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  문    록

The Existence of Warping Functions on

Riemannian Warped Product Manifolds

       슬 

      지도 수 :   태

      학  학원 수학 공

  미 하학에  본  문  중  하나는 미 다양체가 가지고 는 곡률 함

수에 한 연 다.

  연 로는  해   하여 다양체 에  편미 식

 도하여 해  재  보 다.

  Kazdan and Warner ([10], [11], [12])  결과에 하    함수  가 

 Riemannian metric  scalar curvature가 는  가지 경우  타  는

 

(A)   함수  가 Riemannian metric  scalar curvature  그 함수  가

    당한 에      다. 즉,  에 negative constant scalar

    curvature를 갖는 Riemannian metric  재하는 경우 다.

(B)   함수  가 Riemannian metric  scalar curvature  그 함수 가 

    항등 로 ≡ 거나 든 에     경우 다. 즉,  에  zero

    scalar curvature를 갖는 Riemannian metric  재하는 경우 다.



(C)   어   라도 positive constant curvature를 갖는 Riemannian metric

     재하는 경우 다.

  본 논문에 는 엽다양체   (A)에 하는 compact Riemannian manifold  

, Riemannian warped product manifold   ∞×  에 함수 가 

어  건  만 하  가 Riemannian warped product metric  scalar 

curvature가  수 는 warping function 가 재할 수  상해․하해 

 하여 증 하 다.



1. INTRODUCTION

One of the basic problems in the differential geometry is to study the set of

curvature functions over a given manifold.

The well-known problem in differential geometry is whether a given metric

on a compact Riemannian manifold is necessarily pointwise conformal to some

metric with constant scalar curvature or not.

In a recent study ([9]), Jung and Kim have studied the problem of scalar

curvature functions on Lorentzian warped product manifolds and obtaind par-

tial results about the existence and nonexistence of Lorentzian warped metric

with some prescribed scalar curvature function.

In this paper, we study also the existence and nonexistence of Riemannian

warped metric with prescribed scalar curvature functions on some Riemannian

warped product manifolds.

By the results of Kazdan and Warner ([10], [11], [12]), if N is a compact

Riemannian n−manifold without boundary n ≥ 3, then N belongs to one of

the following three categories:

(A) A smooth function on N is the scalar curvature of some Riemannian

metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian

Typeset by AMS-TEX
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metric on N if and only if the function is either identically zero or strictly

negative somewhere.

(C) Any smooth function on N is the scalar curvature of some Riemannian

metric on N .

This completely answers the question of which smooth functions are scalar

curvatures of Riemannian metrics on a compact manifold N .

In [10], [11] and [12], Kazdan and Warner also showed that there exists

some obstruction of a Riemannian metric with positive scalar curvature (or

zero scalar curvature) on a compact manifold.

In [13] and [14], the author considered the scalar curvature of some Riemann-

ian warped product and its conformal deformation of warped product metric.

In this paper, when N is a compact Riemannian manifold, we consider the

existence of warping functions on a warped product manifoldM = [a,∞)×f N

with specific scalar curvatures, where a is a positive constant. That is, it is

shown that if the fiber manifold N belongs to class (A) then M admits a

Riemannian metric with some negative scalar curvature outside a compact set.
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2. PRELIMINARIES

First of all, in order to induce a partial differential equation, we need some

definitions of connections, curvatures and some results about warped product

manifolds.

Definition 2.1. Let X(M) denote the set of all smooth vector fields defined

on M , and let ℑ(M) denote the ring of all smooth real-valued functions on M .

A connection ∇ on a smooth manifold M is a function

∇ : X(M)× X(M) → X(M)

such that

(D1) ∇VW is ℑ -linear in V,

(D2) ∇VW is R-linear in W,

(D3) ∇V (fW ) = (V f)W + f∇vW for f ∈ ℑ(M),

(D4) [V,W ] = ∇VW −∇WV , and

(D5) X < V,W >=< ∇XV,W > + < V,∇XW > for all X,V,W ∈ X(M).

If∇ satisfies axioms (D1)∼(D3), then∇VW is called the covariant derivative

ofW with respect to V for the connection ∇. If ∇ satisfies axioms (D4)∼ (D5),

then ∇ is called the Levi - Civita connection of M , which is characterized by

the Koszul formula ([15]).
3



A geodesic c : (a, b) → M is a smooth curve of M such that the tangent

vector c
′
moves by parallel translation along c. In order words, c is a geodesic

if

∇c′ c
′
= 0 (geodesic equation).

A pregeodesic is a smooth curve c which may be reparametrized to be a

geodesic. Any parameter for which c is a geodesic is called an affine parameter.

If s and t are two affine parameters for the same pregeodesic, then s = at + b

for some constants a, b ∈ R. A pregeodesic is said to be complete if for some

affine parameterizion (hence for all affine parameterizations) the domain of the

parametrization is all of R.

The equation ∇c′ c
′
= 0 may be expressed as a system of linear differential

equations. To this end, we let (U, (x1, x2, ..., xn)) be local coordinates onM and

let
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn
denote the natural basis with respect to these coordinates.

The connection coefficients Γk
ij of ∇ with respect to (x1, x2, ..., xn) are de-

fined by

∇ ∂

∂xi

(
∂

∂xj

)
=

n∑
k=1

Γk
ij

∂

∂xk
(connection coefficients).

Using these coefficients, we may write equation as the system

d2xk

dt2
+

n∑
i,j=1

Γk
ij

dxi

dt

dxj

dt
= 0 (geodesic equations in coordinates).
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Definition 2.2. The curvature tensor of the connection ∇ is a linear trans-

formation valued tensor R in Hom(X(M),X(M)) defined by :

R(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ].

Thus, for Z ∈ X(M),

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

It is well-known that R(X,Y )Z at p depends only upon the values of X,Y

and Z at p ([15]).

If w ∈ T ∗
p (M) is a cotangent vector at p and x, y, z ∈ Tp(M) are tangent

vectors at p, then one defines

R(ω,X, Y, Z) = (ω,R(X,Y )Z) = ω(R(X,Y )Z)

for X,Y and Z smooth vector fields extending x, y and z, respectively.

The curvature tensor R is a (1,3)-tensor field which is given in local coordi-

nates by

R =
n∑

i,j,k,m=1

Ri
jkm

∂

∂xi
⊗ dxj ⊗ dxk ⊗ dxm,

where the curvature components Ri
jkm are given by

Ri
jkm =

∂Γi
mj

∂xk
−
∂Γi

kj

∂xm
+

n∑
a=1

(Γa
mjΓ

i
ka − Γa

kjΓ
i
ma).

5



Notice that R(X,Y )Z = −R(Y,X)Z, R(ω,X, Y, Z) = −R(ω, Y,X,Z) and

Ri
jkm = −Ri

jmk.

Furthermore, if X =
∑
xi ∂

∂xi , Y =
∑
yi ∂

∂xi , Z =
∑
zi ∂

∂xi and ω =
∑
ωidx

i

then

R(X,Y )Z =
n∑

i,j,k,m=1

Ri
jkmz

jxkym
∂

∂xi

and

R(w,X, Y, Z) =
n∑

i,j,k,m=1

Ri
jkmwiz

jxkym.

Consequently, one has R
(
dxi, ∂

∂xk ,
∂

∂xm ,
∂

∂xj

)
= Ri

jkm.

Definition 2.3. From the curvature tensor R, one nonzero tensor (or its neg-

ative) is obtained by contraction. It is called the Ricci tensor. Its compo-

nents are Rij =
n∑

k=1

Rk
ikj . The Ricci tensor is symmetric and its contraction

S =
n∑

ij=1

Rijg
ij is called the scalar curvature ([1], [2], [3]).

Definition 2.4. Suppose Ω is a smooth, bounded domain in Rn, and let g :

Ω× R → R be a Caratheodory function. Let u0 ∈ H1,2
0 (Ω) be given. Consider

the equation

∆u = g(x, u) in Ω

u = u0 on ∂Ω
6



u ∈ H1,2(Ω) is a (weak) sub-solution if u ≤ u0 on ∂Ω and

∫
Ω

∇u∇φdx+

∫
Ω

g(x, u)φdx ≤ 0 for all φ ∈ C∞
0 (Ω), φ ≥ 0.

Similarly u ∈ H1,2(Ω) is a (weak) super-solution if in the above the reverse

inequalities hold.

We briefly recall some results on warped product manifolds. Complete de-

tails may be found in ([2]) or ([15]). On a semi-Riemannian product manifold

B × F , let π and σ be the projections of B × F onto B and F , respectively,

and let f > 0 be a smooth function on B.

Definition 2.5. The warped product manifold M = B ×f F is the product

manifold M = B × F furnished with metric tensor

g = π∗(gB) + (f ◦ π)2σ∗gF

where gB and gF are metric tensors of B and F , respectively. In order words,

if v is tangent to M at (p, q), then

g(v, v) = gB(dπ(v), dπ(v)) + f2(p)gF (dσ(v), dσ(v)).

Here B is called the base of M and F the fiber ([15]).
7



We denote the metric g by ⟨ , ⟩. In view of Remark 2.13 (1) and Lemma

2.14, we may also denote the metric gB by ⟨ , ⟩. The metric gF will be

denoted by ( , ).

Remark 2.6. Some well known elementary properties of the warped product

manifold M = B ×f F are as follows :

(1) For each q ∈ F , the map π |σ−1(q)=B×q is an isometry onto B.

(2) For each p ∈ B, the map σ |π−1(p)=p×F is a positive homothetic map

onto F with homothetic factor 1
f(p) .

(3) For each (p, q) ∈M , the horizontal leaf B×q and the vertical fiber p×F

are orthogonal at (p, q).

(4) The horizontal leaf σ−1(q) = B × q is a totally geodesic submanifold of

M and the vertical fiber π−1(p) = p×F is a totally umbilic submanifold of M .

(5) If ϕ is an isometry of F , then 1×ϕ is an isometry of M , and if ψ is an

isometry of B such that f = f ◦ ψ, then ψ × 1 is an isometry of M .

Recall that vectors tangent to leaves are called horizontal and vector tan-

gent to fibers are called vertical. From now on, we will often use a natural

identification

T(p,q)(B ×f F ) ∼= T(p,q)(B × F ) ∼= TpB × TqF.

The decomposition of vectors into horizontal and vertical parts plays a role
8



in our proofs. If X is a vector field on B, we define X at (p, q) by setting

X(p, q) = (Xp, 0q). Then X is π-related to X and σ-related to the zero vector

field on F . Similarly, if Y is a vector field of F , Y is defined by Y (p, q) =

(0p, Yq).

Lemma 2.7. If h is a smooth function on B, then the gradient of the lift h◦π

of h to M is the lift to M of gradient of h on B.

Proof. We must show that grad(h ◦ π) is horizonal and π-related to grad(h)

on B. If v is vertical tangent vector to M , then

⟨grad(h ◦ π), v⟩ = v(h ◦ π) = dπ(v)h = 0, since dπ(v) = 0.

Thus grad(h ◦ π) is horizonal. If x is horizonal,

⟨dπ(grad(h ◦ π), dπ(x)⟩ = ⟨grad(h ◦ π), x⟩ = x(h ◦ π) = dπ(x)h

= ⟨grad(h), dπ(x)⟩.

Hence at each point, dπ(grad(h ◦ π)) = grad(h). �

In view of Lemma 2.14, we simplify the notations by writing h for h ◦ π and

grad(h) for grad(h◦π). For a covariant tensor A on B, its lift A toM is just its

pullback π∗(A) under the projection π :M → B. That is, if A is a (1, s)-tensor,
9



and if v1, v2, ..., vs ∈ T(p,q)M , then A(v1, ..., vs) = A(dπ(v1), ..., dπ(vs)) ∈

Tp(B). Hence if vk is vertical, then A = 0 on B. For example, if f is a

smooth function on B, the lift to M of the Hessian of f is also denoted by

Hf . This agrees with the Hessian of the lift f ◦ π generally only on horizontal

vectors. For detailed computations, see Lemma 5.1 in ([4]).

Now we recall the formula for the Ricci curvature tensor Ric on the warped

product manifold M = B ×f F . We write RicB for the pullback by π of the

Ricci curvature of B and similarly for RicF .

Lemma 2.8. On a warped product manifold M = B×f F with n = dimF > 1,

let X,Y be horizontal and V,W vertical.

Then

(1) Ric(X,Y ) = RicB(X,Y )− n
fH

f (X,Y ),

(2) Ric(X,V ) = 0,

(3) Ric(V,W ) = RicF (V,W )− ⟨V,W ⟩f ♯,

where f ♯ =
∆f

f
+ (n − 1)

⟨grad(f), grad(f)⟩
f2

and ∆f = trace(Hf ) is the

Laplacian on B.

Proof. See Corollary 7.43 in ([15]). �

On the given warped product manifold M = B ×f F , we also write SB for
10



the pullback by π of the scalar curvature SB of B and similarly for SF . From

now on, we denote grad(f) by ∇f .

Lemma 2.9. If S is the scalar curvature of M = B×f F with n = dimF > 1,

then

(2.1) S = SB +
SF

f2
− 2n

∆f

f
− n(n− 1)

⟨∇f,∇f⟩
f2

where ∆ is the Laplacian on B.

Proof. For each (p, q) ∈ M = B ×f F , let {ei} be an orthonormal basis for

TpB. Then by the natural isomorphism {ei = (ei, 0)} is an orthonormal set in

T(p,q)M . We can choose {dj} on TqF such that {ei, dj} forms an orthonormal

basis for T(p,q)M . Then

1 = ⟨dj , dj⟩ = f(p)2(dj , dj) = (f(p)dj , f(p)dj)

which implies that {f(p)dj} forms an orthonormal basis for TqF . By Lemma

2.8 (1) and (3), for each i and j

Ric(ei, ei) = RicB(ei, ei)−
∑
i

n

f
Hf (ei, ei),

and

Ric(dj , dj) = RicF (dj , dj)− f2(p)gF (dj , dj)

(
∆f

f
+ (n− 1)

⟨∇f,∇f⟩
f2

)
.

11



Hence, for ϵα = g(ϵα, ϵα)

S(p, q) =
∑
α

ϵαRαα

=
∑
i

ϵiRic(ei, ei) +
∑
j

ϵjRic(dj , dj)

= SB(p, q) +
SF

f2
− 2n

∆f

f
− n(n− 1)

⟨∇f,∇f⟩
f2

which is a nonlinear partial differential equation on B × q for each q ∈ F.

�
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3. Main Results

Let (N, g) be a Riemannian manifold of dimension n and let f : [a,∞) → R+

be a smooth function, where a is a positive number. A Riemannian warped

product of N and [a,∞) with warping function f is defined to be the product

manifold ([a,∞)×f N, g̃) with

(3.1) g̃ = dt2 + f2(t)g.

Let R(g) be the scalar curvature of (N, g). Then the scalar curvature R(t, x)

of g̃ is given by the equation

(3.2) R(t, x) =
1

f2(t)
[R(g)(x)− 2nf(t)f

′′
(t)− n(n− 1)|f

′
(t)|

2
]

for t ∈ [a,∞) and x ∈ N (For details, [5] or [7]).

If we denote

u(t) = f
n+1
2 (t), t > a,

then equation (3.2) can be changed into

(3.3)
4n

n+ 1
u

′′
(t) +R(t, x)u(t)−R(g)(x)u(t)1−

4
n+1 = 0.

13



In this paper, we assume that the fiber manifold N is nonempty, connected

and a compact Riemannian n−manifold without boundary.

If N admits a Riemannian metric of negative or zero scalar curvature, then

we let u(t) = tα in (3.3), where α > 1 is a constant. We have

R(t, x) ≤ 4n

n+ 1
α(1− α)

1

t2
< 0, t > α.

Then, by Theorem 3.1, Theorem 3.5 and Theorem 3.7 in [7], we have the

following theorem.

Theorem 3.1. For n ≥ 3, let M = [a,∞) ×f N be the Riemannian warped

product (n + 1)-manifold with N compact n-manifold. Suppose that N is in

class (A) or (B), then on M there is a Riemannian metric of negative scalar

curvature outside a compact set.

Proposition 3.2. Suppose that R(g) = − 4n

n+ 1
k2 and R(t, x) = R(t) ∈

C∞([a,∞)). Assume that for t > t0, there exist an upper solution u+(t) and a

lower solution u−(t) such that 0 < u−(t) ≤ u+(t). Then there exists a solution

u(t) of equation (3.3) such that for t > t0, 0 < u−(t) ≤ u(t) ≤ u+(t).

Proof. We have only to show that there exist an upper solution ũ+(t) and
14



a lower solution ũ−(t) such that for all t ∈ [a,∞), ũ−(t) ≤ ũ+(t). Since

R(t) ∈ C∞([a,∞)), there exists a positive constant b such that |R(t)| ≤ 4n

n+ 1
b2

for t ∈ [a, t0]. Since

4n

n+ 1
u′′+(t) +R(t)u+(t) +

4n

n+ 1
k2u+(t)

1− 4
n+1

≤ 4n

n+ 1
(u′′+(t) + b2u+(t) + k2u+(t)

1− 4
n+1 ),

if we divide the given interval [a, t0] into small intervals {Ii}ni=1, then for each

interval Ii we have an upper solution ui+(t) by parallel transporting cosBt

such that 0 <
1√
2
≤ ui+(t) ≤ 1. That is to say, for each interval Ii,

4n

n+ 1
u′′i+(t) +R(t)ui+(t) +

4n

n+ 1
k2ui+(t)

1− 4
n+1

≤ 4n

n+ 1
(u′′i+(t) + b2ui+(t) + k2ui+(t)

1− 4
n+1 )

=
4n

n+ 1
(−B2 cosBt+ b2 cosBt+ k2(cosBt)1−

4
n+1 )

=
4n

n+ 1
cosBt(−B2 + b2 + k2(cosBt)−

4
n+1 )

≤ 4n

n+ 1
cosBt(−B2 + b2 + k22

2
n+1 )

≤ 0

for large B, which means that ui+(t) is an (weak) upper solution for each

interval Ii. Then put ũ+(t) = ui+(t) for t ∈ Ii and ũ+(t) = u+(t) for t > t0,

which is our desired (weak) upper solution such that
1√
2
≤ ũ+(t) ≤ 1 for all

t ∈ [a, t0].
15



Put ũ−(t) =
1√
2
e−αt for t ∈ [a, t0] and some large positive α, which will be

determined later, and ũ−(t) = u−(t) for t > t0. Then, for t ∈ [a, t0],

4n

n+ 1
u′′i−(t) +R(t)ui−(t) +

4n

n+ 1
k2ui−(t)

1− 4
n+1

≥ 4n

n+ 1
(u′′i−(t)− b2ui−(t))

=
4n

n+ 1

1√
2
e−αt(α2 − b2)

≥ 0

for large α. Thus ũ−(t) is our desired (weak) lower solution such that for all

t ∈ [a,∞), 0 < ũ−(t) ≤ ũ+(t). �

In [5], the authors consider the nonexistence of warping functions on Rie-

mannian warped product manifolds M = [a,∞)×f N when N belongs to class

(A) with R(g) = − 4n

n+ 1
k2.

Proposition 3.3. Suppose that N belongs to class (A). Let g be a Riemannian

metric on N of dimension n(≥ 3). We assume that R(g) = − 4n

n+ 1
k2, where k

is a positive constant. On M = [a,∞)×fN , there does not exist a Riemannian

warped product metric

g̃ = dt2 + f2(t)g

with scalar curvature
16



R(t) ≥ −n(n− 1)

t2

for all x ∈ N and t > t0 > a, where t0 and a are positive constants.

Proof. In [5], p.179, Theorem 2.5 �

However, in this paper, when N is a compact Riemannian manifold of

class (A), we consider the existence of some warping functions on Riemannian

warped product manifolds M = [a,∞)×f N with prescribed scalar curvatures.

In particular, if R(t, x) is also the function of only t-variable, then we have the

following theorems.

Theorem 3.4. Suppose that R(g) = − 4n

n+ 1
k2. Assume that R(t, x) = R(t) ∈

C∞([a,∞)) is a negative function such that

−bts ≤ R(t) ≤ − 4n

n+ 1

C

tα
, for t ≥ t0,

where t0 > a, α < 2, C and b are positive constants, and s is a positive integer.

Then equation (3.3) has a positive solution on [a,∞).
17



Proof. We let u+(t) = tm, where m is some positive number. Then we have

4n

n+ 1
u′′+(t) +

4n

n+ 1
k2u+(t)

1− 4
n+1 +R(t)u+(t)

≤ 4n

n+ 1
u′′+(t) +

4n

n+ 1
k2u+(t)

1− 4
n+1 − 4n

n+ 1

C

tα
u+(t)

=
4n

n+ 1
tm[

m(m− 1)

t2
+

k2

t
4

n+1m
− C

tα
]

≤ 0, t ≥ t0,

for some large t0, which is possible for large fixed m since α < 2. Hence, u+(t)

is an upper solution. Now put u−(t) = e−βt, where β is a positive constant.

Then

4n

n+ 1
u′′−(t) +

4n

n+ 1
k2u−(t)

1− 4
n+1 +R(t)u−(t)

≥ 4n

n+ 1
u′′−(t) +

4n

n+ 1
k2u−(t)

1− 4
n+1 − btsu−(t)

= e−βt[
4n

n+ 1
β2 +

4n

n+ 1
k2eβt[

4
n+1 ] − bts]

≥ 0, t ≥ t0

for some large t0, which means that u−(t) is a lower solution. And we can take

β so large that 0 < u−(t) < u+(t). So by Theorem 3.2, we obtain a positive

solution. �

The above theorem implies that if R(t) is not rapidly decreasing and less

than some negative function, then equation (3.3) has a positive solution.

18



Theorem 3.5. Suppose that R(g) = − 4n

n+ 1
k2. Assume that R(t, x) = R(t) ∈

C∞([a,∞)) is a negative function such that

−bts ≤ R(t) ≤ −C
t2
, for t ≥ t0

where t0 > a, b and C are positive constants, and s is a positive integer. If

C > n(n− 1), then equation (3.3) has a positive solution on [a,∞).

Proof. In case that C > n(n− 1), we may take u+(t) = C+t
n+1
2 , where C+ is

a positive constant. Then

4n

n+ 1
u′′+(t) +

4n

n+ 1
k2u+(t)

1− 4
n+1 +R(t)u+(t)

≤ C+
4n

n+ 1
t
n−3
2 [

n2 − 1

4
+ k2C

− 4
n+1

+ − n+ 1

4n
C]

≤ 0,

which is possible if we take C+ to be large enough since
(n+ 1)(n− 1)

4
−

n+ 1

4n
C < 0. Thus u+(t) is an upper solution. And we take u−(t) as in

Theorem 3.4. In this case, we also obtain a positive solution. �

Remark 3.6. The results in Theorem 3.4, and Theorem 3.5 are almost sharp

since we can get as close to −n(n− 1)

t2
as possible. For example, let R(g) =

− 4n

n+ 1
k2 and f(t) = t ln t for t > a. Then we have

19



R = − 1

t2
[

4n

n+ 1

k2

(ln t)2
+

2n

ln t
+ n(n− 1)(1 +

1

ln t
)2],

which converges to −n(n− 1)

t2
as t goes to ∞.
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