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I. INTRODUCTION

One of the basic problems in the differential geometry is studying the set of

curvature functions which a given manifold possesses.

The well-known problem in differential geometry is that of whether there
exists a warping function of warped metric with some prescribed scalar curva-
ture function. One of the main methods of studying differential geometry is the
existence and the nonexistence of Riemannian warped metric with prescribed
scalar curvature functions on some Riemannian warped product manifolds. In
order to study these kinds of problems, we need some analytic methods in

differential geometry.

For Riemannian manifolds, warped products have been useful in producing
examples of spectral behavior, examples of manifolds of negative curvature (cf.
[B.K.], [B.O.], [D.D.], [G.L.], [K.K.P.], [L.M.], [M.M.]), and also in studying

Lo—cohomology (cf. [Z.]).

In a study [L. 1, 2], M.C. Leung have studied the problem of scalar curva-
ture functions on Riemannian warped product manifolds and obtained partial
results about the existence and the nonexistence of Riemannian warped metric

with some prescribed scalar curvature function.

1
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In this paper, we also study the existence and the nonexistence of Riemann-
ian warped product metric with prescribed scalar curvature functions on some
Riemannian warped product manifolds. So, using upper solution and lower so-
lution methods, we consider the solution of some partial differential equations
on a warped product manifold. That is, we express the scalar curvature of a
warped product manifold M = B x; N in terms of its warping function f and

the scalar curvatures of B and N.

By the results of Kazdan and Warner (cf. [K.W. 1, 2, 3]), if N is a compact
Riemannian n—manifold without boundary, n > 3, then N belongs to one of

the following three categories:

(A) A smooth function on N is the scalar curvature of some Riemannian metric

on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian metric
on N if and only if the function is either identically zero or strictly negative

everywhere.

(C) Any smooth function on N is the scalar curvature of some Riemannian

metric on V.
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This completely answers the question of which smooth functions are scalar

curvatures of Riemannian metrics on a compact manifold N.

In [K.W. 1, 2, 3], Kazdan and Warner also showed that there exists some
obstruction of a Riemannian metric with positive scalar curvature (or zero

scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have been
done on the question how to determine which smooth functions are scalar cur-
vatures of complete Riemannian metrics on open manifold. Results of Gromov
and Lawson (cf. [G.L.]) show that some open manifolds cannot carry complete
Riemannian metrics of positive scalar curvature, for example, weakly enlarge-

able manifolds.

Furthermore, they show that some open manifolds cannot even admit com-
plete Riemannian metrics with scalar curvatures uniformly positive outside a

compact set and with Ricci curvatures bounded (cf. [G.L.], [L.M., p.322]).

On the other hand, it is well known that each open manifold of dimension
bigger than 2 admits a complete Riemannian metric of constant negative scalar

curvature (cf. [B.K.]). It follows from the results of Aviles and McOwen (cf.
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[A.M.]) that any bounded negative function on an open manifold of dimension
bigger than 2 is the scalar curvature of a complete Riemannian metric.

In this paper, when NN is a compact Riemannian manifold, we discuss the
method of using warped products to construct Riemannian metrics on M =
la,00) x ¢ N with specific scalar curvatures, where a is a positive constant. It
is shown that if the fiber manifold N belongs to class (B), then M admits a
Riemannian metric with some prescribed scalar curvature outside a compact
set. That is, suppose that R(g) = 0. and that R(t) € C*°([a, c0)) is a function

such that

4dn ¢ 1 4n
-—> R(t) > —
n4+141¢2 <>_ n—+1

e® for t > to,

where ty > a, > 0 and 0 < ¢ < 1 are constants. Then equation (3.4) has a
positive solution on [a, 00).
These results are extensions of the results in [J.L.K.L.].

Although we will assume throughout this paper that all data (M, metric
g, and curvature, etc.) are smooth, this is merely for convenience. Our argu-
ments go through with little or no change if one makes minimal smoothness

hypotheses, such as assuming that the given data is Holder continuous.
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II. PRELIMINARIES

First of all, in order to induce a partial differential equation, we need some
definitions of connections, curvatures and some results about warped product
manifolds.

Definition 2.1. Let X'(M) denote the set of all smooth vector fields defined

on M, and let (M) denote the ring of all smooth real-valued functions on M.

A connection V on a smooth manifold M is a function

Vo X(M) x X(M) = X(M)

such that

(D1) Vy W is §(M)-linear in V,

(D2) Vy W is R-linear in W,

(D3) Vy(fW) = (VHW + fVyW for f e I(M).
(D4) [V,W] =VyW — Vy/V, and

(D5) X < V,W >=< VxV.W >4+ <V, VxW >

for all X, VW € X(M).
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If V satisfies axioms (D1) ~ (D3), then Vi W is called the covariant deriva-
tive of W with respect to V' for the connection V. If V satisfies axioms (D4) ~
(D5), then V is called the Levi - Civita connection of M, which is characterized

by the Kdszul formula (cf. [O.]).

A geodesic ¢ : (a,b) — M is a smooth curve of M such that the tangent
vector ¢ moves by parallel translation along c. In other words, ¢ is a geodesic

if

Ved =0 (geodesic equation)

A pregeodesic is a smooth curve ¢ which may be reparametrized to be a
geodesic. Any parameter for which ¢ is a geodesic is called an affine parameter.
If s and t are two affine parameters for the same pregeodesic, then s = at + b
for some constants a,b € R. A pregeodesic is said to be complete if for some
affine parameterizion (hence for all affine parameterizations) the domain of the

parametrization is all of R.

The equation V¢’ = 0 may be expressed as a system of linear differential

equations. To this end, we let (U, (z', 22, ..., 2™)) be local coordinates on M and
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let a%lﬂ 8%2, e 8% denote the natural basis with respect to these coordinates.

The connection coefficients F,f-“j of V with respect to (z',z?,...,2") are defined

by

0 . : :
o (=)= Y T'™ — (connection coefficients).
o1 Ol L=V Ok

\Y

Using these coefficients, we may write equation as the system

Pk I~ dat da?
+ p 22 2
dt? Yodt dt

=0 (geodesic equations in coordinates).

Definition 2.2. The curvature tensor of the connection V is a linear trans-

formation valued tensor R in Hom(X (M), X (M)) defined by :

R(X,Y) = VxVy — VyVx — Vixy.

Thus, for Z € X(M) ,

R(X,Y)Z =VxVyZ - VyVxZ — VixyZ.
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It is well-known that R(X,Y)Z at p depends only upon the values of X,Y

and Z at p (cf. [O.]).

If we T;(M) is a cotangent vector at p and z,y,z € T,(M) are tangent

vectors at p, then one defines

Rw,X,Y,Z) = (w, R(X,Y)Z) = w(R(X,Y)Z)

for X,Y and Z smooth vector fields extending x,y and z, respectively.

The curvature tensor R is a (1,3)-tensor field which is given in local coordi-

nates by

Z km@ ® dr! @ da* @ da™

i,7,k,m=1

where the curvature components R:, ~are given by

jkm

% aF:Lm ar;f - a % a 11
jkm T axkj - +Z F jF Fk‘jrma)
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Notice that R(X,Y)Z = —R(Y, X)Z, Rw,X,Y,Z)=—-R(w,Y,X,Z)and

% _ %
jkm T _ijk'

Furthermore, if X = Y 2/ vV =3¢ -2 g L = S22 and w =Y wida’
then
= > By
&ﬂ
i,5,k,m=1

and

R(w, XY, Z) = Z

i,4,k,m=1

2]

i
’ﬁxk’aazm’aaﬂ) R

Consequently, one has R(dz" k-

Definition 2.3. From the curvature tensor R, one nonzero tensor (or its
negative) is obtained by contraction. It is called the Ricci tensor. Its compo-

nents are R;; = >." | R ikj- Lhe Riccl tensor is symmetric and its contraction

S =31y Rijg” is called the scalar curvature (cf. [A.],[B.E.J,[B.E.E]).

Definition 2.4. Suppose {2 is a smooth, bounded domain in R", and let

g =0 x R — R be a Caratheodory function. Let ug € H&’Z(Q) be given.
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Consider the equation
Au=g(z,u) in Q
u=uy on Of)

u € HY(Q) is a (weak) sub-solution if u<wug on 9Q and

/Vqupd:v—l—/g(x,u)gpd:vSO for all ¢ e C(Q), ¢=>0.
0 0

Similarly u € H"%(Q) is a (weak) super-solution if in the above the reverse
inequalities hold. We briefly recall some results on warped product manifolds.
Complete details may be found in [B.E.] or [O.]. On a semi-Riemannian product
manifold B x F. let m and o be the projections of B x F onto B and F,

respectively, and let f > 0 be a smooth function on B.

Definition 2.5. The warped product manifold M = B x; F' is the product

manifold M = B x F' furnished with metric tensor

g=m"(g8) + (fom)*c*(gr)

where g and gr are metric tensors of B and F', respectively. In other words,

if v is tangent to M at (p,q), then
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9(v,v) = gp(dn(v), dn(v)) + f*(p)gr(do(v), do(v)).

Here B is called the base of M and F' the fiber (]O.]).

We denote the metric g by < , >. In view of Remark 2.13 (1) and Lemma
2.14 we may also denote the metric gg by < , >. The metric gp will be

denoted by ( , ).

Remark 2.6. Some well known elementary properties of warped product
manifold M = B xy I are as follows :

(1) For each ¢ € F', the map 7 |,-1(q)=pxq IS an isometry onto 5.

(2) For each p € B, the map o [;-1(y=pxr is & positive homothetic map

onto F with homothetic factor ﬁ.

(3) For each (p,q) € M , the horizontal leaf B x ¢ and the vertical fiber

p x F are orthogonal at (p, q).
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(4) The horizontal leaf 071(q) = B X ¢ is a totally geodetic submanifold of

M and vertical fiber 771(¢) = p x F is a totally umbilic submanifold of M.

(5) If ¢ is an isometry of F', then 1 x ¢ is an isometry of M, and if ¢ is an

isometry of B such that f = (f o) then ¢ x 1 is an isometry of M.

Recall that vectors tangent to leaves are called horizontal and vector tan-
gent to fibers are called vertical. From now on, we will often use a natural

identification.

Tipg)(B x5 F) =Ty (B x F) 2 T,BxT,F

The decomposition of vectors into horizontal and vertical parts plays a role
in our proofs. If X is a vector field on B, we define X at (p,q) by setting

X(p,q) = (X,,0,). Then X is m-related to X and o-related to the zero

vector field on F. Similarly, If Y is a vector field of F, Y is defined by

Y(p7 q) = (OP? Yq)
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Lemma 2.7. If h is a smooth function an B, Then the gradient of the lift

(hom) of h to M is the lift to M of gradient of h on B.

Proof. We must show that grad(hom) is horizontal and 7-related to grad(h)

on B. If v is vertical tangent vector to M, then

< grad(hom),v >=v(how)=dn(v)h =0, since dmr(v)=0.

Thus grad(h o 7) is horizonal. If = is horizonal,

< dm(grad(hom)),dr(x) >=< grad(how),z >=xz(h o)
=dn(z)h < grad(h),dn(z) > .

Hence at each point, dr(grad(hom)) = grad(h).

In view of Lemma 2.14, we simplify the notations by writing h for (hom) and
grad(h) for grad(ho). For a covariant tensor A on B, its lift A to M is just its
pullback 7*(A) under the projection 7 : M — B That is, if A is a (1,s)-tensor,
and if vy, v, ..., v € T(p M, then A(vy, ..., v5) = A(dr(v1), ..., dw(vs)) € T,(B).

Hence if vy, is vertical, then A = 0 on B. For example, if f is a smooth function
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on B, the lift to M of the Hessian of f is also denoted by H/. This agrees with
the Hessian of the lift (f o m) generally only on horizontal vector. For detailed

computations, see Lemma 5.1 in [B.E.P.].

Now we recall the formula for the Ricci curvature tensor Ric on the warped
product maniford M = B x; F. We write Ric? for the pullback by 7 of the

Ricci curvature of B and similarly for Ric!.

Lemma 2.8. On a warped product maniford M = B x; F' with n=dim F' > 1
let X,Y be horizontal and V, W vertical.

Then

(1) Ric(X,Y) = Ric?(X,Y) — ?Hf(X, Y),

(2) Ric(X,Y) =0,

(3) Ric(V,W) = RicF(V,W)— < V,W > ft,

Where f* = % +(n—1) <gmd(f}’ggMd(f)> and Af = trace(H’) is the Laplacian

on B.

Proof. See Corollary 7.43 in (cf. [O.].)
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On the given warped product manifold M = B x; F, we also write S® For
the pullback by 7 of the scalar curvature Sp of B and similarly for S¥ From

now on, we denote grad(f) by Af.

Lemma 2.9. If S is the scalar curvature of M = B x; F' with n = dimF"> 1,

then

(2.1) S:SB—F?C—Z—QN%—n(n—l)

<Vf,Vf>

where A is the Laplacian on B.
Proof. For each (p,q) € M = B x; F, let {e;} be an orthonormal basis for
T,B. Then by the natural isomorphism {&; = (e;,0)} is an orthonormal set in

Tip.pM. We can choose {d;} on T,F such that {&;,d;} forms an orthonormal

basis for T{, M. Then

1 =<d;,d; >= f(p)*(d;, d;) = (f(p)d;, f(p)d;)
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which implies that {f(p)d;} forms an orthonormal basis for T, F'.

By Lemma 2.8 (1) and (3), for each ¢ and j

Ric(e;, &) = Ric® (e, @) — Y %Hf (@)

%

and

<Vf,Vf >)

o _ A
Rz’c(dj, dj) = RicF(djv dj) - f2(p>gF<djv dj)<7f + n(n o 1> 12
Hence, for ¢; = g(&;,&;) and ¢; = (d;, d;)
S(p, Q) = Z 6ozRozoz
= Y &Ric(e,@) + Y e;Ric(d;, d;)
Sy, Af <V Vf>
= S%(p,q) + ;Z 9 _ = = n(n — 1>T’

which is a nonlinear partial differential equation on B x ¢ for each ¢ € F.
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III. MAIN RESULTS

Let (N, g) be a Riemannian manifold of dimension n and let f : [a,00) — R*
be a smooth function, where a is a positive number. A Riemannian warped
product of N and [a, 00) with warping function f is defined to be the product

manifold ([a, 00) X N, ¢') with

(3.1) g =dt* + f*(t)g

Let R(g) be the scalar curvature of (IV, g). Then equation (2.1) implies that

the scalar curvature R(t,x) of ¢’ is given by the equation

(32  R(t.z)= f%(t){zﬂg)(x) — (1) (1) — nln — 1) (1))

for t € [a,00) and x € N. (For details, cf. [D.D.] or [G.L.]).

Problem : Given a fiber N with constant scalar curvature R(g), can we find
a warping function f > 0 on B = [a,00) such that for any smooth function

R(t,z), the warped metric ¢’ admits R(¢,z) as the scalar curvature

Collection @ chosun



18

on M = [a,00) x§ N7

If we denote

then equation (3.2) can be changed into

4n
n+1

(3.3) W'(8) + R(t, 2)u(t) — R(g)(z)u(t) " #+1 = 0.

In this paper, we assume that the fiber manifold N is nonempty, connected
and a compact Riemannian n—manifold without boundary.
If N is in class (B), then we assume that N admits a Riemannian metric of

zero scalar curvature. In this case, equation (3.3) is changed into

4n

(3:4) n+1

u"(t) + R(t,x)u(t) = 0.

If N admits a Riemannian metric of zero scalar curvature, then we let u(t) =

t* in equation(3.4), where a > 1 is a constant, and we have
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Thus we have the following theorem.

Theorem 3.1. For n > 3, let M = [a,00) X N be the Riemannian warped
product (n + 1)-manifold with N compact n-manifold. Suppose that N is in
class (B), then on M there is a Riemannian metric of negative scalar curvature

outside a compact set.

Theorem 3.2. Suppose that R(g) = 0 and R(t,z) = R(t) € C*([a,0)).
Assume that for ¢ > t(, there exist an upper solution u (t) and a lower solution
u_(t) such that 0 < u_(t) < u(t). Then there exists a solution u(t) of equation

(3.4) such that for t > ¢y, 0 <wu_(t) <u(t) < uy(t).

Proof. See Theorem 3.2 in [J.L.K.L.].

Lemma 3.3. On [a, 00), there does not exist a positive solution u(t) such

that
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1" C
t2u (t) + Zu(t) <0 for t>tg,
where ¢ > 1 and tg > a are constants.

Proof. See Lemma 3.2 in [C.Y.L.].

Theorem 3.4. If R(g) = 0, then there is no positive solution to equation

(3.4) with

dn c1
R(t) > —— i t>1t
(>_n+14t2 or t=to
where ¢ > 1 and ty > a are constants.
Proof. Assume that
dn c1
R(t) > —— t>1t
()_n+14t2 or =t

with ¢ > 1. Equation (3.4) gives

20 (1) + Ziu(t) <0.

By Lemma 3.3, we complete the proof.
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In particular, if R(g) = 0, then using Riemannian warped product it is im-
possible to obtain a Riemannian metric of uniformly negative scalar curvature
outside a compact subset. The best we can do is when u(t) = ¢z, or f(t) = fo

where the scalar curvature is negative but goes to zero at infinity.

Theorem 3.5. Suppose that R(g) = 0. Assume that R(t,z) = R(t) €

C>([a,0)) is a function such that

4n c 1 4n
—— > R(t) > — at t >t
nriap > Rl Z e for 0;

where tg > a, & > 0 and 0 < ¢ < 1 are constants. Then equation (3.4) has a

positive solution on [a, 00).

Proof. Since R(g) = 0, put uy (t) = t2. Then v (t) = ’Tlt%’Z. Hence
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4n
=l (1) + R(t)u ()
4n dn c1

< 14 =

B dn -1 .1, 4n c1 1

 n+14 n+14¢2
4n 11

< —t272[—1

S VLA

< 0

Therefore uy (t) is our (weak) upper solution.
And put u_(t) = e~¢”", where § is a positive large constant. Then u” () =

bt _eBt
—B2eBte=e" 4 B2e?Pte¢" . Hence

n”‘f () + R(t)u (1)
> n4—fluﬁ () — n‘f (1)
= n4fleem[—ﬁzeﬁt + B2t — e
= e o) oo
> 0
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for large 5. Thus, for large 3, u_(t) is a (weak) lower solution and 0 < u_(t) <
u4(t). So, by Theorem 3.2, equation (3.4) has a (weak) positive solution u(t)

such that 0 < u_(t) < u(t) < uy(t) for large t.

Remark 3.6. In case that R(g) = 0, the results in Theorem 3.4 and Theorem

3.5 are almost sharp because if u(t) = ¢2, then R(t) = Tf‘—&it%.
Example 3.7. If R(g) = 0 and R(t) = — %%, then there is a positive solution

to equation (3.4). In fact, we have only to solve the following equation.

(3.5) 2" (t) — 2u(t) = 0.

Applying the method for the Euler-Cauchy equation to (3.5), we put u(t) = t™.

Then

m(m — D™ 42 - 2t™ =0

and

(m? —m — 2)t™ =0,
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som = 2,—1. Thus u(t) = c;t> + ot is solution of equation (3.5), where ¢
and ¢y are constants.

Therefore u(t) = cot™! is our (weak) solution in the sense of Theorem 3.5

such that 0 < u_(t) < wu(t) < uy(t).
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