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Chapter 1

Introduction

In the paper [8], Masuda first introduced the notion of a uni-

tary toric manifold which properly contained a compact non-

singular toric variety, and associated with it a combinatorial

object, called a multi-fan. It turns out that a multi-fan is a

much more general notion than a complete non-singular fan.

Shortly after that, a multi-fan as a purely combinatorial ob-

ject which generalizes an ordinary fan in algebraic geometry has

been greatly developed by Hattori and Masuda in [6]. One typi-

cal geometric realization of a multi-fan is a torus manifold, while

an ordinary fan is associated with a toric variety. Here a toric

variety means a normal complex algebraic variety of dimension

n with a (C∗)n-action having one unique dense orbit and other

orbits of smaller dimensions. It is well known that there is a

one-to-one correspondence between toric varieties and fans (see

[2], [10], and [1] for more details). Roughly speaking, the fan
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associated with a toric variety is a collection of cones in Rn with

apex at the origin, and to each orbit of a (C∗)n-action on a

toric variety there corresponds a cone of dimension equal to the

codimension of the orbit.

This new notion of a multi-fan shares many important prop-

erties with the ordinary fan. On the other hand, there is one

important peculiar feature, compared to the ordinary fan, that

in case of a multi-fan the union of cones in a multi-fan may

overlap several times. Moreover, it is an open and intriguing

question whether or not there is a one-to-one correspondence

between relevant toric varieties and multi-fans. At the moment,

we just know that two different torus manifolds may correspond

to the same multi-fan. Nonetheless, many important topological

properties of a torus manifold can be detected by its associated

multi-fan. Indeed, in [6] Hattori and Masuda provide several

combinatorial invariants of a multi-fan which correspond to the

ordinary topological invariants of the associated torus manifold.

Associated to an ordinary fan, there is a notion of a convex

polytope. Analogously, there is a notion of a multi-polytope

P = (∆,F) associated to a multi-fan ∆ = (Σ, C, ω±) (refer to

Chapter 2 for more precise definitions and notations). Indeed,

let N be a lattice of rank n which is isomorphic to Zn, and let

M be the dual lattice Hom(N,Z). Let V := NR = N ⊗Z R.

From now on, we also assume that a multi-polytope is simple,
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which means that the multi-fan ∆ = (Σ, C, ω±) is complete and

simplicial.

A multi-polytope P = (∆,F) then defines an arrangement of

affine hyperplanes Fi (1 ≤ i ≤ d) in V ∗, and one can associate

with P a function, called a Duistermaat-Heckman function, on

V ∗ minus the affine hyperplanes when P is simple. It can be

shown that the Duistermaat-Heckman function is locally con-

stant, and Guillemin-Lerman-Sternberg formula ([4], [5]) tells

us that it agrees with the density function of a Duistermaat-

Heckman measure, when P arises from a moment map. More

precisely, the Duistermaat-Heckman function that we are mostly

concerned with in this thesis is defined as follow.

Definition 1.1. Let Σ(n) denote the n-skeleton of Σ, and let φI

denote the characteristic function defined over a suitably defined

convex cone associated with I ∈ Σ(n). We then define a function

DHP on V ∗ \
⋃d
i=1 Fi by

DHP :=
∑
I∈Σ(n)

(−1)Iω(I)φI ,

and call it the Duistermaat-Heckman function associated with

P . We refer the reader to Chapter 3 for more details.

The primary aim of this paper is to provide a criterion for

a multi-polytope to be an ordinary polytope in terms of the

values of the Duistermaat-Heckman function associated with a

multi-polytope. To be more precise, our main result is
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Theorem 1.2. A multi-polytope P = (∆,F) is an ordinary

polytope if and only if the Duistermaat-Heckman function DHP

defined on V ∗ \
⋃d
i=1 Fi satisfies the following identity:

DHP(u) =

{
1, if u lies in the interior P◦ of P ,
0, otherwise.

There is another locally constant function defined on the com-

plement of the hyperplanes {Fi} associated to a multi-polytope

P , called the winding number. It turns out that the values

of Duistermaat-Heckman function is exactly same as those of

the winding number (see [6]). Moreover, the winding num-

ber also satisfies a wall crossing formula entirely similar to the

Duistermaat-Heckman function. Hence Theorem 1.2 can be

stated in terms of the winding numbers instead of the Duistermaat-

Heckman functions. In the forthcoming thesis [9], Moon will give

a direct proof of this fact without using the equivalence of the

values of Duistermaat-Heckman functions and winding numbers.

Now we briefly explain the contents of each chapter, as fol-

lows. In Chapter 2, we give definitions of a multi-fan and a

multi-polytope, and then introduce certain related notions. The

completeness of a multi-fan is one of the most important points

in this chapter. The definition of the Duistermaat-Heckman

function is given in Chapter 3. As briefly mentioned above, a

multi-polytope is a pair P = (∆,F) of an n-dimensional com-

plete multi-fan ∆ and a arrangement of hyperplanes F = {Fi} in
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H2(BT ;R) with the same index set as the set of 1-dimensional

cones in ∆. Recall that a multi-polytope is called simple if its as-

sociated multi-fan ∆ is simplicial. The Duistermaat-Heckmann

function DHP associated with a simple multi-polytope P is a

locally constant integer-valued function with bounded support

defined on the complement of the hyperplanes {Fi}. The wall

crossing formula which describes the difference of the values of

the function on adjacent components plays an important role in

the proof of our main Theorem 1.2. In addition, several inter-

esting examples will be provided in Chapter 4. Finally, Chapter

5 is devoted to proving our main Theorem 1.2.
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Chapter 2

Multi-fans and Multi-polytopes

The aim of this chapter is to set up some basic notations and ter-

minology necessary for the proofs of our main results in Chapter

5. The material of this chapter is largely taken from the excel-

lent paper [6] of Hattori and Masuda (see also [7]).

To do so, let N be a lattice of rank n, which is isomorphic to

Zn. We denote the real vector space N ⊗ R by NR. A subset

σ of NR is called a strongly convex rational polyhedral cone

(with apex at the origin) if there exits a finite number of vectors

v1, . . . , vm in N such that

σ = {r1v1 + · · ·+ rmvm | ri ∈ R and ri ≥ 0 for all i},

and σ ∩ (−σ) = {0}. Here “rational” means that it is generated

by vectors in the lattice N , and “strong” convexity means that

it contains no line through the origin. We often call a strongly

convex rational polyhedral cone in NR simply a cone in N . The

dimension dim σ of a cone σ is the dimension of the linear space
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spanned by vectors in σ. A subset τ of σ is called a face of σ if

there is a linear function

l : NR −→ R

such that l takes nonnegative values on σ and such that τ =

l−1(0) ∩ σ. A cone shall be regarded as a face of itself, while

others are called proper faces.

Definition 2.1. A fan ∆ in N is a set of a finite number of

strongly convex rational polyhedral cones in NR such that

(1) each face of a cone in ∆ is also a cone in ∆, and

(2) the intersection of two cones in ∆ is a face of each.

We also need a series of the following definitions.

Definition 2.2. A fan ∆ is said to be complete if the union of

cones in ∆ covers the entire space NR.

A cone is called simplicial if it is generated by linearly inde-

pendent vectors. If the generating vector can be taken as a part

of a basis of N , then the cone is called nonsingular.

Definition 2.3. A fan ∆ is said to be simplicial (resp. non-

singular) if every cone in ∆ is simplicial (resp. non-singular).

Denote by Cone (N) the set of all cones in N . An ordinary

fan is a subset of Cone (N). The set Cone (N) has a partial
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ordering ≺ defined by : τ ≺ ν if and only if τ is a proper face of

ν. The cone {0} consisting of the origin is the unique minimum

element of Cone (N).

Next, let Σ be a partial ordering finite set with a unique

minimum element. We denote the strict partial ordering by

< and the minimum element by ∗. A typical example of Σ

thesis is an abstract simplicial set with an empty set added as

a member, which we call an augmented simplicial set. In this

case, the partial ordering is defined by the inclusion relation

and the empty set is the unique minimum element which may

be considered as a (−1)-simplex. Suppose that there is a map

C : Σ→ Cone (N)

such that

(1) C(∗) = {0};

(2) If I < J for I, J ∈ Σ, then C(I) < C(J);

(3) For any J ∈ Σ the map C restricted on {I ∈ Σ | I ≤ J} is

an isomorphism of ordered sets onto {K ∈ Cone(N) | K ≤
C(J)}.

For an integer m such that 0 ≤ m ≤ n, we set

Σ(m) := {I ∈ Σ | dimC(I) = m}.
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One can easily check that Σ(m) does not depend on the choice

of C satisfying the above three conditions. When Σ is an aug-

mented simplicial set, I ∈ Σ belongs to Σ(m) if and only if the

cardinality |I| of I is m, that is, I is an (m−1)-simplex. There-

fore, even if Σ is not an augmented simplicial set, we use the

notation |I| for m when I ∈ Σ(m).

The image C(Σ) is a finite set of cones in N . We may think

of a pair (Σ, C) as a set of cones in N labeled by the ordered

set Σ. Cones in an ordinary fan intersect only at their faces,

but cones in C(Σ) may overlap. Furthermore, it can happen

that the same cone may appear repeatedly with different labels.

The pair (Σ, C) is almost what we can possibly call a multi-fan,

but we need to further incorporate a pair of weight functions

on cones in C(Σ) of the highest dimension n = rankN . More

precisely, we consider two functions

ω± : Σ(n) → Z≥0

such that ω+(I) > 0 or ω−(I) > 0 for every I ∈ Σ(n).

These two functions ω± actually have its origin from toric

geometry. In fact, if M is a torus manifold of dimension 2n

and if Mi1, · · · ,Min are characteristic submanifolds such that

their intersection contains at least one T -fixed point, then the

intersection M1 = ∩νMiν consists of a finite number of T -fixed

points. At each fixed point p ∈MI the tangent space τp has two
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orientations; one is endowed by the orientation of M and the

other comes from the intersection of the oriented submanifolds

Miν . Denoting the ratio of the above two orientations by εp

we define the number ω+(I) (resp. ω−(I)) to be the number of

points p ∈MI with εp = +1 (resp. εp = −1).

Now we are ready to give a precise definition of a multi-fan,

as follows.

Definition 2.4. We call a triple ∆ := (Σ, C, ω±) a multi-fan in

N . We define the dimension of ∆ to be the rank of N (or the

dimension of NR).

Since an ordinary fan ∆ in N is a subset of Cone (N), one can

view it as a multi-fan by taking Σ = ∆, C = the inclusion map,

ω+ = 1, and ω− = 0. This is the way how to obtain an ordinary

fan from a multi-fan. Note that a convex polytope gives rise to

a complete fan.

As in the case of ordinary fans, we shall say that a multi-fan

∆ = (Σ, C, ω±) is simplicial (resp. non-singular) if every cone

in C(Σ) is simplicial (resp. non-singular).

Lemma 2.5. A multi-fan ∆ = (Σ, C, ω±) is simplicial if and

only if Σ is isomorphic to an augmented simplicial set as par-

tially ordered sets.

The definition of completeness of a multi-fan ∆ is rather com-

plicated. A naive definition of the completeness would be that
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the union of cones in C(Σ) covers the entire space NR. Although

the two weighted functions ω± are incorporated in the definition

of a multi-fan, only the difference

ω := ω+ − ω−

will be important in this thesis.

In order to give a precise definition of completeness of a multi-

fan, we first need to introduce the following intermediate notion

of pre-completeness. To do so, recall first what a generic vector

means: a vector v ∈ NR will be called generic if v does not lie

on any linear subspace spanned by a cone in C(Σ) of dimension

less than n. For a generic vector v we set

dv =
∑

v∈C(I),

I∈Σ(n)

ω(I),

where the sum is understood to be zero if there is no such I.

Definition 2.6. We call a multi-fan ∆ = (Σ, C, ω±) of dimen-

sion n is pre-complete if Σ(m) 6= 0 and the integer dv is indepen-

dent of the choice of generic vectors v. We call this integer the

degree of ∆ and denote it by deg (∆).

We remark that for an ordinary fan, pre-completeness is the

same as completeness. See Figure 2.1 for typical examples of an

ordinary fan and a multi-fan.
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Figure 2.1: Typical examples of an ordinary fan and a multi-fan

Recall that V = NR. A convex polytope P in V ∗ = Hom (V,R)

is the convex hull of a finite set of points in V ∗. It is the in-

tersection of a finite number of half space in V ∗ separated by

affine hyperplanes, so there are a finite number of nonzero vec-

tors v1, · · · , vd in V and real numbers c1, · · · , cd such that

P = {u ∈ V ∗ | 〈u, vi〉 ≤ ci for all i},

where 〈 , 〉 denotes the natural pairing between V ∗ and V . Note

that a convex polytope gives rise to a complete fan.

Next, we begin explaining how to obtain a multi-polytope

from a complete multi-fan ∆ = (Σ, C, ω±). The procedure of

obtaining a multi-polytope from a multi-fan is completely anal-

ogous. More precisely, let HP(V ∗) be the set of all affine hyper-

planes in V ∗.
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Definition 2.7. Let ∆ = (Σ, C, ω±) be a complete multi-fan

and let

F : Σ(1) −→ HP(V ∗)

be a map such that the affine hyperplane F(I) is perpendicular

to the half line C(I) for each I ∈ Σ(1), i.e., an element in C(I)

takes a constant on F(I). We call a pair (∆,F) a multi-polytope

and denote it by P . The dimension of a multi-polytope P is

defined to be the dimension of the multi-fan ∆. We say that a

multi-polytope P is simple if ∆ is simplicial.

Strictly speaking, the completeness assumption for ∆ given in

Definition 2.7 is not needed for the definition of multi-polytopes.

But we incorporated it there because most of our results in this

thesis depend on that assumption. We note that the notion

of multi-polytopes is a direct generalization of that of twisted

polytopes given in [3].

Finally, in order to help readers to better understand the

notion of a multi-polytope we give examples of multi-polytopes

obtained from the multi-fan given in Figure 2.1.

Example 2.8. If four points l1 ∩ l2, l2 ∩ l3, l3 ∩ l4 and l4 ∩ l1 are

presumed to be vertices and the others such as l2 ∩ l4 are not,

then we can find the figure P in Figure 2.2. But, if different

four points l1 ∩ l4, l4 ∩ l2, l2 ∩ l3 and l3 ∩ l1 are presumed to be

vertices, then we obtain a figure P ′ shaded in Figure 2.2.
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Figure 2.2: Examples of multi-polytopes

14



Chapter 3

Duistermaat-Heckman
Functions

As mentioned in Chapter 2, a multi-polytope P = (∆,F) defines

an arrangement of affine hyperplanes in V ∗. We can then asso-

ciate with P a function on V ∗ minus the affine hyperplanes when

P is simple. This function is locally constant and Guillemin-

Lerman-Sternberg formula ([4],[5]) tells us that it agrees with

the density function of a Duistermaat-Heckman measure when

P arises from a moment map. The aim of this section is to ex-

plain how to define the locally constant function from a multi-

polytope, relatively in detail.

Hereafter, our multi-polytope P is assumed to be simple, so

that the multi-fan ∆ = (Σ, C, ω±) is complete and simplicial, un-

less otherwise stated. As before, we may assume that Σ consists

of subsets of {1, . . . , d} and Σ(1) = {{1}, . . . , {d}}, and denote

by vi a nonzero vector in the one-dimensional cone C({i}). We
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denote F({i}) by Fi and set

FI :=
⋂
i∈I

Fi for I ∈ Σ.

Then FI is an affine space of dimension n− |I|. In particular, if

|I| = n, i.e., I ∈ Σ(n), then FI is a point, denoted by uI .

Suppose that I ∈ Σ(n). Then the set {vi|i ∈ I} form a basis of

V . Denote its dual basis of V ∗ by {uIi | i ∈ I}, i.e., 〈uIi , vj〉 = δij,

where δij denotes the Kronecker delta. Take a generic vector

v ∈ V . Then we have 〈uIi , v〉 6= 0 for all I ∈ Σ(n) and i ∈ I. Let

(−1)I := (−1)#{i∈I|〈uIi ,v〉>0}, and

(uIi )
+ :=

{
uIi , if 〈uIi , v〉 > 0

−uIi , if 〈uIi , v〉 < 0.

We denote by C∗(I)+ the cone in V ∗ spanned by (uIi )
+’s (i ∈ I)

with apex at uI , and by φI its characteristic function.

Definition 3.1. We define a function DHP on V ∗ \
⋃d
i=1 Fi by

DHP :=
∑
I∈Σ(n)

(−1)Iω(I)φI ,

and call it the Duistermaat-Heckman function associated with

P .

The following simple one-dimensional example taken from

the paper [6] clearly shows how to calculate the Duistermaat-

Heckman function for the one-dimensional multi-polytopes.
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Example 3.2. Suppose dimP = 1. We then identify V with

R, so that V ∗ is also identified with R. Let E be the subset of

{1, . . . , d} such that i ∈ E if and only if C({i}) is the half line

consisting of nonnegative real numbers. Then the completeness

of ∆ means that

(3.1)
∑
i∈E

ω({i}) =
∑
i/∈E

ω({i}) = deg(∆).

Take a nonzero vector v. Since V ∗ is identified with R, each

affine hyperplane Fi is nothing but a real number. Suppose that

v is toward the positive direction. Then

(3.2) (−1){i} =

{
−1, if i ∈ E,
1, if i /∈ E,

and the support of the characteristic function φ{i} is the half line

given by

{u ∈ R | Fi ≤ u}.

Therefore

(3.3) DHP(u) =
∑

i∈E s.t. Fi<u

−w({i}) +
∑

i/∈E s.t. Fi<u

w({i}).

for u ∈ R \ ∪Fi. If u is sufficiently small, then the sum above is

empty, so it is zero. If u is sufficiently large, then the the sum

is also zero by (3.1). Hence the support of the function DHP is

bounded.
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Now, suppose that v is toward the negative direction. Then

(−1){i} above is multiplied by −1 and the inequality ≤ above

turns into ≥. Therefore

(3.4) DHP(u) =
∑

i∈E s.t. u<Fi

w({i}) +
∑

i/∈E s.t. u<Fi

(−w({i})).

It follows that

R.H.S. of (3.3)− R.H.S. of (3.4) = −
∑
i∈E

w({i}) +
∑
i/∈E

w({i})

which is zero by (3.1). This shows that the function DHP is

independent of v when dimP = 1.

Next, assume n = dim ∆ > 1. For each {i} ∈ Σ(1), the

projected multi-fan ∆{i} = (Σ{i}, C{i}, ω
±
{i}), which we abbreviate

as ∆i = (Σi, Ci, ω
±
i ), is defined on the quotient vector space V \Vi

of V by the one-dimensional subspace Vi spanned by vi. Since ∆

is complete and simplicial, so is ∆i. We then identify the dual

space (V/Vi)
∗ with

(V ∗)i := {u ∈ V ∗|〈u, vi〉 = 0}

in a natural way. We choose an element fi ∈ Fi arbitrarily

and translate Fi onto (V ∗)i by −fi. If {i, j} ∈ Σ(2), then Fj

intersects Fi and their intersection will be translated into (V ∗)i

by −fi. This observation leads us to consider the map

Fi : Σi → HP((V ∗)i)
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sending {j} ∈ Σ
(1)
i to Fi ∩ Fj translated by −fi. The pair Pi =

(∆i,Fi) is a multi-polytope in (V/Vi)
∗ ∼= (V ∗)i.

Let I ∈ Σ(n) such that i ∈ I. Since 〈uIi , vi〉 = δij, u
I
i for j 6= i

is an element of (V ∗)i, which we also regard as an element of

(V/Vi)
∗ through the isomorphism (V/Vi)

∗ ∼= (V ∗)i.

We denote the projection image of the generic element v ∈ V
on V/Vi by v̄. Then we have 〈v̄, uIj〉 = 〈v, uIj〉 for j 6= i, where uIj

at the left-hand side is viewed as an element of (V/Vi)
∗, while

the one at the right-hand side is viewed as an element of (V ∗)i.

Since 〈v̄, uIj〉 = 〈v, uIj〉 6= 0 for j 6= i, we use v̄ to define DHPi.

Example 3.3. Let v1, . . . , v5 be integral vectors, where the dots

denote lattice points. The vectors are rotating around the origin

twice in counterclockwise. We take

Σ = {φ, {1}, . . . , {5}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}},

and define C : Σ→ Cone(N) by

C({i}) = the cone spanned by vi,

C({i, i+ 1}) = the cone spanned by vi and vi+1,

where i = 1, . . . , 5 and 6 is understood to be 1, and take ω±

such that ω = 1 on every two dimensional cone. Then ∆ =

(Σ, C, ω±) is a complete non-singular two-dimensional multi-fan

with deg (∆) = 2 by (3.1). Note that the degree deg (∆) can be
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calculated as follows:∑
i∈E

ω({i}) = 1 + 1 = deg(∆)

One obtains the arrangement of lines with a suitable choice

of the map F . The pentagon produces the same arrangement

of lines and can be viewed as a multi-polytope, but these two

multi-polytopes are different because the underlying multi-fan

are different. In fact, one is a multi-fan of degree two, while the

other is an ordinary fan. Note that we have a star-shaped figure

in the former multi-polytope (see Figure 3.1).

Figure 3.1: Multi-polytope for Example 3.3
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Chapter 4

Some Interesting Examples

The aim of this chapter is to give a series of several interesting

examples of showing in detail how to calculate the Duistermaat-

Heckman functions for various multi-polytopes. They both il-

lustrate and also strongly support our main result (Theorem

1.2).

Example 4.1. We first give an example of a complete non-

singular multi-fan of degree two. To do so, let v1, . . . , v5 be

vectors shown in Figure 4.1, as follows.

v1 = (1, 0), v2 = (−1, 1), v3 = (0,−1), v4 = (1, 1), v5 = (−2,−1),

v = (2, 3).

Let

Σ = {φ, {1}, {2}, {3}, {4}, {5}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.

It is easy to see that we have

Σ(2) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.
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Next, we need to consider the following cases:

Figure 4.1: A multi-polytope P of Example 4.1

(1) I = {1, 2} case ;

u
{1,2}
1 = (1, 1), (u

{1,2}
1 )+ = (1, 1),

u
{1,2}
2 = (0, 1), (u

{1,2}
2 )+ = (0, 1).

(2) I = {2, 3} case;

u
{2,3}
1 = (−1, 0), −(u

{2,3}
1 )+ = (1, 0),

u
{2,3}
2 = (−1,−1), −(u

{2,3}
2 )+ = (1, 1).
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(3) I = {3, 4} case;

u
{3,4}
1 = (1,−1), −(u

{3,4}
1 )+ = (−1, 1),

u
{3,4}
2 = (1, 0), (u

{3,4}
2 )+ = (1, 0).

(4) I = {4, 5} case ;

u
{4,5}
1 = (−1, 2), (u

{4,5}
1 )+ = (−1, 2),

u
{4,5}
2 = (−1, 1), (u

{4,5}
2 )+ = (−1, 1).

(5) I = {5, 1} case ;

u
{5,1}
1 = (0,−1), −(u

{1,2}
1 )+ = (0, 1),

u
{5,1}
2 = (1,−2), −(u

{5,1}
2 )+ = (−1, 2).

Therefore, for u ∈ P1 we can obtain

DHP |P1
(u) = (−1){1,2}ω({1, 2})φ{1,2}(u) + (−1){2,3}ω({2, 3})φ{2,3}(u)

+ (−1){3,4}ω({3, 4})φ{3,4}(u) + (−1){4,5}ω({4, 5})φ{4,5}(u)

+ (−1){5,1}ω({5, 1})φ{5,1}(u)

= (−1)2 · 1 · 0 + (−1)0 · 1 · 1 + (−1)1 · −1 · 0

+ (−1)2 · −1 · 0 + (−1)0 · 1 · 1

= 0 + 1 + 0 + 0 + 1 = 2.
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DHP |P2
= DHP |P3

= DHP |P4
= DHP |P5

= DHP |P6

= (−1){1,2}ω({1, 2})φ{1,2} + (−1){2,3}ω({2, 3})φ{2,3}
+ (−1){3,4}ω({3, 4})φ{3,4} + (−1){4,5}ω({4, 5})φ{4,5}
+ (−1){5,1}ω({5, 1})φ{5,1}
= 1

DHP |P7
= DHP |P8

= DHP |P9
= DHP |P10

= DHP |P11

= DHP |P12
= DHP |P713 = DHP |P14

= DHP |P15
= DHP |P16

= (−1){1,2}ω({1, 2})φ{1,2} + (−1){2,3}ω({2, 3})φ{2,3}
+ (−1){3,4}ω({3, 4})φ{3,4} + (−1){4,5}ω({4, 5})φ{4,5}
+ (−1){5,1}ω({5, 1})φ{5,1}
= 0

Note that ∆ = (Σ, C, ω±) is a complete and simplicial multi-fan,

but not ordinary-fan.

Example 4.2. Let Σ be an ordinary polytope given by the fol-

lowing simplicial complex.

Σ = {φ, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}}.

Then define a function C : Σ −→ Cone(N) by

C({1}) = v1 = (0, 1), C({2}) = v2 = (1, 0), C({3}) = v3 = (−1,−1),

and
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C({i, i+ 1}) = the cone spanned by vi and vi+1.

Here we assume that v4 = v1. Let us also take weight functions

ω± such that ω = 1 on every two dimensional cone in

Σ(2) = {{1, 2}, {2, 3}, {3, 1}}.

Then

∆ = (Σ, C, ω), I ∈ Σ(2).

is a complete non-singular two-dimensional multi-fan with deg(∆) =

1. (see Figure 4.2). Next, let us take a generic vector v = (2, 3),

and we want to calculate the Duistermaat-Heckman function

DHP , as follows :

(1) I = {1, 2} ;

u
{1,2}
1 = (0, 1), (u

{1,2}
1 )+ = (0, 1),

u
{1,2}
2 = (1, 0), (u

{1,2}
2 )+ = (1, 0).

(2) I = {2, 3} ;

u
{2,3}
1 = (1,−1),−(u

{2,3}
1 )+ = (−1, 1),

u
{2,3}
2 = (0,−1),−(u

{2,3}
2 )+ = (0, 1).
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Figure 4.2: An ordinary polytope P of Example 4.2.
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(3) I = {3, 1};

u
{3,1}
1 = (−1, 0),−(u

{3,4}
1 )+ = (1, 0),

u
{3,1}
2 = (−1, 1), (u

{3,4}
2 )+ = (−1, 1).

Therefore, for u in the bounded region we can obtain

DHP |P◦(u) = (−1){1,2}ω({1, 2})φ{1,2}(u) + (−1){2,3}ω({2, 3})φ{2,3}(u)

+ (−1){3,1}ω({3, 1})φ{3,1}(u)

= (−1)2 · 1 · 0 + (−1)0 · 1 · 1 + (−1)1 · −1 · 0

= 1

DHP |otherwisw = (−1){1,2}ω({1, 2})φ{1,2}(u)

+ (−1){2,3}ω({2, 3})φ{2,3}(u) + (−1){3,1}ω({3, 1})φ{3,1}(u)

= 0

Example 4.3. In this case, four points l1∩ l4, l4∩ l2, l2∩ l3, l3∩ l1
are presumed to be vertices. Let v1, . . . , v4 be vectors shown in

Figure 4.3.

v1 = (1, 1), v2 = (−1, 1), v3 = (0,−1), v4 = (1, 0),

v = (2, 3),

Σ = {φ, {1}, {2}, {3}, {4}, {5}, {1, 4}, {4, 2}, {2, 3}, {3, 1}}

Σ(2) = {{1, 4}, {4, 2}, {2, 3}, {3, 1}}.
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Figure 4.3: A multi-polytope P of Example 4.3.
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(1) I = {1, 4};

u
{1,4}
1 = (0, 1), (u

{1,4}
1 )+ = (0, 1),

u
{1,4}
2 = (1, 0), (u

{1,4}
2 )+ = (1, 0).

(2) I = {4, 2} ;

u
{4,2}
1 = (1, 1), (u

{4,2}
1 )+ = (1, 1),

u
{4,2}
2 = (0, 1), (u

{4,2}
2 )+ = (0, 1).

(3) I = {2, 3} ;

u
{2,3}
1 = (−1, 0),−(u

{2,3}
1 )+ = (1, 0),

u
{2,3}
2 = (−1,−1),−(u

{2,3}
2 )+ = (1, 1).

(4) I = {3, 1} ;

u
{3,1}
1 = (1,−1),−(u

{3,1}
1 )+ = (−1, 1),

u
{3,1}
2 = (1, 0), (u

{3,1}
2 )+ = (1, 0).

Therefore, for u in the bounded region we can obtain

DHP(u) = (−1){1,4}ω({1, 4})φ{1,4}(u) + (−1){4,2}ω({4, 2})φ{4,2}(u)

+ (−1){2,3}ω({2, 3})φ{2,3}(u) + (−1){3,1}ω({3, 1})φ{3,1}(u)

= (−1)2 · 1 · 1 + (−1)2 · −1 · 0 + (−1)0 · 1 · 1

+ (−1)1 · −1 · 0

= 1 + 0 + 1 + 0

= 2
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Example 4.4. This time, four points l1 ∩ l2, l3 ∩ l4, l3 ∩ l1, l4 ∩ l2
are presumed to be vertices. Let v1, . . . , v4 be vectors shown in

Figure 4.4. Notice that the multi-polytope P consists of two

bounded region, even though their intersection is not a vertex

of P .

v1 = (1, 1), v2 = (−1, 1), v3 = (0,−1), v4 = (1, 0),

v = (2, 4),

Σ = {φ, {1}, {2}, {3}, {4}, {5}, {1, 2}, {3, 4}, {3, 1}, {4, 2}}

Σ(2) = {{1, 2}, {3, 4}, {3, 1}, {4, 2}},

Figure 4.4: A multi-polytope P of Example 4.4.
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(1) I = {1, 2} ;

u
{1,2}
1 = (

1

2
,
1

2
), (u

{1,2}
1 )+ = (

1

2
,
1

2
),

u
{1,2}
2 = (−1

2
,
1

2
), (u

{1,2}
2 )+ = (−1

2
,
1

2
).

(2) I = {3, 4} ;

u
{3,4}
1 = (0,−1),−(u

{3,4}
1 )+ = (0, 1),

u
{3,4}
2 = (1, 0), (u

{3,4}
2 )+ = (1, 0).

(3) I = {3, 1} ;

u
{3,1}
1 = (1,−1),−(u

{3,1}
1 )+ = (−1, 1),

u
{3,1}
2 = (1, 0), (u

{3,1}
2 )+ = (1, 0).

(4) I = {4, 2} ;

u
{4,2}
1 = (1, 1), (u

{4,2}
1 )+ = (1, 1),

u
{4,2}
2 = (0, 1), (u

{4,2}
2 )+ = (0, 1).

Therefore, for u in one of the bounded region we can obtain

DHP(u) = (−1){1,2}ω({1, 2})φ{1,2}(u) + (−1){3,4}ω({3, 4})φ{3,4}(u)

+ (−1){3,1}ω({3, 1})φ{3,1}(u) + (−1){4,2}ω({4, 2})φ{4,2}(u)

= (−1)2 · 1 · 1 + (−1)1 · 1 · 1 + (−1)1 · 1 · 0 + (−1)2 · 1 · 1

= 1 + (−1) + 0 + 1

= 1
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Note that for u in other bounded region we have

DHP(u) = −1.
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Chapter 5

Main Results: Proof of
Theorem 1.2

The aim of this chapter is to give a proof of the following theo-

rem.

Theorem 5.1. Let ∆ = (Σ, C, ω±) be a complete and simplicial

multi-fan, and let P be its associated multi-polytope. Then, P
is an ordinary polytope if and only if

DHP(u) =

{
1, if u ∈ P◦.
0, otherwise.

Proof. For the proof, we first show that if the multi-polytope is a

geometric realization of an ordinary polytope, the Duistermaat-

Heckman function DHP defined over V = MR\
⋃d
i=1 Fi satisfies

DHP(u) =

{
1, if u ∈ P ∩ V,
0, otherwise.

To do so, we want to use the mathematical induction on the

dimension dim ∆ of ∆. So assume that dim ∆ is equal to one.
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In this case, we identify NR with R, so that MR is also identified

with R. In this case, we have

Σ = {∅, {1}, {2}}.

Let us assume that C({1}) is the half line consisting of non-

negative real numbers. Then C({2}) will be the half line con-

sisting of non-positive real numbers. Note also that the com-

pleteness of ∆ implies that

w({1}) = w({2}) = deg(∆) = 1.

Since MR is identified with R, each affine hyperplane Fi is

just a real number. Let us take v to be a generic vector in the

positive direction. Then it follows from the definition of the

Duistermaat-Heckman function that we have

DHP(u) = −w({1})φ{1}(u) + w({2})φ{2}(u)

= −φ{1}(u) + φ{2}(u).

It is easy to show that

C∗({1})+ = {v ∈ R | v ≥ F1},

C∗({2})+ = {v ∈ R | v ≥ F2}

(refer to Figure 5.1). Thus, we have

DHP(u) =


0, u < F2,

1, F2 < u < F1,

0, u > F1.
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Figure 5.1

This completes the proof for the case of dim ∆ = 1.

Assume now that dim ∆ = n > 1 and that the result holds for

any multi-fans with dimension less than n. As above, for each

{i} ∈ Σ(1), let ∆{i} = (Σi, Ci, w
±
i ) with its associated projected

multi-polytope Pi = (∆i,Fi). Note that if ∆ is assumed to be

a geometric realization of an ordinary fan, then so is ∆i.

Next, we need to recall the wall crossing formula in ([6],

Lemma 5.3).

Theorem 5.2. Let F denote one of the hyperplanes Fi. Let uα

and uβ be two elements in MR\ ∪di=1 Fi such that the segment

from uα to uβ intersects the wall F transversely at µ, and does

not intersect any other Fj 6= F . Then, we have

DHP(uα)−DHP(uβ) =
∑

i with Fi=F

sign〈uβ − uα, vi〉DHPi(µ− fi).

In order to use the wall crossing formula (Theorem 5.2), we

take uα ∈ P∩V and uβ ∈ Pc∩V such that there is only one wall

on the segment between uα and uβ. Then, since DHP(uβ) = 0 by

35



[[6], Lemma 5.4] and DHPi(µ− fi) = 1 by induction hypothesis,

it follows from Theorem 5.2 that

DHP(uα) = sign〈uβ − uα, vi〉DHPi(µ− fi) = 1

(refer to Figure 5.2).

Figure 5.2

Here we also used the fact that 〈uβ − uα, vi〉 > 0, since vi is

an outward normal vector to the hyperplane Fi. Since uα can

be taken arbitrary in P ∩ V , this completes the proof for the

necessary condition.

For the converse, we also want to use the mathematical induc-

tion on the dimension dim ∆ of a multi-fan ∆. So assume that

dim ∆ = 1. Let E be the subset of {1, 2, · · · , d} such that i ∈ E
if and only if C({i}) is the half line consisting of non-negative

real numbers. Then the completeness of ∆ implies that∑
i∈E

w({i}) =
∑
i/∈E

w({i}) = deg(∆).

As before, let us take v to be a generic vector in the positive
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direction. For simplicity, assume that

E = {j1, j2, · · · , jl} and Ec = {i1, i2, · · · , ik}

such that

Fj1 < Fj2 < · · · < Fjl, Fi1 < Fi2 < · · · < Fik, and Fik < 0 < Fj1.

Note that

DHP(u) =
∑
i∈E

−w({i})φ{i}(u) +
∑
i/∈E

w({i})φ{i}(u)

=
∑

i∈E with Fi<u

−w({i}) +
∑

i/∈E with Fi<u

w({i})
(5.1)

Assume that l ≥ 2. If u lies between Fik and Fj1 (refer to

Figure 5.3), then it follows from (5.1) that we have

Figure 5.3

1 = DHP(u) =
∑

i/∈E with Fi<u

w({i}) = deg(∆).

On the other hand, if u lies between Fj1 and Fj2 (refer to Figure

5.4), then we have

1 = DHP(u) = −w({j1}) +
∑

i/∈E with Fi<u

w({i})

= −w({j1}) + deg(∆)

= −w({j1}) + 1.
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Figure 5.4

Thus w({j1}) = 0. Similarly, it is easy to see that w({js}) = 0

for all 1 ≤ s ≤ l. But this implies that deg(∆) =
∑

i∈E w({i}) =

0, which is a contradiction.

The case of k ≥ 2 can be dealt with in a similar way, so that

we can conclude that k = l = 1. Hence the multi-polytope P is

a geometric realization of an ordinary convex polytope, and so

its associated multi-fan ∆ is an ordinary fan.

Next we assume that dim ∆ = n > 1 and that the result holds

for any multi-fans with dimension less than n. The following

lemma plays an important role in the proof.

Lemma 5.3. For each {i} ∈ Σ(1), let ∆{i} = (Σi, Ci, w
±
i ) with

its associated projected multi-polytope Pi = (∆i,Fi). Then, for

µ− fi ∈ W := (MR)i\
⋃
j 6=iFi({j}) we have

DHPi(µ− fi) =
∑

I∈Σ(n) with i∈I

(−1)I−{i}wi(I − {i})φI(µ)

=

{
1, µ− fi ∈ Pi ∩W,
0, otherwise,

where φI(µ) is regarded as the value at µ of the characteristic

function of the cones in (MR)i with apex uI spanned by (uIj)
+
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for all j ∈ I such that j 6= i.

Proof. For I ∈ Σ(n) with i ∈ I, note that w(I) = wi(I − {i}) by

definition. Thus we have

DHPi(µ− fi) =
∑

I∈Σ(n) with i∈I

(−1)I−{i}wi(I − {i})φI(µ),

as desired.

For the explicit values of DHPi(µ − fi), we divide the proof

into two subcases. In fact, we can deal with these cases in the

same way, but we shall give two different proofs for them, in

order to help readers more clearly understand the problems.

First, consider the case where Fi is an affine hyperplane in

HP(MR) which possibly forms an interior wall in the multi-

polytope P and there is an affine hyperplane Fk meeting Fi

at a point which is not a vertex of P (refer to Figure 5.5).

In this case, it follows from the very definition that the affine

hyperplane Fk does not contribute to the values of the Duistermaat-

Heckman function DHPi(µ − fi). On the other hand, let uα be

an element in the interior of P and let uβ be an element in the

unbounded region in MR\
⋃d
i=1 Fi. Assume that the segment

from uα to uβ intersects the wall Fi transversely only once at µ.
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F

F

i

k

Figure 5.5

Then it follows from Theorem 5.2 that we have

1 = DHP(uα)−DHP(uβ)

=
∑

I ∈Σ(n)with i∈I

(−1)I−{i}wi(I − {i})φI(µ)

= DHPi(µ− fi).

Since the Duistermaat-Heckman function DHPi is locally con-

stant on W = (MR)i\ ∪j 6=i Fi({j}), this completes the proof of

Lemma 5.3 for this case.

Next we consider the case where Fi is an affine hyperplane

in HP(MR) which possibly forms an interior wall in the multi-

polytope P and there is an affine hyperplane Fk meeting Fi at

a point which is also a vertex of P (refer to Figure 5.6).

In this case, there should be another vertex uJ on Fk in the
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direction of the normal vector vi which contributes the value

+1 to the Duistermaat-Heckman function DHP with respect

to a suitably chosen generic vector v ∈ NR. (Recall that the

Duistermaat-Heckman function is independent of the choice of

the generic element v ∈ NR.) Thus, when we remove the vertex

uJ together with the affine hyperplanes forming uJ , then we can

find two distinct adjacent regions R1 and R2 in P ∩V such that

DHP over R1 decreases by one, while DHP over R2 does not

change. But, since DHP over Ri is equal to one by assumption

and the Duistermaat-Heckman function is locally constant on

V , we should have

1 = DHP |R1
≥ DHP |R2

+ 1 = 2.

Clearly it is a contradiction. As a consequence, we can conclude

that the second case does not occur.
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This completes the proof of Lemma 5.3.

Finally, we are ready to finish the proof of Theorem 5.1. To

do so, as before let Fi be an affine hyperplane in HP(MR) which

possibly forms an interior wall in the multi-polytope P . Then

Fi divides the interior of the multi-polytope into two parts. So,

let uα and uβ be two elements in the interior of P such that the

segment from uα to uβ intersects the wall Fi transversely at µ

only once. Then it follows again from Theorem 5.2 that we have

0 = 1− 1 = DHP(uα)−DHP(uβ)

=
∑

I with i∈I

(−1)I−{i}wi(I − {i})φI(µ)

= DHPi(µ− fi),

which is a contradiction to Lemma 5.3. This implies that there

is no affine hyperplane which forms an interior wall in the multi-

polytope P .

There is one more case that we need to consider in order

to complete the proof. That is, consider the case of an affine

hyperplane Fi which does not divide the interior of the multi-

polytope P into two parts, but does divide P itself into two

parts in such a way that two bounded regions of P lie on both

sides of the hyperplane Fi. In this case, it follows easily from the

wall crossing formula (Theorem 5.2) that DHPi(µ − fi) should

have the value +1 and also −1, due to the orientation of the

vector vi normal to Fi. However, clearly this is a contradiction.

42



In fact, it is also easy to see that this case does not occur by the

definition of a multi-polytope.

As a consequence, the multi-polytope P is actually a geomet-

ric realization of an ordinary polytope and, therefore, its asso-

ciated multi-fan ∆ should be an ordinary fan. This completes

the proof of Theorem 5.1.

43



Bibliography

[1] D. Cox, J. Little, and H. Shenck, Toric varieties, Grad.

Stud. Math. 124, Amer. Math. Soc., 2011.

[2] W. Fulton, Introduction to toric varieties, Ann. Math. Stud.

131, Princeton Univ. Press, 1993.

[3] M. Grossberg and Y. Karshon, Bott towers, complete in-

tegrability, and the extended character of representations,

Duke Math. J. 76 (1994), 23–58.

[4] V. Gullemin, E. Lerman and S. Sternberg, On the Kostant

multiplicity formula, J. Geom. Phys. 5 (1988), 721–750.

[5] V. Gullemin, E. Lerman and S. Sternberg, Symplectic fi-

brations and multiplicity diagram, Cambridge Univ. Press,

Cambridge, 1996.

[6] A. Hattori and M. Masuda, Theory of multi-fans, Osaka J.

Math. 40 (2003), 1–68.

44



[7] H. Lee, Hattori-Masuda multi-polytopes and generalized

Ehrhart polynimials, Master’s Thesis in Chosun University,

2015.

[8] M. Masuda, Unitary toric manifolds, multi-fans and equiv-

ariant index, Tohoku Math. J. 51 (1999), 237–265.

[9] K.Y. Moon, A criterion for multi-polytopes via the wind-

ing numbers, in preparation for Master’s Thesis in Chosun

University.

[10] T. Oda, Convex bodies and algebraic geometry, Springer-

Verlag, 1988.

45


	1. Introduction
	2. Multi-fans and Multi-polytopes
	3. Duistermaat-Heckman Functions
	4. Some Interesting Examples 
	5. Main Results: Proof of Theorem 1.2 
	Bibliography


<startpage>9
1. Introduction 1
2. Multi-fans and Multi-polytopes 6
3. Duistermaat-Heckman Functions 15
4. Some Interesting Examples  21
5. Main Results: Proof of Theorem 1.2  33
Bibliography 44
</body>

