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  문    록

The Completeness of Some Metrics on Lorentzian 

Warped Product Manifolds with Fiber Manifold of

 Class (B)

        미

      지도 수 :   태

      학  학원 수학 공

 미 하학에  본  문  중  하나는 미 다양체가 가지고 는 곡률 함수

에 한 연 다. 

 연 로는  해   하여 다양체 에  편미 식  

도하여 해  재  보 다. 

  Kazdan and Warner ([8], [9], [10])  결과에 하     함수 가   

 Riemannian metric  scalar curvature가 는  가지 경우  타  는 

 

(A)    함수 가 Riemannian metric  scalar curvature  그 함수 가 

    당한 에       다. 즉,   에 nagative constant scalar    

    curvature를 갖는 Riemannian metric  재하는 경우 다. 

(B)    함수 가 Riemannian metric  scalar curvature  그 함수 가   

    항등 로 ≡  거나 든 에     경우 다. 즉,   에     

    zero scalar curvature를 갖는 Riemannian metric  재하는 경우 다.



(C)    어   라도 scalar curvature를 갖는 Riemannian metric  재하  

    는 경우 다.

  본 논문에 는 다양체    (B)에 하는 compact Riemannian manifold  

, Lorentzian warped product manifold    ∞×   에 함수  가 

당한 건  만 하  Riemannian warped product metric  scalar curvature

가  수 는 지를 보 다. 우리   상해∙하해  하여 증 하 다. 
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1. Introduction

  In [11, 12], M.C. Leung have studied the problem of scalar curvature 

functions on Riemannian warped product manifolds and obtained partial 

results about the existence and the nonexistence of Riemannian warped 

metric with some prescribed scalar curvature function. In this paper, we  

also study the existence and the nonexistence of Lorentzian warped metric 

with prescribed scalar curvature functions on some Lorentzian warped 

product manifolds.

  By the results of Kazdan and Warner ([8, 9, 10]), if   is a compact 

Riemannian -manifold without boundary, ≥ , then   belongs to one of 

the following three categories:

  (A) A smooth function on   is the scalar curvature of some Riemannian 

metric on   if and only if the function is negative somewhere.

  (B) A smooth function on   is the scalar curvature of some Riemannian 

metric on   if and only if the function is either identically zero or negative 

somewhere.

  (C) Any smooth function on   is the scalar curvature of some 

Riemannian metric on  .

  This completely answers the question of which smooth functions are 

scalar curvatures of Riemannian metrics on a compact manifold  .

  In [8, 9, 10], Kazdan and Warner also showed that there exists some 

obstruction of a Riemannian metric with positive scalar curvature (or zero 

scalar curvature) on a compact manifold.

  In [11, 12], the author considered the scalar curvature of some 

Riemannian warped product and its conformal deformation of warped 
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product metric. And also in [6], authors considered the existence of a 

nonconstant warping function on a Lorentzian warped product manifold such 

that the resulting warped product metric produces the constant scalar 

curvature when the fiber manifold has the constant scalar curvature.

  Ironically, even though there exists some obstruction of positive or zero 

scalar curvature on a Riemannian manifold, results of [6], say, Theorem 

3.1, Theorem 3.5 and Theorem 3.7 of [6] show that there exists no 

obstruction of positive scalar curvature on a Lorentzian warped product 

manifold, but there may exist some obstruction of negative or zero scalar 

curvature.

  In this paper, when   is a compact Riemannian manifold, we discuss the 

method of using warped products to construct timelike or null future 

complete Lorentzian metrics on  ∞×   with specific scalar 

curvatures, where  is a positive constant. And we prove the existence of 

warping functions on Lorentzian warped product manifolds and the 

completeness of the resulting metrics with some prescribed scalar 

curvatures. The results of this paper are extensions of the results of 

Theorem 2.6, Corollary 2.7 and Corollary 3.7 in [7].
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2. Preliminaries

  First of all, in order to derive a partial differential equation, we need 

some definitions of connections, curvatures and some results about warped 

product manifolds.

Definition 2.1. Let ℱ   denote the set of all smooth vector fields defined 

on  , and let ℭ   denote the ring of all smooth real-valued functions on 

 .

A connection ∇ on a smooth manifold   is a function

∇ ℱ×ℱ →ℱ

such that  

  (D1) ∇ isℭ- linear in  ,

  (D2) ∇ isℝ- linear in ,

  (D3) ∇   ∇  for f ∈ℭ M

  (D4)   ∇∇ , and

  (D5)   ∇ ∇ for all   ∈ℱ.

  If ∇ satisfies axioms (D1)~(D3), then ∇ is called the covariant 

derivative of  with respect to   for the connection ∇. If, in addition, ∇ 

satisfies axioms (D4)~(D5), then ∇ is called the Levi - Civita connection of 

 , which is characterized by the Koszul formula ([13]).

  A geodesic     →   is a smooth curve of   such that the tangent 
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vector  ′ moves by parallel translation along . In order words,  is a 

geodesic if

(2.1)                     ∇ ′  ′  (geodesic equation).

  A pregeodesic is a smooth curve  which may be reparametrized to be a 

geodesic. Any parameter for which  is a geodesic is called an affine 

parameter. If  and  are two affine parameters for the same pregeodesic, 

then      for some constants  ∈ℝ A pregeodesic is said to be 

complete if for some affine parameterizion (hence for all affine 

parameterizations) the domain of the parametrization is all of ℝ.

  The equation ∇ ′  ′  may be expressed as a system of linear 

differential equations. To this end, we let   be local 

coordinates on   and let {



∂
∂
 
∂
∂

 } denote the natural basis 

with respect to these coordinates.

  The connection coefficients 
  of ∇ with respect to     are 

defined by

∇

 
 


  

  









     (connection coefficients).

  Using these coefficients, we may write equation (2.1) as the system

  



 
   












       (geodesic equations in coordinates).

Definition 2.2. The curvature tensor of the connection ∇ is a linear 

transformation valued tensor  in Hom ℱ ℱ  defined by :
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∇∇ ∇∇∇ .

  Thus, for  ∈ℱ ,

  ∇∇∇∇∇  .

  It is well-known that  at  depends only upon the values of   

and  at  ([13]).

  It ∈
 is a cotangent vector at  and   ∈  are tangent 

vectors at , then one defines

      

for   and  smooth vector fields extending    and  , respectively.

  The curvature tensor  is a (1,3) - tensor field which is given in local 

coordinates by

 
    








⊗⊗⊗ ,

where the curvature components 
  are given by


 











  




 

 
 

 .

   Notice that                    and 


   

 

  Furthermore, if 


  



  



and

then
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and

    
   




 



  Consequently, one has 








 

 

Definition 2.3. From the curvature tensor , one nonzero tensor (or its 

negative) is obtained, by contraction. It is called the Ricci tensor. Its 

components are  
  




    The  tensor is symmetric and its contraction

 
  




   is called the scalar curvature ([1],[2],[3]).

Definition 2.4.  Suppose Ω is a smooth, bounded domain in ℝ , and let  :

Ω×ℝ→ℝ be a Caratheodory function. Let ∈
 Ω   be given. Consider

the equation

∆  ∈ Ω

   on Ω 

∈  Ω  is a (weak) sub-solution if  ≤   on Ω and 

    
Ω

∇∇
Ω

≤     for all ∈
∞Ω  ≥ 

  Similarly, ∈ Ω  is a (weak) super-solution if in the above the 

reverse inequalities hold.

  We briefly recall some results on warped product manifolds. Complete 

details may be found in ([2]) or ([13]). On a semi-Riemannian product 

manifold ×, let  and  be the projections of  ×   onto  and , 

respectively, and let    be a smooth function on 
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Definition 2.5.  The warped product manifold  ×    is the product 

manifold  ×   furnished with metric tensor

   ∘
 

where   and   are metric tensors of  and  and  and  are pullback 

of  and , respectively. In other words, if   is tangent to   at  , 

then

    
   

  Here  is called the base of   and  the fiber ([13]).

  We denote metric g by    . In view of the following Remark 2.6 (1), 

we may also denote the metric   by    . The metric   will be 

denoted by    .

Remark 2.6. Some well known elementary properties of the warped product 

manifold    ×    are as follows:

  (1) For each  ∈   the map      ×  is an isometry onto  .

  (2) For each ∈  the map      ×   is a positive homothetic map 

onto  with homothetic factor 


.

  (3) for each  ∈ , the horizontal leaf × and vertical fiber × 

are orthogonal at  .

  (4) The horizontal leaf    ×  is a totally geodesic submanifold of 

  and the vertical fiber    ×  is a totally umbilic submanifold of  .

  (5) If ∅ is an isometry of , then ×∅ is an isometry of  , and if   is 
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an isometry of  such that   ∘ , then × is an isometry of  .

  Recall that vectors tangent to leaves are called horizontal and vector 

tangent to fibers are called vertical. From now on, we will often use a 

natural identification

 × ≅  ×≅ ×        

  The decomposition of vectors into horizontal and vertical parts plays a 

role in our proofs. If   is a vector field on  , we define   at   by 

setting       Then   is -related to   and -related to the 

zero vector field on . Similarly, if   is a vector field of    is defined 

by    .

Lemma 2.7. If  is a smooth function on ,  then the gradient of the lift 

∘ of  to   is the lift to   of gradient of  on  .

Proof. We must show that ∘ is horizonal and -related to  

on . If  is vertical tangent vector to  , then

 ∘    ∘    , since   .

  Thus ∘ is horizonal. If  is horizonal,

 ∘    ∘   ∘ 

    

  Hence at each point, ∘   We simplify the notations 

by writing  for ∘ and  for ∘ For a covariant tensor 

  on , its lift   to   is just its pullback  under the projection 

   →  . That is, if   is a   - tensor, and if    ∈    
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then    =    ∈   Hence if  is vertical, then 

   on    For example, if  is a smooth function on  , the lift to   

of the Hessian of   is also denoted by   This agrees with the Hessian of 

the lift ∘   generally only on horizontal vectors. For detailed 

computations, see Lemma 5.1 in ([4]).

  Now we recall the formula for the Ricci curvature tensor Ric on the 

warped product manifold   ×    We write  for the pullback by  

of the Ricci curvature of  and similarly for  

Lemma 2.8. On a warped product manifold   ×   with  dim   

let     be horizontal and   vertical.

  Then

      

   

    

    〈〉♯  

where ♯ 
∆
  


〈 〉

   and ∆       is the

Laplacian on  .

Proof. See Corollary 7.43 in ([13]).

  On the given warped product manifold   ×    we also write   for

the pullback by  of the scalar curvature   of  and similarly for    

From now on, we denote  by ∇
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Lemma 2.9. If   is the scalar curvature of   ×   with   dim  

then

(2.1)               

 
 

∆
  


〈∇∇〉

where ∆ is the Laplacian on  .

Proof. For each   ∈  ×   let  be an orthonormal basis for

 Then by the natural isomorphism    is an orthonormal set in

 We can choose  on  such that  forms an orthonormal

basis for   Then

                  〈 〉 
       

which implies that  forms an orthonormal basis for   By Lemma 

2.8 (1) and (3), for each  and 

                
 

  






  



and

   
 

  
 

    

∆
  


∇ ∇ 



    

  for  ≤ ≤  ,    

 
  for ≤  ≤  

Hence, for   

 and   

 
,

         




              














                  

 
 

∆
  


∇∇ 

which is a nonlinear partial differential equation on ×   for each ∈
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3. Main results

  Let   be a Riemannian manifold of dimension  and let  : 

∞ →    be a smooth function, where  is a positive number. The 

Lorentzian warped product of   and ∞ with warping function  is 

defined to be the product manifold  ∞×   ′   with

(3.1)                            ′     

  Let R() be the scalar curvature of  . Then the scalar curvature 

  of  ′ is given by the equation

(3.2)               

  ″ ′

for ∈ ∞  and ∈   (For details, cf. [5] or [6])

  If we denote

                        


 

   

then equation (3.2) can be changed into

(3.3)             

′′  

 



  

  In this paper, we assume that the fiber manifold   is nonempty, 

connected and compact Riemannian -manifold without boundary. Then, by 

Theorem 3.1, Theorem 3.5 and Theorem 3.7 in [6], we have the following 

proposition.
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   Proposition 3.1. If the scalar curvature of the fiber manifold   is an- 

arbitrary constant, then there exists a nonconstant warping function  on 

∞ such that the resulting Lorentzian warped product metric on 

∞×    produces positive constant scalar curvature.

  Proposition 3.1 implies that in Lorentzian warped product there is no 

obstruction of the existence of metric with positive scalar curvature. 

However, the results of [8] show that there may exist some obstruction 

about the Lorentzian warped product metric with negative or zero scalar 

curvature even when the fiber manifold has constant scalar curvature.

  Remark 3.2. Theorem 5.5 in [14] implies that all timelike geodesics are 

future (resp. past) complete on ∞∞×      if and only if 




 ∞


 




 ∞
 ∞




 




 ∞   for some  and Remark 

2.58 in [1] implies that all null geodesics are future (resp. past) complete 

if and only if 


 ∞






 ∞
 ∞








 ∞  for some  (cf. 

Theorem 4.1 and Remark 4.2 in [4]. In this reference, the warped product 

metric is ′  

  If   admits a Riemannian metric of zero scalar curvature, then we let 

   in equation (3.3), where ∈   is a constant, and we have

 ≤ 

 



    

  Therefore, from the above fact, Remark 3.2 implies the following:
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  Theorem 3.3. For ≥  let   ∞ ×    be the Lorentzian warped 

product  -manifold with   compact -manifold. Suppose that   is in 

class (B), then on   there is a future geodesically complete Lorentzian 

metric of negative scalar curvature outside a compact set.

  We note that the term   achieves its maximum when   


. And 

when   




 and   admits a Riemannian metric of zero scalar curvature, 

we have

                        






   

   If   is the function of only t-variable, then we have the following 

proposition whose proof is similar to that of Lemma 1.8 in [12].

  Proposition 3.4. If     then there is no positive solution to equation 

(3.3) with

                      ≤







  for  ≥ 

where  1 and    are constants.

  Proof. See Proposition 3.4 in [7].

  In particular, if     then using Lorentzian warped product it is 

impossible to obtain a Lorentzian metric of uniformly negative scalar 

curvature outside a compact subset. The best we can do is when   




  

or   
 



  where the scalar curvature is negative but goes to zero at 

infinity.
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  Proposition 3.5. Suppose that   and    ∈∞∞  

Assume that for    there exist an (weak) upper solution   and a 

(weak) lower solution 

 such that     ≤  . Then there exists a 

(weak) solution  of equation (3.3) such that for    

   ≤ ≤  

  Proof. See Theorem 2.5 in [7].

  Theorem 3.6. Suppose that     Assume that 

  ∈∞∞  is a function such that

 







 ≤





for  

where       and   

 
 are constants. Then 

equation (3.3) has a positive solution on  ∞ and on   the resulting 

Lorentzian warped product metric is a future geodesically complete metric.

  Proof. Since   , put    




. Then ″  

 




 

.  Hence




″    




 




 

 














 

 


≤









 

   ≤  

  Therefore   is our (weak) upper solution. Since   and

≤





, we take the lower solution    
   where the constant 

   


) will be determined later. Then ″   

      . 
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 Hence

 

″   ≥


 

    




 

         


       ≥ 

if  is sufficiently close to 


. Thus   is a (weak) lower solution 

and        for large . Hence proposition 3.5 implies that equation 

(3.3) has a (weak) positive solution  such that          

for large . And since  is sufficiently close to 


, 

  

Therefore




∞










 


∞



 



 





                    ≥


∞






 
 



 
 





                 


∞



 



 





                       ≥

 


∞


 



  ∞

and




∞




∞


 





≥


∞

 
 






∞


 



 ∞
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which, by Remark 3.2, implies that the resulting warped product metric is a 

future geodesically complete one.

  Theorem 3.7. Suppose that    Assume that 

 ∈∞∞  is a function such that





   




where   are positive constants. If  
 

, then equation (3.3) 

has a positive solution on ∞ and on   the resulting Lorentzian warped 

product metric is not a future geodesically complete metric.

  Proof. Put    
 , where  

 
 is a positive constant. Then 

″    
  

    
       Hence

                 

″   

                


  

   
   

                     

                   ≥


  

   
     ≥ 

for large  and  such that ≥
 

. Thus, for large ,   is a (weak) 

lower solution.

  Since     and ≥




, we take the upper solution 

   
  where the constant  


 will be determined later. Then 

″    
     Hence
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″    ≤


 

   




 

           

 

     ≤ 

if  is sufficiently close to 


. Thus   is a (weak) upper solution 

and       for large . Hence Proposition 3.5 implies that equation 

(3.3) has a (weak) positive solution  such that       for large 

. And since  is sufficiently close to 


,  

      Therefore




∞










 


∞







 




 





                                    ≤


∞

 
 





                                    


∞


 



  ∞

and




∞

 


∞


 





           ≤


∞

 
 



 


∞


 



 ∞

which, by Remark 3.2, implies that the resulting warped product metric is 

not a future geodesically complete one.

Remark 3.8 In case that    we see that the function 



∙


∙ 



 is a fiducial point whether the resulting warped 
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product metric is geodesically complete or not. Note that  


 

 is  a 

solution of equation (3.3) when 

∙


∙ 



. In case that 

 


 

, we know that the resulting warped product metric is a 

geodesically complete one.
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