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The Existence of Warping Functions on
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1. INTRODUCTION

One of the basic problems in the differential geometry is to study the set of
curvature functions over a given manifold.

The well-known problem in differential geometry is whether a given metric
on a compact Riemannian manifold is necessarily pointwise conformal to some
metric with constant scalar curvature or not.

In a recent study ([9]), Jung and Kim have studied the problem of scalar
curvature functions on Lorentzian warped product manifolds and obtaind par-
tial results about the existence and nonexistence of Lorentzian warped metric
with some prescribed scalar curvature function.

In this paper, we study also the existence and nonexistence of Riemannian
warped metric with prescribed scalar curvature functions on some Riemannian
warped product manifolds.

By the results of Kazdan and Warner ([10], [11], [12]), if N is a compact
Riemannian n—manifold without boundary n > 3, then N belongs to one of
the following three categories:

(A) A smooth function on N is the scalar curvature of some Riemannian
metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian

Typeset by ApS-TEX



metric on N if and only if the function is either identically zero or strictly
negative somewhere.

(C) Any smooth function on NN is the scalar curvature of some Riemannian
metric on N.

This completely answers the question of which smooth functions are scalar
curvatures of Riemannian metrics on a compact manifold N.

In [10], [11] and [12], Kazdan and Warner also showed that there exists
some obstruction of a Riemannian metric with positive scalar curvature (or
zero scalar curvature) on a compact manifold.

In [13] and [14], the author considered the scalar curvature of some Riemann-
ian warped product and its conformal deformation of warped product metric.

In this paper, when N is a compact Riemannian manifold, we consider the
existence of warping functions on a warped product manifold M = [a,00) x ¢ N
with specific scalar curvatures, where a is a positive constant. That is, it is
shown that if the fiber manifold N belongs to class (A) then M admits a

Riemannian metric with some negative scalar curvature outside a compact set.



2. PRELIMINARIES

First of all, in order to induce a partial differential equation, we need some
definitions of connections, curvatures and some results about warped product

manifolds.

Definition 2.1. Let X(M) denote the set of all smooth vector fields defined
on M, and let (M) denote the ring of all smooth real-valued functions on M.

A connection V on a smooth manifold M is a function
V:iX(M)xX(M)— X(M)

such that
(D1) VyW is S -linear in V,
(D2) VyW is R-linear in W,
(D3) Yy (fW) = (VAW + fY, W for f € S(M),
(D4) [V,W]=VyW —VwV, and

(D5) X < VW >=<VxV.W >+ < V.VxW > for all X, VW € X(M).

If V satisfies axioms (D1)~(D3), then VW is called the covariant derivative
of W with respect to V' for the connection V. If V satisfies axioms (D4)~ (D5),

then V is called the Levi - Civita connection of M, which is characterized by

the Koszul formula ([15]).



A geodesic ¢ : (a,b) — M is a smooth curve of M such that the tangent

vector ¢ moves by parallel translation along c. In order words, c is a geodesic

if

/

V. c =0 (geodesic equation).

C

A pregeodesic is a smooth curve ¢ which may be reparametrized to be a
geodesic. Any parameter for which c is a geodesic is called an affine parameter.
If s and t are two affine parameters for the same pregeodesic, then s = at + b
for some constants a,b € R. A pregeodesic is said to be complete if for some
affine parameterizion (hence for all affine parameterizations) the domain of the
parametrization is all of R.

The equation V ¢ =0 may be expressed as a system of linear differential

equations. To this end, we let (U, (z!, 22, ...,2™)) be local coordinates on M and

o 0

let . denote the natural basis with respect to these coordinates.
Oxl’ 9x2’ " Q™ P
The connection coefficients Ffj of V with respect to (z!,22,...,2") are de-
fined by

V ( 851:J> Z i (‘3 (connection coefficients).

Using these coefficients, we may write equation as the system

2zt~ dat dad
dth + Z f}d—i% =0 (geodesic equations in coordinates).

1,j=1



Definition 2.2. The curvature tensor of the connection V 1is a linear trans-

formation valued tensor R in Hom(X(M),X(M)) defined by :
R(X,Y) =VxVy — VyVx — Vixy].
Thus, for Z € X(M),

R(X,Y)Z =VxVyZ —VyVxZ - Vixy|Z

It is well-known that R(X,Y)Z at p depends only upon the values of X,Y
and Z at p ([15]).
If w e T;(M) is a cotangent vector at p and z,y,2 € T,(M) are tangent

vectors at p, then one defines
R(w, X, Y, Z) = (w, R(X,Y)Z) = w(R(X,Y)Z)

for X,Y and Z smooth vector fields extending x,y and z, respectively.
The curvature tensor R is a (1,3)-tensor field which is given in local coordi-

nates by

R = Z k‘ma ® dr! @ da® @ da™
2,5,k,m=1
where the curvature components R; Lm are given by

. fﬁ?lﬂZ L
jkm — 8mk o (%Um +Z — 1% ma)




Notice that R(X,Y)Z = —R(Y, X)Z, R(w,X,Y,Z) = —R(w,Y, X, Z) and

Furthermore, if X = Y 2.2, Y =3 ¢y' %, Z =3 212 andw = > w;da’
then
R(X,Y)Z = Xn: R 2 aky™ 0
) N jkm 8(132
i,7,k,m=1
and

R(w,X,Y,Z) = Z R;kmwizjajkym

1,7,k,m=1

Consequently, one has R (dxi 0., 0 2 ) =R

’ 9k ) Dxr™m ) DI jkm-

Definition 2.3. From the curvature tensor R, one nonzero tensor (or its neg-
ative) is obtained by contraction. It is called the Ricci tensor. Its compo-

n
nents are R;; = E Rfkj. The Ricct tensor is symmetric and its contraction
k=1

S = Z Ri;g" is called the scalar curvature ([1], [2], [3]).

ij=1
Definition 2.4. Suppose ) is a smooth, bounded domain in R™, and let g :
QxR — R be a Caratheodory function. Let ug € H3’2(Q) be given. Consider

the equation



u € HY2(Q) is a (weak) sub-solution if u < ug on O and

/ VuVdz +/ g(z,u)pdr <0 forall e C5(Q), ¢ =>0.
Q Q

Similarly u € H?(Q) is a (weak) super-solution if in the above the reverse
inequalities hold.

We briefly recall some results on warped product manifolds. Complete de-
tails may be found in ([2]) or ([15]). On a semi-Riemannian product manifold
B x F| let m and o be the projections of B x F' onto B and F, respectively,

and let f > 0 be a smooth function on B.

Definition 2.5. The warped product manifold M = B xy F is the product

manifold M = B x F furnished with metric tensor

g=1"(g98) + (fom)’c*gr

where gg and gr are metric tensors of B and F', respectively. In order words,

if v is tangent to M at (p,q), then

9(v,v) = gp(dr(v),dn(v)) + f*(p)gr(do(v), do(v)).

Here B is called the base of M and F the fiber ([15]).
7



We denote the metric g by ( , ). In view of Remark 2.13 (1) and Lemma
2.14, we may also denote the metric gg by ( , ). The metric gr will be

denoted by ( , ).

Remark 2.6. Some well known elementary properties of the warped product
manifold M = B x ¢ F are as follows :

(1) For each q € F, the map T |,-1(q)=Bxq 5 an isometry onto B.

(2) For each p € B, the map o | -1(p)=pxr is a positive homothetic map
onto F' with homothetic factor ﬁ.

(3) For each (p,q) € M, the horizontal leaf B x q and the vertical fiber p x F
are orthogonal at (p,q).

(4) The horizontal leaf 0=1(q) = B x q is a totally geodesic submanifold of
M and the vertical fiber 7=1(p) = p x F is a totally umbilic submanifold of M.

(5) If ¢ is an isometry of F', then 1 X ¢ is an isometry of M, and if 1 is an

isometry of B such that f = f o), then ¢ x 1 is an isometry of M.

Recall that vectors tangent to leaves are called horizontal and vector tan-
gent to fibers are called vertical. From now on, we will often use a natural

identification
T(p,q)(B xp )= T(p,q)(B x F)=T,B x T,F.

The decomposition of vectors into horizontal and vertical parts plays a role
8



in our proofs. If X is a vector field on B, we define X at (p,q) by setting
X(p,q) = (Xp,0,). Then X is m-related to X and o-related to the zero vector
field on F. Similarly, if Y is a vector field of F, Y is defined by Y (p,q) =

(0, Yo).

Lemma 2.7. If h is a smooth function on B, then the gradient of the lift how

of h to M 1is the lift to M of gradient of h on B.

Proof. We must show that grad(h o m) is horizonal and w-related to grad(h)

on B. If v is vertical tangent vector to M, then
(grad(hom),v) =v(hom) =dr(v)h =0, since dn(v)=0.
Thus grad(h o ) is horizonal. If z is horizonal,
(dr(grad(hom),dn(x)) = (grad(how),x) = xz(hom) =dn(x)h

= (grad(h),dr(z)).

Hence at each point, dr(grad(h o m)) = grad(h). |

In view of Lemma 2.14, we simplify the notations by writing A for h o7 and
grad(h) for grad(hor). For a covariant tensor A on B, its lift A to M is just its

pullback 7*(A) under the projection 7 : M — B. That is, if Ais a (1, s)-tensor,
9



and if vy, ve,...,v5 € T M, then A(vi,..,vs) = A(dr(v1),....dn(vs)) €
T,(B). Hence if vy is vertical, then A = 0 on B. For example, if f is a
smooth function on B, the lift to M of the Hessian of f is also denoted by
HY. This agrees with the Hessian of the lift f o 7 generally only on horizontal

vectors. For detailed computations, see Lemma 5.1 in ([4]).

Now we recall the formula for the Ricci curvature tensor Ric on the warped
product manifold M = B x; F. We write Ric? for the pullback by 7 of the

Ricci curvature of B and similarly for Ric”.

Lemma 2.8. On a warped product manifold M = B Xy F withn = dimF > 1,
let X,Y be horizontal and V,W wertical.

Then

(1) Rie(X,Y) = Ric’(X,Y) — H/ (X, Y),

(2) Ric(X,V) =0,

(3) Ric(V,W) = RicF' (V,W) — (V,W) ft,

where f* = % +(n—1) (gmd(f)j;égmd(f» and Af = trace(H7) is the
Laplacian on B.
Proof. See Corollary 7.43 in ([15]). |

On the given warped product manifold M = B x ¢ F, we also write S? for
10



the pullback by 7 of the scalar curvature Sp of B and similarly for S¥'. From

now on, we denote grad(f) by Vf.

Lemma 2.9. If S is the scalar curvature of M = B Xy F' with n = dimF > 1,

then

(2.1) S:SB+i—j—2n%—n(n—1)

V1 VH)
f2

where A is the Laplacian on B.

Proof. For each (p,q) € M = B xs F, let {e;} be an orthonormal basis for
T,B. Then by the natural isomorphism {€; = (e;,0)} is an orthonormal set in
T(p.)M. We can choose {d;} on T,F such that {e;,d;} forms an orthonormal

basis for T(p,q)M . Then

1= (d;,d;) = f(p)*(ds,d;) = (f(p)d;, f(p)d;)

which implies that {f(p)d;} forms an orthonormal basis for 7,F. By Lemma

2.8 (1) and (3), for each i and j

i

and

Ric(d_jv d_J) = RiCF(d_j» d_J) - f2(p)gF(dj7 dj) <ﬂ + (n - 1)

2 Vf>>
7 :
11

f2



Hence, for €4, = g(€a, €a)
S(pa q) = Z €alRaa
= Zeszc €;,¢;)+ Ze]ch d_ d_

SE A Vf,V
= SB(p, )+?—2n7f—n(n 1)<]}—2f>

which is a nonlinear partial differential equation on B x ¢ for each ¢ € F.

12



3. MAIN RESULTS

Let (N, g) be a Riemannian manifold of dimension n and let f : [a,00) — RT
be a smooth function, where a is a positive number. A Riemannian warped
product of N and [a, 00) with warping function f is defined to be the product

manifold ([a,c0) x ¢ N, §) with
(3.1) g =dt* + f*(t)g.

Let R(g) be the scalar curvature of (N, g). Then the scalar curvature R(t, x)

of g is given by the equation

(3.2) R(t,2) = =5 [R(g)(@) — 2nf (1) (t) = n(n— )| )]’

for t € [a,00) and z € N (For details, [5] or [7]).

If we denote

then equation (3.2) can be changed into

u (t) + R(t,x)u(t) — R(g)(z)u(t)'~ 71 = 0.
13



In this paper, we assume that the fiber manifold N is nonempty, connected

and a compact Riemannian n—manifold without boundary.

If N admits a Riemannian metric of negative or zero scalar curvature, then

we let u(t) =t* in (3.3), where o > 1 is a constant. We have

a(l—a)= <0, t>a.
t

Then, by Theorem 3.1, Theorem 3.5 and Theorem 3.7 in [7], we have the

following theorem.

Theorem 3.1. For n > 3, let M = [a,00) x5 N be the Riemannian warped
product (n + 1)-manifold with N compact n-manifold. Suppose that N is in
class (A) or (B), then on M there is a Riemannian metric of negative scalar

curvature outside a compact set.

4
Proposition 3.2. Suppose that R(g) = - flk‘Q and R(t,x) = R(t) €

C*([a,00)). Assume that fort > ty, there exist an upper solution u4(t) and a
lower solution u_(t) such that 0 < u_(t) < uy(t). Then there exists a solution

u(t) of equation (3.3) such that for t > to,0 < u_(t) < u(t) < ug(t).

Proof. We have only to show that there exist an upper solution %, (¢) and
14



a lower solution @_(t) such that for all ¢t € [a,00), u_(t) < u4(t). Since

4n

b2
n-+1

R(t) € C*([a,o0)), there exists a positive constant b such that |R(t)| <

for t € [a, o). Since

4n 4n

() R(us(6) +
4n

n—+1

< (] (t) + bPuy (£) + KPuy (£ 701),

if we divide the given interval [a, o] into small intervals {/;}I" ;, then for each
interval I; we have an upper solution u;4(t) by parallel transporting cos Bt

1
such that 0 < — < w;4(t) < 1. That is to say, for each interval I;,

V2

4n dn 1__4_
o Ui (8) - R(EJui () + =7 Ko uin (877
4dn e
= n—%—l(uﬁ () + b2uip (1) + KPuiy (8) 17 751)
4n 2 2 2 1__4_
= (—B* cos Bt + b” cos Bt + k“(cos Bt)"~ =+71)
n+1
4
=" cos Bt(—B? + b* + k*(cos Bt)_ﬁ)
n+1
4
< " cos Bt(—B* +V* + k;22n%1)
n+1
<0

for large B, which means that u;.(t) is an (weak) upper solution for each
interval I;. Then put @4 (t) = u;y(t) for t € I; and u4(t) = uy(t) for t > to,
1

which is our desired (weak) upper solution such that < a4 (t) <1 for all

S

t e [a, to].
15



1
Put a_(t) = Ee’at for t € [a,to] and some large positive «, which will be

determined later, and @_(t) = u_(t) for t > to. Then, for ¢ € [a, o],

4n 17 4n 2 41
i L)+ R(t)u;—(t) + - 1k; w;— ()~ nF
dn " 2
s (w(1) — P (1)
_ an i fat(OéQ b2)
n+14/92
>0

for large . Thus @_(¢) is our desired (weak) lower solution such that for all

t € fa,00), 0 < a_(t) < iy (2). n

In [5], the authors consider the nonexistence of warping functions on Rie-

mannian warped product manifolds M = [a,00) Xy N when N belongs to class

dn 4
n+1

(A) with R(g) = —

Proposition 3.3. Suppose that N belongs to class (A). Let g be a Riemannian

4n

k2, where k
n+1

metric on N of dimension n(> 3). We assume that R(g) = —
is a positive constant. On M = [a,00) X ¢ N, there does not exist a Riemannian

warped product metric

g=dt* + f*(t)g

with scalar curvature
16



for allx € N and t >ty > a, where ty and a are positive constants.

Proof. In [5], p.179, Theorem 2.5 |

However, in this paper, when N is a compact Riemannian manifold of
class (A), we consider the existence of some warping functions on Riemannian
warped product manifolds M = [a,00) X y N with prescribed scalar curvatures.
In particular, if R(¢,z) is also the function of only t-variable, then we have the

following theorems.

4n
n—+1

Theorem 3.4. Suppose that R(g) = — k%. Assume that R(t,z) = R(t) €

C*([a,0)) is a negative function such that

4n C
n+1te’

—bt®* < R(t) < — for t>t,

where tog > a,a < 2,C and b are positive constants, and s is a positive integer.

Then equation (3.3) has a positive solution on [a, o).
17



Proof. We let uy(t) = t™, where m is some positive number. Then we have

dn " dn 2 1— 4
t k t n+l + R(t t
()4 R (0T 4 Rt ()
dn dn 4 1__4_ dn C
t k t ntl — — t
_n+1u+()+n+1 u4 (1) n+1tau+()
an . m(m —1) k2 C
= [ 2 + 4 _a]
n+1 t tnp ™ t
Sov t2t07

for some large tg, which is possible for large fixed m since a < 2. Hence, u4 ()

is an upper solution. Now put u_(t) = e~#*, where 8 is a positive constant.

Then

n dn 1__4

_— t kEu_(t) " T + R(t)u_(t

S () + K (0 4 R(u- (0
4n 4n 4

> " (¢ Ku_ ()71 — btsu_(t

> Il (1) + K (1 (y

4n 4n 4

Bt 2 k2Pl — e
€ [n—i—lﬁ + n+1 € ]

>0, t>t

for some large t(, which means that u_(t) is a lower solution. And we can take
B so large that 0 < u_(t) < uy(t). So by Theorem 3.2, we obtain a positive

solution. [ |

The above theorem implies that if R(¢) is not rapidly decreasing and less

than some negative function, then equation (3.3) has a positive solution.

18



4n
n—+1

C>([a,0)) is a negative function such that

Theorem 3.5. Suppose that R(g) = — k%. Assume that R(t,z) = R(t) €

¢

—bt* < R(t) < -,

for t>tg

where tg > a,b and C are positive constants, and s is a positive integer. If

C > n(n—1), then equation (3.3) has a positive solution on [a,c0).

Proof. In case that C' > n(n — 1), we may take u, (t) = Co "5, where C. is

a positive constant. Then

4n 4n 2 1_i
) + R (017 4 R(Dus ()
dn  a-3 n?—1 - n-+1
t k2 n+1
<Gy n-+1 ’ [ 4 + C+ 4n ]
<0

1 -1
which is possible if we take C, to be large enough since (n+ 1) ) —

1
n4—|— C < 0. Thus uy(t) is an upper solution. And we take u_(¢) as in
n

Theorem 3.4. In this case, we also obtain a positive solution. |

Remark 3.6. The results in Theorem 3.4, and Theorem 3.5 are almost sharp
nin —1
t2
k* and f(t) = tInt fort > a. Then we have

19

since we can get as close to —
4n
n+1

as possible. For example, let R(g) =




1. 4n  k? 2n 1
Sl e e )14 —)?
2l T mmeE T T DA+ )
n(n —1)

t2

R =

which converges to — as t goes to oo.

20
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