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문

반화 피크 정리 동치 연

박 주 비

지도 수 진 홍:

조 학 학원 수학 전공

히가시타니 마수다는 폴리곤에 한 알 진 피크 정리를 반화하여 다-

폴리곤에 한 반화 피크 정리를 하 다 한편 화는 그 사 문에. ,

하 리 마수다에 해 개 다 폴리 프에 한 반화 피크 정리를 도-

해 냈다 반적 다 폴리 프 개 과 질 다 폴리곤 개 과 질.

포함하고 반적 다.

본 문에 는 러한 가지 형태 반화 피크 정리가 차원 다 폴리2

곤 경우에는 치함 보 다 좀 체적 히가시타니 마수다는. , - 

가 격 다 폴리곤        라는 변량 정 하고

      

      

립함 보 다 또한 화는 사 문에. , 가 차원 단순 격 다 폴2

리 프 ,



    

 deg∆ 

립함 보 고 본 문에 는

             deg∆

보여 방정식 동등함 하 다.



Chapter 1

Introduction

In the paper [6], Higashitani and Masuda introduced the notion of a multi-

polygon, and studies its general properties. Among other things, in partic-

ular, they proved certain generalized Pick’s theorem in the same paper [6].

There is also a similar, but more general, notion of a multi-polytope which

has been introduced by Hattori and Masuda in the paper [5]. Recently, in

[9] Lee gave some similar generalized Pick’s theorem for multi-polytopes by

using the notion of the Duistermaat-Heckman function. Those two gener-

alized Pick’s theorems have seemingly different expressions, but it has been

expected that they are actually equivalent in case of multi-polygons which

are also multi-polytopes of dimension 2. The aim of this thesis is to give

an affirmative answer to the expectation. In other words, we show that two

versions of a generalized Pick’s theorem proved in [6] and [9] are equivalent

for such multi-polygons.

In order to explain our results precisely, we first need to set up some

terminology and notations (see Chapters 2 and 3 for more details). Indeed,

let P̃ be a convex lattice polygon whose only interior lattice point is the origin

and let v1, . . . , vd+1 be the vertices of P arranged counterclockwise such that

vd+1 = v1. Then every vi is primitive, and the triangle with the vertices 0, vi

and vi+1 has no lattice point in the interior for each i. We set |vivi+1| be the
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number of lattice points on the side vivi+1 minus 1. With these understood,

we define

B(P̃) =
d∑
i=1

det(vi, vi+1)|vivi+1|.

Now, let P̃ be a multi-polygon with a sign assignment ε in such a way

that P̃ is an oriented piecewise linear loop with signs attached to sides. For

i = 1 . . . , d, let ni denote a normal vector to each side vivi+1 such that the

90 degree counterclockwise rotation of ε(vivi+1)ni has the same direction as

vivi+1. The winding number dP̃(v) of P̃ around a point v ∈ R2 \ P̃ is a

locally constant function on R2\P̃ , where R2\P̃ means the set of element in

R2 which does not belong to any side of P̃ . We can also define

A(P̃) :=

∫
v∈R2\P̃

dP̃(v) dv,

C(P̃) := the rotation number of the sequence of n1, . . . , nd.

Let P̃+ be an oriented loop obtained from P̃ by pushing each side vivi+1

slightly in the direction of ni. Under suitable conditions on P̃ , P̃+ misses all

lattice points, so the winding number dP̃+
(u) can be defined for any lattice

point u using P̃+. Using this winding number, we now define

]P̃ :=
∑
u∈Z2

dP̃+
(u).

In the paper [5], Higashitani and Masuda proved that the following gen-

eralized Pick’s formula for lattice multi-polygons holds.

Theorem 1.1. Let P̃ be a lattice multi-polygon. Then the following identity

holds:

]P̃ = A(P̃) +
1

2
B(P̃) + C(P̃).

Next, we want to explain what a multi-polytope is. To do so, let N be

a lattice of rank n which is isomorphic to Zn, and let M be the dual lattice
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Hom(N,Z). Let NR = N⊗ZR, and let MR = Hom(NR,R). A multi-polytope

P is a pair (∆,F) of an n-dimensional multi-fan ∆ and an arrangement

F = {Fi} of affine hyperplanes Fi in the dual space MR with the same index

set as the set of one-dimensional cones in ∆ (refer to Chapter 2 for a more

precise definition). A lattice polytope P means that each vertex of P lies in

the lattice M of MR. For a convex lattice polytope P of dimension n in MR

and a positive integer ν, let νP be

νP = {νu | u ∈ P}.

Then νP is again a lattice multi-polytope in MR. Let us denote by #(νP )

(resp. #(νP ◦)) the number of lattice points in νP (resp. in the interior νP ◦

of νP ). Let us also denote by #(∂(νP )) be the number of lattice points on

the boundary ∂(νP ) of νP . Then clearly we have

#(∂(νP )) = #(νP )−#(νP ◦).

In this thesis, as in [5] we will normalize a volume element on MR so that

the volume of the unit cube determined by a basis of M is equal to one.

Then #(νP ) and #(νP ◦) are polynomials in ν of degree n, which are called

the Ehrhart polynomials of P and P ◦, respectively. Recall that the number

of lattice points of a simple, regular convex polytope is equal to its corre-

sponding Riemann-Roch number (refer to, e.g., [3], [7], [4], and [10] for more

details).

In the Master’s thesis [9], Kim and Lee has shown the following general-

ized Pick’s formula.

Theorem 1.2. Let P be a complete and simple lattice multi-polytope of di-

mension 2. Then the following identity holds.

vol(P) = #(P◦) +
1

2
#(∂P)− deg(∆),
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or, equivalently

#(P) = vol(P) +
1

2
#(∂P) + deg(∆).

As an immediate consequence, we can easily obtain the well-known Pick’s

formula for simple convex polytopes.

Corollary 1.3. Let P be a simple convex lattice polytope of dimension 2.

Then the following identity holds.

vol(P ) = #(P ◦) +
1

2
#(∂P )− 1.

Our main result is to show that two Theorems 1.1 and 1.2 are actually

equivalent for multi-polygons which are also multi-polytopes, as follows.

Theorem 1.4. Let P̃ be an integral oriented multi-polygon of dimension 2.

Then there is an associated complete, simple, and integral multi-polytope P
of dimension 2 such that

A(P̃) = vol(P), B(P̃) = #(∂P), C(P̃) = deg(∆).

Note that by definition multi-polytopes are allowed to have three con-

secutive points on a same line, while essentially we may assume that all of

multi-polygons do not have three consecutive points on a same line. As a

consequence, we can see that the generalized Pick’s theorem given in [9] is

more general than that given in [6].

Finally, we are in a position to explain the structure of the thesis which

goes as follows.

In Chapter 2, we briefly review the notion of a lattice multi-polygon and

then state the generalized Pick’s formula for lattice multi-polygons. A lattice

multi-polygons is a piecewise linear loop with vertices in Z2 together with

a sign function which assigns either + or − to each side and satisfies some

mild conditions. The piecewise linear loop may have a self-intersection and
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we think of it as a sequence of points in Z2. A lattice polygon can naturally

be regarded as a lattice multi-polygon.

In Chapter 3, we give a definition of multi-fan and introduce certain

related notions. Also we introduce the notion of a multi-polytope in the

same chapter. As mentioned above, a multi-polytope is a pair P = (∆,F) of

an n-dimensional complete multi-fan ∆ and an arrangement of hyperplanes

F = {Fi} in H2(BT ;R) with the same index set as the set of 1-dimensional

cones in ∆. Recall that it is called simple if the multi-fan ∆ is simplicial.

In Chapter 4, we carefully compare two generalized Pick’s theorems and,

finally, we show that they are equivalent.
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Chapter 2

Multi-polygons

In this chapter, we recollect some definitions and properties of multi-polygons,

and explain how to obtain the generalized Pick’s formula as in [6], relatively

in detail. This chapter is largely taken from the paper [6].

We say that a sequence of vectors v1, . . . , vd+1 in Z2 (d ≥ 2) with vd+1 = v1

is unimodular if each triangle with vertices 0, vi and vi+1 contains no lattice

point except the vertices, where 0 = (0, 0). The vectors in the sequence are

not necessarily counterclockwise or clockwise. Very often they may go back

and forth, whenever we need to do so.

Set

εi = det (vi, vi+1) , for i = 1, . . . , d.(2.1)

This implies that εi = 1 if the rotation from vi to vi+1 (with angle less than

π) satisfies the so-called right-hand rule and {vi, vi+1} is a basis of Z2 for

i = 1, . . . , d and εi = −1, otherwise. It is straightforward to see that

(vi, vi+1) = (vi−1, vi)

(
0 −εi−1εi
1 −εiai

)
with a unique integer ai for each i. It is easy to show that this is equivalent

to

εi−1vi−1 + εivi+1 + aivi = 0.(2.2)
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Note also that |ai| is same as twice the area of the triangle with vertices

0, vi−1 and vi+1.

The following theorem has been proved in the paper [5, Theorem 1.2].

Theorem 2.1. The rotation number of a unimodular sequence v1, . . . , vd+1

(d ≥ 2) around the origin such that vd+1 = v1 is given by

1

12

(
d∑
i=1

ai + 3
d∑
i=1

εi

)
,

where εi and ai are the integers defined as in (2.1) and (2.2).

A lattice polygon is a polygon where the vertices are elements of Z2, where

Z is the set of integers. If P is a convex lattice polygon whose only interior

lattice point is the origin and v1, . . . , vd+1 are the vertices of P arranged

counterclockwise, then every vi is primitive and the triangle with the vertices

0, vi and vi+1 has no lattice point in the interior for each i, where vd+1 = v1

as usual. This observation motivates the following definition.

Definition 2.2. A sequence of vectors P = (v1, . . . , vd+1), where v1, . . . , vd+1

are in Z2 and d ≥ 2, is called a legal loop if every vi is primitive and whenever

vi 6= vi+1, vi and vi+1 are linearly independent, i.e., vi 6= −vi+1 and the

triangle with the vertices 0, vi and vi+1 has no lattice point in the interior.

We say that a legal loop is reduced if v1 6= vi+1 for any i(i 6= d+ 1).

A (non-reduced) legal loop P naturally determines a reduced legal loop,

denoted Pred, by dropping all the redundant point. We define the winding

number of a legal loop P = (v1, . . . , vd+1) to be the rotation number of the

vectors v1, . . . , vd+1 around the origin.

By joining successive points in a legal loop P = (v1, . . . , vd+1) by straight

lines, we can form a lattice polygon which may have a self-intersection. A uni-

modular sequence v1, . . . , vd+1 determines a reduced legal loop. Conversely,

a reduced legal loop P = (v1, . . . , vd+1) determines a unimodular sequence

7



by adding all the lattice points on the line segment vivi+1, called a side of

P , connecting vi and vi+1 for every i. To each side vivi+1 with vi 6= vi+1, we

assign the sign of det(vivi+1), denoted sign(vivi+1).

Definition 2.3. Let |vivi+1| be the number of lattice points on the side vivi+1

minus 1. So |vivi+1| = 0 when vi = vi+1. Then we define

B(P) =
d∑
i=1

sign(vi, vi+1)|vivi+1|.

It is immediate from its definition to obtain B(P) = B(Pred).

Definition 2.4. A lattice multi-polygon P can be equipped with the assign-

ment ε of signs, ε = ±, satisfying the following two conditions: when there

are consecutive three points vi−1, vi, vi+1 in P lying on a line,

(1) ε(vi−1vi) = ε(vivi+1) if vi is in between vi−1 and vi+1.

(2) ε(vi−1vi) 6= ε(vivi+1) if vi−1 lies on vivi+1 or vi+1 lies on vi−1vi.

Remark 2.5. In the paper [10], Masuda discussed lattice multi-polygons such

that three consecutive points are not on a same line. But, if we require the

condition (1) and (2) of Definition 2.4, then the argument developed in the

paper [10] works for any lattice multi-polygons. A shaven polygon is the case

of a lattice multi-polygon with ε = +, so that vi is allowed to lie on the line

segment vi−1vi+1 but vi−1 (resp. vi+1) is not allowed to lie on vivi+1(resp.

vi−1vi) by (2) of Definition 2.4.

In view of this discussion, it will suffice to consider lattice multi-polygons

such that three consecutive points are not on a same line, or we may assume

without loss of generality that all lattice multi-polygons do not have three

consecutive points on a same line.

Let P be a multi-polygon with a sign assignment ε. We think of P as an

oriented piecewise linear loop with signs attached to sides. For i = 1, . . . , d,

8



let ni denote a normal vector to each side vivi+1 such that the 90 degree

counterclockwise rotation of ε(vivi+1)ni has the same direction as vivi+1. The

winding number of P around a point v ∈ R2\P , denoted dP(v), is a locally

constant function on R2\P , where R2 means the set of element in R2 which

does not belong to any side of P .

As in [6], we then define

A(P) :=

∫
v∈R2\P

dP(v) dv,

B(P) :=
d∑
i=1

ε(vivi+1)|vivi+1|,

C(P) := the rotation number of the sequence of n1, . . . , nd.

In case of lattice polygons, recall that A(P ), B(P ), ]P ◦ of lattice polygons

P (not necessarily convex) are defined by

A(P ) := the area of P,

B(P ) := |∂P ∩ Z2|,

]P ◦ := |P ◦ ∩ Z2|.

If a multi-polygon P happens to be a lattice polygon P , that is, P is a

sequence of the vertices of P arranged in counterclockwise order and ε = +,

then it is clear that A(P) = A(P ), B(P) = B(P ), C(P) = 1.

Next we want to define ]P in such a way that if P happens to arise from a

lattice polygon, then ]P = ]P , as follows. Indeed, let P+ be an oriented loop

obtained from P by pushing each side vivi+1 slightly in the direction of ni.

Since P satisfies the conditions (1) and (2) of Definition 2.4, P+ misses all

lattice points. So the winding number dP+(u) can be defined for any lattice

point u using P+. We then define

]P :=
∑
u∈Z2

dP+(u).

9



As mentioned before, lattice multi-polygons treated in [10] are required

that consecutive tree points vi−1, vi, vi+1 do not lie on a same line. But if the

sign assignment ε satisfies the condition (1) and (2) of Definition 2.4, then it

can be shown as in [6, Theorem 3.1] or [10, Theorem 3.1] that the following

generalized Pick’s formula for lattice multi-polygons holds.

Theorem 2.6. Let P be a lattice multi-polygon of dimension 2. Then we

have the following identity:

]P = A(P) +
1

2
B(P) + C(P).

Proof. For the sake of reader’s convenience, we give a sketch of proof. To

do so, let P = (v1, . . . , vd) be a lattice multi-polygon, and assume that P
contains consecutive three points lying on a line, say, v1, v2 and v3. We

consider a new sequence (v1, v3, . . . , vd) and assign the sign for each of its

sides by removing the second point of consecutive three points lying on a

line and assign the signs. So we obtain a lattice multi-polygon containing

no consecutive three points lying on a line, denoted by P̃ . Since the sign

assignment ε continues to satisfy (1) and (2) of Definition 2.4, it can shown

that all of

]P̃ , ]P̃◦, A(P̃), B(P̃), C(P̃)

coincide with those of the original lattice multi-polygon P , respectively. This

completes the proof of Theorem 2.1.

Next we give an example to illustrate Theorem 2.6.

Example 2.7. Take a unimodular sequence

P = (v1, v2, v3, v4, v1) = ((1, 0), (0, 1), (−1, 0), (0,−1), (1, 0)),

see Figure 2.1. Then obtain

ε1 = det(v1, v2) = 1, ε2 = det(v2, v3) = 1 = ε3 = ε4

10



a1 = a2 = a3 = a4 = 0

and the rotation number of P is 1. Note that

]P = 5 and A(P) = 2,

and it follows from Theorem 2.1 and Definition 2.3 that

B(P) = 4 and C(P) =
1

12
(0 + 3 · 4) = 1.

Therefore we have

5 = ]P = A(P̃) +
1

2
B(P̃) + C(P̃) = 2 +

1

2
4 + 1,

as expected.

Figure 2.1: Figure

For the proof of our main Theorem 1.1 given in Chapter 4, we need to

recall the Ehrhart polynomials of a multi-polygon P . Indeed, for a given a

11



positive integer m we can dilate P by m times, denoted mP . In other words,

if P is (v1, . . . , vd) with a sign assignment ε, then mP is (mv1, . . . ,mvd) with

ε(vivi+1) as the sign of the side mvimvi+1 of mP for each i. Then we have

(2.3) ](mP) = A(P)m2 +
1

2
B(P)m+ C(P).

That is, ](mP) is a polynomial in m of degree at most 2 whose coefficients

are as above.
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Chapter 3

Multi-fans and multi-polytopes

The aim of this chapter is to review and set up some necessary notations and

definitions for multi-fans and multi-polytopes and to explain how to derive

the Pick’s formula for multi-polytopes. This chapter is heavily dependent on

the paper [5].

3.1 Ordinary fans

To do so, let N be a lattice of rank n which is isomorphic to Zn. We denote

the real vector space N ⊗ R by NR. A subset σ of NR is called a strongly

convex rational polyhedral with apex at the origin if there exists a finite

number of v1, . . . , vm in N such that

σ = {r1v1 + · · ·+ rmvm|ri ∈ R and ri ≥ 0 for all i},

and σ
⋂

(−σ) = {0}. Here “rational” means that it is generated by vectors

in the lattice N , and “strong” convexity that it contains no line through the

origin. We often call a strongly convex rational polyhedral cone in NR simply

a cone in N . The dimension dim σ of a cone σ is the dimension of the linear

space spanned by vectors in σ. A subset τ of σ is called a face of σ if there is

a linear function l : NR → R such that l takes nonnegative values on σ and

13



τ = l−1(0) ∩ σ. A cone is regarded as a face of itself, while others are called

proper faces.

Definition 3.1. A fan ∆ in N is a set of a finite number of strongly convex

rational polyhedral cones in NR such that

(1) each face of a cone in ∆ is also a cone in ∆,

(2) the intersection of two cones in ∆ is a face of each.

Definition 3.2. A fan ∆ is said to be complete if the union of cones in ∆

covers the entire space NR. A cone is called simplicial if it is generated by

linearly independent vectors. If the generating vectors can be taken as a part

of a basis of N , then the cone is called non-singular.

Definition 3.3. A fan ∆ is said to be simplicial (resp. non-singular) if every

cone in ∆ is simplicial (resp. non-singular).

For each τ ∈ ∆, we define N τ to be the quotient lattice of N by the

sublattice generated (as a group) by τ ∩ N ; so the rank of N τ is n− dim τ .

We consider cones in ∆ that contain τ as a face, and project them on N τ
R.

These projected cones form a fan in N τ , which we denote by ∆τ and call

the projected fan with respect to τ . The dimensions of the projected cones

decrease by dim τ . The completeness, simpliciality and non-singularity of ∆

are inherited to ∆τ for any τ .

3.2 Multi-fans

Let N be as lattice of rank n. Denote by Cone(N) the set of all cones in

N . An ordinary fan is a subset of Cone(N). The set Cone(N) has a (strict)

partial ordering ≺ defined by : τ ≺ σ if and only if τ is a proper face of

σ. The cone {0} consisting of the origin is the unique minimum element in

Cone(N).

14



On the other hand, let Σ be a partially ordered finite set with a unique

minimum element. We denote the (strict) partial ordering by < and the

minimum element by ∗. An example of Σ used later is an abstract simplicial

set with an empty set added as a member, which we call an augmented

simplicial set. In this case the partial ordering is defined by the inclusion

relation and the empty set is the unique minimum element which may be

considered as a (−1)-simplex.

Suppose that there is a map

C : Σ → Cone(N)

such that

(1) C (∗) = {0},

(2) If I < J for I , J ∈ Σ, then C (I ) ≺ C (J ),

(3) For any J ∈ Σ the map C restricted on {I ∈ Σ | I ≤ J} is an

isomorphism of ordered sets onto {κ ∈ Cone(N ) | κ � C (J )}.

For an integer m such that 0 ≤ m ≤ n, we set

Σ(m) := {I ∈ Σ | dimC(I) = m}.

It can be shown that Σ(m) does not depend on C. When Σ is an augmented

simplicial set, I ∈ Σ belongs to Σ(m) if and only if the cardinality |I | of I is

m, namely I is an (m−1)-simplex. Therefore, even if Σ is not an augmented

simplicial set, we use the notion |I| for m, when I ∈ Σ(m).

The image C(Σ) is a finite set of cones inN . We may think of a pair (Σ, C)

as a set of cones in N labeled by the ordered set Σ. Cones in an ordinary

fan intersect only at their faces, but one special feature of a multi-fan is

that cones in C(Σ) may overlap, even the same cone may appear repeatedly

with different labels. The pair (Σ, C) is almost what we call a multi-fan, but
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we incorporate a pair of weight functions on cones in C(Σ) of the highest

dimension n = rank N . More precisely, we consider two functions

ω± : Σ(n) → Z≥0

such that ω+ > 0 or ω− > 0 for every I ∈ Σ(n). These two functions have

its origin from geometry. In fact, if M is a torus manifold of dimension 2n

and if Mi1 , ...,Min are characteristic submanifolds such that their intersection

contains at least one T−fixed point, then the intersection MI =
⋂
ν∈IMiν ,

consists of a finite number of T−fixed points. At each fixed point p ∈ MI

the tangent space τp has two orientations; one is endowed by the orientation

of M and the other comes from the intersection of the oriented submanifolds

Miν . Denoting the ratio of the above two orientations by εp we define the

number ω+(I) to be the number of points p ∈MI with εp = +1 and similarly

for ω−(I).

Definition 3.4. We call a triple ∆ := (Σ, C, ω±) a multi-fan in N . We define

the dimension of ∆ to be the rank of N (or the dimension of NR).

Since an ordinary fan ∆ in N is a subset of Cone(N), one can view it as

a multi-fan by taking Σ = ∆, C = the inclusion map, ω+ = 1, and ω− = 0.

In a similar way as in the case of ordinary fans, we say that a multi-fan

∆ = (Σ, C, ω±) is simplicial (resp. non- singular) if every cone in C(Σ) is

simplicial (resp. non-singular).

The following lemma holds.

Lemma 3.5. A multi-fan ∆ = (Σ, C, ω±) is simplicial if and only if Σ is

isomorphic to an augmented simplicial set as partially ordered sets.

The definition of completeness of a multi-fan ∆ is rather involved. A

naive definition of the completeness would be that the union of cones in

16



C(Σ) covers the entire space NR. Although the two weighted functions ω±

are incorporated in the definition of a multi-fan, only the difference

ω± := ω+ − ω−

is important in this thesis.

3.3 Completeness of a multi-fan

In order to define the completeness of a multi-fan, we first need to introduce

the following intermediate notion of pre-completeness. A vector v ∈ NR will

be called generic if v does not lie on any linear subspace spanned by a cone

in C(Σ) of dimension less than n. For a generic vector v we set

dv =
∑

v∈C(I), I∈Σ(n)
ω(I),

where the sum is understood to be zero if there is no such I.

Definition 3.6. We call a multi-fan ∆ = (Σ, C, ω±) of dimension n is pre-

complete if Σ(n) 6= ∅ and the integer dv is independent of the choice of generic

vectors v. We call this integer the degree of ∆ and denote it by deg(∆).

We remark that for an ordinary fan, pre-completeness is the same as

completeness. Now we define the completeness for a multi-fan ∆. To do so,

we need to define a projected multi-fan with respect to an element in Σ. We

do it as follows. For each K ∈ Σ, we set

ΣK := {J ∈ Σ | K ≤ J}.

It inherits the partial ordering from Σ, and K is the unique minimum

element in ΣK . A map

CK : ΣK → Cone(NC(K))

17



sending J ∈ ΣK to the Cone C(J) projected on (NC(K))R satisfies the three

properties above required for C. We define two functions

ωK
± : Σ

(n−|K|)
K ⊂ Σ(n) → Z≥0

to be the restrictions of ω± to Σ
(n−|K|)
K . the triple ∆K := (Σ, C, ω±) is a multi-

fan in NC(K), and this is the desired projected multi− fan with respect to

K ∈ Σ. When ∆ is an ordinary fan, this definition agrees with the previous

one.

Definition 3.7. A pre-complete multi-fan ∆ = (Σ, C, ω(±)) is said to be

complete if the projected multi-fan ∆K is pre-complete for any K ∈ Σ.

Lemma 3.8. A multi-fan ∆ is complete if and only if the projected multi-fan

∆J is pre-complete for any J ∈ Σ(n−1).

Proof. The argument for the proof goes as follows. Indeed, the pre-completeness

of ∆J for J ∈ Σ(n−1) implies that dv =
∑

v∈C(I)ω(I) remains unchanged

when v gets across the codimension one Cone C(J), which means the pre-

completeness of ∆. Since Σ
(n−|K|−1)
K is contained in Σ(n−1) for any K ∈ Σ, the

pre-completeness of ∆J for any J ∈ Σ(n−1) also implies the pre-completeness

of ∆K for any K ∈ Σ, as desired.

Example 3.9. Let v1, v2, v3 be vectors shown in Figure 3.1, and Σ be an

ordinary polytope given by the folowing simplicial complex

Σ = {φ, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}}.

Then define a function C : Σ → Cone(N) by

C({i}) = the cone spanned by vi

C({i, i+ 1}) = the cone spanned by vi and vi+1,

18



Here we assume that v4 = v1. Let us also take weight functions w± such that

w = 1 on every two dimensional cone in

Σ(2) = {{1, 2}, {2, 3}, {3, 1}}.

Then,

∆ = (Σ, C, w), I ∈ Σ(2)

is a complete non-singular two-dimensional multi-fan (actually, fan) with

deg(∆) = 1.

Figure 3.1

3.4 Multi-polytopes

From now on, let a convex polytope P in V ∗ = Hom(V,R) is the convex hull

of a finite set of points in V ∗, where V = NR. It is the intersection of a finite

number of half space in V ∗ separated by affine hyperplanes, so there are a
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finite number of nonzero vectors v1, . . . , vd ∈ V and real numbers c1, . . . , cd

such that

P = {u ∈ V ∗ | 〈u, vi〉 ≤ ci for all i},

where 〈 , 〉 denotes the natural pairing between V ∗ and V . A polytope gives

rise to a multi-fan in this way. Note that a convex polytope gives rise to a

complete fan.

Now, for a complete multi-fan ∆ = (Σ, C, ω±) let us denote by HP(V ∗)

the set of all affine hyperplanes in V ∗.

Definition 3.10. Let ∆ = (Σ, C, ω±) be a compete multi-fan and let

F : Σ(1) → HP(V ∗)

be a map such that the affine hyperplane F(I) is perpendicular to the half

line C(I) for each I ∈ Σ(1), i.e., an element in C(I) takes a constant on F(I).

We call a pair (∆,F) a multi-polytope and denote it by P . The dimension

of a multi-polytope P is simple if ∆ is simplicial.
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Chapter 4

Main results: comparison of
two generalized Pick’s
Theorems

The goal of this chapter is to show that two version of generalized Pick’s

theorems are actually equivalent.

To be more precise, let (Σ,C, ω±) be a complete multi-polytope in the

sense of the paper [5] of Hattori-Masuda, and let HP(V ∗) be the set of all

affine hyperplanes in V ∗ = Hom(V ,R), where V = NR = N ⊗ R. Let

F : Σ(1) → HP(V ∗) be a map such that the affine hyperplane F(I), I ∈ Σ(1),

is perpendicular to the half line C(I).

From now on, we assume that a multi-polytope P is simple, so that its

corresponding multi-fan ∆ = (Σ,C, ω±) is complete and simplicial, unless

stated otherwise.

We also assume that Σ consists of subsets of [d] := {1, 2, · · · , d}, and

that Σ(1) = {{1}, · · · , {d}}. Let us denote by vi a non-zero vector in the

one-dimensional cone C({i}), and let Fi := F({i}). Then, for I ∈ Σ(n) such

that |I| = n, FI :=
⋂
i∈I Fi is just a point. This point will be denoted by uI .

Throughout this chapter, we shall exclusively deal with the cone of n = 2

only. This our maximal dimensional cone is 2-dimensional, so that uI ∈ R2 ∼=
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V ∗, when n = 2. We assume also that uI ∈ Z2, i.e., uI is an integral lattice

point in R2. In this case, a multi-polytope is called integral.

On the other hand, there is a notion of an integral oriented polygon in

R2, which we want to recall here. To do so, recall that multi-polygon means

a piecewise linear closed curve and that an integral vertex means that vertex

lies in the lattice Z2 ⊆ R2. With theses understood, let P̃ be an integral

oriented multi-polygon in R2 with sign attached to each side. Note that P̃
may have self-intersections but do not have three consecutive vertices lying

on a line.

From now on, let us denote the oriented sides of P̃ by si (i = 1, 2, . . . , d),

where we number si’s so that the next side of si in P̃ is si+1. Let sign(si)

denote the assigned sign of si, and let vi be a normal vector of si such that

the 90◦ counter clockwise rotation of sign(si)vi has the same direction on si.

For examples, see Figures 4.1 and 4.2.

Figure 4.1: Figure

Next, we need to briefly recall the notion of a projected multi-fan with

respect to an element in Σ. To be precise, let K ∈ Σ and set

ΣK := {J ∈ Σ | K ≤ J}.
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Figure 4.2: Figure

Then K is the unique minimal element in ΣK with respect to the partial

ordering induced from Σ. Let CK : ΣK → Cone(N C (K )) be a map given by

mapping J ∈ ΣK to the cone C(J) projected on (N C (K ))R.

We also define two functions

ω±K : Σ
(n−|K|)
K ⊂ Σ(n) → Z≥0

by the restrictions of ω± to Σ
(n−|K|)
K . Then the triple ∆K := (ΣK , CK , ω

±
K) is

a multi-fan in N C (K ), called the projected multi-fan with respect to K ∈ Σ.
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Recall that a vector v ∈ V = NR is called generic if v does not lie on any

linear subspace spanned by a Cone in C(Σ) of dimension < n. For a generic

vector v,

dv =
∑

v ∈ C(I)
I ∈ Σ(n)

ω(I).

Note that if for each {i} ∈ Σ(1), there are exactly two j and k (j 6= k)

such that {i, j}, {i, k} ∈ Σ(2), then we have

dv =
∑

v ∈ C{i}(I)

I ∈ Σ
(1)
{i}

ω{i}(I) = ±1.

Then following proposition plays an important role in the proof of our

main Theorem 1.1.

Proposition 4.1. Let P = (∆,F) be a complete, simple and integral multi-

polytope of dimension 2 such that for each {i} ∈ Σ(1), there are exactly two j

and k (j 6= k) such that {i, j} and {i, k} are all elements of Σ(2). Then there

is an integral oriented multi-polygon P̃ associated to P.

Proof. Let P be an integral and simple multi-polytope as the proposition.

Then it follows from its definition that there is a complete and simplicial

multi-fan ∆ = (Σ,∆, ω±) of dimension 2 and a map

F : Σ(1) → HP(V∗)

such that F({i}) is perpendicular to the half-line C({i}) spanned by vi. Here

Σ(1) = {1, 2, . . . , d}, V ∗ ∼= R2.

By assumption, for each {i} ∈ Σ(1), there are exactly two 2-dimensional

cones, say {i, j} and {i, k}. Hence, for each hyperplane F({i}) = Fi which

is a line in R2, there are exactly two vertices u{i,j} and u{i,k}.
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Figure 4.3

Now, in order to obtain our desired oriented multi-polygon, we form a

“closed” piecewise linear curve by using the hyperplane Fi’s and vertices

u{i,j} and u{i,k}. Note also that all vertices on the closed piecewise linear

curve are integral by assumption. Next, we denote each side from Fi by si,

and assign each normal vector vi of Fi to the side si. See Figures 4.3 and

4.4. Finally, we can also assign the sign(si) to each si by requiring 90 degree

counterclockwise rotation sign(si)vi to have the same direction on si. Hence

we are done

Now recall that a multi-polytope is defined by the affine hyperplanes

perpendicular to the half-line C({i}) for {i} ∈ Σ(1).

Theorem 4.2. Let P̃ be an integral oriented multi-polygon of dimension 2.

Then there is an associated complete, simple, and integral multi-polytope P
of dimension 2 such that for each {i} ∈ Σ(1), there are exactly two j and

k (j 6= k) such that {i, j}, {i, k} ∈ Σ(2). Moreover,we have the following
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Figure 4.4

identity:

A(P̃) = vol(P), B(P̃) = #(∂P), C(P̃) = deg(∆).

Proof. For the proof of the first statement, suppose that we have an integral

oriented multi-polygon P̃ with sign assigned to each side. Then we can easily

recover the corresponding multi-polytope. To be more precise, for each side

labelled si, assign an affine hyperplane Fi with normal vector vi.

Using this information, we then form a map

C :
∑

→ Cone(V ∗), V ∗ ∼= R2

such that C({i})= one-dimensional half-line spanned by vi. We also set

ω(I) = +1 for I ∈ Σ. Hence we can obtain a multi-fan (Σ, C, ω±), Σ = ∆

and its corresponding multi-polytope P = (∆, F ). Note that P is integral

by the assumption of P̃ .

Since each side has only two vertices, there should be exactly two hyper-

planes Fj and Fk intersecting Fi. But this implies that, for each {i} ∈ Σ(1)

there are exactly two 2-dimensional cones {i, j} and {i, k}. So P satisfies the

assumption of the first item of the theorem.

Moreover, it follows from definition of P̃ that P is always simple. So it

remains to show that P is complete. Since ω(I) = +1 for I ∈ Σ and for each
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{i} ∈ Σ(1), there are exactly two j and k (j 6= k) such that {i, j}, {i, k} ∈ Σ(2),

it is easy to see

dv =
∑

v ∈ C{i}(I)

I ∈ Σ
(1)
{i}

ω(I) = +1,

which is constant. Therefore, we can conclude that (Σ, C, ω±) is complete.

This completes the proof of the first statement of Theorem 4.2.

Next, for the proof of the second statement we first recall the generalized

Pick’s theorem for multi-polytopes and multi-polygons. To do so, we begin

with the case of multi-polygons P̃ , and we need to recall three invariants of

P̃ . For this, we identify R2 (resp. Z2) with H2(BT : R) (resp. H2(BT : Z),

and think of P̃ on a polygon in H2(BT : R). We may also assume that each

consecutive pair vi−1 and vi is a basis of H2(BT : Z). Note also that by

Masuda [10] there is a unitary toric manifold M of real dimension 4 whose

multi-fan is P̃ . We may assume that the T -action on M is effective and

Hodd(M ;Z) = 0, where T = S1 × S1 in this case.

For the associated multi-polytope P = (∆,F), there are real numbers

ci’s given by

F({i}) = {u ∈ H2(BT ;R) | 〈u, vi〉 = ci},

and these numbers ci’s determine an element

cT1 (P) =
d∑
i=1

cixi ∈ H2
T (∆;R)

called the equivariant first Chern class of P . In particular, when ∆ is non-

singular, P is a lattice multi-polytope if and only if all ci’s are integers ([5,

p. 26]).

With this set-up, let L be a complex T -line bundle over M such that

cT1 (L) =
∑

ciξi ∈ H2
T (M ;Z),
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where ξi’s are dual elements of vi’s in H2(BT ;Z) and ci’s are integers defined

in (4.1). Note that the existence of L follows from [10, Lemma 3.2]. We now

apply the Riemann-Roch formula for multi-polygons (see, e.g., [10, Theorem

7.2]) to the multi-polygon P̃ , so that we have

(4.1) #(P̃) =
〈
ec1(L)Td(M), [M ]

〉
,

where Td(M) denotes the Todd class of M . On the other hand, by applying

the Riemann-Roch formula for multi-polytopes given in [5, Theorem 8.5] to

our multi-polytope P we can also obtain

(4.2) #(P) =

∫
∆

ec1(P)T (∆),

where c1(P) and T (∆) denote the first Chern class and Todd class of P ,

respectively (see [5, p. 28]). We then claim that

#(P̃) = #(P).

To see it, it suffices to note that by their constructions c1(L) and Td(M) play

the same roles as c1(P) and T (∆), respectively, in the above two equations

(4.1) and (4.2).

Now, by applying the same arguments to mP and mP̃ for m ∈ Z, it is

also easy to obtain

#(mP̃) = A(P̃)m2 +
1

2
B(P̃)m+ C(P̃),

= #(mP) = A(P)m2 +
1

2
B(P)m+ C(P),

where

A(P) = vol(P), B(P) = #(∂P), C(P) = deg(∆).

As a consequence, we can conclude that the following identities hold:

A(P̃) = A(P), B(P̃) = B(P), C(P̃) = C(P).

This completes the proof of Theorem 4.2.
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Finally we close this chapter with two examples to show the validity of

Theorem 4.2.

Figure 4.5: Figure

Example 4.3. Let v1, v2, v3, v4 be vectors above. Then it is also easy to

compute

deg(∆) = 1 = C(P̃), #(P◦) = 1, and B(P̃) = #(∂P) = 4.

Moreover, A(P̃) = vol(P) = 4. So we see that this fits well with our main

Theorem.

Example 4.4. Let v1, v2, v3, v4 be vectors as in Figure 4.6. Then it is also

easy to compute

deg(∆) = 1 = C(P̃), #(P◦) = 1, and B(P̃) = #(∂P) = 8.

Moreover, A(P̃) = vol(P) = 4. So we see that this fits well with our main

Theorem 4.2.
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Figure 4.6: Figure

Example 4.5. Take a unimodular sequence

P = (v1, . . . , v5, v1) = ((1, 0), (0, 1), (−1, 0), (0,−1), (−1,−1), (1, 0)),

see Figure 4.8. Then

ε1 = ε2 = ε3 = ε5 = 1, ε4 = −1 and a1 = a4 = a5 = 1, a2 = a3 = 0,

and the rotation number of P around the origin is 1. Note also that

]P̃ = 4 and A(P̃) =
3

2
,

and it follows from Theorem 2.1 and Definition 2.3 that

B(P̃) = 1 + 1 + 1− 1 + 1 = 3 and C(P̃) =
1

12
(3 + 3 · 4− 3) = 1.

Further, note also that

A(P) =
3

2
, B(P) = 3, and C(P) = 1,

as expected. Figure 4.7 shows multi-fan for Example 4.7.
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Figure 4.7

Figure 4.8
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