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국  문  초  록

하토리-마수다 다중 폴리토프와 일반화된 에하트 다항식 연구

      이 화 

      지도교수 : 김 진 홍

      조선대학교 교육대학원 수학교육전공

하토리-마수다에 의해 발견된 다중 팬은 토러스 다양체와 기하학적인 관련이 

있다. 하지만, 토러스 다양체와 관련한 다중 팬이 아닐지라도 흥미로운 문제를 

지니고 있다. 본 논문에서는 하토리-마수다의 결과를 통해 단순 격자 

다중폴리토프의 새로운 결과를 증명했고, 단순 격자 다중 폴리토프에서 

Duistermaat-Heckman 함수 을 통해 #와 #∨을 정의하고 vol와 

vol∨를 정의하여, 다음과 같은 사실이 성립함을 보였다:

(1)  가 2차원 단순 격자 다중 폴리토프일 때,  

     vol # 


#deg∆

와 같은 일반화된 Pick’s formula가 성립한다. 

(2)  가 2차원 단순 격자 다중 폴리토프이고 의 내부에 있는 격자점이 원점만 

존재할 때, 

     vol # 


#

이 성립한다.



(3)  가 2차원 단순 격자 다중 폴리토프이고 단순 폴리곤이며 내부에 격자점이 

원점만 존재할 때,   

     ##∨=2(vo+vol∨)2(deg∆deg∆∨)-4

이 성립한다. 이 등식은 ##∨=12이므로 twelve-point 정리를 

일반화한 것으로 볼 수 있다.

(4)  가 3차원 단순 격자 다중 폴리토프이고일 때, 에하트 다항식

     #=vol# 


#vol
                    


(#deg∆deg∆

이 만족된다.

(5)  가 4차원 단순 격자 다중 폴리토프이고일 때, 에하트 다항식

     # 





를 만족하고, 계수들 사이의 관계식

       vol,   deg∆,   


#

이 성립한다.

 



Chapter 1

Introduction

A multi-fan, developed first by Hattori and Masuda in their paper [5], is a purely

combinatorial object which generalizes an ordinary fan in algebraic geometry.

One typical geometric realization of a multi-fan is a torus manifold, while an

ordinary fan is associated with a toric variety (refer to [9] and [10]). Recall that

a toric variety is a normal complex algebraic variety of dimension n with a (C∗)n-

action having one unique dense orbit and other orbits of smaller dimensions. It

is well known that there is a one-to-one correspondence between toric varieties

and fans. The fan associated with a toric variety is a collection of cones in Rn

with apex at the origin, and to each orbit of a (C∗)n-action on a toric variety

there corresponds a cone of dimension equal to the codimension of the orbit.

Contrary to the case of usual fans, it is unfortunate that two different torus

manifolds may correspond to the same multi-fan. Moreover, the union of cones

in a multi-fan may overlap several times. Nonetheless, many important topolog-

ical properties of a torus manifold can be detected by its associated multi-fan.

Indeed, in their paper [5] Hattori and Masuda provide several combinatorial in-

variants of a multi-fan which correspond to the ordinary topological invariants
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of the associated torus manifold. However, it is not yet known and also an in-

teresting problem to know whether or not every regular complete multi-fan is

realized as a multi-fan associated with a torus manifold.

Associated to an ordinary fan, there is a notion of a convex polytope. Simi-

larly, there is a notion of a multi-polytope associated to a multi-fan. Indeed, let

N be a lattice of rank n which is isomorphic to Zn, and let M be the dual lattice

Hom(N,Z). Let NR = N ⊗ZR, and let MR = Hom(NR,R). A multi-polytope P

is a pair (4,F) of an n-dimensional multi-fan 4 and an arrangement F = {Fi}

of affine hyperplanes Fi in the dual space MR with the same index set as the

set of of one-dimensional cones in 4 (refer to Chapter 2 for a more precise def-

inition). In their paper [5], Hattori and Masuda also give the definitions of the

Duistermaat-Heckman function, the winding number, and the equivariant index

in a purely combinatorial manner for multi-fans and multi-polytopes.

A lattice polytope P means that each vertex of P lies in the lattice M of MR.

For a convex lattice polytope P of dimension n in MR and a positive integer ν,

let νP be

νP = {νu | u ∈ P}.

Then νP is again a lattice multi-polytope in MR. Let us denote by #(νP ) (resp.

#(νP ◦)) the number of lattice points in νP (resp. in the interior νP ◦ of νP ).

Let us also denote by #(∂(νP )) the number of lattice points on the boundary

∂(νP ) of νP . Then clearly we have

#(∂(νP )) = #(νP )−#(νP ◦).

In this paper, as in [5] we normalize a volume element on MR so that the volume

of the unit cube determined by a basis of M is equal to one. Then #(νP )
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and #(νP ◦) are polynomials in ν of degree n, which are called the Ehrhart

polynomials of P and P ◦, respectively. Recall that the number of lattice points

of a simple, regular convex polytope is equal to its corresponding Riemann-Roch

number (refer to, e.g., [3], [7], [4], and [9] for more details).

The main aim of this thesis is to survey some recent results and also show

some interesting and new results for simple lattice multi-polytopes. That is,

we prove that even for simple lattice multi-polytopes, we can establish similar

results such as the generalized Pick’s formula and the generalized twelve-point

theorem, as follows (see Section 5.2 for precise definitions).

Theorem 1.1. Let P be a simple lattice multi-polytope of dimension 2. Then

the following identity holds.

vol(P) = #(P◦) +
1

2
#(∂P)− deg(4).

As an immediate consequence, we can easily obtain the well-known Pick’s

formula for simple convex polytopes.

Corollary 1.2. Let P be a simple convex lattice polytope of dimension 2. Then

the following identity holds.

vol(P ) = #(P ◦) +
1

2
#(∂P )− 1.

Now, let P be a simple lattice multi-polytope whose interior lattice is just the

origin. Then the dual multi-polytope P∨ is also a simple lattice multi-polytope

whose interior lattice point is only the origin. Thus we have

#(P◦) = #((P∨)◦) = 1.
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By applying the generalized Pick’s formula for simple lattice multi-polytopes

in Theorem 1.1 to both P and P∨, it is immediate to obtain the following

generalized twelve-point theorem.

Theorem 1.3. Let P be a simple lattice multi-polytope of dimension 2 which is

a lattice multi-polygon and whose interior lattice point is just the origin. Then

we have

#(∂P) + #(∂P∨)

= 2 (vol(P) + vol(P∨)) + 2 (deg(4) + deg(4∨))− 4.

By applying the well-known twelve-point theorem saying that, for simple

lattice polytopes P

#∂P + #∂P∨ = 12,

it is also easy to show the following corollary.

Corollary 1.4. Let P be a simple convex lattice polytope of dimension 2. Then

we have

vol(P ) + vol(P∨) = 6.

As a consequence, either vol(P ) and vol(P∨) are 2 and 4, respectively, or vol(P )

and vol(P∨) are 4 and 2, respectively.

Moreover, for simple lattice multi-polytopes P of dimension 3, we can identify

the coefficients of the Ehrhart polynomial #(νP), as follows.

Theorem 1.5. Let P be a simple lattice multi-polytope of dimension 3. Then

the Ehrhart polynomial #(νP) satisfies

#(νP) = vol(P)ν3 +

(
#(P)− 1

2
#(∂P)− vol(P)

)
ν2

+

(
1

2
#(∂P)− deg(4)

)
ν + deg(4).
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Finally, by using a similar method as in Theorems 1.3 and 1.5, we can obtain

a weaker result for simple lattice polytopes with the dimension 4, as follows.

Theorem 1.6. Let P be a simple lattice multi-polytope of dimension 4, and let

us write the Ehrhart polynomial #(νP) of P, as follows.

#(νP) = a4ν
4 + a3ν

3 + a2ν
2 + a1ν + a0.

Then the following relationship between the coefficients holds:

a4 = vol(P), a0 = deg(4),

a1 + a3 =
1

2
#(∂P).

Briefly, we now want to explain the contents of each chapter of this thesis.

In Chapter 2, we give a definition of a multi-fan and introduce certain related

notions which are necessary for later chapters. In Chapter 3, the notion of a

multi-polytope and the associated Duistermaat-Heckman function are defined.

As explained above, a multi-polytope is a pair P = (4,F) of an n-dimensional

complete multi-fan4 and a arrangement of hyperplanes F = {Fi} in H2(BT ;R)

with the same index set as the set of 1-dimensional cones in 4. It is called sim-

ple if the multi-fan 4 is simplicial. The Duistermaat-Heckmann function DHP

associated with a simple multi-polytope P is a locally constant integer-valued

function with bounded support defined on the complement of the hyperplanes

{Fi}. In Chapter 4, another locally constant function on the complement of the

hyperplanes {Fi} in a multi-polytope P , called the winding number, is intro-

duced.

If P is a convex lattice polytope and if νP denotes the multiplied polytope by

a positive integer ν, then the number of lattice points #(νP ) contained in νP ,
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called the Ehrhart polynomial as in the case of ordinary polytopes, will be shown

to be a polynomial in ν whose top coefficient is given by the volume of P and

whose constant term is given by the degree of the multi-fan. Chapter 5 will be

devoted to a generalization of the Ehrhart polynomial to multi-polytopes. In this

section, we will give proofs of our main results stated in Chapter 1. Moreover,

we plan to give several applications such as the generalized Pick’s theorem and

the generalized twelve-point theorem for simple lattice multi-polytopes.
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Chapter 2

Multi-fans and Multi-polytopes

The aim of this chapter is to set up some basic notations and terminology neces-

sary for the proofs of our main results in Chapter 5. We remark that Chapters

2, 3, and 4 of this thesis are largely taken from the excellent paper [5].

To do so, let N be a lattice of rank n, which is isomorphic to Zn. We denote

the real vector space N ⊗R by NR. A subset σ of NR is called a strongly convex

rational polyhedral cone (with apex at the origin) if there exits a finite number

of vectors v1, . . . , vm in N such that

σ = {r1v1 + · · ·+ rmvm | ri ∈ R and ri ≥ 0 for all i}, σ ∩ (−σ) = {0}.

The dimension dim σ of a cone σ is defined to be the dimension of the linear

space generated by vectors in σ. A subset τ of σ is called a face of σ if there is

a linear function

l : NR −→ R

such that l takes nonnegative values on σ and vanishes on τ = l−1(0) ∩ σ. A

cone is regarded as a face of itself, while others are called proper faces.

Definition 2.1. A fan 4 in N is a set of a finite number of strongly convex

rational polyhedral cones in NR such that
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(1) each face of a cone in 4 is also a cone in 4,

(2) the intersection of two cones in 4 is a face of each.

We also need the following notion of the completeness of an ordinary fan.

Definition 2.2. A fan4 is said to be complete if the union of cones in4 covers

the entire space NR.

A cone is called simplicial if it is generated by linearly independent vectors.

If the generating vector can be taken as a part of a basis of N , then the cone is

called nonsingular.

Definition 2.3. A fan 4 is said to be simplicial (resp. non-singular) if every

cone in 4 is simplicial (resp. non-singular).

Denote by Cone(N) the set of all cones in N . An ordinary fan is a subset

of Cone(N). The set Cone(N) has a partial ordering ≺ defined by : τ ≺ ν if

and only if τ is a proper face of ν. The cone {0} consisting of the origin is the

unique minimum element if Cone(N).

On the other hand, let Σ be a partial ordering finite set with a unique

minimum element. We denote the strict partial ordering by < and the minimum

element by ∗. An example of Σ used later is an abstract simplicial set with an

empty set added as a member, which we call an augmented simplicial set. In

this case the partial ordering is defined by the inclusion relation and the empty

set is the unique minimum element which may be considered as a (−1)-simplex.

Suppose that there is a map

C : Σ→ Cone(N)

such that
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(1) C(∗) = {0},

(2) If I < J for I, J ∈ Σ, then C(I) < C(J),

(3) For any J ∈ Σ the map C restricted on {I ∈ Σ | I ≤ J} is an isomorphism

of ordered sets onto {K ∈ Cone(N) | K ≤ C(J)}.

For an integer m such that 0 ≤ m ≤ n, we set

Σ(m) := {I ∈ Σ | dimC(I) = m}.

One can easily check that Σ(m) does not depend on C. When Σ is an aug-

mented simplicial set, I ∈ Σ belongs to Σ(m) if and only if the cardinality |I| of I

is m, namely I is an (m− 1)-simplex. Therefore, even if Σ is not an augmented

simplicial set, we use the notation |I| for m when I ∈ Σ(m). The image C(Σ) is

a finite set of cones in N . We may think of a pair (Σ, C) as a set of cones in N

labeled by the ordered set Σ. Cones in an ordinary fan intersect only at their

faces, but cones in C(Σ) may overlap, even the same cone may appear repeat-

edly with different labels. The pair (Σ, C) is almost what we call a multi-fan,

but we incorporate a pair of weight functions on cones in C(Σ) of the highest

dimension n = rankN . More precisely, we consider two functions

ω± : Σ(n) → Z≥0.

We assume that ω+(I) > 0 or ω−(I) > 0 for every I ∈ Σ(n). These two

functions have its origin from geometry. In fact, if M is a torus manifold of

dimension 2n and if Mi1 , · · · ,Min are characteristic submanifolds such that their

intersection contains at least one T -fixed point, then the intersection M1 =

∩νMiν consists of a finite number of T -fixed points. At each fixed point p ∈MI
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the tangent space τp has two orientations; one is endowed by the orientation of

M and the other comes from the intersection of the oriented submanifolds Miν .

Denoting the ratio of the above two orientations by εp we define the number

ω+(I) to be the number of points p ∈MI with εp = +1 and similarly for ω−(I).

Definition 2.4. We call a triple 4 := (Σ, C, ω±) a multi-fan in N . We define

the dimension of 4 to be the rank of N (or dimension of NR).

Since an ordinary fan 4 in N is a subset of Cone(N), one can view it as

a multi-fan by taking Σ = 4, C = the inclusion map, ω+ = 1, and ω− = 0.

In a similar way as in the case of ordinary fans, we say that a multi-fan 4 =

(Σ, C, ω±) is simplicial (resp. non-singular) if every cone in C(Σ) is simplicial

(resp. non-singular). The following lemma is easy.

Lemma 2.5. A multi-fan 4 = (Σ, C, ω±) is simplicial if and only if Σ is iso-

morphic to an augmented simplicial set as partially ordered sets.

The definition of completeness of a multi-fan 4 is rather complicated. A

naive definition of the completeness would be that the union of cones in C(Σ)

covers the entire space NR. Although the two weighted functions ω± are incor-

porated in to definition of a multi-fan, only the difference

ω := ω+ − ω−

is important in this thesis. We shall introduce the following intermediate notion

of pre-completeness at first. A vector v ∈ NR will be called generic if v does not

lie on any linear subspace spanned by a cone in C(Σ) of dimension less than n.

For a generic vector v we set

dv = Σv∈C(I)ω(I),

11



where the sum is understood to be zero if there is no such I.

Definition 2.6. We call a multi-fan4 = (Σ, C, ω±) of dimension n pre-complete

if Σ(m) 6= 0 and the integer dv is independent of the choice of generic vectors v.

We call this integer the degree of 4 and denote it by deg(4).

We remark that for an ordinary fan, pre-completeness is the same as com-

pleteness.

From now on, we set V = NR, unless stated otherwise. A convex polytope

P in V ∗ = Hom(V,R) is the convex hull of a finite set of points in V ∗. It

is the intersection of a finite number of half space in V ∗ separated by affine

hyperplanes, so there are a finite number of nonzero vectors v1, · · · , vd in V and

real numbers c1, · · · , cd such that

P = {u ∈ V ∗ | 〈u, vi〉 ≤ ci for all i},

where 〈 , 〉 denotes the natural pairing between V ∗ and V .

A polytope gives rise to a multi-fan in this way. Note that convex polytope

gives rise to a complete fan. Now, we begin with a complete multi-fan 4 =

(Σ, C, ω±). Let HP(V ∗) be the set of all affine hyperplanes in V ∗.

Definition 2.7. Let 4 = (Σ, C, ω±) be a complete multi-fan and let F : Σ(1) →

HP(V ∗) be a map such that the affine hyperplane F(I) is perpendicular to the

half line C(I). That is, any element in C(I) takes a constant on F(I). We call

a pair (4,F) a multi-polytope and denote it by P . The dimension of a multi-

polytope P is defined to be the dimension of the multi-fan 4. We say that a

multi-polytope P is simple if 4 is simplicial.
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Chapter 3

Duistermaat-Heckman Functions

A multi-polytope P = (4,F) defines an arrangement of affine hyperplanes in

V ∗. In this chapter, we associate with P a function on V ∗ minus the affine

hyperplanes when P is simple. This function is locally constant and Guillemin-

Lerman-Sternberg formula tells us that it agrees with the density function of a

Duistermaat-Heckman measure when P arises from a moment map.

From now on, our multi-polytope P is assumed to be simple, so that the

multi-fan 4 = (Σ, C, w±) is complete and simplicial, unless otherwise stated.

As before, we may assume that Σ consists of subsets of {1, · · · , d} and Σ(1) =

{{1}, · · · , {d}}, and denote by vi a nonzero vector in the one-dimensional cone

C({i}). To simplify notation, we denote F({i}) by Fi and set

FI := ∩i∈IFi for I ∈ Σ.

Then FI is an affine space of dimension n − |I|. In particular, if |I| = n (i.e.,

I ∈ Σ(n)), then FI is a point, denoted by uI . Suppose I ∈ Σ(n). Then the set

{vi | i ∈ I} forms a basis of V . Denote its dual basis of V ∗ by {uIi | i ∈ I},

i.e., 〈uIi , vj〉 = δij where δij denotes the Kronecker delta.

Next we take a generic vector v ∈ V . Recall that a vector v ∈ NR is called
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generic if it does not lie on any linear subspace spanned by a cone in C(Σ) of

dimension less than n. Then 〈uIi , v〉 6= 0 for all I ∈ Σ(n) and i ∈ I. Set

(−1)I := (−1)#{i∈I|〈uIi ,v〉>0},

and

(uIi )
+ :=

{
uIi if 〈uIi , v〉 > 0,

−uIi if 〈uIi , v〉 < 0.

We denote by C∗(I)+ the cone in V ∗ spanned by (uIi )
+’s (i ∈ I) with apex at

uI , and by φI its characteristic function.

Definition 3.1. We define a function DHP on V ∗ \ ∪di=1Fi by

DHP :=
∑
I∈Σ(n)

(−1)Iω(I)φI ,

and call it the Duistermaat-Heckman function associated with P .

Remark that the function DHP is defined on the whole space V ∗ and depends

on the choice of the generic vector v ∈ V . But it is true ([5], Lemma 5.4 or

Theorem 3.3) that it is independent of v on V ∗ \∪Fi. This is the reason why we

restricted the domain of the function to V ∗ \ ∪Fi. In the next example, we see

that the value of DH function is independent of the choice of v, when dimP = 1.

Example 3.2. Suppose dimP = 1. We identify V with R, so that V ∗ is also

identified with R. Let E be the subset of {1, · · · , d} such that i ∈ E if and

only if C({i}) is the half line consisting of non-negative real numbers. Then the

completeness of 4 means that

(3.1)
∑
i∈E

w({i}) =
∑
i/∈E

w({i}) = deg(4).

14



Take a nonzero vector v. Since V ∗ is identified with R, each affine hyperplane Fi

is nothing but a real number. Suppose that v is toward the positive direction.

Then

(3.2) (−1){i} =

{
−1 if i ∈ E,
1 if i /∈ E,

and the support of the characteristic function φ{i} is the half line given by

{u ∈ R | Fi ≤ u}

Therefore

(3.3) DHP(u) =
∑

i∈E s.t. Fi<u

−w({i}) +
∑

i/∈E s.t. Fi<u

w({i})

for u ∈ R\ ∪ Fi. If u is sufficiently small, then the sum above is empty; so it

is zero. If u is sufficiently large, then the sum is also zero by (3.1). Hence the

support of the function DHP is bounded. Now, suppose that v is toward the

negative direction. Then (−1){i} above is multiplied by −1 and the inequality

≤ above turns into ≥. Therefore, we obtain

(3.4) DHP(u) =
∑

i∈E s.t. u<Fi

w({i}+
∑

i/∈E s.t. u<Fi

(−w({i})).

It follows that

R.H.S. of (3.3)− R.H.S. of (3.4) = −
∑
i∈E

w({i}) +
∑
i/∈E

w({i})

which is zero by (3.1). This shows that the function DHP is independent of v

when dimP = 1.

Assume n = dim4 > 1. For each {i} ∈ Σ(1), the projected multi-fan

4{i} = (Σ{i}, C{i}, w
±
{i}), which we abbreviate as4i = (Σ{i}, C{i}, w

±
{i}), is defined
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on the quotient vector space V/Vi of V by the one-dimensional subspace Vi

spanned by vi. Since 4 is complete and simplicial, so is 4i. We identify the

dual space (V/Vi)
∗ with

(V ∗)i := {u ∈ V ∗ | 〈u, vi〉 = 0}

in a natural way. We choose an element fi ∈ Fi arbitrarily and translate Fi onto

(V ∗)i by −fi. If {i, j} ∈ Σ(2), then Fj intersects Fi and their intersection will be

translated into (V ∗)i by −fi. This observation leads us to consider the map

Fi : Σi → HP((V ∗)i)

sending {j} ∈ Σ
(1)
{i} to Fi ∩ Fj translated by −fi. The pair Pi = (4i, Fi) is

a multi-polytope in (V/Vi)
∗ ∼= (V ∗)i. Let I ∈ Σ(n) such that i ∈ I. Since

〈uIj , vi〉 = δij, u
I
j for j 6= i is an element of (V ∗). We denote the projection image

of the generic element v ∈ V on V/Vi by v̄. Then we have 〈v̄, uIj〉 = 〈v, uIj〉

for j 6= i, where uIj at the left-hand side is viewed as an element of (V/Vi)
∗

while the one at the right-hand side is viewed as an element of (V ∗)i. Since

〈v̄, uIj〉 = 〈v, uIj〉 6= 0 for j 6= i, we use v̄ to define DHPi
.

It turns out that the Dusitermaat-Heckman function is bounded, and van-

ishes outside the bounded region bounded by the hyperplanes in HP(V ∗), as

follows.

Theorem 3.3. The support of the function DHP is bounded, and the function

is independent of the choice of the generic element v ∈ V .

We close this chapter with some examples to explain how to calculate the

Duistermaat-Heckman function associated to a complete multi-polytope.
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Example 3.4. Let Σ be an ordinary polytope given by the following simplicial

complex

Σ = {φ, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}}.

Then define a function C : Σ→ Cone(N) by

C({1}) = v1 = (0, 1). C({2}) = v2 = (1, 0), C({3}) = v3 = (−1,−1),

and

C({i, i+ 1}) = the cone spanned by vi and vi+1.

Here we assume that v4 = v1. Let us also take weight functions w± such that

w = 1 on every two dimensional cone in

Σ(2) = {{1, 2}, {2, 3}, {3, 1}}.

Then

4 = (Σ, C, ω), I ∈ Σ(2)

is a complete non-singular two-dimensional multi-fan (actually, fan) with deg(4) =

1 (see Figure 3.1).

Next, let us take a generic vector v = (2, 3), and then we want to calculate

the Duistermaat-Heckman function DHP , as follows:

DHP = (−1){1,2}ω({1, 2})φ{1,2}

+ (−1){2,3}ω({2, 3})φ{2,3} + (−1){3,1}ω({3, 1})φ{3,1}.

Hence, we need to consider the following cases:

1) I = {1, 2};

u
{1,2}
1 = (0, 1), u

{1,2}
2 = (1, 0),

(u
{1,2}
1 )+ = u

{1,2}
1 , (u

{1,2}
2 )+ = u

{1,2}
2 .
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Figure 3.1: ordinary polytope P .

2) I = {2, 3};

u
{2,3}
1 = (1,−1), u

{2,3}
2 = (0,−1),

(u
{2,3}
1 )+ = −u{2,3}1 , (u

{2,3}
2 )+ = −u{2,3}2 .

3) I = {3, 1};

u
{3,1}
1 = (−1, 0), u

{3,1}
2 = (0,−1),

(u
{3,1}
1 )+ = −u{3,1}1 , (u

{3,1}
2 )+ = −u{3,1}2 .

Therefore, we can obtain

DHP(u) = (−1)2 · 1 · φ{1,2}(u)

+ (−1)0 · 1 · φ{2,3}(u) + (−1)1 · (−1) · 1 · φ{3,1}(u)

=

{
1, u ∈ P◦,
0, otherwise.
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Chapter 4

Winding Numbers

The aim of this section is to introduce another locally constant function defined

on V ∗\∪Fi, called the winding number, which are associated with a simple multi-

polyope P . It turns out that the winding number of a simple multi-poytope P

is identical with the Duistermaat-Heckman function of P . In this chapter, we

quickly review its definition and a few properties. Refer to [5], Section 6 for

more details.

As before, let P = (4,F) be a simple multi-polytope, and let Σ be an

augmented simplicial set consisting of subsets of {1, 2, · · · , d}. Then we fix an

orientation on V . Let I = {i1, i2, · · · , in} ∈ Σ(n). Then I is said to have a positive

orientation if the ordered basis {vi1 , vi2 , · · · , vin} gives the chosen orientation of

V , and is said to have a negative orientation, otherwise. We also define

〈I〉 :=

{
〈i1, i2, · · · , in〉, if 〈i1, i2, · · · , in〉 has a positive orientation,

−〈i1, i2, · · · , in〉, if 〈i1, i2, · · · , in〉 has a negative orientation.

It can be shown that the completeness of 4 implies that

∑
I∈Σ(n)

w(I)〈I〉
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is a cycle in the chain complex of the simplicial set Σ. In fact, the following

lemma holds.

Lemma 4.1. If a simplicial multi-fan 4 is complete, then
∑

I∈Σ(n) w(I)〈I〉 is a

cycle, and, moreover, the converse also holds.

Then we need a definition, as follows.

Definition 4.2. We shall denote by [4] the homology class that the cycle∑
I∈Σ(n) w(I)〈I〉 defines in the reduced homology H̃n−1(Σ;Z).

Let S be the realization of the first barycentric subdivision of Σ. For each

i ∈ {1, 2, · · · , d}, we denote by Si the union of simplices in S which contains

the vertex {i}, and let SI = ∩i∈ISi for I ∈ Σ. Note that the boundary ∂Si of

Si can be identified with the realization of the first barycentric subdivision of

Σi, where Σi is the augmented simplicial set of the projected multi-fan 4i =

(Σi, Ci, w
±
i ) in MR/(MR)i. Then, as before the cycle [4i] defines an element in

H̃n−2(Σi,Z) = H̃n−2(∂Si;Z) with respect to the compatible orientation.

The following lemma holds ([5], Lemma 6.1).

Lemma 4.3. Under the compositions of the following maps

H̃n−2(Σ;Z)
i∗−→ Hn−1(S, S\S◦i ;Z) ∼= Hn−1(Si, ∂Si;Z)

∂−→ H̃n−2(∂Si;Z),

the (n− 1)-cycle [4] maps to the (n− 2)-cycle [4i].

We also have the following lemma ([5], Lemma 6.2).

Lemma 4.4. The following statements hold.
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(a) The multi-polytope P gives rise to a continuous map

ψ : S → ∪di=1Fi ⊂MR

under which SI is mapped to FI for each I ∈ Σ.

(b) The map ψ induces a homomorphism

ψ∗ : H̃n−1(S;Z) ∼= H̃n−1(Σ;Z)→ H̃n−1(MR − {u};Z)

for each u ∈MR\ ∪di=1 Fi.

We shall denote by [MR − {u}] the fundamental class in H̃n−1(MR − {u};Z)

for each u ∈MR\ ∪di=1 Fi.

Definition 4.5. For each u ∈MR\ ∪di=1 Fi, we define an integer WNP(u) by

ψ∗([4]) = WNP(u)[MR − {u}],

and WNP(u) is called the winding number of the multi-polytope P = (4,F)

around u.

Remark 4.6. (a) If u is an element in one of the unbounded regions of MR\∪di=1

Fi, then ψ∗([4] is homologous to zero. Thus the winding number WNP(u)

is always equal to zero.

(b) WNP(u) is a locally constant function on MR\ ∪di=1 Fi, since [MR − {u0}]

is homologous to [MR − {u1}].

(c) WNP(u) is independent of the choice of an orientation of V , since the

reversing the orientation of V changes the fundamental classes [4] and

[MR − {u}] simultaneously by −[4] and −[MR − {u}].
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In fact, it turns out that the winding number WNP(u) coincides with the

Duistermaat-Heckman function DHP(u) for each u ∈ MR\ ∪di=1 Fi, as follows

([5], Theorem 6.6).

Theorem 4.7. For any multi-polytope P, we have DHP = WNP .
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Chapter 5

Main Results: Generalized
Ehrhart Polynomials

The aim of this chapter is to give the proofs of our main results stated in Chapter

1.

5.1 Ehrhart polynomials

To do so, we first recall the basic notations, and collect some elementary results

regarding the Ehrhart polynomials of the simple lattice multi-polytope.

Let P be a convex lattice polytope of dimension n in V ∗, where V = NR.

Here what we mean by a lattice polytope is that each vertex of P lies in the

lattice N∗ = Hom(N,Z) of V ∗ = Hom(V,R). For a positive integer ν, as before

let

νP = {νu | u ∈ P}.

Then it is again a convex lattice polytope in V ∗. We denote by #(νP ) (resp.

#(νP ◦)) the number of lattice points in νP (resp. in the interior of νP ). The

lattice N∗ determines a volume element on V ∗ by requiring that the volume of

the unit cube determined by a basis of N∗ is 1. Thus the volume of P , denoted
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by vol(P ), is defined.

Theorem 5.1. Let P be an n-dimensional convex lattice polyope. Then the

following statements hold:

(1) #(νP ) and #(νP ◦) are polynomials in ν of degree n.

(2) #(νP ◦) = (−1)n#(−νP ), where #(−νP ) denotes the polynomial #(νP )

with ν replaced by −ν.

(3) The coefficient of νn in #(νP ) is vol(P ) and the constant term in #(νP )

is 1.

The fan 4 associated with P may not be simplicial, but if we subdivide

4, then we can always take a simplicial fan that is compatible with P . In this

chapter, following the paper [5] of Hattori and Masuda we show that the theorem

above holds for a simple lattice multi-polytope P = (4,F).

To do so, we first need to define #(P) and #(P◦), and this can be done, as

follows. Let vi (i = 1, · · · , d) be a primitive integral vector in the half line C({i}).

In our convention, vi is chosen “outward normal” to the face F({i}) when P

arises from a convex polytope. We slightly move F({i}) in the direction of vi

(resp. −vi) for each i, so that we obtain a map F+ (resp. F−) : Σ(1) → HP (V ∗),

We denote the multi-polytopes (4,F+) and (4,F−) by P+ and P−, respectively.

Since the affine hyperplanes F±({i})’s miss the lattice N∗, the functions DHP±

and WNP± are well defined on N∗.

Definition 5.2. We define

#(P) :=
∑
u∈N∗

DHP+(u) =
∑
u∈N∗

WNP+(u),

#(P◦) :=
∑
u∈N∗

DHP−(u) =
∑
u∈N∗

WNP−(u).
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When P arises from a convex polytope P , DHP+ = WNP+ (resp. DHP− =

WNP−) takes 1 on u in P (resp. in the interior of P ) and 0, otherwise. Therefore,

it is straightforward to see that #(P) (resp. #(P◦)) agrees with the number of

lattice points in P (resp. in the interior of P ) in this case.

Next let us denote the volume element on V ∗ by dV ∗, and define the volume

vol(P) of P by

vol(P) :=

∫
V∗

DHPdV∗ =

∫
V∗

WNPdV∗.

When P arises from a convex polytope P , vol(P) agrees with the actual

volume of P , but otherwise it can be zero or negative. For a (not necessarily

positive) integer ν, we denote (4, νF) by νP , where

(νF({i}) := {u ∈ V ∗ | 〈u, ui〉 = νci},

when F({i}) = {u ∈ V ∗ | 〈u, ui〉 = ci} for a constant ci.

With these understood, we can state and prove the following theorem which

is analogous to Theorem 5.1.

Theorem 5.3. Let P = (4,F) be a simple lattice multi-polytope of dimension

n.

(1) #(νP) and #(νP◦) are polynomials in ν of the degree (at most) n.

(2) #(νP◦) = (−1)n#(−νP) for any integer ν.

(3) The coefficient of νn in #(νP) is vol(P) and the constant term in #(νP)

is deg(4).
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Since Theorem 5.3 plays an important role in this thesis, here we give its

proof, relatively in detail. However, we also remark that this proof is essentially

due to that of [5], Theorem 7.2.

To prove the theorem, we first need some more notations and a lemma.

Indeed, let I ∈ Σ(n). Although the integral vectors {vi | i ∈ I} are not necessarily

a basis of the lattice N , they are linearly independent. Therefore, the sublattice

NI of N generated by vi’s (i ∈ I) is of the same rank as N , hence N/NI is a

finite group. Note that N/NI is trivial for any I ∈ Σ(n) if 4 is non-singular. For

u ∈ N∗I = Hom(NI ,Z) ⊃ N∗ and g ∈ N/NI , we then define

(5.1) χI(u, g) := exp(2π
√
−1〈u, vg〉),

where vg ∈ N is a representative of g. The right-hand side does not depend on

the choice of the representative vg, and χ(u, ) (resp. χI( , g)) is a homomorphism

from N/NI (resp. N∗I ) to C∗.

Note that χI(u, ) : N/NI → C∗ is trivial if and only if u ∈ N∗. It follows

that

(5.2)
∑

g∈N/NI

χI(u, g) =

{
|N/NI | if u ∈ N∗,
0 otherwise.

Lemma 5.4. For each I ∈ Σ(n) let uI be the corresponding vertex of P and let

{uIi | i ∈ I} be the dual basis of {vi |i ∈ I}. Then, for v ∈ N such that 〈uIi , v〉 is

a nonzero integer for any I ∈ Σ(n) and i ∈ I, we have∑
I∈Σ(n)

w(I)z〈vI ,v〉

|N/NI |
∑

g∈N/NI

1

Πi∈I(1− χI(uIi , g)z−〈u
I
i ,v〉)

=
∑
u∈N∗

DHP+(u)z〈u,v〉

as functions of z ∈ C.
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Proof. Note first that the Maclaurin expansion of 1/(1−az−m) (a ∈ C∗,m ∈ Z)

is given by {
−a−1zm − a−2z2m − · · · , if m > 0

1 + az−m + a2z−2m + · · · , if m < 0.

Taking this into account, we can expand the sum

SI :=
∑

g∈N/NI

1

Πi∈I(1− χI(uIi , g)z−〈u
I
i ,v〉)

into Maclaurin series, and then we obtain

SI =
∑

g∈N/NI

(−1)I
∏
i∈I

∑
{bi}

(χI(u
I
i , g)biz bi〈u

I
i ,v〉)

=
∑

g∈N/NI

(−1)I
∑
{bi}

χI(−
∑
i∈I

biu
I
i , g)z(Σi∈Ibiu

I
i , v),

where the summation
∑

bi
runs over the collection of such {bi | i ∈ I, bi ∈ Z}

that

(5.3) bi ≥ 1 for i with 〈uIi 〉 > 0 and bi ≤ 0 for i with 〈uIi , v〉 < 0.

Since ∑
g∈N/NI

χI(−
∑
i∈I

biu
I
i , g) =

{
|N/NI | if Σi∈Ibiu

I
i ∈ N∗

0 otherwise

by (5.2), the Maclaurin expansion of the left-hand side of the equality in Lemma

5.4 has the form ∑
w∈N∗

( ∑
I∈Σ(n)

(−1)Iw(I)φiI(u)

)
z〈w,v〉,

where

φiI(u) =

{
1 if u = uI 6= Σi∈Ibiu

I
i , bi are as in (5.3) and Σi∈Ibiu

I
i ∈ N∗

0 otherwise.

Finally, we can easily check that ΣI∈Σ(n)(−1)Iw(I)φiI(u) agrees with DHP+(u),

which proves the lemma.
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Proof of Theorem 5.3. To prove it, we shall prove (2) first. In fact, it suffices to

prove

#(P◦) = (−1)n#(−P).

Since #(P◦) = Σw∈N∗WNP−(u) by the definition of WNP−(u), it suffices to

prove that

(5.4) WMP−(u) = (−1)nWN(−P)+(u) for any u ∈ N∗.

Let ψP and ψ(−P), be the maps introduced in Section 6 which are associated

with multi-polytopes P− and (−P)+ respectively. We note that ψP and −ψ(−P)+

considered as maps from S to V ∗\{u} for u ∈ N∗ are homotopic. Since the mul-

tiplication by −I on V ∗ sends the fundamental class [V ∗\{u}] to (−1)n[V ∗\{u}],

we obtain (5.4).

Next, we shall prove (1). Because of (2) , it suffices to prove (1) for #(νP).

We apply Lemma 7.3 of [5] (or Lemma 5.4) to νP in place of P (so that uI

is replaced by νuI), and approach z to 1 in equality. Since the right-hand

side approaches #(νP), it suffices to show that the left-hand side approaches a

polynomial in ν of degree at most n. When g ∈ N/NI is the identity element,

χI(u
I
i , g) = 1. Therefore, the term in the summand Σg∈N/NI , in the left-hand

side has a pole at z = 1 of degree exactly n when g is the identity element, and

of degree at most n otherwise. Thus the left-hand side of the equality in Lemma

7.3 of [5] applied to νP can be written as

ΣI∈Σ(n)zν(uI ,v)hI(z)

(1− z)nf(z)
,

where hI(z) and f(z) are polynomials in z and f(1) 6= 0. Then the repeated
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use of L’Hospital’s Theorem implies that when z approached 1, the limit of the

above rational function is a polynomial in ν of degree at most n.

Finally, we give a proof of (3). Since

#(νP) =
∑

u∈H2(BT )

DH(νP)+(u) =
∑

u∈H2(BT )/ν

DHP+(u),

it follows from the definition of definite integral that

lim
ν→∞

1

νn
#(νP) = lim

nu→∞

1

νn

∑
u∈H2(BT )/ν

DHP+(u) =

∫
V ∗

DHPdV
∗ = vol(P),

proving that the coefficient of νn in #(νP) is vol(P).

In order to deal with the coefficient of #(νP), we apply Lemma 7.3 of [5] to

0P , that is, νP with ν = 0. Then the uI in the lemma is zero, and DH(0P)+(u) =

WN(0P)+ = 0 unless u = 0 because the origin is the only vertex of 0P so that

the vertices of (0P)+ are very close to the origin. Thus the right-hand side of

the equality in the lemma applied to 0P is a constant, say c, which is nothing

but the constant term in #(νP). Now we approach z to ∞. Then the equality

reduces to ∑
u∈CI

w(I) = c,

because 〈uIi , v〉 > 0 for all i ∈ I if and only if ν = Σi∈Iaivi with ai > 0 for all

i ∈ I, and the latter is equivalent to saying that v belongs to the cone C(I)

spanned by vi’s (i ∈ I). Since Σu∈C(I)w(I) = deg(4) by definition, the constant

term in #(νP), that is c, agrees with deg(4).
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5.2 Generalized Pick’s formula for multi-polytopes

In this section, we will provide the proofs of our main results. First, we state

and prove the generalized Pick’s theorem for simple lattice multi-polytopes, as

follows.

Theorem 5.5. Let P be a simple lattice multi-polytope of dimension 2. Then

the following identity holds.

vol(P) = #(P◦) +
1

2
#(∂P)− deg(4).

Proof. In order to prove the theorem, we set

(5.5) #(νP) = a2ν
2 + a1ν + a0.

Then clearly we have

(5.6) #(−νP) = a2ν
2 − a1ν + a0.

If we add two equations (5.5) and (5.6), we can easily obtain

#(νP)−#(−νP) = 2a1ν.

Thus we have

(5.7) a1 =
1

2
#(νP)−#(−νP).

Since #(−νP) = #(νP ◦), it follows from (5.7) that we have

a1 =
1

2
(#(νP)−#(νP ◦)) =

1

2
#(∂P).

Therefore, we have

(5.8) #(νP) = vol(P)ν2 +
1

2
#(∂P)ν + deg(4).
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Finally, if we set ν = 1 in the equation (5.8), we obtain

(5.9) #(P) = vol(P) +
1

2
#(∂P) + deg(4).

Since

#(P) = #(P◦) + #(∂P),

it follows from (5.9) that we can also obtain

vol(P) =
1

2
#(∂P) + #(P◦)− deg(4).

This proves Theorem 5.5.

Next, we deal with the case that P is a simple lattice multi-polytope of

dimension 3.

Theorem 5.6. Let P be a simple lattice multi-polytope of dimension 3. Then

the Ehrhart polynomial of #(νP) is given by

#(νP) = vol(P)ν3 +

(
1

2
#(∂νP)− deg(4)

)
ν2

+ (#(P)− vol(P)− 1

2
#(∂P))ν + deg(4).

Proof. To prove it, let

(5.10) #(νP) = a3ν
3 + a2ν

2 + a1ν + a0.

Then, clearly we have

(5.11) #(−νP) = −a3ν
3 + a2ν

2 − a1ν + a0.

Thus, by adding two equations (5.10) and (5.11), it is easy to obtain

(5.12) #(νP) + #(−νP) = 2a2ν
2 + 2a0.
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Since #(−νP) = −#(νP ◦), it follows from (5.12) that we have

#(νP)−#(νP◦) = 2a2ν
2 + 2deg(4).

This implies that

a2ν
2 =

1

2
#(∂νP)− deg(4).

So, by putting ν = 1 into the previous equation, we have

a2 =
1

2
#(∂P)− deg(4).

On the other hand, by subtracting the equation (5.11) from (5.10), we see

that

#(νP)−#(−νP) = 2a3ν
3 + 2a1ν.

Since a3 = vol(P) and a0 = deg(4) by Theorem 5.3, it is easy to obtain

#(νP) = vol(P)ν3 +

(
1

2
#(∂νP)− deg(4)

)
ν2

+

(
#(P)− vol(P)− 1

2
#(∂P)

)
ν + deg(4),

as required.

Finally, by using a similar method as in Theorems 5.5 and 5.6, we can deal

with the case of the dimension 4, as follows.

Theorem 5.7. Let P be a simple lattice multi-polytope of dimension 4, and let

us write the Ehrhart polynomial of #(νP ) as follows.

(5.13) #(νP) = a4ν
4 + a3ν

3 + a2ν
2 + a1ν + a0.

Then the following relationship between the coefficients holds:

a4 = vol(P), a0 = deg(4),

a1 + a3 =
1

2
#(∂P).
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Proof. As before, since

(5.14) #(νP) = a4ν
4 + a3ν

3 + a2ν
2 + a1ν + a0,

it is easy to obtain

#(νP) + #(−νP) = 2a4ν
4 + 2a2ν

2 + 2a0.

Thus, we have

2#(νP) = 2vol(P)ν4 + 2a2ν
2 + 2deg(4).

That is, we have

#(νP) = vol(P)4 + a2ν
2 + deg(4).

On the other hand, by subtracting (5.14) from (5.13), we get

#(νP)−#(−νP) = 2a3ν
3 + 2a1ν.

Since in this case #(−νP) = #(−νP◦), we can also obtain

#(νP)−#(−νP) = #(νP)−#(−νP◦)

= #(∂νP) = 2a3ν
3 + 2a1ν.

By putting ν = 1 into the previous equation, we obtain

#(∂P) = 2a3 + 2a1.

In other words, we can obtain

a1 + a3 =
1

2
#(∂P),

as required.
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5.3 Simple multi-polygons

In this section, we review some well-know facts regarding simple multi-polygons

necessary for the proof of the generalized twelve-point theorem given in Section

5.4. Refer to the paper [6] of for more details.

Roughly speaking, a lattice multi-polygon is a piecewise linear loop with

vertices in Z2 together with a sign function which assigns either + or − to each

side and satisfies some mild condition. The piecewise linear loop may have a self-

intersection and we think of it as a sequence of points in Z2. A lattice polygon

can naturally be regarded as a lattice multi-polygon. The generalized Pick’s

formula holds for lattice multi-polynomial of a lattice multi-polygon is of degree

at most two. The constant term is the rotation number of normal vectors to sides

of the multi-polygon and not necessarily 1 unlike ordinary Ehrhart polynomials.

The other coefficients have similar geometrical meaning to the ordinary ones

but they can be zero or negative unlike the ordinary ones. The family of lattice

multi-polygons has some natural subfamilies, e.g., the Ehrhart polynomials of

not only all lattice multi-polygons but also some natural subfamilies.

We say that a sequence of vectors v1, · · · , vd in Z2(d ≥ 2) is unimodular if

each triangle with vertices O, vi and vi+1 contains no lattice point except the

vertices, where O = (0, 0) and vd+1 = v1. The vectors in the sequence are not

necessarily counterclockwise or clockwise. Then any vectors can go back and

forth.

We set

(5.15) εi = det(vi, vi+1) for i = 1, · · · , d.

In other words, εi = 1 if the rotation from vi to vi+1 (with angle less than π) is
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counterclockwise and εi = −1 otherwise. Since each successive pair (vj, vj+1) is

a basis of Z2 for j = 1, · · · , d for i = 1, · · · , d, one has

(vi, vi+1) = (vi−1, vi)

(
0 −εi−1εi
1 −εiai

)
with a unique integer ai for each i. This is equivalent to

(5.16) εi−1vi−1 + εivi+1 + aivi = 0

Note that |ai| is twice the area of the triangle with vertices O, vi−1 and vi+1.

Lemma 5.8. For a simple lattice multi-polygon P = (v1, · · · , vd), we set

wi =
vi − vi−1

det(vi−1, vi)

for i = 1, · · · , d,where v0 = vd. Then wi is integral and primitive.

With the help of Lemma 5.8, we define the dual multi-polygon P∨ of P by

P∨ = (w1, · · · , wd).

Next, we give an example to show how to find the dual multi-polygon of a

given simple lattice multi-polygon.

Example 5.9. Let P be a simple lattice multi-polygon (or multi-polytope) given

by

P = ((1, 1), (−1, 1), (−1,−1), (1,−1)).

Then it is easy to calculate the following

w1 =
v1 − v0

det(v0, v1)
= (0, 1), w2 =

v2 − v1

det(v1, v2)
= (−1, 0),

w3 =
v3 − v2

det(v2, v3)
= (0,−1), w4 =

v3 − v4

det(v3, v4)
= (1, 0).
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Figure 5.1: P and P∨.

(see Figure 5.1). Thus, we can obtain

P∨ = ((0, 1), (−1, 0), (0,−1), (1, 0)).

Note that the following identity hold:

#(∂P) + #(∂P∨) = 8 + 4 = 12,

2(vol(P) + vol(P∨)) = 2(4 + 2) = 12,

#(∂P) + #(∂P∨) = 2(vol(P) + vol(P∨)).

Example 5.10. This time, let P be a simple lattice multi-polygon (or multi-

polytope) given by

P = ((−1,−2), (0, 1), (1,−2), (0,−1))

with

v1 = (−1,−2), v2 = (0, 1), v3 = (1,−2), v4 = (0,−1).

Then it follows from Lemma 5.8 that we have

w1 =
v1 − v0

det(v0, v1)
= (1, 1), w2 =

v2 − v1

det(v1, v2)
= (−1,−3),

w3 =
v3 − v2

det(v2, v3)
= (−1, 3), w4 =

v4 − v3

det(v3, v4)
= (1,−1).
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Figure 5.2: P , P∨, and (P∨)+ (red dotted multi-polygon).

That is, the dual simple lattice multi-polygon P∨ is given by

P∨ = ((1, 1), (−1,−3), (−1, 3), (1,−1)).

Now, by using the simple multi-polygon (P∨)+ together with the weight

function w equal to the value 1 (see Figure 5.2), it is easy to calculate the

following:

#(∂P) = 4, #(∂P∨) = 10,

vol(P) = 2, vol(P∨) = 5.

Therefore, once again we see that the following identity holds:

#(∂P) + #(∂P∨) = 14 = 2(2 + 5)

= 2(vol(P) + vol(P∨)).

The following formula for the rotation number is known from the paper [6].

Theorem 5.11. The rotation number of a unimodular sequence vi, · · · , vd (d ≥

2) around the origin is given by

1

12
(
d∑
i=1

ai + 3
d∑
i=1

εi),

where εi and ai are the integers defined in (5.15) and (5.16).
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If P is a convex lattice polygon whose only interior lattice point is the origin

and vi, · · · , vd are the vertices of P arranged counterclockwise, then every vi is

primitive and the triangle with the vertices O, vi and vi+1 has no lattice point

in the interior for each i, where vd+1 = v1 as usual. This observation motivates

the following definition.

Definition 5.12. A sequence of vectors P = (v1, · · · , vd), where v1, · · · , vd are

in Z2 and d ≥ 2, is called a legal loop if every vi is primitive and whenever

vi 6= vi+1, vi and vi+1 are linearly independent (i.e. vi 6= −vi+1) and the triangle

with the vertices O, vi and vi+1 has no lattice point in the interior. We say that a

legal loop is reduced if vi 6= vi+1 for any i. A (non-reduced) legal loop P naturally

determines a reduced legal loop, denoted Pred, by dropping all the redundant

points. We define the winding number of a legal loop P = (v1, · · · , vd) to be the

rotation number of the vectors v1, · · · , vd around the origin.

Joining successive points in a legal loop P = (v1, · · · , vd) by straight lines

forms a lattice polygon which may have a self-intersection. A unimodular se-

quence v1, · · · , vd determines a reduced legal loop. Conversely, a reduced legal

loop P = (v1, · · · , vd) determines a unimodular sequence by adding all the lat-

tice points on the line segment vivi+1 (called a side of P) connecting vi and vi+1

for every i. To each side vivi+1 with vi 6= vi+1, we assign the sign of det(vi, vi+1),

denoted sgn(vi, vi+1).

Definition 5.13. Let |vivi+1| be the number of lattice points on the side vivi+1

minus 1, so |vivi+1| = 0 when vi = vi+1. Then we define

B(P) =
d∑
i=1

sgn(vi, vi+1)|vivi+1|

Clearly, B(P) = B(Pred).
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Theorem 5.14 (Generalized twelve-point theorem). Let P be a legal loop and

let r be the winding number of P. then B(P) + B(Pv) = 12r.

Let M be a unitary toric manifold of real dimension 4 whose simple multi-

polytope 4 is given by a simple lattice multi-polygon P with v1, · · · , vd. Then

it turns out that the number of singed boundary lattice points of P is equal to

#(∂P) that is defined as

#(∂P) := #(P)−#(P◦)

in Section 5.2, as follows.

Theorem 5.15. Let M be a unitary toric manifold of real dimension 4 whose

simple multi-polytope 4 is given by a simple lattice multi-polygon P. Then we

have

B(P) = #(∂P).

Proof. In order to prove it, we first need to recall some well-known facts. Indeed,

let T d(4) = 1 + T d1(4) + T d2(4) + · · · denote the Todd class of 4. Then, it

follows from [5], Theorem8.5 that we have

#(P) =

∫
4
ec1(P)T d(4)

Here, c1(P) =
∑d

i=1 cix̄i, where x̄i denotes the image of xi ∈ H∗T (4) in H∗(4)

(refer to [5], Section 8 for more details), and P is a simple lattice multi-polytope.

Thus, when dim4 = 2, we have

#(P) =

∫
4

(1 + c1(P) +
1

2!
c1(P)2 + · · · ) ∪ (1 + T d1(4) + T d2(4) + · · · )

=
1

2

∫
4
c1(P)2 +

∫
4
c1(P) ∪ T d1(4) +

∫
4
T d2(4).
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We then claim that ∫
4
T d2(4) = deg(4).

To see it, recall that

#(νP) =

∫
4
ec1(νP)T d(4), ν ∈ Z≥0.

Thus, by putting ν = 0, we get

deg(4) = #(0P) =

∫
4
T d(4),

=

∫
4
T d2(4), (dim4 = 2).

Moreover, it is known from [5], Lemma8.6 that

1

2

∫
4
c1(P)2 = vol(P).

Thus, we have

#(P) = vol(P) +

∫
4
c1(P) ∪ T d1(4) + deg(4).

But, we have already known that

#(P) = vol(P) +
1

2
#(∂P) + deg(4).

Thus, we have

#(P) = 2

∫
4
c1(P) ∪ T d1(4).

Finally, for a simple lattice multi-polygon P which is associated with a uni-

tary toric manifold M , note that

c1(P) = c1(L) and T d1(4) =
1

2
c1(M).
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Here, c1(L) =
∑d

i=1 cix̄i. Hence,

#(∂P) =

∫
M

c1(L) ∪ c1(M).

However, it is also known from [5], p. 263 that∫
M

c1(L) ∪ c1(M) = B(P).

Therefore, we have

#(∂P) = B(P),

as desired.

5.4 Generalized twelve-point theorem

In this section, we give some interesting applications of results obtained in the

previous section.

To do so, throughout this section let us assume that the dimension of a simple

lattice polytope is equal to 2. As before, let P be a simple lattice multi-polytope

which is a lattice multi-polygon and whose only interior lattice point is the origin.

Let P∨ be the dual of P . Then, P∨ is also a simple lattice multi-polytope whose

only interior lattice point is the origin. So, #(P◦) = #((P∨)◦) = 1. Applying

the generalized Pick’s formula to P , we get

#(P)− 1

2
#(∂P) = vol(P) + deg(4),

#(P∨)− 1

2
#(∂P∨) = vol(P∨) + deg(4).

(5.17)

By adding the two equations of (5.17), we get

#(P) + #(P∨)− 1

2
(#(∂P) + #(∂P∨))

= vol(P) + vol(P∨) + deg(4) + deg(4∨).
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Thus, since #(P◦) = #((P∨)◦) = 1, some simple computations give the follow-

ing generalized twelve-point theorem

#(∂P) + #(∂P∨)

= 2(vol(P) + vol(P∨)) + 2(deg(4) + deg(4∨))− 4.

Theorem 5.16. Let P be a simple lattice multi-polytope of dimension 2 which

is a lattice multi-polygon and whose interior lattice point is the origin. Then the

following identity holds:

#(∂P) + #(∂P∨) = 2(vol(P) + vol(P∨)) + 2(deg(4) + deg(4∨))− 4.

As an immediate corollary, we can state the following

Corollary 5.17. Let P be a simple lattice polytope of dimension 2 whose interior

lattice point is the origin. Then the following identity holds:

#(∂P) + #(∂P∨) = 2(vol(P) + vol(P∨)) = 12.

Proof. It immediately follows from Theorem 5.11, since we have

deg(4) = deg(4∨) = 1.

As a consequence, we also have the following interesting relationship between

the volumes of P and P∨:

vol(P) + vol(P∨) = 6.
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