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I. INTRODUCTION

In [L.1, 2], M.C. Leung have studied the problem of scalar curvature func-
tions on Riemannian warped product manifolds and obtained partial results
about the existence and nonexistence of Riemannian warped metric with some

prescribed scalar curvature function.

In this paper, we study the existence and the completeness of some metric
with prescribed scalar curvature functions on some Lorentzian warped product

manifolds.

By the results of Kazdan and Warner ([K.W.1, 2, 3]), if N is a compact
Riemannian n—manifold without boundary, n > 3, then N belongs to one of

the following three categories :

(A) A smooth function on N is the scalar curvature of some Riemannian

metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian
metric on N if and only if the function is either identically zero or strictly

negative somewhere.
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(C) Any smooth function on N is the scalar curvature of some Riemannian

metric on V.

This completely answers the question of which smooth functions are scalar

curvatures of Riemannian metrics on a compact manifold N.

In [K.W.1, 2, 3], Kazdan and Warner also showed that there exists some
obstruction of a Riemannian metric with positive scalar curvature (or zero
scalar curvature) on a compact manifold. In [L.1, 2], the author considered
the scalar curvature of some Riemannian warped product and its conformal
deformation of warped product metric. And also in [E.J.K.], authors consid-
ered the existence of a nonconstant warping function on a Lorentzian warped
product manifold such that the resulting warped product metric produces the
constant scalar curvature when the fiber manifold has the constant scalar cur-
vature. Ironically, even though there exists some obstruction of positive or zero
scalar curvature on a Riemannian manifold, results of [E.J.K.], say, Theorem
3.1, Theorem 3.5 and Theorem 3.7 of [E.J.K.] show that there exists no ob-
struction of positive scalar curvature on a Lorentzian warped product manifold,

but there may exist some obstruction of negative or zero scalar curvature.
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In this paper, when N is a compact Riemannian manifold of class (B), we
discuss the method of using warped products to construct timelike or null fu-
ture complete Lorentzian metrics on M = [a,00) x¢ N with specific scalar
curvatures, where a is a positive constant. And we prove the existence of warp-
ing functions on Lorentzian warped product manifolds and the completeness of
the the resulting metrics with some prescribed scalar curvatures. These results

of this paper are extensions of the results in [J.L.L.].
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II. PRELIMINARIES

First of all, in order to induce a partial differential equation, we need some
definitions of connections, curvatures and some results about warped product

manifolds.

Definition 2.1. Let X (M) denote the set of all smooth vector fields defined
on M, and let (M) denote the ring of all smooth real-valued functions on M.

A connection V on a smooth manifold M is a function

Vo X(M) x X(M) = X(M)

such that
(D1) Vy W is (M)-linear in V,
(D2) Vy W is R-linear in W,
(D3) Vi (fW) = (VAW + FOW for f € S(M),
(D4) [V,W] =VyW — Vy V and
(D5) X < V,W >=<VxV.W >+ <V, VxW >

for all VW, X € X(M).

If V satisfies axioms (D1)~(D3), then VW is called the covariant derivative

of W with respect to V for the connection V. If V satisfies axioms (D1)~(D5),
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5
then V is called the Levi-Civita connection of M, which is characterized by the
Készul formula ([O.]).

A geodesic ¢ : (a,b) — M is a smooth curve of M such that the tangent
vector ¢ moves by parallel translation along c. In order words, ¢ is a geodesic
if

Ved =0 (geodesic equation).
A pregeodesic is a smooth curve ¢ which may be reparametrized to be a geo-
desic. Any parameter for which ¢ is a geodesic is called an affine parameter.
If s and t are two affine parameters for the same pregeodesic, then s = at + b
for some constants a,b € R. A pregeodesic is said to be complete if for some
affine parameterizion (hence for all affine parameterizations) the domain of the
parametrization is all of R.

The equation V.¢' = 0 may be expressed as a system of linear differential
equations. To this end, we let (U, (2!, 22, ..., 2™)) be local coordinates on M and
let 821, 0227 e axn denote the natural basis with respect to these coordinates.

The connection coefficients I'; of V with respect to (z!, 2%, ..., 2") are defined

by

E (connection coefficients).

&Uﬂ
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Using these coefficients, we may write equation as the system

d?z" " datda?
+ o T
di? = dt dt

©J=

=0 (geodesic equations in coordinates).

Definition 2.2. The curvature tensor of the connection V is a linear trans-

formation valued tensor R in Hom(X (M), X (M)) defined by :

R(X,Y) = VxVy — VyVx — Vixy.

Thus, for Z € X(M),

R(X,Y)Z =VxVyZ - VyVxZ — Vixy Z.

It is well-known that R(X,Y")Z at p depends only upon the values of X, Y and

Z at p ([0.]).
If we T;(M) is a cotangent vector at p and z,y,z € T,(M) are tangent

vectors at p, then one defines

R(w,X,Y,Z) = (w,R(X,Y)Z) = w(R(X,Y)Z)

for X,Y and Z smooth vector fields extending x,y and z, respectively.
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The curvature tensor R is a (1,3)-tensor field which is given in local coordi-

nates by

Z ’””a ® do’ @ da® @ da™

i,j,k;m=1

i .
where the curvature components R}, are given by

% a]'—‘?m 8112 - a % a 11
jkm T 8$kj - 8;1:"1 _'_Z(ijr ijrma)

a=1

Notice that R(X,Y)Z = —R(Y,X)Z, R(w,X,Y,Z) = —R(w,Y,X,Z) and

R’L — R’L

jkm Jmk:*

Furthermore, if X = > 272 Y =Y ¢+ “Z S22 and w =Y wda’

then
- > & ;
2 ghym -
i,5,k,m=1 Oz
and
R(w,X,Y, Z) Z ]kmwzzjx y™
i,j,k;m=1
Consequently, one has R(dz’, amk’ &?m am]) R;kmwizjxkym.
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Definition 2.3. From the curvature tensor R, one nonzero tensor (or its
negative) is obtained by contraction. It is called the Ricci tensor. Its compo-

nents are R;; = Y Rfkj. The Ricci tensor is symmetric and its contraction

S =31y Rijg” is called the scalar curvature ([A.], [B.E.], [B.E.E]).

Definition 2.4. Suppose () is a smooth, bounded domain in R", and let
g = x R — R be a Caratheodory function. Let uy € Hy*(R2) be given.

Consider the equation

Au=g(z,u) in Q

u=1uy on OS2

u € HY(Q) is a (weak) sub-solution if u <wug on 0 and

/Vqupdx—l—/g(a:,u)gpdng for all e CP(Q), ¢ >0.
0 Q

Similarly u € H"%(Q) is a (weak) super-solution if in the above the reverse

inequalities hold. We briefly recall some results on warped product manifolds.
Complete details may be found in [B.E.] or [O.]. On a semi-Riemannian product
manifold B x F. let m and o be the projections of B x F onto B and F/,

respectively, and let f > 0 be a smooth function on B.
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Definition 2.5. The warped product manifold M = B x; F' is the product

manifold M = B x F' furnished with metric tensor

g=1"(g5) + (fom)’c*gr

where gp and gp are metric tensors of B and F', respectively. In order words,

if v is tangent to M at (p, q), then

g(v,v) = gp(dn(v),dn(v)) + f*(p)gr(do(v),do(v)).

Here B is called the base of M and F the fiber (]O.]).

We denote the metric g by < , >. In view of Remark 2.13 (1) and Lemma

2.14 we may also denote the metric gg by < , >. The metric gr will be

denoted by ( , ).

Remark 2.6. Some well known elementary properties of warped product

manifold M = B x; F are as follows :

(1) For each ¢ € F', the map 7 |,-1(g)=px, is an isometry onto 5.
(2) For each p € B, the map 0 |r-1(y)=pxr is a positive homothetic map

onto F with homothetic factor ﬁ.
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(3) For each (p,q) € M , the horizontal leaf B x ¢ and the vertical fiber
p x F are orthogonal at (p, q).

(4) The horizontal leaf 07! (q) = B x ¢ is a totally geodesic submanifold of
M and vertical fiber 77!(¢) = p x F is a totally umbilic submanifold of M.

(5) If ¢ is an isometry of F', then 1 x ¢ is an isometry of M, and if ¢ is an
isometry of B such that f = (f o) then ¢ x 1 is an isometry of M.

Recall that vectors tangent to leaves are called horizontal and vector tan-
gent to fibers are called vertical. From now on, we will often use a natural

identification.

T(m)(B x5 F) = T(p,q)<B x F)=T,B xT,F.

The decomposition of vectors into horizontal and vertical parts plays a role

in our proofs. If X is a vector field on B, we define X at (p,q) by setting

X(p,q) = (Xp, 0g).
Then X is m-related to X and o-related to the zero vector field on F.

Similarly, If Y is a vector field of F, Y is defined by Y (p, q) = (0,, Y,).

Lemma 2.7. If A is a smooth function an B, Then the gradient of the lift

(hom) of h to M is the lift to M of gradient of h on B.
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Proof. We must show that grad(hom) is horizontal and 7-related to grad(h)

On B. If v is vertical tangent vector to M, then

< grad(hom),v >=v(how) =dr(v)h =0, since dn(v)=0.

Thus grad(h o ) is horizonal. If  is horizonal,

< dn(grad(hom)),dr(x) >=< grad(hom),x >

= x(how)=dnr(x)h < grad(h),dr(x) > .

Hence at each point, dr(grad(hom)) = grad(h). O

In view of Lemma 2.14, we simplify the notations by writing h for (how) and
grad(h) for grad(ho). For a covariant tensor A on B, its lift A to M is just its
pullback 7*(A) under the projection 7 : M — B That is, if A is a (1,s)-tensor,
and if vy, v, ..., v € T(p M, then A(vy, ..., v5) = A(dr(v1), ..., dw(vs)) € T,(B).

Hence if v is vertical, then A = 0 on B. For example, if f is a smooth
function on B, the lift to M of the Hessian of f is also denoted by HY. This
agrees with the Hessian of the lift (f o 7) generally only on horizontal vector.

For detailed computations, see Lemma 5.1 in [B.E.P.].
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Now we recall the formula for the Ricci curvature tensor Ric on the warped
product maniford M = B x; F. We write Ric? for the pullback by 7 of the

Ricci curvature of B and similarly for Ric!.

Lemma 2.8. On a warped product maniford M = B x; F with n = dimF" > 1
let X,Y be horizontal and V, W vertical.

Then
(1) Ric(X,Y) = RicB(X,Y) — %Hf(X, Y)
(2) Ric(X,Y)=0

(3) Ric(V,W) = RicF(V,W)— < V,W > f,

Where f* = % +(n—1) <gTad(f}’ngd(f)> and Af = trace(H’) is the Laplacian

on B.

Proof. See Corollary 7.43 in [O.]. O

On the given warped product manifold M = B X F, we also write S® For
the pullback by 7 of the scalar curvature Sp of B and similarly for S¥ From

now on, we denote grad(f) by Af.

Lemma 2.9. If S is the scalar curvature of M = B x; I’ with n = dimF > 1,

then
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(2.1) S:SB—l—i—j—Qn%—n(n—l)

<Vf,Vf>
f? ’

where A is the Laplacian on B.

Proof. For each (p,q) € M = B x; F, let {e;} be an orthonormal basis for
T,B. Then by the natural isomorphism {€; = (e;,0)} is an orthonormal set in
Tip.pM. we can choose {d;} on T,F such that {e;,d;} forms an orthonormal

basis for T{, M. Then

1 =<d;,d; >= f(p)*(d;,d;) = (f(p)d;, f(p)d;),

which implies that { f(p)d;} forms an orthonormal basis for 7, F". By Lemma2.8

(1) and (3), for each ¢ and j

Rie(&,) = Ric®(@,@) — 3 ;Hf (@)

i
and

Af

Ric(@, &) = Ric" @,8) — F(p)gr(ds,dy) (5 + (o - VLV

7

Hence, for ¢; = g(&;,&;) and ¢; = g(d;, d;)
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S.q) = D €alaa
= Z e Ric(e;, &) + Z e; Ric(d;, d;)
( J
S"(p,a) , Vf

o QnT —n(n—1)

<Vf,Vf>

= S%(p.q) + 7

which is a nonlinear partial differential equation on B x ¢ for each ¢ € F.
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III. MAIN RESULTS

Let (N, g) be a Riemannian manifold of dimension n and let f : [a,00) — R
be a smooth function, where a is a positive constant. A Riemannian warped
product of N and [a, 00) with warping function f is defined to be the product

manifold ([a, 00) x; N, ¢') with

(3.1) g = —dt* + f*(t)g.

Let R(g) be the scalar curvature of (N, g). Then the scalar curvature R(t, z)

of ¢’ is given by the equation

(32)  R(t,z)= {R(g) (@) +2nf ()" (1) +n(n — DIf ()]}

b
F2(t)

for t € [a,00) and z € N (For details, cf. [D.D.] or [G.L.]). If we denote

then equation (3.2) can be changed into

4n

(3:3) n+1

u"(t) — R(t, x)u(t) + R(g)(z)u(t)' =1 = 0.

In this paper, we assume that the fiber manifold N is nonempty, connected and
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a compact Riemannian n—manifold without boundary. Then, by Theorem 3.1,

Theorem 3.5 and Theorem 3.7 in [E.J.K.], we have the following proposition.

Proposition 3.1. If the scalar curvature of the fiber manifold N is an arbitrary
constant, then there exists a nonconstant warping function f(¢) on [a, o0) such
that the resulting Lorentzian warped product metric on [a,00) x s N produces

positive constant scalar curvature.

Proposition 3.1 implies that in Lorentzian warped product there is no ob-
struction of the existence of metric with positive scalar curvature. However, the
results of [J.] show that there may exist some obstruction about the Lorentzian
warped product metric with negative or zero scalar curvature even when the

fiber manifold has constant scalar curvature.

Remark 3.2. Theorem 5.5 in [P.] implies that all timelike geodesics are future

v

(resp. past ) complete on (—oo, +00) X, N if and only if ftjoo (—)% dt = 400

1+v
(resp. fio (HLU)

all null geodesics are future (resp. past) complete if and only if ftjoo vedt = +oo

=

dt = +o00) for some ty and Remark 2.58 in [B.E.] implies that

(resp. ff;o vedt = +o00) for some to (cf. Theorem 4.1 and Remark 4.2 in

[B.E.P.]. In this reference, the warped product metric is ¢’ = —dt* + v(t)g).
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If N is in class (B), then we assume that N admits a Riemannian metric of
zero scalar curvature. In this case, equation (3.3) is changed into

4n

(3:4) n+1

u”’(t) — R(t, x)u(t) = 0.
If N admits a Riemannian metric of zero scalar curvature, then we let u(t) = t*

in equation(3.4), where a € (0, 1) is a constant, and we have

4n
n+1

R(t,x) = — a(l—a)= <0, t>a.

12
There, from the above fact, Remark 3.2 implies the following:

Theorem 3.3. For n > 3, let M = [a,00) Xy N be the Lorentzian warped
product (n + 1)-manifold with N compact n-manifold. Suppose that N is in
class (B), then on M there is a future geodesically complete Lorentzian metric

of negative scalar curvature outside a compact set.

We note that the term a1 — ) achieves its maximum when a = 1. And
1 . . . .
when u = t2 and N admits a Riemannian metric of zero scalar curvature, we

have
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If R(t,z) is the function of only t—variable, then we have the following

proposition, whose proof is similar to that of Lemma 1.8 in [L.2].

Proposition 3.4. If R(g) = 0, then there is no positive solution to equation

(3.4) with

cl
R(t) < — Zt_2 for ¢ Z t(),

where ¢ > 1 and ty > a are constants.
Proof. See Proposition 2.4 in [J.]. O

In particular, if R(g) = 0, then using Lorentzian warped product it is im-
possible to obtain a Lorentzian metric of uniformly negative scalar curvature
outside a compact subset. The best we can do is when u(t) = ¢z, or f(t) = for

where the scalar curvature is negative but goes to zero at infinity.

Proposition 3.5. Suppose that R(g) = 0 and R(t,z) = R(t) € C*([a,0)).
Assume that for ¢ > t, there exist an (weak) upper solution u (¢) and a (weak)
lower solution u_(¢) such that 0 < u_(¢) < uy(t). Then there exists a solution

u(t) of equation (3.4) such that for ¢t > t5, 0 <u_(t) <wu(t) <uy(t).

Proof. See Theorem 2.5 in [J.]. O
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Theorem 3.6. Suppose that R(g) = 0. Assume that R(t,z) = R(t) €

C>([a,00)) is a function such that

dn c 1 4n

-— < R(t) <

1
eV b— for t > tg,
n

n+1 t2

where tg > a, 0 < c< land 0 < b < w are constants. Then equa-
tion (3.4) has a positive solution on [a,c0) and on M the resulting Lorentzian

warped product metric is a future geodesically complete one.

Proof. Since R(g) = 0, put uy(t) = t*. Then u/(t) = a(a — 1)t* 2 for

D<ac< % Hence

dn dn dn c1
— R(t t) < —_— t
() = ROu(t) € () + L)
4n dn c¢1
— _1t0é—2 __t(l’
LG L b
4n 1
= —t* oo — 1
n+14 oo )+d
< 0,

If « is sufficiently close to %

Therefore u4 (t) is our (weak) upper solution.
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And put u_(t) = t7?, where § is a positive constant with 0 < 8 < ”T“

Then u” (t) = 5(B + 1)t ~#2. Hence

n n dn 1
- _ > 0 _ il
n+1u_(t) R(t)u-(t) > o (1) +1bt2 ~(1)
4n 4n 1
fd b_ 75
4n

if 4 is sufficiently close to %+t

Thus u_(t) is a (weak) lower solution and 0 < u_(t) < u(t) < uy(t) for large

And since ( is sufficiently close to ”“ —f—fl + 1 > 0. Therefore

2

/t:oo(l-{f ) /mm

2

+oo T +oo t n+1
/ / S —"
V1+u( T 1+ —nf

> 1/ fRdl =
N \/§ to

v
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and

/+OO Ft)dt = /+Oou(t)fjrldt

to to

“+o0o “+o0o 28
to to

1
Fleo
i

O

Example 3.7. If R(g) = 0 and R(t) = ;4—&"(":2)%2, then there is a positive

solution to equation (3.4)

(3.5) 124" (¢)

By Euler-Cauchy equation method, we put u(t) = "™ then

2
m(m — 1)t" 2 — @tm =0,
2
(m? —m — n(n4+ >)tm =0
and
n+2 n
_ =0
om =" 2y + )

som =22 —2 Thus u(t) = c1t"2 + eyt is solution of equation (3.5), where

c1 and ¢y are constants.
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Therefore u(t) = cpt~2 is our (weak) solution in the sense of Theorem 3.5
such that 0 < u_(t) < u(t) < uy(t). And Remark 3.2 implies that the resulting

Lorentzian warped product metric is a future geodesically complete one. 0

Theorem 3.8. Suppose that R(g) = 0. Assume that R(t,z) = R(t) €

C*([a, 00)) is a function such that

4n
n-+1

4n
n+1

bt™? < R(t) < dt®,

where b, d, and s are positive constants.

Ifo > w, then equation (3.4) has a positive solution on [a, c0) and on
M the resulting Lorentzian warped product metric is not a future geodesically

complete metric.
Proof. See Theorem 2.7 in [J.L.L.]. O

Lemma 3.9. Prove

/ e Vit < o

to

to is a constant and « is a positive constant.
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Proof. Since ftzo eVidt = LZO %e‘“‘/gdt, integration by part implies

that

-2/t *11
[—\[e*aﬁ]gg + | eVt
«Q to «Q \/E
B 24/ —aTS -2 —av/lo0
= ——e¢ +[—e Jo
« Q

2/t 2
= —\é—oe_a‘/% + @e_a\/t?’ < 00.

Theorem 3.10. Suppose that R(g) = 0. Assume that R(t,x) = R(t) €

C>([a,0)) is a function such that

4n

n bect7
n+1

n—+1

dt* < R(t) <

where b, ¢, d, and s are positive constants. Then equation (3.4) has a positive
solution on [a,00) and on M the resulting Lorentzian warped product metric

is not a future geodesically complete metric.

Proof. Since R(g) = 0, put u_(t) = e, where 8 is a positive large

constant. Then u” (t) = —32efle=¢"" 4 [2e2te—e™,
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Hence

n4_7: . " (t) — R(t)u—(¢)
L I e ) e
> 0

for large 8. Thus, for large f, u_(t) is a (weak) lower solution.

Since R(g) = 0 and R(t) > 2%dt*, we take the upper solution u, (t) = eVt

and v/ (t) = iﬁie"ﬁ + Le Vi
Hence
n n 4n
t) — R(t t) < t) — dt®u (t
L)~ Rus(t) < Sl () - ()
4n 11 Vi 1 Vi Vi
= —— — —dt’
nrlang T a <]
= — — 4+ — —4dt®
n+14° [t\/i+4t |
< 0

for large ¢, where s > 0 is a constant. Thus u,(¢) is a (weak) upper solution

and 0 < u_(t) < uy(t) for large t.
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Hence Proposition 3.5 implies that equation (3.4) has a (weak) positive so-
lution u(t) such that 0 < u_(t) < u(t) < uy(t) for large ¢.

Therefore, by Lemma 3.9,

< /+OO U+(t)"T1 dt — /+Oo idt
oo\ 1tup@)Er T (1 Vink
—+o00

< / e ViRt dt < +00
to

and

which by Remark 3.2 implies that the resulting warped product metric is not

a future geodesically complete one. 0
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