so it follows from Lemma [6.7] that
WNp(ua) = WNp(ug) = Z sign(Ya, vi) WNp, (11 — f:)
7 with Fiﬂ’*/a#@

_ Z Sigﬂ(’m, U1>WNP¢ (Mj - fl)

J with F;nvyg#0

= > sign(ug — ue, ) WNp, (1 — fi),

k with F]JW'Y#@

as required. O

In fact, it turns out that the winding number WNp(u) coincides with the
Duistermaat-Heckman function DHp(u) for each u € Mg\ U, F}, as follows
([4], Theorem 6.6).

Theorem 6.9. For any multi-polytope P, we have DHp = WNp.

The aim of this section is to give a direct proof of the following theorem
without using Theorem [6.9
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Theorem 6.10. Let A be a complete and simplicial multi-fan, and let P be
its associated multi-polytope. Then P is an ordinary polytope if and only if
the winding number WNp defined over V := Mg\ UL, F; satisfies

1, uwePnV,
0, otherwise.

Proof. To prove it, assume first that the winding number WNp defined over
V = Mg\ UL, F; satisfies

1, wePnV,
0, otherwise.

Then we shall show that the multi-polytope P is a geometric realization of
an ordinary polytope by the mathematical induction on dim P. This proof
is similar to that of Theorem [T.1]

So assume that dim P = 1. As in the case of Duistermaat-Heckman func-
tions, we identify Ng with R, so that My is also identified with R. Assume
also that Np and My have the standard orientations. Let E be a subset of
{1,2,--- ,d} such that v; gives the orientation if and only if i € E. Note now
that

[A]= ) w{I) = w{i)(i) - Y w{i}){i)

Iex® i€E i¢E

(6.2) .
= =Y DTu({ih ).

Recall that the completeness of A implies that

d

(6.3) > (D)) =0,

i=1

or, equivalently

deg(A) =) w({i}) =Y w({i}).

icE i¢E
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As before, let us assume that

E= {j17j27"' 7jl}7
EC:{1727"' 7d}_E:{i17i27”' )lk}

such that

Fy <F;, <---<Fj, F,, <F,<---<F,, and Fj;, <0 <F}.

Figure 6.2

Then it is easy to see that S; = {i} and ¥ ({i}) = F,.

Next we claim that

(6.4) WNp(w) = ) (-D)Pw({i}) = Y ()W w({i}).

Fi<u Fi>u

Indeed, for any j € {1,2,--- ,d}, from the equations (6.2)) and (6.3)) we may

write
d
[A] = Z(—l)“}W({iD((ﬁ — (1))
Thus we have
U ([A]) = Z(—l){i}W({i})(w*(U)) — .((4)))

- Z(—U{”w({i})([m — [E])
= WNp(u)[ Mg — {u}].
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If u lies above F}, or lies below F;,, then [Fj| = [F}] in Mg — {u}. Thus
¥ ([A]) = 0, and so WNp(u) = 0. On the other hand, if u lies between Fj,

and F,,, then we have

[Fi] = [Fiy] = - = [Fy] = [F}] = - = [F},] in Mg — {u}.
Thus, by taking j = j; in the equation we have

U([A]) = (=) w{aH([F5] = [Fi]) = WNp (u)[Mr — {u}].

That is, WNp(u) = (=1)"w({i;}). Similarly, if u lies between F}, and F}

then we have

1

WNp(u) = 37 (1) Fhu({i}),

Fi<u
as claimed. The proof of other identity in (6.4]) is similar, and will be left to

the reader.
Next we are ready to finish the proof for the case of dimP = 1. So,
assume that [ > 2. Let u be an element between Fj, and Fj,. Then it follows

from (/6.4]) that we have

1 =WNp(u) = ) w({is}) —w({ji}),

s=1

where we use a generic vector v in the positive direction for the computations
of the sign (—1)¥}. On the other hand, if u lies between Fj, and Fj,, then

we have
k

1= WNp(u) =Y w({is}).

s=1
Thus we should have w({j;}) = 0. Similarly, we can show that w({j;}) =0
forall 1 <t <.

Using the second identity in and a generic vector v in the negative
direction, we can also show that w({is}) = 0 for all 1 < s < k. This implies
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that we would have WNp(u) = 0 for all u € V', provided that k or [ is greater
than or equal to 2. Therefore, kK = [ = 1. That is, P is actually a geometric
realization of an ordinary simple convex polytope, as desired.

Next assume that P > 1 and that the result holds for any multi-polytopes
whose dimension is less than n. If there is an interior wall in the interior of
the multi-polytope P, then we let u, and ug be two interior points of P
such that there is only one interior wall F; which intersects the line segment
between u, and ug. Then it follows from Theorem that

0=1-1= WNP(UQ) - WN’P(U/B)
= sign(ug — uqa, v;) WNp, (11 — fi).
Thus we have WNp, (1 — f;) = 0. On the other hand, by Lemma [6.3 and a

diagram-chasing in the proof of [4], Lemma 6.4 we can see that

0 =WNp, (1 — fi)[F; = {n}] = ¥u([A])
=1, 000E0i([A]) =001, o0& 0i[A]),

where € denotes the excision between H,,_1 (S, S\U;S7; Z) and &;H,,—1(S;, 0S;; Z).

Since 0 is an isomorphism, this implies that
0=t o&oi(A])
= WNp (u)[Mg — {u}] = [Mz — {u}].

This is a contradiction, which means that the multi-polytope P is actually a
geometric realization of an ordinary polytope.

For the proof of the converse, we also use the mathematical induction on
the dimension dimP. However, the case of dimP = 1 can be dealt with as
above, so it will be left to the reader.

Next, assume that dimP > 1. Note that it can be shown as in the case
of the Duistermaat-Heckman functions that the winding number WNp(u)
vanishes for any u in an unbounded region of V. So it suffices to show that

WNp(u) is equal to one for any u in the interior of P. To do so, we want to
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use the wall crossing formula (Theorem [5.3). Indeed, let uq (resp. ug) be an
element in the interior of P (resp. in an unbounded region of V') such that

the segment from u, to ug intersects a wall F; transversely at p only once.
Then it follows from Theorem [5.3] that

WNp<ua) - WNp(Uﬁ) = WNP(UQ)
= sign(us — ta, vi) WNp, (1 = fi)
=1,

where we used sign(ug — uq,v;) = 1 and WNp,(u — f;) = 1 by the mathe-
matical induction.
This completes the proof of Theorem [6.10] O
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