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Chapter 1

Introduction

In the paper [8], Masuda first introduced the notion of a uni-
tary toric manifold which properly contained a compact non-
singular toric variety, and associated with it a combinatorial
object, called a multi-fan. It turns out that a multi-fan is a
much more general notion than a complete non-singular fan.
Shortly after that, a multi-fan as a purely combinatorial ob-
ject which generalizes an ordinary fan in algebraic geometry has
been greatly developed by Hattori and Masuda in [6]. One typi-
cal geometric realization of a multi-fan is a torus manifold, while
an ordinary fan is associated with a toric variety. Here a toric
variety means a normal complex algebraic variety of dimension
n with a (C*)"-action having one unique dense orbit and other
orbits of smaller dimensions. It is well known that there is a
one-to-one correspondence between toric varieties and fans (see

[2], [10], and [I] for more details). Roughly speaking, the fan
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associated with a toric variety is a collection of cones in R" with
apex at the origin, and to each orbit of a (C*)"-action on a
toric variety there corresponds a cone of dimension equal to the
codimension of the orbit.

This new notion of a multi-fan shares many important prop-
erties with the ordinary fan. On the other hand, there is one
important peculiar feature, compared to the ordinary fan, that
in case of a multi-fan the union of cones in a multi-fan may
overlap several times. Moreover, it is an open and intriguing
question whether or not there is a one-to-one correspondence
between relevant toric varieties and multi-fans. At the moment,
we just know that two different torus manifolds may correspond
to the same multi-fan. Nonetheless, many important topological
properties of a torus manifold can be detected by its associated
multi-fan. Indeed, in [6] Hattori and Masuda provide several
combinatorial invariants of a multi-fan which correspond to the
ordinary topological invariants of the associated torus manifold.

Associated to an ordinary fan, there is a notion of a convex
polytope. Analogously, there is a notion of a multi-polytope
P = (A, F) associated to a multi-fan A = (3, C, w®) (refer to
Chapter [2| for more precise definitions and notations). Indeed,
let N be a lattice of rank n which is isomorphic to Z", and let
M be the dual lattice Hom(N,Z). Let V := Ng = N ®z R.

From now on, we also assume that a multi-polytope is simple,
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which means that the multi-fan A = (3, C, w®) is complete and
simplicial.

A multi-polytope P = (A, F) then defines an arrangement of
affine hyperplanes F; (1 < i < d) in V*, and one can associate
with P a function, called a Duistermaat-Heckman function, on
V* minus the affine hyperplanes when P is simple. It can be
shown that the Duistermaat-Heckman function is locally con-
stant, and Guillemin-Lerman-Sternberg formula ([4], [5]) tells
us that it agrees with the density function of a Duistermaat-
Heckman measure, when P arises from a moment map. More
precisely, the Duistermaat-Heckman function that we are mostly

concerned with in this thesis is defined as follow.

Definition 1.1. Let (™ denote the n-skeleton of ¥, and let ¢;
denote the characteristic function defined over a suitably defined

convex cone associated with I € 2. We then define a function
DHp on V*\ U, F; by

DHp := ) (=1)'w(l)¢r,
Iex(
and call it the Duistermaat-Heckman function associated with

P. We refer the reader to Chapter |3 for more details.

The primary aim of this paper is to provide a criterion for
a multi-polytope to be an ordinary polytope in terms of the
values of the Duistermaat-Heckman function associated with a

multi-polytope. To be more precise, our main result is

3

Collection @ chosun



Theorem 1.2. A multi-polytope P = (A, F) is an ordinary
polytope if and only if the Duistermaat-Heckman function DHp
defined on V*\ Ule F; satisfies the following identity:

DHp (1) — {1, if u lz'eé in the interior P° of P,
0, otherwise.

There is another locally constant function defined on the com-
plement of the hyperplanes {F;} associated to a multi-polytope
P, called the winding number. It turns out that the values
of Duistermaat-Heckman function is exactly same as those of
the winding number (see [6]). Moreover, the winding num-
ber also satisfies a wall crossing formula entirely similar to the
Duistermaat-Heckman function. Hence Theorem [1.2] can be
stated in terms of the winding numbers instead of the Duistermaat-
Heckman functions. In the forthcoming thesis [9], Moon will give
a direct proof of this fact without using the equivalence of the
values of Duistermaat-Heckman functions and winding numbers.

Now we briefly explain the contents of each chapter, as fol-
lows. In Chapter 2 we give definitions of a multi-fan and a
multi-polytope, and then introduce certain related notions. The
completeness of a multi-fan is one of the most important points
in this chapter. The definition of the Duistermaat-Heckman
function is given in Chapter [3 As briefly mentioned above, a
multi-polytope is a pair P = (A, F) of an n-dimensional com-

plete multi-fan A and a arrangement of hyperplanes F = {F;} in

4
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H?*(BT;R) with the same index set as the set of 1-dimensional
cones in A. Recall that a multi-polytope is called simple if its as-
sociated multi-fan A is simplicial. The Duistermaat-Heckmann
function DHp associated with a simple multi-polytope P is a
locally constant integer-valued function with bounded support
defined on the complement of the hyperplanes {F;}. The wall
crossing formula which describes the difference of the values of
the function on adjacent components plays an important role in
the proof of our main Theorem [I.2] In addition, several inter-
esting examples will be provided in Chapter 4] Finally, Chapter
is devoted to proving our main Theorem [I.2]
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Chapter 2

Multi-fans and Multi-polytopes

The aim of this chapter is to set up some basic notations and ter-
minology necessary for the proofs of our main results in Chapter
Bl The material of this chapter is largely taken from the excel-
lent paper [6] of Hattori and Masuda (see also [7]).

To do so, let N be a lattice of rank n, which is isomorphic to
7. We denote the real vector space N ® R by Ngr. A subset
o of Ng is called a strongly convex rational polyhedral cone
(with apex at the origin) if there exits a finite number of vectors

v1,...,U, in N such that
o={rivi+-+rnvy,|r; € Rand r; > 0 for all i},

and 0 N (—o) = {0}. Here “rational” means that it is generated
by vectors in the lattice N, and “strong” convexity means that
it contains no line through the origin. We often call a strongly
convex rational polyhedral cone in N simply a cone in N. The

dimension dim o of a cone ¢ is the dimension of the linear space

6
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spanned by vectors in o. A subset 7 of ¢ is called a face of o if

there is a linear function
[ : Nrp — R

such that [ takes nonnegative values on ¢ and such that 7 =
[71(0) No. A cone shall be regarded as a face of itself, while

others are called proper faces.

Definition 2.1. A fan A in N is a set of a finite number of

strongly convex rational polyhedral cones in Ny such that
(1) each face of a cone in A is also a cone in A, and
(2) the intersection of two cones in A is a face of each.
We also need a series of the following definitions.

Definition 2.2. A fan A is said to be complete if the union of

cones in A covers the entire space Ng.

A cone is called simplicial if it is generated by linearly inde-
pendent vectors. If the generating vector can be taken as a part

of a basis of IV, then the cone is called nonsingular.

Definition 2.3. A fan A is said to be simplicial (resp. non-

singular) if every cone in A is simplicial (resp. non-singular).

Denote by Cone (N) the set of all cones in N. An ordinary
fan is a subset of Cone (N). The set Cone (N) has a partial

7
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ordering < defined by : 7 < v if and only if 7 is a proper face of
v. The cone {0} consisting of the origin is the unique minimum
element of Cone (V).

Next, let ¥ be a partial ordering finite set with a unique
minimum element. We denote the strict partial ordering by
< and the minimum element by *. A typical example of X
thesis is an abstract simplicial set with an empty set added as
a member, which we call an augmented simplicial set. In this
case, the partial ordering is defined by the inclusion relation
and the empty set is the unique minimum element which may

be considered as a (—1)-simplex. Suppose that there is a map
C: % — Cone (N)
such that
(1) C(x) = {0};
(2) If I < Jfor I,J €X, then C(I) < C(J);

(3) For any J € ¥ the map C restricted on {I € ¥ | I < J} is
an isomorphism of ordered sets onto { K € Cone(N) | K <
C(J)}.

For an integer m such that 0 < m < n, we set

»m.={lex | dimC(I) =m}.
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One can easily check that (™ does not depend on the choice
of C satisfying the above three conditions. When 3 is an aug-
mented simplicial set, I € ¥ belongs to 2™ if and only if the
cardinality |I| of I is m, that is, I is an (m — 1)-simplex. There-
fore, even if X is not an augmented simplicial set, we use the
notation |I| for m when I € X(™).

The image C(X) is a finite set of cones in N. We may think
of a pair (3,C) as a set of cones in N labeled by the ordered
set 2. Cones in an ordinary fan intersect only at their faces,
but cones in C'(X) may overlap. Furthermore, it can happen
that the same cone may appear repeatedly with different labels.
The pair (X, C') is almost what we can possibly call a multi-fan,
but we need to further incorporate a pair of weight functions
on cones in C'(X) of the highest dimension n = rank N. More

precisely, we consider two functions
w2 & 7o

such that w* (1) > 0 or w™(I) > 0 for every I € £,

These two functions w® actually have its origin from toric
geometry. In fact, if M is a torus manifold of dimension 2n
and if M;,,---,M; are characteristic submanifolds such that
their intersection contains at least one T-fixed point, then the
intersection M; = N, M; consists of a finite number of 7-fixed

points. At each fixed point p € M| the tangent space 7, has two
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orientations; one is endowed by the orientation of M and the
other comes from the intersection of the oriented submanifolds
M;,. Denoting the ratio of the above two orientations by ¢,
we define the number w™ () (resp. w™(I)) to be the number of
points p € My with €, = +1 (resp. ¢, = —1).

Now we are ready to give a precise definition of a multi-fan,

as follows.

Definition 2.4. We call a triple A := (3, C,w™) a multi-fan in
N. We define the dimension of A to be the rank of NV (or the

dimension of NVg).

Since an ordinary fan A in N is a subset of Cone (/V), one can
view it as a multi-fan by taking > = A, C' = the inclusion map,
wt =1, and w™ = 0. This is the way how to obtain an ordinary
fan from a multi-fan. Note that a convex polytope gives rise to
a complete fan.

As in the case of ordinary fans, we shall say that a multi-fan
A = (3, C,w¥) is simplicial (resp. nmon-singular) if every cone

in C(X) is simplicial (resp. non-singular).

Lemma 2.5. A multi-fan A = (X, C,w*) is simplicial if and
only if X is 1somorphic to an augmented simplicial set as par-

tially ordered sets.

The definition of completeness of a multi-fan A is rather com-

plicated. A naive definition of the completeness would be that

10
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the union of cones in C'(X) covers the entire space Ng. Although

+

the two weighted functions w™ are incorporated in the definition

of a multi-fan, only the difference

will be important in this thesis.

In order to give a precise definition of completeness of a multi-
fan, we first need to introduce the following intermediate notion
of pre-completeness. To do so, recall first what a generic vector
means: a vector v € Nr will be called generic if v does not lie
on any linear subspace spanned by a cone in C'(X) of dimension

less than n. For a generic vector v we set

veC(I),
Iex(™

where the sum is understood to be zero if there is no such I.

Definition 2.6. We call a multi-fan A = (3, C,w®) of dimen-
sion n is pre-complete if ©(™ £ 0 and the integer d, is indepen-
dent of the choice of generic vectors v. We call this integer the

degree of A and denote it by deg (A).

We remark that for an ordinary fan, pre-completeness is the
same as completeness. See Figure for typical examples of an

ordinary fan and a multi-fan.

11
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V2 V1 V2 Vi

Va4 V4

V3 Va3

ordinary-fan multi-fan

Figure 2.1: Typical examples of an ordinary fan and a multi-fan

Recall that V' = Ng. A convex polytope P in V* = Hom (V| R)
is the convex hull of a finite set of points in V*. It is the in-
tersection of a finite number of half space in V* separated by
affine hyperplanes, so there are a finite number of nonzero vec-

tors vy, -+ ,vg in V and real numbers ¢y, - - - , cg such that
P={ueV"| (u,v;) <¢ for all i},

where ( ,) denotes the natural pairing between V* and V. Note
that a convex polytope gives rise to a complete fan.

Next, we begin explaining how to obtain a multi-polytope
from a complete multi-fan A = (X, C,w*). The procedure of
obtaining a multi-polytope from a multi-fan is completely anal-
ogous. More precisely, let HP(V*) be the set of all affine hyper-

planes in V™.

12
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Definition 2.7. Let A = (3, C,w®) be a complete multi-fan
and let
F:xW — HP(VY)

be a map such that the affine hyperplane F([) is perpendicular
to the half line C(I) for each I € ¥V i.e., an element in C([)
takes a constant on F(I). We call a pair (A, F) a multi-polytope
and denote it by P. The dimension of a multi-polytope P is
defined to be the dimension of the multi-fan A. We say that a
multi-polytope P is simple if A is simplicial.

Strictly speaking, the completeness assumption for A given in
Definition is not needed for the definition of multi-polytopes.
But we incorporated it there because most of our results in this
thesis depend on that assumption. We note that the notion
of multi-polytopes is a direct generalization of that of twisted
polytopes given in [3].

Finally, in order to help readers to better understand the
notion of a multi-polytope we give examples of multi-polytopes

obtained from the multi-fan given in Figure [2.1|

Example 2.8. If four points I; N iy, ls N3, 13Ny and {4, N1} are
presumed to be vertices and the others such as [, NIy are not,
then we can find the figure P in Figure 2.2 But, if different
four points I; Ny, Iy Ny, lo N3 and I3 N[} are presumed to be
vertices, then we obtain a figure P’ shaded in Figure [2.2]

13
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Figure 2.2: Examples of multi-polytopes

14
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Chapter 3

Duistermaat-Heckman
Functions

As mentioned in Chapter[2 a multi-polytope P = (A, F) defines
an arrangement of affine hyperplanes in V*. We can then asso-
ciate with P a function on V* minus the affine hyperplanes when
P is simple. This function is locally constant and Guillemin-
Lerman-Sternberg formula ([4],[5]) tells us that it agrees with
the density function of a Duistermaat-Heckman measure when
P arises from a moment map. The aim of this section is to ex-
plain how to define the locally constant function from a multi-
polytope, relatively in detail.

Hereafter, our multi-polytope P is assumed to be simple, so
that the multi-fan A = (2, C, w?) is complete and simplicial, un-
less otherwise stated. As before, we may assume that > consists
of subsets of {1,...,d} and X() = {{1},... {d}}, and denote

by v; a nonzero vector in the one-dimensional cone C'({i}). We

15

Collection @ chosun



denote F({i}) by F; and set

Fy ::ﬂﬂ for T€X.
iel

Then F7 is an affine space of dimension n — |I|. In particular, if
|I| = n, ie., I € 2 then F} is a point, denoted by u;.

Suppose that I € 3. Then the set {v;|i € I} form a basis of
V. Denote its dual basis of V* by {uf |i € I}, i.e., (uf,v;) = d;,
where 9;; denotes the Kronecker delta. Take a generic vector
v € V. Then we have (u/,v) # 0 for all I € X" and i € I. Let

(_1)#{i61|<u{,v>>0}’ and

N+ ul, if (ul,v) >0
| =, i () <.

—~
|
—_
~—
~
I

We denote by C*(I)* the cone in V* spanned by (ul)™’s (i € I)

with apex at uy, and by ¢ its characteristic function.

Definition 3.1. We define a function DHp on V*\ J’, F; by
DHp := > (=1)'w(l)¢r,
Iex(n)

and call it the Duistermaat-Heckman function associated with

P.

The following simple one-dimensional example taken from
the paper [6] clearly shows how to calculate the Duistermaat-

Heckman function for the one-dimensional multi-polytopes.

16
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Example 3.2. Suppose dim’P = 1. We then identify V' with
R, so that V* is also identified with R. Let E be the subset of
{1,...,d} such that i € E if and only if C'({i}) is the half line
consisting of nonnegative real numbers. Then the completeness

of A means that
(3.1) Zw({z Zw {i}) = deg(A).
i€l 1¢F
Take a nonzero vector v. Since V* is identified with R, each

affine hyperplane Fj; is nothing but a real number. Suppose that

v is toward the positive direction. Then

: —1, ifiekl

(3.2 CHRES S
1, ifié¢FE,
and the support of the characteristic function ¢y;, is the half line
given by
{u e R | F; < u}.
Therefore
(33) DHp(w)= >  —w{ih+ >, w({i}).
1€F s.t. Fi<u 1¢E st. F;<u

for u € R\ UF;. If u is sufficiently small, then the sum above is
empty, so it is zero. If u is sufficiently large, then the the sum
is also zero by (3.1)). Hence the support of the function DHp is
bounded.

17
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Now, suppose that v is toward the negative direction. Then
(=11} above is multiplied by —1 and the inequality < above
turns into >. Therefore
(34) DHp(w)= > w{ih+ > (—w({i}).

i€E s.t. u<F, i¢E s.t. u<F
It follows that
R.H.S. of —R.H.S. of ==Y w({i}) + Y _ w{i})
el i¢E
which is zero by (3.1). This shows that the function DHp is
independent of v when dimP = 1.

Next, assume n = dim A > 1. For each {i} € X, the
projected multi-fan Agy = (X, Oy, wi}), which we abbreviate
as A; = (3, C;,wi), is defined on the quotient vector space V'\V;
of V' by the one-dimensional subspace V; spanned by v;. Since A
is complete and simplicial, so is A;. We then identify the dual

space (V/V;)* with
(V)i i=A{ue V' |(u,v;) =0}

in a natural way. We choose an element f; € F; arbitrarily
and translate F; onto (V*); by —f;. If {i,5} € ) then Fj
intersects F; and their intersection will be translated into (V*);

by — f;. This observation leads us to consider the map
F;:3; — HP((V*),)

18
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sending {j} € 251) to F; N F; translated by —f;. The pair P; =
(A;, F;) is a multi-polytope in (V/V;)* = (V¥),.

Let I € ¥ such that i € I. Since (ul,v;) = &;;,ul for j #i
is an element of (V*);, which we also regard as an element of
(V/V;)* through the isomorphism (V/V;)* = (V*),.

We denote the projection image of the generic element v € V'

on V/V; by 9. Then we have (0, u}) = (v, uf) for j # i, where u}

at the left-hand side is viewed as an element of (V/V;)*, while
the one at the right-hand side is viewed as an element of (V*);.
Since (@,u§> = (v,u§> # 0 for j # i, we use v to define DHp..

Example 3.3. Let vy, ..., v5 be integral vectors, where the dots
denote lattice points. The vectors are rotating around the origin

twice in counterclockwise. We take

Y=o, {1} {55 {1,2},{2,3},{3,4},{4,5}, {5, 1}},
and define C' : ¥ — Cone(N) by

C({i}) = the cone spanned by v;,
C'({i,7 4+ 1}) = the cone spanned by v; and v;41,
where ¢ = 1,...,5 and 6 is understood to be 1, and take w™

such that w = 1 on every two dimensional cone. Then A =

(2, C,w?) is a complete non-singular two-dimensional multi-fan

with deg (A) = 2 by (3.1)). Note that the degree deg (A) can be

19
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calculated as follows:

D w({i}) =141 =deg(A)

icE

One obtains the arrangement of lines with a suitable choice
of the map F. The pentagon produces the same arrangement
of lines and can be viewed as a multi-polytope, but these two
multi-polytopes are different because the underlying multi-fan
are different. In fact, one is a multi-fan of degree two, while the
other is an ordinary fan. Note that we have a star-shaped figure
in the former multi-polytope (see Figure [3.1)).

Fl k5

Figure 3.1: Multi-polytope for Example

20
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Chapter 4

Some Interesting Examples

The aim of this chapter is to give a series of several interesting
examples of showing in detail how to calculate the Duistermaat-
Heckman functions for various multi-polytopes. They both il-

lustrate and also strongly support our main result (Theorem
13)

Example 4.1. We first give an example of a complete non-
singular multi-fan of degree two. To do so, let vy,...,v5 be

vectors shown in Figure [d.1] as follows.
V1 = (17())702 — (_17 1)7U3 — <07 —1>,U4 - (17 1>7U5 — (_27 _1)7
v=(2,3).
Let
No=A{o, {1 {2} {35 {4}, {53, {1, 2}, {2, 3}, {3,4}, {4, 5}, {5, 1} }.
It is easy to see that we have

%@ = {{1,2},{2,3},{3,4},{4,5}, {5, 1} }.

21
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Next, we need to consider the following cases:

P16

F3

k

F1 F5

Figure 4.1: A multi-polytope P of Example

(1) I =4{1,2} case;
1,2 1,2
uf = (1), ")
1,2 1,2
ub"? = (0,1), (ud"?)* = (0,1).

I
—~
=

—_

(2) I =1{2,3} case;
u = (=1,0), =™ = (1,0),
ul = (=1, -1), =t = (1, 1)

22
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(3) I ={3,4} case;

3.4 3.4

ul = (1,-1), @t = (-1,1),
3.4 3,4

u M = (1,0), (WSt = (1,0).

(4) I ={4,5} case ;

ul* = (-1,2), @ =(-1,2),
uf = (-11), (")

I
T
\.l—‘

—_
~—

(5) I ={5,1} case;

5,1 1,2

uP = (0,-1), —@!"H*T = (0,1),
5,1 9,1

u M = (1,-2), —(uhT = (=1,2).

Therefore, for u € P; we can obtain

DHplp, (u) = (1)
DPHw({3,4}) b 3.4y (w)
D Hw({5, 1) 5.1y (w)
D2 1-0+ (=D 1- 1+ (=D —1-
1)?-=1-0+(-1)?-1-1

+

(=
+ (=
+ (=
= (=
(=
=0

+1+0+0+1=2.

23
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DI({L, 2112y (1) + (1) Ew((2,3]) o (1)
+ (=) hw({4, 5} a5y ()



DHp|p, = DHp|p, = DHp|p, = DHp|p, = DHp|p,
= ()" ({1.2)opa + () PVw({2.3})d s
+ (=10 ({3,4}) .4 + (=) w({4,5}) s
+ (=1)w({5,1}) ¢ 1)
=1
DHpl|p, = DHp|p, = DHp|p, = DHp|p,, = DHp|p,,
= DHp|p,, = DHp|p.13 = DHplp,, = DHp|p,, = DHp|p,,
= ()" w({1, 20 + (-1)PPw({2,3})ds
+ (1) BYw({3,41) b4 + (=) w({4,5}) b5
+ (=1)PYw({5,1})dps
=0
Note that A = (3, C,w®) is a complete and simplicial multi-fan,

but not ordinary-fan.

Example 4.2. Let X be an ordinary polytope given by the fol-

lowing simplicial complex.

={0, {11, {2}, {3}, {1, 2},{2,3}, {3, 1}}.
Then define a function C' : ¥ — Cone(N) by

C({1}) =v1=(0,1),C({2}) = v2 = (1,0),C({3}) = vs = (=1, —1),

and
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C'({i,i + 1}) = the cone spanned by v; and v; 1.

Here we assume that vy = v;. Let us also take weight functions

w* such that w = 1 on every two dimensional cone in

»® = {{1,2},{2,3},{3,1}}.
Then

A=(2,Cw),lex?

is a complete non-singular two-dimensional multi-fan with deg(A) =
1. (see Figure [1.2)). Next, let us take a generic vector v = (2, 3),
and we want to calculate the Duistermaat-Heckman function

DHp, as follows :

(1) I ={1,2};
ul™ = (0,1), (@ = (0,1),
us" = (1,0), ("t = (1,0).
(2) I =12,3};
ul = (1, -1), — (P = (—1,1),
us? = (0, -1), — (™M * = (0,1).
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iz

P4

F1

P&

Figure 4.2: An ordinary polytope P of Example
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(3) I'={3,1}

uf = (=1,0), @) = (1,0),
us? M = (=1, 1), (WS = (=1,1).

Therefore, for u in the bounded region we can obtain
DHp|ps (1) = (=1)" #w({1,2})d 2y (w) + (=1) PP w({2, 3}) b2 ()

(—
(—1)PYw({3,1})dps1y(u)
(-1)?-1-04+ (-1 1-14+ (=)' =1-0
1

_|_

DHP‘otherwz’sw — (_1){1’2}(*)({17 2})¢{1,2} (u)
+ (=1)PMw({2,3}) s (1) + (=) Mw({3,1}) dgsy(w)

=0
Example 4.3. In this case, four points 1 Nly, I4Nls, IsNl3, 13Ny
are presumed to be vertices. Let vq,...,vs be vectors shown in
Figure 4.3]

v = (1,1),00 = (—1,1),03 = (0, 1), 04 = (1,0),
v=(2,3),
N=A{o, {1}, {2}, {3}, {4}, {6}, {1,4}, {4, 2},{2,3}, {3, 1}}
Y = {{1,4},{4,2},{2,3},{3,1}}.
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F3

Figure 4.3: A multi-polytope P of Example

28

Collection @ chosun



(1) I'={1,4};

(2) I'={4,2};

uf = (1, 1), ~(u" )" = (-1,1),
uy™ = (1,0), ()" = (1,0).
Therefore, for u in the bounded region we can obtain
DHp(u) = (=1)"Yw({1,4}) ¢ (u) + (1) P ({4, 2}) o) (1)
+ (=) Pw({2,3N b0 (w) + (=1)PVw({3, 11)é 3.1 ()
=(=1)*-1-14+(-1)*-=1-0+(-1)°-1-1

+ (=)' =10
=14+0+1+0
=2
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Example 4.4. This time, four points Iy Ny, 3Ny, I3 N1, 14N 1o
are presumed to be vertices. Let vq,...,v4 be vectors shown in
Figure [4.4. Notice that the multi-polytope P consists of two

bounded region, even though their intersection is not a vertex

of P.

V1 = (1, 1),’02 = (—1, 1),1)3 = (O, —1),7)4 = (1,0),
b= (2.4)
Y=o, {1142} {3}, {4}, {5}, {1,2},{3,4}, {3,1}, {4, 2}}
5 = {{172}7 {374}> {37 1}7 {472}}a

F3

F4

Figure 4.4: A multi-polytope P of Example .
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(2= (0, @l = (,0),
uf? = (2,0, ) = ()
(2) T= (3,4}
P = (0,21, (™) = (0,1),
uy™ = (1,0), (us)* = (1,0)
(3) 1= 13.1)

(4) T={4.2};
up? = (1,1, (™) = (1,1),
uy? = (0,1), (u3")* = (0,1),

Therefore, for u in one of the bounded region we can obtain

DHp(u) = (=1 w({1,2})dp 2y () + (=1)PYw({3,4}) b3 4 (w)
+ (=1)BYw({3, 1D () + (1) w({4,2}) bz (u)
= (1) 1- 14+ (=D 114+ (=)' 1-04+(=1)*-1-1
=14 (-
=1

1)+0+1
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Note that for v in other bounded region we have

DHP(U) = —1.
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Chapter 5

Main Results: Proof of
Theorem 1.2

The aim of this chapter is to give a proof of the following theo-

rem.

Theorem 5.1. Let A = (X, C,w™*) be a complete and simplicial
multi-fan, and let P be its associated multi-polytope. Then, P
s an ordinary polytope if and only if
1, ifueP.
DHp(u) = V"7
0, otherwise.

Proof. For the proof, we first show that if the multi-polytope is a

geometric realization of an ordinary polytope, the Duistermaat-
Heckman function DHp defined over V = Mg\ |, F; satisfies

1, ifuePnV,

0, otherwise.

DHp(u) = {

To do so, we want to use the mathematical induction on the

dimension dim A of A. So assume that dim A is equal to one.
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In this case, we identify Ng with R, so that My is also identified

with R. In this case, we have

Y ={0,{1},{2}}.

Let us assume that C'({1}) is the half line consisting of non-
negative real numbers. Then C({2}) will be the half line con-
sisting of non-positive real numbers. Note also that the com-

pleteness of A implies that

w({l}) = w({2}) = deg(A) = 1.

Since My is identified with R, each affine hyperplane F; is
just a real number. Let us take v to be a generic vector in the
positive direction. Then it follows from the definition of the

Duistermaat-Heckman function that we have
DHp(u) = —w({1})oqy(u) + w({2}) ooy (u)
= —oy(u) + gy (u).
It is easy to show that
Cr({1h)" ={v eR[v = 1},
C*({2})" = {veR|v = I}
(refer to Figure [5.1)). Thus, we have

0, u<Fy,
DHp(u) =<1, F<u< F,

0, u> Fj.
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c{2n*

. * cH{1pT
Ci{2}y c)

@ & L

Fz 0 F

Figure 5.1

This completes the proof for the case of dim A = 1.

Assume now that dim A = n > 1 and that the result holds for
any multi-fans with dimension less than n. As above, for each
{i} € TW, let Ay = (3, Cj,w;") with its associated projected
multi-polytope P; = (A;, F;). Note that if A is assumed to be
a geometric realization of an ordinary fan, then so is A;.

Next, we need to recall the wall crossing formula in ([6],
Lemma 5.3).

Theorem 5.2. Let ' denote one of the hyperplanes F;. Let u,
and ug be two elements in Mg\ UL, F; such that the segment
from u, to ug intersects the wall F' transversely at j, and does

not intersect any other Fj # F'. Then, we have

DHp(uq) — DHp(ug) = Z sign(ug — ua, v;) DHp, (1t — fi).
i with F,=F

In order to use the wall crossing formula (Theorem [5.2)), we
take u, € PNV and ug € P°NV such that there is only one wall

on the segment between u,, and ug. Then, since DHp(ug) = 0 by
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[[6], Lemma 5.4] and DHp, (1 — f;) = 1 by induction hypothesis,
it follows from Theorem [5.2] that

DHP(ua) — Sign<uﬂ — Uq, Ui>DHPi(M - fz) =

(refer to Figure [5.2).

Figure 5.2

Here we also used the fact that (ug — u,,v;) > 0, since v; is
an outward normal vector to the hyperplane F;. Since u, can
be taken arbitrary in P NV, this completes the proof for the
necessary condition.

For the converse, we also want to use the mathematical induc-
tion on the dimension dim A of a multi-fan A. So assume that
dim A = 1. Let E be the subset of {1,2,--- ,d} such thati € E
if and only if C({i}) is the half line consisting of non-negative

real numbers. Then the completeness of A implies that

> w({iy) = w{i}) = deg(A).

el i1¢FE

As before, let us take v to be a generic vector in the positive
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direction. For simplicity, assume that
E = {j17j27 e 7jl} and EC - {i17i27 e 7Zk‘}
such that

Fj <F;,<---<F, Fj, <F,<---<F, and I}, <0 <Fj.

Note that
DHp(u) = Y —w({i})ppy(u) + > w{i})ép(u)
(51) - L .
= Y —w{ih+ D w({i})
icE with Fi<u i¢E with Fy<u

Assume that [ > 2. If u lies between Fj, and F}, (refer to
Figure [5.3)), then it follows from ([5.1]) that we have

u
—T—*

|
I
Fik v Fj1 sz " Fi\

|
I
Fi| Fiz

Figure 5.3

L=DHp(u) = Y w({i})=deg(A).

i¢E with F;<u
On the other hand, if u lies between Fj, and Fj, (refer to Figure
, then we have

1=DHp(u) =—w({iH})+ > w{i})

i¢E with Fy<u

= —w({j1}) + deg(A)
= —w({n}) +1.
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Figure 5.4

Thus w({j1}) = 0. Similarly, it is easy to see that w({js}) =0
for all 1 < s <[. But this implies that deg(A) = >, pw({i}) =
0, which is a contradiction.

The case of k > 2 can be dealt with in a similar way, so that
we can conclude that £k = = 1. Hence the multi-polytope P is
a geometric realization of an ordinary convex polytope, and so
its associated multi-fan A is an ordinary fan.

Next we assume that dim A = n > 1 and that the result holds
for any multi-fans with dimension less than n. The following

lemma plays an important role in the proof.
Lemma 5.3. For each {i} € TW, let Ay = (5, C,wi) with

its associated projected multi-polytope P; = (A;, F;). Then, for
p—fi € W= (Mr)i\ U, Fi({7}) we have

DHpi(,u — fz) = Z (_1)I_{i}wi(] - {Z})gbI(M)

1eX(™) with i€l

{1, p—fiePinw,

0, otherwise,

where ¢r(p) is regarded as the value at pu of the characteristic

function of the cones in (Mg); with apex ur spanned by (ul)*
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for all 7 € I such that j # 1.

Proof. For I € ¥ with i € I, note that w(I) = w;(I — {i}) by

definition. Thus we have

DHp,(u—fi) = Y, (=Dl = {i})er(p),

Iex(™) with i€l
as desired.

For the explicit values of DHp, (1 — f;), we divide the proof
into two subcases. In fact, we can deal with these cases in the
same way, but we shall give two different proofs for them, in
order to help readers more clearly understand the problems.

First, consider the case where F; is an affine hyperplane in
HP(Mpg) which possibly forms an interior wall in the multi-
polytope P and there is an affine hyperplane Fj meeting F;
at a point which is not a vertex of P (refer to Figure [5.5)).

In this case, it follows from the very definition that the affine
hyperplane F}. does not contribute to the values of the Duistermaat-
Heckman function DHp, (1 — f;). On the other hand, let u, be
an element in the interior of P and let ug be an element in the
unbounded region in Mg\ U?Zl F;. Assume that the segment

from wu, to ug intersects the wall F; transversely only once at p.
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Figure 5.5

Then it follows from Theorem [£.2] that we have
1= DHP(UQ) — DHP(Uﬂ)
= Y ()" = {i})er(w)

I exMwith iel
= DHp, (1 — fi)-
Since the Duistermaat-Heckman function DHp, is locally con-
stant on W = (Mg);\ U;2 Fi({j}), this completes the proof of
Lemma [5.3] for this case.

Next we consider the case where F; is an affine hyperplane
in HP(Mg) which possibly forms an interior wall in the multi-
polytope P and there is an affine hyperplane F) meeting F; at
a point which is also a vertex of P (refer to Figure [5.6)).

In this case, there should be another vertex u; on Fj, in the
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Figure 5.6

direction of the normal vector v; which contributes the value
+1 to the Duistermaat-Heckman function DHp with respect
to a suitably chosen generic vector v € Ng. (Recall that the
Duistermaat-Heckman function is independent of the choice of
the generic element v € Ng.) Thus, when we remove the vertex
uy together with the affine hyperplanes forming u s, then we can
find two distinct adjacent regions R; and Ry in PNV such that
DHp over R; decreases by one, while DHp over R, does not
change. But, since DHp over R; is equal to one by assumption

and the Duistermaat-Heckman function is locally constant on
V', we should have

1 = DHp|r, > DHp|p, +1 = 2.

Clearly it is a contradiction. As a consequence, we can conclude

that the second case does not occur.

41

Collection @ chosun



This completes the proof of Lemma 5.3 ]

Finally, we are ready to finish the proof of Theorem [5.1] To
do so, as before let F; be an affine hyperplane in HP(Mp) which
possibly forms an interior wall in the multi-polytope P. Then
F; divides the interior of the multi-polytope into two parts. So,
let u, and ug be two elements in the interior of P such that the
segment from wu, to ug intersects the wall F; transversely at p

only once. Then it follows again from Theorem [5.2] that we have
0=1-1= DHp<ua) - DHP(Ug)
= ) (D" —{i})er(n)

I with i€l
= DHp, (1 — fi),
which is a contradiction to Lemma [5.3} This implies that there
is no affine hyperplane which forms an interior wall in the multi-
polytope P.

There is one more case that we need to consider in order
to complete the proof. That is, consider the case of an affine
hyperplane F; which does not divide the interior of the multi-
polytope P into two parts, but does divide P itself into two
parts in such a way that two bounded regions of P lie on both
sides of the hyperplane F;. In this case, it follows easily from the
wall crossing formula (Theorem that DHp, (1 — f;) should
have the value +1 and also —1, due to the orientation of the

vector v; normal to F;. However, clearly this is a contradiction.
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In fact, it is also easy to see that this case does not occur by the
definition of a multi-polytope.

As a consequence, the multi-polytope P is actually a geomet-
ric realization of an ordinary polytope and, therefore, its asso-
ciated multi-fan A should be an ordinary fan. This completes
the proof of Theorem [5.1] O

43

Collection @ chosun



Bibliography

[1] D. Cox, J. Little, and H. Shenck, Toric varieties, Grad.
Stud. Math. 124, Amer. Math. Soc., 2011.

[2] W. Fulton, Introduction to toric varieties, Ann. Math. Stud.
131, Princeton Univ. Press, 1993.

[3] M. Grossberg and Y. Karshon, Bott towers, complete in-
tegrability, and the extended character of representations,

Duke Math. J. 76 (1994), 23-58.

[4] V. Gullemin, E. Lerman and S. Sternberg, On the Kostant
multiplicity formula, J. Geom. Phys. 5 (1988), 721-750.

[5] V. Gullemin, E. Lerman and S. Sternberg, Symplectic fi-
brations and multiplicity diagram, Cambridge Univ. Press,

Cambridge, 1996.

[6] A. Hattori and M. Masuda, Theory of multi-fans, Osaka J.
Math. 40 (2003), 1-68.

44

Collection @ chosun



(7] H. Lee, Hattori-Masuda multi-polytopes and generalized
Ehrhart polynimials, Master’s Thesis in Chosun University,

2015.

[8] M. Masuda, Unitary toric manifolds, multi-fans and equiv-
ariant index, Tohoku Math. J. 51 (1999), 237-265.

9] K.Y. Moon, A criterion for multi-polytopes via the wind-

ing numbers, in preparation for Master’s Thesis in Chosun

University.

[10] T. Oda, Convex bodies and algebraic geometry, Springer-
Verlag, 1988.

45

Collection @ chosun



	1. Introduction
	2. Multi-fans and Multi-polytopes
	3. Duistermaat-Heckman Functions
	4. Some Interesting Examples 
	5. Main Results: Proof of Theorem 1.2 
	Bibliography


<startpage>9
1. Introduction 1
2. Multi-fans and Multi-polytopes 6
3. Duistermaat-Heckman Functions 15
4. Some Interesting Examples  21
5. Main Results: Proof of Theorem 1.2  33
Bibliography 44
</body>

