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1. Introduction

In [11, 12], M.C. Leung have studied the problem of scalar curvature
functions on Riemannian warped product manifolds and obtained partial
results about the existence and the nonexistence of Riemannian warped
metric with some prescribed scalar curvature function. In this paper, we
also study the existence and the nonexistence of Lorentzian warped metric
with prescribed scalar curvature functions on some Lorentzian warped
product manifolds.

By the results of Kazdan and Warner ([8, 9, 101]), if N is a compact
Riemannian n—manifold without boundary, n >3, then N belongs to one of

the following three categories:

(A) A smooth function on N is the scalar curvature of some Riemannian
metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian
metric on N if and only if the function is either identically zero or negative
somewhere.

(C) Any smooth function on N is the scalar curvature of some

Riemannian metric on N.

This completely answers the question of which smooth functions are
scalar curvatures of Riemannian metrics on a compact manifold N.

In [8, 9, 10], Kazdan and Warner also showed that there exists some
obstruction of a Riemannian metric with positive scalar curvature (or zero
scalar curvature) on a compact manifold.

In [11, 12], the author considered the scalar curvature of some

Riemannian warped product and 1its conformal deformation of warped



product metric. And also in [6], authors considered the existence of a
nonconstant warping function on a Lorentzian warped product manifold such
that the resulting warped product metric produces the constant scalar
curvature when the fiber manifold has the constant scalar curvature.

Ironically, even though there exists some obstruction of positive or zero
scalar curvature on a Riemannian manifold, results of [6], say, Theorem
3.1, Theorem 3.5 and Theorem 3.7 of [6] show that there exists no
obstruction of positive scalar curvature on a Lorentzian warped product
manifold, but there may exist some obstruction of negative or zero scalar
curvature.

In this paper, when N is a compact Riemannian manifold, we discuss the
method of using warped products to construct timelike or null future
complete Lorentzian metrics on M= [a,oo)><fN with specific scalar
curvatures, where a is a positive constant. And we prove the existence of
warping functions on Lorentzian warped product manifolds and the
completeness of the resulting metrics with some prescribed scalar
curvatures. The results of this paper are extensions of the results of
Theorem 2.6, Corollary 2.7 and Corollary 3.7 in [7].



2. Preliminaries

First of all, in order to derive a partial differential equation, we need
some definitions of connections, curvatures and some results about warped

product manifolds.

Definition 2.1. Let & (M) denote the set of all smooth vector fields defined
on M, and let € (M) denote the ring of all smooth real-valued functions on
M.

A connection V on a smooth manifold M i1s a function
V: FM<x F(M) — F(M)
such that

(D) VW is€ - linear in V,

(D2) VW isR- linear in W,

(D3) vV (fW)= (VAW+ v, W for f€ E M)

D4) [V, W]=v ,W—v,V , and

D5) X<V, W>= <V, V,W>+<V,V,W> forall X, V, W € J(M).

If Vv satisfies axioms (D1)~(D3), then VW is called the covariant
derivative of W with respect to V for the connection V. If, in addition, V
satisfies axioms (D4)~(D5), then V is called the Levi- Civita connection of
M, which is characterized by the Koszul formula ([13]).

A geodesic ¢: (a,b) > M is a smooth curve of M such that the tangent



vector ¢’ moves by parallel translation along e¢. In order words, ¢ is a
geodesic if

2.1 V. ¢ =0 (geodesic equation).

A pregeodesic is a smooth curve ¢ which may be reparametrized to be a
geodesic. Any parameter for which ¢ is a geodesic is called an affine
parameter. If s and ¢t are two affine parameters for the same pregeodesic,
then s=at+b for some constants a,b € R. A pregeodesic is said to be
complete if for some affine parameterizion (hence for all affine
parameterizations) the domain of the parametrization is all of R.

The equation V, ¢ =0 may be expressed as a system of linear

differential equations. To this end, we let (U, (z}2%....,2")) be local
d 0 0

1°?

5»»— 1 denote the natural basis
ox- Jdx 0z"

coordinates on M and let {

with respect to these coordinates.
The connection coefficients I; of V with respect to (z'.2%..,2") are
defined by

] 0 : .
v, (=)= 21— (connection coefficients).

Using these coefficients, we may write equation (2.1) as the system

ot g et !
dt* Qj=1 Ydt o dt

0 (geodesic equations in coordinates).

Definition 2.2. The curvature tensor of the connection V is a linear
transformation valued tensor R in Hom (& (M), & (M)) defined by :



R<Xa Y) =VxVy=VyVx—= Vixy-
Thus, for Zz€ & (M) ,
RX,Y)Z= VNV yZ=NyNyZ=Nx v Z .

It is well-known that R(X,Y)Z at p depends only upon the values of X,Y
and Z at p ([13]).
It we T:(M) is a cotangent vector at p and =,y,z € T,(M) are tangent

vectors at p, then one defines
Rw,X,Y,Z)= <w,R(X,Y)Z> = w(R(X,Y)Z)

for X,Y and Z smooth vector fields extending z, y and z, respectively.
The curvature tensor R is a (1,3) - tensor field which is given in local

coordinates by

n
i d ; . ,
R= Y R}, —®d’/®ds*'@dz",
v 1
i, k,m =1 ox

where the curvature components R}, are given by

. ort,, ol . .
i - mj kj
jkm T &Tk - P + a; ([;Lnj[f;ca - [zj['ina)'
Notice that R(X,Y)Z= — R(Y,X)Z, R(w, X, Y, Z)= — R(w, Y, X, Z) and

i _ _ pi
jkm T jmk

0 i 0 i
L= Zz'g andw= Y ywdz’

Furthermore, if X= Zx'iﬂ =>4y
ox’ ox

then

n . o 9
R(X’ Y)Z = Z Rjk:m ijky’” @

i j,kym =1



and

Rw, X, Y, 2)= Z R; w2z y™,

km
i j,kym =1

0 0

; o ;
Consequently, one has R(dz',—,——,——)= Rjj,, -
ax" ax™  ox’ !

Definition 2.3. From the curvature tensor R, one nonzero tensor (or its

negative) is obtained, by contraction. It is called the Ricci tensor. Its

n
components are R;= Y, R};. The tensor is symmetric and its contraction

k=1

S= ZRijgij is called the scalar curvature ([1],[2],[3]).

ij=1

Definition 2.4. Suppose Q is a smooth, bounded domain in R", and let g :
Q xR—R be a Caratheodory function. Let u,€H"*(Q) be given. Consider
the equation
Au= g(z,u) € Q
u=1wu, on a2

ue H"*(Q) is a (weak) sub-solution if u < wu, on 9Q and

f VuV edr+ f g(z,u)pdr < 0 for all p&€ C;°(Q), ¢ = 0.
Q Q

Similarly, v€H"*(Q) is a (weak) super-solution if in the above the
reverse inequalities hold.

We briefly recall some results on warped product manifolds. Complete
details may be found in ([2]) or ([13]). On a semi-Riemannian product
manifold BXF, let # and o be the projections of BXF onto B and F,

respectively, and let f> 0 be a smooth function on B.



Definition 2.5. The warped product manifold M= Bx, F is the product

manifold M= Bx F furnished with metric tensor
g=m*(gp)+ (f » 7)°c*(gp)

where gz and g, are metric tensors of B and F and n and ¢ are pullback
of # and o, respectively. In other words, if v is tangent to M at (p, q),
then

g(w,v)= ggldr (), dr())+ f*(p)gp(do(v), do(v)).
Here B is called the base of M and F the fiber ([13]).

We denote metric g¢ by < , >. In view of the following Remark 2.6 (1),
we may also denote the metric g; by < , >. The metric g, will be
denoted by ( , ).

Remark 2.6. Some well known elementary properties of the warped product
manifold M= B X F are as follows:

(1) For each ¢ € F, the map |, _,., iS an isometry onto B.

(2) For each p& B, the map ol ., _,., is a positive homothetic map

onto F with homothetic factor ﬁ

(3) for each (p,q) = M, the horizontal leaf Bxg¢ and vertical fiber pxF
are orthogonal at (p,q).

(4) The horizontal leaf o '(¢)= Bxgq is a totally geodesic submanifold of

M and the vertical fiber 7 '(p)= px F is a totally umbilic submanifold of M.
(5) If @ is an isometry of F, then 1x @ is an isometry of M, and if ¥ is



an isometry of B such that f=f . ¥, then ¥x1 is an isometry of M.

Recall that vectors tangent to leaves are called horizontal and vector
tangent to fibers are called vertical. From now on, we will often use a
natural identification

T(p.p)(BXF)= T, ) (BXF)= T,BXT,F.

The decomposition of vectors into horizontal and vertical parts plays a
role in our proofs. If X is a vector field on B, we define X at (p,q) by

setting X(p,¢)= (X,,0,). Then X is n-related to X and o-related to the

zero vector field on F. Similarly, if Y is a vector field of F, YV is defined
by Y(p, q)=(0,7,).

Lemma 2.7. If h is a smooth function on B, then the gradient of the lift
hom of h to M is the lift to M of gradient of h on B.

Proof. We must show that grad(h o w) is horizonal and r-related to grad(h)

on B. If v 1s vertical tangent vector to M, then
<grad(h o w),v>= v(h o 7)=dr(v)h=0 , since dn(v)=10.

Thus grad(h - w) is horizonal. If z is horizonal,
< dﬂ(gmd(h om),dr(z)> = < grad(h oq),x>=x(h o m)=dn(x)h
=< grad(h), dr(z) > .

Hence at each point, dr(grad(h o w))= grad(h). We simplify the notations
by writing h for h o 7 and grad(h) for grad(h o w). For a covariant tensor
A on B, its lift A to M is just its pullback 7*(A) under the projection
m:M— B. That is, if A is a(l,s) —tensor, and if vy, vy ...,v,€ T, , M,



then A(vy,...,v,)=A(dr(v,), ..., dr(v,)) ET,(B). Hence if v, is vertical, then
A= 0 on B. For example, if f is a smooth function on B, the lift to M

of the Hessian of f is also denoted by H’. This agrees with the Hessian of
the lift f - m generally only on horizontal vectors. For detailed

computations, see Lemma 5.1 in ([4]).

Now we recall the formula for the Ricci curvature tensor Ric on the
warped product manifold M = BX /F. We write Ric® for the pullback by =«

of the Ricci curvature of B and similarly for Ric’.

Lemma 2.8. On a warped product manifold M= BXx,F with n=dimF> 1,
let X, Y be horizontal and V, W vertical.

Then

(1) Rie(X.Y)= Ric®(X,Y)— ?Hf(X, Y),
(2) Ric(X,W)=0,

(3) Ric(V, W)= Ric* (V,W)— LV, W) f*,

where f# = ATf-i— (n—1) <gmd(f)],ﬁgrad(f)> and Af = trace(H’) is the

Laplacian on B.
Proof. See Corollary 7.43 in ([13]).

On the given warped product manifold M= BXx ,F, we also write SP for
the pullback by 7 of the scalar curvature S; of B and similarly for S*.

From now on, we denote grad(f) by Vf.



Lemma 2.9. If S is the scalar curvature of M= BX ,F with n=dimF>1,
then

F
(2.1) S= 58+ i QnATf—n(n—l)

VNV
f2
where A is the Laplacian on B.
Proof. For each (p, q) € M= BxF, let {e;} be an orthonormal basis for
T,B. Then by the natural isomorphism {6_7:: (e, 0)} 1S an orthonormal set in

T,, M. We can choose {d;} on T,F such that {e,. d;} forms an orthonormal
basis for T, ,M. Then

1=(d;,d;) = f(p)*(d;.d;)= (f(p)d;, f(p)d;)

which implies that {f(p)d;} forms an orthonormal basis for T,F. By Lemma
2.8 (1) and (3), for each i and j

ch(,,e) Ric® ,,e Z H

and
o A <Vf Vf>
ch(dj, dj): RZCF(dja dj)_ f2 (p)gF(dj,dj)(Tf"‘ (n— 1)];2f)
e, =gle,e) for 1<i<n ejzg(gj,gj) for n+1<j<n.

Hence, for ¢, = g(e;, e;) and EJZQ(EJ,EJ),

q = ZE(XR(X(X

= Ze Ric(e;, e;)+ Ze Ric(d, d;)

= 5% (pg)+ i—f— 2nATf_ nln— 1><VJ;72W>

which is a nonlinear partial differential equation on BXx ¢ for each ¢€ F.

10



3. Main results

Let (IV,g) be a Riemannian manifold of dimension n and let f
[a,c0) > RT be a smooth function, where a is a positive number. The
Lorentzian warped product of N and [a,c0) with warping function f is

defined to be the product manifold ([a, c0)x N, g¢") with

(3.1 g =—dt* + f*(t)g.

Let R(g) be the scalar curvature of (N,g). Then the scalar curvature

R(t, z) of ¢’ is given by the equation

1 ,

(3.2) R(t, z)= W{R(QmH 2nf (t)f (t)+n(n—1)If )}

for t €a,0) and z € N. (For details, cf. [5] or [6])

If we denote
n+1
ut)=f % (t), t>a
then equation (3.2) can be changed into

S (1) = R(t)u(t)+ R@)@u(t) " =0,

In this paper, we assume that the fiber manifold N is nonempty,

(3.3)

connected and compact Riemannian n—manifold without boundary. Then, by
Theorem 3.1, Theorem 3.5 and Theorem 3.7 in [6], we have the following
proposition.

11



Proposition 3.1. If the scalar curvature of the fiber manifold N is an-
arbitrary constant, then there exists a nonconstant warping function f(¢) on
[a,c0) such that the resulting Lorentzian warped product metric on

[a,OO)XfN produces positive constant scalar curvature.

Proposition 3.1 implies that in Lorentzian warped product there is no
obstruction of the existence of metric with positive scalar curvature.
However, the results of [8] show that there may exist some obstruction
about the Lorentzian warped product metric with negative or zero scalar

curvature even when the fiber manifold has constant scalar curvature.

Remark 3.2. Theorem 5.5 in [14] implies that all timelike geodesics are

future (resp. past) complete on (—oo,+c)x )N if and only if

I

tll

1 1
v o\2 fo ( v )? B
(1+v) dt= +00(resp.f_oo o dt= + o) for some t, and Remark

2.58 in [1] implies that all null geodesics are future (resp. past) complete
1

+ oo L tn =

if and only if f vidt= —i—OO(resp.f vidt= 4+ o) for some ¢, (cf.
ty -

Theorem 4.1 and Remark 4.2 in [4]. In this reference, the warped product

metric is ¢ =—dt* +v(t)g).

If N admits a Riemannian metric of zero scalar curvature, then we let

u(t) =t* in equation (3.3), where a<(0,1) is a constant, and we have

4n

< —
R(t.e) = — =5

a(l—a)%< 0, t>a.
t

Therefore, from the above fact, Remark 3.2 implies the following:

12



Theorem 3.3. For n>=3, let M=[a,0)x ;N be the Lorentzian warped
product (n+1)-manifold with N compact n-manifold. Suppose that N is in
class (B), then on M there is a future geodesically complete Lorentzian

metric of negative scalar curvature outside a compact set.

We note that the term a(l1—«) achieves its maximum when a:%. And

1
2

when w=t“ and N admits a Riemannian metric of zero scalar curvature,
we have
I S
n+1 4 42’ '

If R(t,z) is the function of only t-variable, then we have the following

proposition whose proof is similar to that of Lemma 1.8 in [12].

Proposition 3.4. If R(g)= 0, then there is no positive solution to equation
(3.3) with

where ¢>1 and ¢, > a are constants.

Proof. See Proposition 3.4 in [7].

In particular, if R(g)= 0, then using Lorentzian warped product it is

impossible to obtain a Lorentzian metric of uniformly negative scalar

v | =

curvature outside a compact subset. The best we can do is when u(t)=1t?,
1
or f(t)=t""'  where the scalar curvature is negative but goes to zero at

infinity.

13



Proposition 3.5. Suppose that R(g)=0 and R(t,z)=R(t)EC”([a,)).
Assume that for t>t, there exist an (weak) upper solution w,(¢t) and a
(weak) lower solution u (t) such that 0 <wu_(t) <wu,(¢t). Then there exists a
(weak) solution wu(t) of equation (3.3) such that for ¢>t¢,,
0<u_(t)<u(t)<u,(t).

Proof. See Theorem 2.5 in [7].

Theorem 3.6. Suppose that R(g)=0. Assume that
R(t,z)= R(t) € C*([a,)) is a function such that
in c 1 4n 1
_ = < —_
ridp R(t) < a1l fort>t,
where t,>a, 0<c¢<1 and 0< b< Mﬂ are constants. Then

equation (3.3) has a positive solution on [a, o) and on M the resulting

Lorentzian warped product metric is a future geodesically complete metric.

1 1
= 1 =2
Proof. Since R(g)=0, put u, (t)=t*. Then u", (t)= 1 Hence
1
in n —1 372 5
v ()= R, ()= —=—=t* = R(t)t”
1 1
n H,—1 5 n+l dn 1 572
= — < = — <0.
n_|_1t [ 4 3 dn R(t)— 7”L+14t [ 1+C]f0
Therefore w,(t) is our (weak) upper solution. Since R(g)=0 and
4 1 . _
R(g) < n—fl bt—Q, we take the lower solution u_(t)=t " where the constant

B0<B< %1) will be determined later. Then v’ (t)= B(8+1)t 72

14



Hence

in B 4dn —p-2_ dn 1 _4
n+1u_(t) R(t)u,(t)zn_’_lﬁ(ﬁ—i-l)t 7n+1bt2t
o 4n -B-2 -
=t B(B+1)—b] =0
if 3 is sufficiently close to n—gl' Thus w_(t) is a (weak) lower solution

and 0<wu_(t) <u,(t) for large t. Hence proposition 3.5 implies that equation

(3.3) has a (weak) positive solution w«(t) such that 0<wu_(t) <wu(t) <wu,(t)

for large t. And since [ is sufficiently close to n—gl’ —n2f1+1>0.
Therefore
L 2
+ oo 2 = + oo n+1
[ g [T w0
t 1+f(t) ty / 4
1+u(t>n+1
2
+ o U,(t)”+1
- i
to 4
1+ u_ (t)n+1
_ 2
+ oo t n+1
S A a—"
ty 774/6
1+t n+1
1 e 24?1
> = t "Tldt =+ oo
V2 Jy,
and

15



which, by Remark 3.2, implies that the resulting warped product metric is a

future geodesically complete one.

Theorem 3.7. Suppose that R(g)=0.
R(t,z)= R(t)= C>([a,0)) is a function such that
n n
n+1bt <R(t)<n+1dt,
where b, d are positive constants. If 6>W

Assume

that

, then equation (3.3)

has a positive solution on [a,0) and on M the resulting Lorentzian warped

product metric is not a future geodesically complete metric.

o +2 . ..
Proof. Put w (t)=e¢ ', where a> ST 1s a positive constant. Then
u ) = e Ut 2 —ala—1)t""?]. Hence
4n

u_(t)— R({t)u_(t)

n+1

n+1

4n e U P —ala—1)t" ]—R@)e ¥

4n e Ut P —ala—1)t" 2 —dt*] = 0

>
n+1
s+ 2

for large ¢ and « such that a >

lower solution.
4
n bi
n+1" 4
n+1

, we take

Since R(g)=0 and R(t)=>

the

upper

. Thus, for large ¢, u_(¢) is a (weak)

solution

u. ()=t ° where the constant §(¢> 5 ) will be determined later. Then

W, (t)=60G+1)t °" %  Hence

16



n in —5—o  An 1 _;
- — <
n+lu+(t) R(t)u+(t)fn+15(5+l)t —— tt
In 5,
= — — <
p—— [6(0+1)—b] <0
. . . . n+1 . .
if § is sufficiently close to — hus w, (t) is a (weak) upper solution

and 0<wu_(t)<uy(t) for large t. Hence Proposition 3.5 implies that equation

(3.3) has a (weak) positive solution u(t) such that 0 <wu_(t) <u,(t) for large

. . .. 1 26
t. And since § is sufficiently close to n; e +1<0. Therefore
+ o + oo n
J, G, A=
t 1+f
1+u
< U+( )n+1dt

tl)

e 26
zf t "Thdt < + oo
tU

and

2 20

+ oo + oo
sf u+(t)"’+1dt=f t" Tt < + oo,

tl) tU

which, by Remark 3.2, implies that the resulting warped product metric is

not a future geodesically complete one.

Remark 3.8 In case that R(g)=0, we see that the function
(t)= dn_ n(n+3) %

1s a fiducial point whether the resulting warped
n+1 4 ;

17



_ n+1
product metric is geodesically complete or not. Note that w(t)=¢ ?* is a
4n n(n+3) 1
2

solution of equation (3.3) when R(t)= . .
n+1 4 t

In case that
_n+1

ult)=t ? , we know that the resulting warped product metric is a

geodesically complete one.

18
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