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문 록

The Existence of Some Metrics on Riemannian

Warped Product Manifolds with Fiber Manifold of

Class (B)

엽다양체가 류 경우 리만 휜곱다양체 거리 재- (B) -

채 화

지도 수 태:

학 학원 수학 공

미 하학에 본 문 중 하나는 미 다양체가 가지고 는 곡률 함수

에 한 연 다.

연 로는 해 하여 다양체 에 편미 식

도하여 해 재 보 다.

결과에 하Kazdan and Warner ([K.W.1,2,3])  함수 가 

가 는 가지 경우 타 는Riemannian metric scalar curvature

(A)  함수 가 그 함수Riemannian metric scalar curvature 가

당한 에     다 즉. ,  에 nagative constant scalar

를 갖는 재하는 경우 다curvature Riemannian metric .

(B)  함수 가 그 함수Riemannian metric scalar curvature 가

항등 로 ≡ 거나 든 에   경우 다.

경우에는,  에 를 갖는zero scalar curvature Riemannian metric



재하는 경우 다.

(C)  함수 를 로 갖는scalar curvature Riemannian metric

재하는 경우 다.

본 논문에 는 엽다양체  에 하는(B) compact Riemannian manifold

, Riemannian warped product manifold  ∞×  에 함수  가

당한 건 만 하  가 Riemannian warped product metric scalar

가 수 는curvature warping function 가 재할 수 상해하해∙

하여 증 하 다.



I. INTRODUCTION

One of the basic problems in the differential geometry is studying the set of

curvature functions which a given manifold possesses.

The well-known problem in differential geometry is that of whether there

exists a warping function of warped metric with some prescribed scalar curva-

ture function. One of the main methods of studying differential geometry is the

existence and the nonexistence of Riemannian warped metric with prescribed

scalar curvature functions on some Riemannian warped product manifolds. In

order to study these kinds of problems, we need some analytic methods in

differential geometry.

For Riemannian manifolds, warped products have been useful in producing

examples of spectral behavior, examples of manifolds of negative curvature (cf.

[B.K.], [B.O.], [D.D.], [G.L.], [K.K.P.], [L.M.], [M.M.]), and also in studying

L2−cohomology (cf. [Z.]).

In a study [L. 1, 2], M.C. Leung have studied the problem of scalar curva-

ture functions on Riemannian warped product manifolds and obtained partial

results about the existence and the nonexistence of Riemannian warped metric

with some prescribed scalar curvature function.
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In this paper, we also study the existence and the nonexistence of Riemann-

ian warped product metric with prescribed scalar curvature functions on some

Riemannian warped product manifolds. So, using upper solution and lower so-

lution methods, we consider the solution of some partial differential equations

on a warped product manifold. That is, we express the scalar curvature of a

warped product manifold M = B ×f N in terms of its warping function f and

the scalar curvatures of B and N .

By the results of Kazdan and Warner (cf. [K.W. 1, 2, 3]), if N is a compact

Riemannian n−manifold without boundary, n ≥ 3, then N belongs to one of

the following three categories:

(A) A smooth function on N is the scalar curvature of some Riemannian metric

on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian metric

on N if and only if the function is either identically zero or strictly negative

everywhere.

(C) Any smooth function on N is the scalar curvature of some Riemannian

metric on N .
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This completely answers the question of which smooth functions are scalar

curvatures of Riemannian metrics on a compact manifold N .

In [K.W. 1, 2, 3], Kazdan and Warner also showed that there exists some

obstruction of a Riemannian metric with positive scalar curvature (or zero

scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have been

done on the question how to determine which smooth functions are scalar cur-

vatures of complete Riemannian metrics on open manifold. Results of Gromov

and Lawson (cf. [G.L.]) show that some open manifolds cannot carry complete

Riemannian metrics of positive scalar curvature, for example, weakly enlarge-

able manifolds.

Furthermore, they show that some open manifolds cannot even admit com-

plete Riemannian metrics with scalar curvatures uniformly positive outside a

compact set and with Ricci curvatures bounded (cf. [G.L.], [L.M., p.322]).

On the other hand, it is well known that each open manifold of dimension

bigger than 2 admits a complete Riemannian metric of constant negative scalar

curvature (cf. [B.K.]). It follows from the results of Aviles and McOwen (cf.
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[A.M.]) that any bounded negative function on an open manifold of dimension

bigger than 2 is the scalar curvature of a complete Riemannian metric.

In this paper, when N is a compact Riemannian manifold, we discuss the

method of using warped products to construct Riemannian metrics on M =

[a,∞) ×f N with specific scalar curvatures, where a is a positive constant. It

is shown that if the fiber manifold N belongs to class (B), then M admits a

Riemannian metric with some prescribed scalar curvature outside a compact

set. That is, suppose that R(g) = 0. and that R(t) ∈ C∞([a,∞)) is a function

such that

4n

n+ 1

c

4

1

t2
> R(t) ≥ − 4n

n+ 1
eαt for t > t0,

where t0 > a, α > 0 and 0 < c < 1 are constants. Then equation (3.4) has a

positive solution on [a,∞).

These results are extensions of the results in [J.L.K.L.].

Although we will assume throughout this paper that all data (M , metric

g, and curvature, etc.) are smooth, this is merely for convenience. Our argu-

ments go through with little or no change if one makes minimal smoothness

hypotheses, such as assuming that the given data is Hölder continuous.
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II. PRELIMINARIES

First of all, in order to induce a partial differential equation, we need some

definitions of connections, curvatures and some results about warped product

manifolds.

Definition 2.1. Let X (M) denote the set of all smooth vector fields defined

on M , and let =(M) denote the ring of all smooth real-valued functions on M.

A connection ∇ on a smooth manifold M is a function

∇ : X (M)×X (M)→ X (M)

such that

(D1) ∇VW is =(M)-linear in V ,

(D2) ∇VW is R-linear in W ,

(D3) ∇V (fW ) = (V f)W + f∇VW for f ∈ =(M).

(D4) [V,W ] = ∇VW −∇WV , and

(D5) X < V,W >=< ∇XV,W > + < V,∇XW >

for all X, V,W ∈ X (M).
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If ∇ satisfies axioms (D1) ∼ (D3), then ∇VW is called the covariant deriva-

tive of W with respect to V for the connection ∇. If ∇ satisfies axioms (D4) ∼

(D5), then ∇ is called the Levi - Civita connection of M , which is characterized

by the Köszulformula (cf. [O.]).

A geodesic c : (a, b) → M is a smooth curve of M such that the tangent

vector c′ moves by parallel translation along c. In other words, c is a geodesic

if

∇c′c
′ = 0 (geodesic equation)

A pregeodesic is a smooth curve c which may be reparametrized to be a

geodesic. Any parameter for which c is a geodesic is called an affine parameter.

If s and t are two affine parameters for the same pregeodesic, then s = at + b

for some constants a, b ∈ R. A pregeodesic is said to be complete if for some

affine parameterizion (hence for all affine parameterizations) the domain of the

parametrization is all of R.

The equation ∇c′c
′ = 0 may be expressed as a system of linear differential

equations. To this end, we let (U, (x1, x2, ..., xn)) be local coordinates on M and
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let ∂
∂x1
, ∂
∂x2
, ..., ∂

∂xn
denote the natural basis with respect to these coordinates.

The connection coefficients Γkij of ∇ with respect to (x1, x2, ..., xn) are defined

by

∇ ∂

∂xi
(
∂

∂xj
) =

n∑
k=1

Γkij
∂

∂xk
(connection coefficients).

Using these coefficients, we may write equation as the system

d2xk

dt2
+

n∑
k=1

Γkij
dxi

dt

dxj

dt
= 0 (geodesic equations in coordinates).

Definition 2.2. The curvature tensor of the connection ∇ is a linear trans-

formation valued tensor R in Hom(X (M),X (M)) defined by :

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

Thus, for Z ∈ X (M) ,

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.
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It is well-known that R(X, Y )Z at p depends only upon the values of X, Y

and Z at p (cf. [O.]).

If ω ∈ T ∗p (M) is a cotangent vector at p and x, y, z ∈ Tp(M) are tangent

vectors at p, then one defines

R(ω,X, Y, Z) = (ω,R(X, Y )Z) = ω(R(X, Y )Z)

for X, Y and Z smooth vector fields extending x, y and z, respectively.

The curvature tensor R is a (1,3)-tensor field which is given in local coordi-

nates by

R =
n∑

i,j,k,m=1

Ri
jkm

∂

∂xi
⊗ dxj ⊗ dxk ⊗ dxm,

where the curvature components Ri
jkm are given by

Ri
jkm =

∂Γimj
∂xk

−
∂Γikj
∂xm

+
n∑
a=1

(ΓamjΓ
i
ka − ΓakjΓ

i
ma).
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Notice that R(X, Y )Z = −R(Y,X)Z, R(ω,X, Y, Z) = −R(ω, Y,X, Z) and

Ri
jkm = −Ri

jmk.

Furthermore, if X =
∑
xi ∂

∂xi
, Y =

∑
yi ∂
∂yi

, Z =
∑
zi ∂
∂zi

, and ω =
∑
ωidx

i

then

R(X, Y )Z =
n∑

i,j,k,m=1

Ri
jkmz

jxkym
∂

∂xi

and

R(ω,X, Y, Z) =
n∑

i,j,k,m=1

Ri
jkmz

jxkym.

Consequently, one has R(dxi, ∂
∂xk

, ∂
∂xm

, ∂
∂xj

) = Ri
jkm.

Definition 2.3. From the curvature tensor R, one nonzero tensor (or its

negative) is obtained by contraction. It is called the Ricci tensor. Its compo-

nents are Rij =
∑n

i=1 R
k
ikj. The Ricci tensor is symmetric and its contraction

S =
∑n

ij=1Rijg
ij is called the scalar curvature (cf. [A.],[B.E.],[B.E.E.]).

Definition 2.4. Suppose Ω is a smooth, bounded domain in Rn, and let

g = Ω×R→ R be a Caratheodory function. Let u0 ∈ H1,2
0 (Ω) be given.
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Consider the equation

∆u = g(x, u) in Ω

u = u0 on ∂Ω

u ∈ H1,2(Ω) is a (weak) sub-solution if u ≤ u0 on ∂Ω and

∫
Ω

∇u∇ϕdx+

∫
Ω

g(x, u)ϕdx ≤ 0 for all ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

Similarly u ∈ H1,2(Ω) is a (weak) super-solution if in the above the reverse

inequalities hold. We briefly recall some results on warped product manifolds.

Complete details may be found in [B.E.] or [O.]. On a semi-Riemannian product

manifold B × F . let π and σ be the projections of B × F onto B and F ,

respectively, and let f > 0 be a smooth function on B.

Definition 2.5. The warped product manifold M = B ×f F is the product

manifold M = B × F furnished with metric tensor

g = π∗(gB) + (f ◦ π)2σ∗(gF )

where gB and gF are metric tensors of B and F , respectively. In other words,

if v is tangent to M at (p, q), then
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g(v, v) = gB(dπ(v), dπ(v)) + f 2(p)gF (dσ(v), dσ(v)).

Here B is called the base of M and F the fiber ([O.]).

We denote the metric g by < , >. In view of Remark 2.13 (1) and Lemma

2.14 we may also denote the metric gB by < , >. The metric gF will be

denoted by ( , ).

Remark 2.6. Some well known elementary properties of warped product

manifold M = B ×f F are as follows :

(1) For each q ∈ F , the map π |σ−1(q)=B×q is an isometry onto B.

(2) For each p ∈ B , the map σ |π−1(q)=p×F is a positive homothetic map

onto F with homothetic factor 1
f(p)

.

(3) For each (p, q) ∈ M , the horizontal leaf B × q and the vertical fiber

p× F are orthogonal at (p, q).
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(4) The horizontal leaf σ−1(q) = B × q is a totally geodetic submanifold of

M and vertical fiber π−1(q) = p× F is a totally umbilic submanifold of M .

(5) If φ is an isometry of F , then 1× φ is an isometry of M , and if ψ is an

isometry of B such that f = (f ◦ ψ) then ψ × 1 is an isometry of M .

Recall that vectors tangent to leaves are called horizontal and vector tan-

gent to fibers are called vertical. From now on, we will often use a natural

identification.

T(p,q)(B ×f F ) ∼= T(p,q)(B × F ) ∼= TpB × TqF

The decomposition of vectors into horizontal and vertical parts plays a role

in our proofs. If X is a vector field on B, we define X at (p, q) by setting

X(p, q) = (Xp, 0q). Then X is π-related to X and σ-related to the zero

vector field on F . Similarly, If Y is a vector field of F , Y is defined by

Y (p, q) = (0p, Yq).
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Lemma 2.7. If h is a smooth function an B, Then the gradient of the lift

(h ◦ π) of h to M is the lift to M of gradient of h on B.

Proof. We must show that grad(h◦π) is horizontal and π-related to grad(h)

on B. If v is vertical tangent vector to M , then

< grad(h ◦ π), v >= v(h ◦ π) = dπ(v)h = 0, since dπ(v) = 0.

Thus grad(h ◦ π) is horizonal. If x is horizonal,

< dπ(grad(h ◦ π)), dπ(x) >=< grad(h ◦ π), x >= x(h ◦ π)

= dπ(x)h < grad(h), dπ(x) > .

Hence at each point, dπ(grad(h ◦ π)) = grad(h).

In view of Lemma 2.14, we simplify the notations by writing h for (h◦π) and

grad(h) for grad(h◦π). For a covariant tensor A on B, its lift A to M is just its

pullback π∗(A) under the projection π : M → B That is, if A is a (1,s)-tensor,

and if v1, v2, ..., vs ∈ T(p,q)M , then A(v1, ..., vs) = A(dπ(v1), ..., dπ(vs)) ∈ Tp(B).

Hence if vk is vertical, then A = 0 on B. For example, if f is a smooth function
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on B, the lift to M of the Hessian of f is also denoted by Hf . This agrees with

the Hessian of the lift (f ◦ π) generally only on horizontal vector. For detailed

computations, see Lemma 5.1 in [B.E.P.].

Now we recall the formula for the Ricci curvature tensor Ric on the warped

product maniford M = B ×f F . We write RicB for the pullback by π of the

Ricci curvature of B and similarly for RicF .

Lemma 2.8. On a warped product maniford M = B×f F with n=dim F > 1

let X, Y be horizontal and V,W vertical.

Then

(1) Ric(X, Y ) = RicB(X, Y )− n
f
Hf (X, Y ),

(2) Ric(X, Y ) = 0,

(3) Ric(V,W ) = RicF (V,W )− < V,W > f ],

Where f ] = ∆f
f

+ (n− 1)<grad(f),grad(f)>
f2

and ∆f = trace(Hf ) is the Laplacian

on B.

Proof. See Corollary 7.43 in (cf. [O.].)
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On the given warped product manifold M = B ×f F , we also write SB For

the pullback by π of the scalar curvature SB of B and similarly for SF From

now on, we denote grad(f) by ∆f .

Lemma 2.9. If S is the scalar curvature of M = B ×f F with n = dimF> 1,

then

(2.1) S = SB +
SF

f 2
− 2n

∆f

f
− n(n− 1)

< ∇f,∇f >
f 2

,

where ∆ is the Laplacian on B.

Proof. For each (p, q) ∈ M = B ×f F , let {ei} be an orthonormal basis for

TpB. Then by the natural isomorphism {ei = (ei, 0)} is an orthonormal set in

T(p,q)M . We can choose {dj} on TqF such that {ei, dj} forms an orthonormal

basis for T(p,q)M . Then

1 =< dj, dj >= f(p)2(dj, dj) = (f(p)dj, f(p)dj)
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which implies that {f(p)dj} forms an orthonormal basis for TqF .

By Lemma 2.8 (1) and (3), for each i and j

Ric(ei, ei) = RicB(ei, ei)−
∑
i

n

f
Hf (ei, ei)

and

Ric(dj, dj) = RicF (dj, dj)− f 2(p)gF (dj, dj)(
∆f

f
+ n(n− 1)

< ∇f,∇f >
f 2

).

Hence, for εi = g(ei, ei) and εj = (dj, dj)

S(p, q) =
∑
α

εαRαα

=
∑
i

εiRic(ei, ei) +
∑
j

εjRic(dj, dj)

= SB(p, q) +
SF (p, q)

f 2
− 2n

∆f

f
− n(n− 1)

< ∇f,∇f >
f 2

,

which is a nonlinear partial differential equation on B × q for each q ∈ F .
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III. MAIN RESULTS

Let (N, g) be a Riemannian manifold of dimension n and let f : [a,∞)→ R+

be a smooth function, where a is a positive number. A Riemannian warped

product of N and [a,∞) with warping function f is defined to be the product

manifold ([a,∞)×f N, g′) with

(3.1) g′ = dt2 + f 2(t)g

Let R(g) be the scalar curvature of (N, g). Then equation (2.1) implies that

the scalar curvature R(t, x) of g′ is given by the equation

(3.2) R(t, x) =
1

f 2(t)
{R(g)(x)− 2nf(t)f ′′(t)− n(n− 1)|f ′(t)|2}

for t ∈ [a,∞) and x ∈ N. (For details, cf. [D.D.] or [G.L.]).

Problem : Given a fiber N with constant scalar curvature R(g), can we find

a warping function f > 0 on B = [a,∞) such that for any smooth function

R(t, x), the warped metric g′ admits R(t, x) as the scalar curvature
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on M = [a,∞)×f N?

If we denote

u(t) = f
n+1
2 (t), t > a,

then equation (3.2) can be changed into

(3.3)
4n

n+ 1
u′′(t) +R(t, x)u(t)−R(g)(x)u(t)1− 4

n+1 = 0.

In this paper, we assume that the fiber manifold N is nonempty, connected

and a compact Riemannian n−manifold without boundary.

If N is in class (B), then we assume that N admits a Riemannian metric of

zero scalar curvature. In this case, equation (3.3) is changed into

(3.4)
4n

n+ 1
u′′(t) +R(t, x)u(t) = 0.

If N admits a Riemannian metric of zero scalar curvature, then we let u(t) =

tα in equation(3.4), where α > 1 is a constant, and we have
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R(t, x) =
4n

n+ 1
α(1− α)

1

t2
< 0, t > a.

Thus we have the following theorem.

Theorem 3.1. For n ≥ 3, let M = [a,∞)×f N be the Riemannian warped

product (n + 1)-manifold with N compact n-manifold. Suppose that N is in

class (B), then on M there is a Riemannian metric of negative scalar curvature

outside a compact set.

Theorem 3.2. Suppose that R(g) = 0 and R(t, x) = R(t) ∈ C∞([a,∞)).

Assume that for t > t0, there exist an upper solution u+(t) and a lower solution

u−(t) such that 0 < u−(t) ≤ u+(t). Then there exists a solution u(t) of equation

(3.4) such that for t > t0, 0 < u−(t) ≤ u(t) ≤ u+(t).

Proof. See Theorem 3.2 in [J.L.K.L.].

Lemma 3.3. On [a,∞), there does not exist a positive solution u(t) such

that
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t2u
′′
(t) +

c

4
u(t) ≤ 0 for t ≥ t0,

where c > 1 and t0 > a are constants.

Proof. See Lemma 3.2 in [C.Y.L.].

Theorem 3.4. If R(g) = 0, then there is no positive solution to equation

(3.4) with

R(t) ≥ 4n

n+ 1

c

4

1

t2
for t ≥ t0,

where c > 1 and t0 > a are constants.

Proof. Assume that

R(t) ≥ 4n

n+ 1

c

4

1

t2
for t ≥ t0,

with c > 1. Equation (3.4) gives

t2u
′′
(t) +

c

4
u(t) ≤ 0.

By Lemma 3.3, we complete the proof.



21

In particular, if R(g) = 0, then using Riemannian warped product it is im-

possible to obtain a Riemannian metric of uniformly negative scalar curvature

outside a compact subset. The best we can do is when u(t) = t
1
2 , or f(t) = t

1
n+1 ,

where the scalar curvature is negative but goes to zero at infinity.

Theorem 3.5. Suppose that R(g) = 0. Assume that R(t, x) = R(t) ∈

C∞([a,∞)) is a function such that

4n

n+ 1

c

4

1

t2
> R(t) ≥ − 4n

n+ 1
eαt for t > t0,

where t0 > a, α > 0 and 0 < c < 1 are constants. Then equation (3.4) has a

positive solution on [a,∞).

Proof. Since R(g) = 0, put u+(t) = t
1
2 . Then u′′+(t) = −1

4
t
1
2
−2. Hence
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4n

n+ 1
u′′+(t) +R(t)u+(t)

≤ 4n

n+ 1
u′′+(t) +

4n

n+ 1

c

4

1

t2
u+(t)

=
4n

n+ 1

−1

4
t
1
2
−2 +

4n

n+ 1

c

4

1

t2
t
1
2

≤ 4n

n+ 1

1

4
t
1
2
−2[−1 + c]

< 0.

Therefore u+(t) is our (weak) upper solution.

And put u−(t) = e−e
βt

, where β is a positive large constant. Then u′′−(t) =

−β2eβte−e
βt

+ β2e2βte−e
βt
. Hence

4n

n+ 1
u′′−(t) +R(t)u−(t)

≥ 4n

n+ 1
u′′−(t)− 4n

n+ 1
eαtu−(t)

=
4n

n+ 1
e−e

βt

[−β2eβt + β2e2βt − eαt]

=
4n

n+ 1
e−e

βt

[β2eβt(−1 + eβt)− eαt]

> 0
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for large β. Thus, for large β, u−(t) is a (weak) lower solution and 0 < u−(t) <

u+(t). So, by Theorem 3.2, equation (3.4) has a (weak) positive solution u(t)

such that 0 < u−(t) ≤ u(t) ≤ u+(t) for large t.

Remark 3.6. In case that R(g) = 0, the results in Theorem 3.4 and Theorem

3.5 are almost sharp because if u(t) = t
1
2 , then R(t) = 4n

n+1
1
4

1
t2
.

Example 3.7. If R(g) = 0 and R(t) = − 4n
n+1

2
t2
, then there is a positive solution

to equation (3.4). In fact, we have only to solve the following equation.

(3.5) t2u′′(t)− 2u(t) = 0.

Applying the method for the Euler-Cauchy equation to (3.5), we put u(t) = tm.

Then

m(m− 1)tm−2t2 − 2tm = 0

and

(m2 −m− 2)tm = 0,
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so m = 2,−1. Thus u(t) = c1t
2 + c2t

−1 is solution of equation (3.5), where c1

and c2 are constants.

Therefore u(t) = c2t
−1 is our (weak) solution in the sense of Theorem 3.5

such that 0 < u−(t) ≤ u(t) ≤ u+(t).
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