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Chapter 1

Introduction

There is a method of construction to obtain a new simplicial complex from a
given one, called a simplicial wedge operation, which has recently attracted
much attention in toric topology world (see, e.g., [I] and [2]). Among many
other things, it is particularly interesting because, starting from a toric mani-
fold with its associated simple convex polytope, one can construct an infinite
family of new and meaningful toric manifolds, one for each sequence of pos-
itive integers.

In order to explain our results in more detail, we now want to briefly
recall the construction of a simlicial wedge complex. To do so, let K be a
simplicial complex of dimension n — 1 on vertex set {vy,vq,- -+ , vy}, and let
J = (j1,J2, -+ ,Jm) be a sequence of positive integers. A minimal non-face
of K is a sequence of vertices of K which is not a simplex of K but any proper
subset is a simplex of K. Let K(J) be a simplicial complex on j; +j2 - - + jim
vertices

V11, * 00 3 V151,021, V2555 " s Umly " 5 Umgy,

with the property that
{Uhh e 7Ui1jil y Vigls " 'Ui2jz‘27 U, 7Uikjik}
is a minimal non-face of K (J) if and only if {v;,, vy, -+ ,v;, } is a minimal

2
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non-face of K.
In order to obtain an alternative description of the simplicial complex
K (J) that is our main interest, we next recall that link of a simplex o in K

is the simplicial subcomplex of K given by
Lkxo ={r € K|oUT € K,oNT = ¢},

while the join of two disjoint simplicial subcomplexes K; and K, is the

smplicial complex given by
K1 *K2 == {0'1U0_2|0'7; € Kl,Z: 1,2}

Now, fix a vertex v; in K. Let I denote a 1-simplex whose vertices are
v;, and v;,, and let 9/ denote the boundary complex of I consisting of two
vertices v;, and v;,. We then define a new simplicial K (v;), called a simplicial

wedge complex, with m + 1 vertices

V1, V2, Vi—1, Vi, Vig, Vi1, ° , Um

by
K(v;) = ({ *x Lkg{v;}) U (01 %« K \ {v;}).

It is easy to see that the new simplicial complex K (v;) is same as K (J) with
J = (17 . ’i-th Co%rdinate7 ]_7 . 1)

By applying this construction repeatedly starting from J = (1,...,1),
one can also obtain K(J) for any sequence J = (ji,...,Jm), with positive
integer entries (see [I, Section 2| for more details). Let K be dual to the
boundary complex of a simple convex polytope P of dimension n with m
facets, and let d(J) = j1,...,7m). Then it can be shown as in [I, Theorem
2.4] that K(J) is dual to the boundary of a simple convex polytope P(.J) of
dimension d(J) —m + n with d(J) facets.

3
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Let K be a simplicial complex of dimension n—1 , as before. We say that
K is a simplicial sphere of dimension n — 1 if its geometric realization |K|
of K is homeomorphic to a sphere S”~!. On the other hand, K is said to be
polytopal if there is an embedding of the geometric realization |K| into R™
which is given by the boundary of a simplicial polytope P* of a dimension n.

There is also a notion between a simplicial sphere and polytopality. That
is, we say that a simplicial sphere K of dimension n—1 is star-shaped if there
is an embedding of the geometric realization |K| of K into R™ so that there
exists a point p with the property that each ray emanating from p meets | K|
in one and only one point. In this case, p is called a kernel point. Clearly
every polytopal sphere is also star-shaped, even though the converse is not
true in general, as the Barnette sphere shows (see [0, p. 90]).

A rational fan (or simply fan) ¥ of dimension n is a collection of strongly
convex rational cones in R” such that each face of a cone and the intersection
of a finite number of cones are again in the fan. Here a cone is strongly convex
if it does not contain any non-trivial linear subspace, and is rational if every
generator of a one-dimensional cone can be taken in the integer lattice Z". A
rational cone is called non-singular if its generators form a part of an integral
basis of Z™, while it is called simplicial if its generators are simply linearly
independent. We can associate a simplicial complex Ky to each simplicial
fan 3, called the underlying simplicial complex, in such a way that vertices
of Ky are generators of one-dimensional cones of 3 and faces of Ky, are the
sets of generators of cones of 3. Recall also that an ordinary fan is said to
be complete if the union of all cones cover the whole space in R". We say
that s simplicial sphere K is fan-like (or, equivalently star-shaped) if there
is a complete fan whose underlying simplicial complex is same as K. Note
that a simplicial sphere is fan-like if and only if so is its simplicial wedge.

A fan ¥ is said to be weakly polytopal if its underlying simplicial complex
Ky is polytopal with a simplicial polytope P*, and is said to be strongly
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polytopal if, in addition, P* satisfies the following two conditions:
e 0 e P,
e ¥ ={posc|o € IP*}.

Here pos o is the set of all positive linear combinations of o, and 0 P* denotes
the boundary complex of P*.

Note that a rational fan ¥ of dimension n is completely determined by the
underlying simplicial complete Ky and a map A : V(Kyx) — Z", called the
characteristic map, obtained by mapping each vertex of Ky, to the primitive
generator of the corresponding one-dimensional cone of ¥, and vice versa.

Let K be a simplicial complex of dimension n — 1, equipped with a char-
acteristic map A : V(K) — Z" such that for each face o of K the vectors
A7), i € o, form a part of an integral basis of Z". Then we can obtain a new
simplicial complex Lkyo, equipped with a new characteristic map Proj A
defined by

Proj,(\)(v) = [A(v)], v € V(Lkgo)

in the quotient space Z"/(A(w)|w € o) isomorphic to Z"~l°l. In a similar
way, we can also define the notion of a projected fan Proj, > of a fan ¥ with
respect to a face o of Ky (refer to [0, Section 2]).

In the paper [7], Ewald introduced the notion of a canonical extension
which is a particular way to obtain a simplicial wedge complex, and proved
that Theorem 1.1 below always holds for canonical extensions ([7, Theorem
2]). Here, a canonical extension of a simplicial complex K equipped with
a characteristic map A is a simplicial wedge complex K (v) equipped with a
characteristic map A" such that Proj, A" = X for all i = 0,1 (see, e.g., Chapter
for a precise definition).

Our main aim of this thesis is to significantly generalize the results of

Ewald in [7] to more general simplicial wedge complexes. In addition, we
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shall provide a very simple and also efficient algorithm to construct certain
particular simplicial wedge complexes, which will be another important point
of this paper (see the proof of Theorem [4.2| for more details). In fact, we have
the following

Theorem 1.1. Let K be a fan-like simplicial sphere of dimension n—1 such
that its associated complete fan is strongly polytopal, and let v be a vertex of
K. Let K(v) be the simplicial wedge complex obtained by applying the sim-
plicial wedge operation to K at v, and let vy and v, denote two newly created
vertices of K(v). Then there are infinitely many strongly polytopal fans 3
over such K(v)’s, different from the canonical extensions, whose projected

fans (i =0, 1) are also strongly polytopal.

As a consequence of Theorem [1.1] and its proof, we can easily construct
many examples of a complete, non-singular, strongly polytopal fan > over
the simplicial wedge complex K (v) whose projected fans Proj, ¥ (i = 0,1 )
are also complete, non-singular, and strongly polytopal (see, e.g., Example
4.5). In sharp contrast, according to the paper [4, Section 7] there exists
an example of a complete, singular, non-strongly polytopal fan ¥ over the
simplicial wedge complex K (v) whose projections Proj, ¥ (i = 0,1) are com-
plete, singular, and strongly polytopal. We also remark that Theorem 1.1
somehow answers a related question posed in the paper [4] (refer to Question
7.2)

It is well known that there is a one-to-one correspondence between the
collection of toric varieties and the collection of rational of fans, up to some
equivalence. So given a complete rational fan Y there is always a compact
toric variety M which corresponds to the underlying simplicial complex K.
In this case, we shall say that M is a toric variety over Ky. Recall that M
is projective if and only if its corresponding fan ¥ is strongly polytopal ([0,
p. 118]).
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Theorem 1.2. Let K, v, K(v), vg, v1, and ¥ be the same as in Theorem
. Then there are infinitely many projective varieties over such K(v)’s such

that toric varieties over Kpy;, s (1 =0,1) are also projective.

This thesis is organized as follows. In Chapter [2 we briefly review nec-
essary facts which play an important role in the proof of Theorem [I.I In
Chapter (3|, we recall the definition of a Gale transform and the Shephard’s
criterion which gives a convenient and useful way to determine whether or
not a complete fan is strongly polytopal. Chapter [4]is devoted to the proofs
of Theorems [L.1] and .2l
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Chapter 2

Wedge operations of simplicial
complexes

2.1 Simplicial wedge operations

A simplicial compler K on a finite set V' is a collection of subsets of V'

satisfying
e if v € V, then {v} € K,
e ifce Kand 7 Co,thent € K.

Each element o € K is called a face of K. The dimension of ¢ is defined

by dim(o) = |o| — 1. Then dimension of K is defined by
dim(K) = max{dim(o) |0 € K}.

There is a useful way to construct new simplicial complexes from a given
simplicial complex introduced in [I]. We briefly present the construction
here. Let K be a simplicial complex of dimension n — 1 on vertices V =
m] = {1,2,...,m}. A subset 7 C V is called a non-face of K if it is not a
face of K. A non-face 7 is minimal if any proper subset of 7 is a face of K.

Note that a simplicial complex is determined by its minimal non-faces.
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In the setting above, let J = (j1,...,jm) be a vector of positive integers.

Denote by K(J) the simplicial complex on vertices
{11,12,...,1j1,21,22,...,2j2,...,m1,...,mjm}

with minimal non-faces

{G)1, - () ()15 (82)sy s -0 ()1 - (), b

for each minimal non-faces {41, ..., } of K.
There is another way to construct K (J) called the simplicial wedge con-
struction. Recall that for a face o of a simplicial complex K, the link of ¢ in

K is the subcomplex
Lkxo:={re K|loUT € K,0NT =0},

and the join of two disjoint simplicial complexes K7 and K, is defined by
KixKy={01Uos|0y € Ki,09 € K}

Let K be a simplicial complex with vertex set [m] and fix a vertex ¢ in
K. Consider a 1-simplex I whose vertices are i; and i, and denote by I =
{i1,i2} the O-skeleton of I. Now, let us define a new simplicial complex on
m+1 vertices, called the (simplicial) wedge of K at i, denoted by wedge,(K),
by
wedge,; (K) = (I x Lkg{i}) U (O % (K \ {i})).
where K \ {i} is the induced subcomplex with m — 1 vertices except i. The

operation itself is called the simplicial wedge operation or the (simplicial)
wedging. See Figure [2.1]

Example 2.1. Let wedge,(K) be the simplicial complex shown in Figure
[2.1] and A is defined by the characteristic matrix

0 1 0 -1 -1 O
A=10 0 1 1 0 -1
1 -10 0 0 O

9
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Figure 2.1: An illustration of a wedge of K

whose columns are labeled by the vertices 14, 15,2, 3,4, 5 respectively. That

is, we define
)‘(11) = (Oa 07 ]-)7

A1) = (1,0,-1),

A(2) = (0,1,0),
A3) = (—1,1,0),
A(4) = (=1,0,0),
A(5) = (0,-1,0).

Since A(1;) is a coordinate vector, the projection Proj; A is easily obtained
by
L, 2 3 4 5
ProjyA=11 0 -1 -1 0 |,
01 1 0 -1
where the first row is for indicating column labeling. To complete Proj;\, one
should perform a row operation so that A(3) becomes a coordinate vector.
Add the second row of A to the first one and one obtains
0 1 10 -1 -1
0O 0o 11 0 -1
1 =100 0 O

10
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Since Lkx{3} has vertices 11, 15, 2,4, its characteristic matrix looks like

1, 1, 2 4
Proj,A=[0 1 1 -1
1 -1 0 0

It is an easy observation to show that wedge,(K) = K(J) where J =
(1,...,1,2,1,...,1) is the m-tuple with 2 as the i-th entry. By consecutive
application of this construction starting from J = (1,...,1) we can produce
K(J) for any J. Although there is some ambiguity to proceed from J =
(J1s- -y Jm) to J' = (J1,-- -, Ji—1,Ji + 1, izt -+ Jm) Of J; > 2, we have no
problem since any choice of the vertex yields the same minimal non-face of the
resulting of K'(J). In conclusion, one can obtain a simplicial complex K (.J)
by successive simplicial wedge constructions starting from K, independent of
order of wedgings.

Related to the simplicial wedging, we recall some hierarchy of simpli-
cial complexes. Among simplicial complexes, simplicial spheres form a very

important subclass.
Definition 2.2. Let K be a simplicial complex of dimension n — 1.

(1) K is called a simplicial sphere of dimension n — 1 if its geometric real-

ization | K| is homoeomorphic to a sphere S™!.

(2) K is called star-shaped in p if there is an embedding of | K| into R" and
a point p € R™ such that any ray from p intersects |K| once and only

once. The geometric realization |K| itself is also called star-shaped.

(3) K is said to be polytopal if there is an embedding of | K| in to R which
is the boundary a simplicial n-polytopal P*.

We have a chain of inclusions
simplicial complexes D simplicial spheres D star-shaped complexes D

polytopal complexes.

11

Collection @ chosun



It is worthwhile to observe that each category of simplicial complexes

above is closed under the wedge operation as follows

Proposition 2.3. Let K be a simplicial complex and v its vertex. The the

followings hold:
(1) If K is a simplicial sphere, then so is wedge, (K).
(2) K is star-shaped if and only if so is wedge,(K).
(3) K is polytopal if and only if so is wedge,(K).

When K is polytopal, we often regard K as the boundary complex of a
simple polytopal P. To be more precise, let K be the boundary of a simplicial
polytope ). Then the dual polytope to @) is a simple polytope P. Recall
that an n-dimensional polytope P is called simple if exactly n facets (or
codimension 1 faces) intersect at each vertex of P.

We next define the notion of the (polytopal) wedge. Let P C R"™ be a
polytope of dimension n and F' a face of P. To do so, consider a polyhedron
P x[0,00) € R*"™ and identify P with P x {0}. Pick a hyperplane H in R""!
so that HN P = F and H intersects the interior of P x [0, 00). Then H cuts
P x [0, 00) into two parts. The part which contains P is an (n + 1)-polytope
and combinatorially determined by P and F, and it is called the (polytopal)
wedge of P at F and denoted by wedgep(P). Note that wedgey(P) is simple
if P is simple and F'is a facet of P. See Figure 2.2

The next lemma is due to [4, Lemma 2.3].

Lemma 2.4. Assume that P is a simple polytope and F' is a facet of P. Then
the boundary complex of wedgep(P) is the same as the simplicial wedge of

the boundary complex of P at F.

Suppose P is an simple polytope and F = (Fy,..., F,,) is the set of

facets of P. Let J = (a1,...,a,) € N™ be a vector of positive integers.

12
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wedge(P)

Figure 2.2: An illustration of a wedge of K

Then define P(J) by the combinatorial polytope obtained by consecutive
polytopal wedgings analogous to the construction of K(J) with simplicial
wedgings. Lemma [2.4] guarantees that if the boundary complex of P is K,
then the boundary complex of P(.J) is K(J).

Remark 2.5. It is known that the converse of (1) in Proposition does
not hold, in general. This is due to the famous Double Suspension Theorem
of Edwards and Cannon [3] which states that every double suspension of a

homology n-sphere M is homeomorphic to an (n + 2)-sphere.

2.2 Toric varieties and fans

Let us review the definition of a fan. For a subset X C R", the positive hull
of X, that is,

k
pos X = {Zaixilai ZO,xieX}.

i=1

By convention, we put pos X = {0} if X is empty. A subset C' of R™
is called a polyhedral cone, or simply a cone, if there is an finite set X of
vectors, called the set of generators of the cone, such that C' = posX. The

elements of X is called generators of C. We also say that X positively spans

13

Collection @ chosun



the cone C. A subset D of C'is called a face of C' if there is a hyperplane H
such that C N H = D and C does not lie in both sides of H. A cone is by
convention a face of itself and all other faces are called proper.

A cone is called strongly convex if it does not contain a nontrivial linear
subspace. In this paper, every cone is assumed to be strongly convex. A
polyhedral cone is called simplicial if its generators are linearly independent,
and rational if every generator is in Z". A rational cone is called non-singular
if its generators are unimodular, i.e., they are a part of an integral basis of
7.

A fan X of real dimension n is a set of cones in R™ such that
(1) if C € ¥ and D is a face of C, then D € 3,
(2) and for C1,Cy € ¥, C; N Cy is a face of C7 and Cy respectively.

A fan ¥ is said to be rational (resp. simplicial or non-singular) if every
cone in ¥ is rational (resp. simplicial or non-singular). Remark that the
term “fan” is used for rational fans in most literature, especially among toric
geometers. We will sometimes use the term “real fan” to emphasize that
generators need not be integral vectors.

If a fan ¥ is simplicial, then we can think of a simplicial complex K, called
the underlying simplicial complex of X3, whose vertices are generators of cones
of ¥ and whose faces are the sets of generators of cones in ¥ (including the
empty set). We also say that ¥ is a fan over K. In this thesis, a fan is
assumed to be simplicial unless otherwise mentioned.

A fan X is called complete if the union of cones in ¥ covers all of R™.
Observe that the underlying simplicial complex of a fan is a simplicial sphere
if and only if the fan is complete. It is a well-known fact that a rational fan
is complete (resp. non-singular) if and only if its corresponding toric variety

is compact (resp.smooth). A compact smooth toric variety is called a toric

14
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manifold in this paper. We remark that a toric variety is an orbifold if and
only if its corresponding fan is simplicial.

We close this section by giving definition of two notions relating a fan to
a polytope. A fan is said to be weakly polytopal if its underlying simplicial
complex is polytopal in the sense of Definition [2.2] A fan ¥ is called strongly
polytopal if there is a simplicial polytope P*, called a spanning polytope, such
that 0 € int P* and

Y = {posc |0 is a proper face of P*}.

Observe that the underlying complex of 3 is 9P*. Therefore strong poly-
topalness implies weak polytopalness.

It is a well-known fact from convex geometry that a fan ¥ is strongly
polytopal if and only if 3 is the normal fan of a simple polytope P. For a
given simple n-polytope P C R", correspond to each facet F' the outward

normal vector N(F). The normal fan of ¥ of P is a collection of cones

Y ={pos{N(F)|F D f}| f is a proper face of P}.

15
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Chapter 3

Gale transforms and
Shephard’s criterion

The aim of this chapter is to set up basic notations and definitions, and
to collect some important facts necessary for the proof of Theorem 1.1. To
do so, we first begin with reviewing linear transforms and Gale transforms.
Refer to [7], Chapter II-Section 4 for more details.

Let X = (z1,22,...,2y) € (R")™ be a finite sequence of vectors x; in R”
which linearly spans R™. Then we consider the space of linear dependence

(or linear relations) of X which is given by the (m — n)-dimensional space

{(a1, 0, ..., ) €R™| Z a;x; = 0}.
i=1

By choosing a basis {©',...,©™ "} of the space of linear dependencies as

above, it is convenient to write it as a matrix of size (m —n) x m, as follows.
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The finite sequence X is called a linear transform (or linear representa-
tion) of X. Clearly, a linear transform is not unique and depends only on a
choice of a basis. Note also that we have the following relationship between
X and X:

(3.1) XXT =o0.

It is also easy to see that X X7 = 0 by taking the transpose of the equation
. Thus, if X is a linear transform of X, then X is also a linear transform
of X.

Next, in order to define a Gale transform by using the notion of a linear
transform, as before let X = (21, 29,...,2,) € (R™)™ be a finite sequence of
vectors z; € R™ which linearly spans R™. Then we identify R" as an affine

space with a hyperplane H in a linear space R™*! by the natural embedding
j:R" = R™™ v (v,1).

Then H = {(v,1) € R"" |v € R"} does not contain the origin of R™™!. Thus
it follows from [7, Lemma 4.15] that a linear transform X = (Zy,...,Zn) €
(Rm—n—l)m of

J(X) = ((x1,1),..., (T, 1)) = (T1, ..., Tm)

in R"*! satisfies

and X is called a Gale transform (or an affine transform) of X.

Now, we are ready to characterize a complete fan that is strongly poly-
topal. To be more precise, we have the following criterion given by Shephard
in the paper [8] (or [7, Theorem 4.8] and [6], Section 2]) for a complete fan to
be strongly polytopal.

17
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Lemma 3.1. A linear transform X of X satisfies T1 + -+ + Ty = 0 if and
only if the points z; lie in a hyperplane H of R™ for which 0 ¢ H.

Note that one can assume that H is the hyperplane of points whose last
coordinate is 1 since we can take (1,...,1) for a linear dependency of X. In
general, for any strongly convex cone C| there is a hyperplane H which does
not intersect the origin and C'N H = P is a convex polytope which has the

same face poset with C'. Now we are ready to define the Gale transform.

Theorem 3.2. Let
X = (.Tl, To, ... ,xm) & (Rn)m

be a finite sequence of lattice points x; € Z" C R™ that span the 1-dimensional
cones of a complete fan' ¥, and let X be a Gale transform of X for each proper

face o0 = pos{z;,,...,x;} of &, let C(0) denote the convex hull generated by
X \ {:Z'ju s 7jjk}‘

That 1s,

C(o) = conv(X \ {Zj,,...,Tj.})

Then ¥ is strongly polytopal if and only if we have
ﬂ relint C(c) # ()
ocEX

Here, relint C'(0) means the relative interior of C(o). Recall also that,

when o is a proper face of ¥ generated by {zj,,...,z; },
X\{jju e '77jjk}
is called a coface of o in X.
In fact, in order to use the Shepherd’s criterion for a complete fan to be

strongly polytopal, we shall start with a finite sequence X whose column

sum is equal to zero. Then we obtain a linear transform X of X, and use it
to prove our main Theorems [1.1]and |1.2| (refer to Chapter [4] for more detail).

18
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Chapter 4

Proofs of Theorems 1.1 and 1.2

The aim of this chapter is to give proofs of Theorems and [[.2] In this
chapter, we also provide an example of a complete, non-singular, strongly
polytopal fan 3 over the simplicial wedge complex whose projected fans are
also complete, non-singular, and strongly polytopal.

To do so, let K be a fan-like simplicial sphere of dimension n — 1 whose
vertex of set V(K) is equal to {wy,ws,. . .,w;, }. Then choose any vertex v, say
wy, from V(K). Let K(v) be the simplicial complex obtained by applying
the simplicial wedge operation to K at v, and let vy and v; denote two newly
created vertices of K (v). Let V(K (v)) be the vertex set of K (v) such that

V(K (v)) = {vo,v1,02, ..., 0n}

is given by v; = w; for each i = 2,3,...,m.
Let ¥ be a complete fan associated with the simplicial complex K (v).
Then choose a point z; in R from each 1-dimensional cone corresponding

to a vertex v; in V(K (v)) so that a finite sequence
X = (20,21, 3, ..., Tm) € (RTTH)™H!
positively spans R"*!. Thus we have the identity
To+x1+...+2x, =0.

19
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For later use, let us write the finite sequence X as

a 0 ¢

0 by d
(4.1) X=[0 0

s G

0 0

(n+1)x (m+1)
where ag and by are non-zero real numbers, ¢ and d are now vectors of size
m — 1, and G is a real matrix of size (n — 1) x (m — 1). In particular, if ag
= by = 1 and ¢ =d, then X (or X) will be called a canonical extension of a
complete fan associated to the simplicial complex K.
Now, let

X = (T0,T1,...,Tp) € (R™)™H

be a linear transform of X. Then it follows from [7, Theorem 4.14] that posX
is a strongly positive cone C'in R™™". Let H denote any hyperplane in R™™"
such that H N C' is a polytope P of dimension m —n — 1. For each z;, let z;

be an intersection point in H N {rz;|r > 0}. Then the finite sequence

~

X = (20,81, &9, ..., &m) € H

is called a Shephard diagram or (or simply diagram) of X.

For the sake of notational convenience, from now on we set
Xo = (1, %o, ..., Tm) and X1 = (Zo, T2, .-+, Tm)-

Recall that a subsequence Y of X is said to be a coface of ¥ if pos(X\Y') is
a face of X. Note also that X has a face poset which consists of subsequences
of X of the form X \ Y for a subsequence Y of X such that

0 € relin conv(X lx\v)-

Thus, it follows from Theorem [3.2] that we have the following Shephard’s

criterion for a complete fan to be strongly polytopal (see also [§]).
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Theorem 4.1. A complete fan 3 is strongly polytopal if and only if

S(%,X) = ﬂ relint conv(X|y) # 0.

Y coface of ¥

With these understood, our first main result of this chapter is

Theorem 4.2. For any n > 2, there are infinitely many complete fans X

over such K(v)’s, different from the canonical extensions, such that
S(%, X) = S(Proj,, =, Xy) = S(Proj,, T, X1).
Proof. To prove it, for a finite sequence X as in let us write
G = (Y142 Ym1) € (RTH™L
Then we have the identity
i t+ytt Ymoa =0

Thus there is a Shephard diagram G = (g1, . .., 9m_1) € (R™ ™)™ ! of G.
Since G can be considered as a real matrix of size (m —n) x (m — 1), it
defines a linear map L from R™™! to R™™™ in the natural way. Note that
the dimension of the kernel of L is greater than or equal to m —1— (m—n)
=mn —1 > 1. Thus we can always choose two linearly independent vectors
c=(c1,..-yem1) and d = (dy,...,dp_1) in R™7! and two non-zero real

numbers a¢ and by such that

In fact, there is an easy way to take two vectors ¢ and d, and non-zero real
numbers ay and by satisfying the above condition (4.2)). To be more precise,
note first that all row vectors G of G lie in the kernel of G by the definition

of a linear transform. So choose any row vector, say G', of G, and then write
m—1
G =Y rei,
i=1
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where eq, es,...,en_1 denote the standard basis vectors of R™~1. Assume
without loss of generality that the first Component of G is not zero, that is,

r1 # 0. Since Zf:ll y; = 0, we have 1" Y7 = 0. So it is possible to rewrite

G as
m—1 m—1
E rie; = — E ri)er + g ri€;.
i— i=2
Now, let
M

m—1 m—1
= Zri #0,bp=1,d = —e1, and ¢ = —Zriei.
i=2 1=2

Then we have

m—1 m—1
—G' =D _ri)(—e)) + (= > riei) = —aod + boc,
1=2 1=2

G(-G)" = -GGl =0
as required.

Next, for each i =1,2,...,m —n let

¢ G d- Gt
7ﬁi:_ ’

Qo bo

where - denotes the standard inner product and G denotes the i-th row of

G. It is easy to see from - and (| . that
(4.4) =03, 1=1,2,...,m—n.

With these ag, by, ¢, and d as in (4.2) let us define a new finite sequence X,

as follow:
a 0 ¢
0 by d
X = (zg,21,...,29) =] 0 0
G
00 (n+1)x (m+1)
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Note that, by the way of construction, it is possible to take an integral fi-
nite sequence X satisfying the required conditions. Here an integral sequence
means that all components of the sequence are integers. So we let ¥ be a
complete rational fan whose associated finite sequence is X.

Since by the choices of ag and by the identity Z;io x; continues to hold,
we can also find a Shephard diagram of 3. Indeed, let X be

aq B

A

G

Um—n Bmfn (m—n)x (m+1)

Then it follow from (4.4]) that X X7 = 0. Hence X is a Shephard diagram of

Y. Moreover, it is easy to see that in this case

A

XO = ((517 te 7Bmfn)T)T7 é) and Xl = ((051, L 7amfn)T7 G)

are Shephard diagrams of Proj, X and Proj, X, respectively. Since by ({4.4))

a; = [; forall i =1,2,...,m—n, it is also important to notice that we have
(45) X(] = Xl.

By the construction of a simplicial wedge complex, two underlying sim-
plicial complexes Ky and K of Proj, ¥ and Proj, ¥, respectively, are combi-
natorially equivalent so that Lkg,(v;) coincides with Lkg,(v), Moreover, it
follows from that two intersections S(ProjvoZ,Xo) and S(Projle,Xl)
should be identical. Finally, note that every coface of the simplicial wedge
complex K (v) is a coface of Ky or K;. Hence, as in [4, Proposition 5.9] we

have
S(2, X) = S(Proj,, %, Xo) N S(Proj,, %, X;) = S(Proj, %, X;)
for all =0, 1.
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Starting from any matrix G whose sum of column vectors is equal to zero,
it is now clear that we can produce infinitely many complete fans X over such
K (v)’s satisfying the conclusion of the theorem. This completes the proof of
Theorem (4.2 O

As a consequence of Theorem 4.2 we have the following theorem that is

same as Theorem [I.1]

Theorem 4.3. Let K be a fan-like simplicial sphere of dimension n—1 such
that its associate complete fan is strongly polytopal, and let v be a vertex of K.
Let K (v) be the simplicial wedge complex obtained by applying the simplicial
wedge operation to K at v, and let vy and vy denote two newly created vertices
of K(v). Then there are infinitely many strongly polytopal fans ¥ over such
K(v)’s, different from the canonical extensions, we projected fans Proj, X,

(1 =0,1) are all strongly polytopal.

Proof. To prove the theorem, first take a finite sequence X satisfying the
conclusion of Theorem [4.2] By the way of construction of a simplicial wedge
complex, we can identify K with one of two simplices Ky and K, say Kj.
So we may assume that S (ProjUOZ,XO) is not empty. This together with
Theorem and implies that the corresponding fans ¥, Proj, ¥ and
Proj, 3 over K(v), Ko, and K, respectively, should be strongly polytopal.
This completes the proof of Theorem [£.3] O

The following corollary follows immediately.

Corollary 4.4. Let K,v, K(v),vg,v1, and 3 be the same as in Theorem .
Then there are infinitely many projective toric varieties over such K(v)’s

such that toric varieties over Kpyoj, . (i = 0,1) are also projective.

Proof. To prove it, recall that there is a one-to-one correspondence between
the collection of compact toric varieties and the collection of complete ratio-

nal fans; up to some equivalence. So there are always compact toric varieties
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which correspond to the proof of Theorem Moreover, it follows from
Theorem |4.3| that the corresponding fans ¥, Proj,, X and Proj,, > over K (v),
Ky and K7, respectively, are now strongly polytopal. Therefore their corre-
sponding compact toric varieties should be all projective. This completes the
proof of Corollary [4.4] O

Finally, we close this section with an example of how to apply the al-
gorithm given in the proof of Theorem in order to obtain a complete,
non-singular, strongly polytopal fan whose projected fans are also complete,

non-singular, and strongly polytopal.

Example 4.5. Let G ba an integral matrix of size 2 x 3 given by

10 —1
G_(o 1 —1)‘

Then take the first row G' = (1,0, —1) of G. By applying our algorithm given
in the proof of Theorem [4.2/to G*, it is easy to obtain

ap = —]_,b() = 1,0 = (0,0, 1),d = (—1,0,0)

Thus our complete fan ¥ is given by following characteristic matrix \ given

by

ap 0 ¢

0 by d
A=10 0O

: G

00 (34+1) x (441)

-1 0 0 0 1

10 1 -10 O
10 0 1 0 -1

000 1 -1),,

Note that every 4 x 4-minor of A has determinant equal to £1. Thus the

complete fan X is actually non-singular.
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Let A\g and A; be the 3 x 4-matrices obtained from A given by

1 -1 0 0
0 0 1 -1
and
-1 0 0 1
M= 0 1 0 -1
0O 01 -1

Then Ay, and A\; can be considered as characteristic maps assoiated with the
projected fans Proj, ¥ and Proj, X respectively. Note also that every 3 x
3-minor of A\; has determinant equal to £1 for each ¢ = 0,1. Thus the pro-
jected fans Proj, ¥ and Proj,, X are indeed non-singular (and also complete).
Moreover, observe that Proj, % and Proj,, 3 are strongly polytopal. Thus X
is also strongly polytopal by Theorem [4.3] It can be seen directly by using
a Shephard diagram X of X. More precisely, in this case X can be taken to
be (1,1,1,1,1) € (R')®, and relint conv{1} = {1}. Thus clearly we have

S(2, X)) = {1} £0.

As a consequence, we can see that their associated toric varieties are actually

toric manifolds and also projective by Corollary [4.4]
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