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1. INTRODUCTION

One of the basic problems in the differential geometry is to study the set
of curvature function over a given manifold.

The well-known problem in differential geometry is whether a given
metric on a compact Riemannian manifold is necessarily pointwisely
conformal to some metric with constant scalar curvature or not.

In a recent study([10]), Jung and Kim have studied the problem of scalar
curvature functions on Lorentzian warped product manifolds and obtained
partial results about the existence and nonexistence of Lorentzian warped
metric with some prescribed scalar curvature function. In this paper, we
study also the existence and nonexistence of Riemannian warped metric
with prescribed scalar curvature functions on some Riemannian warped
product manifolds.

By the results of Kazdan and Warner([13], [14], [15]), if N is a
compact Riemannian n— manifold without boundary n >3, then N belongs
to one of the following three catagories :

(A) A smooth function on N is the scalar curvature of some Riemannian
metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian
metric on N if and only if the function is either identically zero or strictly
negative somewhere.

(C) Any smooth function on N is the scalar curvature of some



Riemannian metric on N .

This completely answers the question of which smooth functions are
scalar curvatures of Riemannian metrics on a compact manifold N .

In [13], [14] and [15] Kazdan and Warner also showed that there exists
some obstruction of a Riemannian metric with positive scalar curvature (or
zero scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have been
done on the question how to determine which smooth functions are scalar
curvatures of complete Riemannian metrics on an open manifold. Results of
Gromov and Lawson([9]) show that some open manifolds cannot carry
complete Riemannian metrics of positive scalar curvature, for example,
weakly enlargeable manifolds.

Furthermore, they show that some open manifolds cannot even admit
complete Riemannian metrics with scalar curvatures uniformly positive
outside a compact set and with Ricci curvatures bounded([9], [16, p.322]).

On the other hand, it is well known that each open manifold of dimension
bigger than 2 admits a complete Riemannian metric of constant negative
scalar curvature([6]). It follows from the results of Aviles and McOwen([1])
that any bounded negative function on an open manifold of dimension
bigger than 2 is the scalar curvature of a complete Riemannian metric.

In [16] and [17], the author considered the scalar curvature of some
Riemannian warped product and its conformal deformation of warped
product metric.

In this paper, when N is a compact Riemannian manifold, we consider



the nonexistence of warping functions on a warped product manifold
M:(a,oo)XfN with specific scalar curvatures, where 1s a positive
constant. That is, it is shown that if the fiber manifold N belongs to class
(C) then M does not admit a Riemannian metric with some positive scalar

curvature near the end outside a compact set.



2. PRELIMINARIES

First of all, in order to induce a partial differential equation, we need
some definitions of connections, curvatures and some results about warped

product manifolds.

Definition 2.1. Let ¥(M) denote the set of all smooth vector fields
defined on M, and let S(M) denote the ring of all smooth real-valued

functions on M. A connection VvV on a smooth manifold M is a function
Vo X(M) x (M) — X (M)

such that

DD v W is S -linear in V,

(D2) vyW is R -linear in W,

D3) v (W) =(VH)W+ fv, W for fe 3 (M),

DY) [V, W]=vVv,W—-v,V, and

D5 X<V, W>=<V V. W>+<V,ViW> for all

X,V, wWe X(M).

If W satisfies axioms (D1)~(D3), then v ,W is called the covariant

derivative of W with respect to V for the connection V. If WV satisfies



axioms (D4)~ (D5), then Vv is called the Levi— Civita connection of M,
which is characterized by the Koszul formula([17]).

A geodesic ¢: (a,b) > M is a smooth curve of M such that the tangent
vector ¢’ moves by parallel translation along c¢. In order words, ¢ is a

geodesic if
V,.c¢ =0 (geodesic equation).

A pregeodesic is a smooth curve ¢ which may be reparametrized to be a
geodesic. Any parameter for which ¢ is a geodesic is called an affine
parameter. If s and ¢t are two affine parameters for the same pregeodesic,
then s= at+ b for some constants a,b < R. A pregeodesic is said to be
complete if for some affine parameterizion (hence for all affine
parameterizations) the domain of the para metrization on is all of R .

The equation V.c¢ =0 may be expressed as a system of linear

differential equations. To this end, we let (U, (z', 2°,---,2")) be local

0 0

5 — denote the natural basis
X

coordinates on M and let T T Tty T
ox ox”

with respect to these coordinates.
x n )

i cee

The connection coefficients I'Y of v with respect to (z',z°,

are defined by

F) & ! . ..
Vi() = kzl Ffj o (connection coefficients).

J
o ox

Using these coefficients, we may write the geodesic equation as the



following system

2 _k n i J
o | M rk do’ dr- 0  (geodesic equations in coordinates).

Definition 2.2. The curvature tensor of the connection VvV 1s a linear

transformation valued tensor R in Hom (X(M), X¥(M)) defined by :
R(X,Y)=VxVy —Vy Vy —Vixvl
Thus, for Z&€ ¥(M) ,
R(X,Y)Z=VxVyZ ~-NyVxZ—~Vix v Z.

It is well-known that R( X, Y )Z at p depends only upon the values of
X,Y and Z at p([21]).
If weT, (M) is a cotangent vector at p and z,y,z € Tp(M) are

tangent vectors at p, then one defines
R(w, X, Y, Z)=(w,R(X,Y)Z)=w(R(X,Y)Z)

for X, Y and Z smooth vector fields extending =, y and z, respectively.
The curvature tensor R is a (1,3) - tensor field which is given in local
coordinates by

n

R= >, / % ®dr! @ dz" ® da™

jkm
i,j,k,m=1



where the curvature components R;,, are given by

. o'l . oI, & . .
2 _ J ')
I - m + E(F7(7LLJFkZa_FI(:J F7Zrla)'

’/'k:m - .
! ozt ox a=1

Notice that
R(X, Y)Z = —R(Y,X)Z, R(w,X,Y,Z):—R(w,Y,X,Z)

and RJ km — jmk-

Furthermore, if X=X o' ——, Y=Sy' - z=%:"-"""  and
ox ox ox

w:Zwidxi,

then we have

R(X,V)Z= Y Ri, 22ty

iwj.k,m=1

i

ox
and

n

Rw,X,Y, 7Z)= D R;k,,,Lwizjx"’y"L.

ij.k,m =1

i o 0
)

= RI .
) I i jkm
ozt ax™ oz’ !

Consequently, one has R (dz’,

Definition 2.3. From the curvature tensor R, one nonzero tensor (or its

negative) is obtained by contraction. It is called the Ricci tensor. Its



k

n
components are R, = D Rj.;-  The Ricci tensor is symmetric and its
k=1

contraction §= Z R, g"7 s called the scalar curvature ([2], [3], [4]).
ij=1

Definition 2.4. Suppose 2 is a smooth, bounded domain in R", and let

g: 2 x R— R be a Caratheodory function.

Let u, € H;? () be given. Consider the equation
Au=g(z,u) in £
u=1u, on o2

ue H"?(R2) is a (weak) sub-solution if v < u, on 8£ and
f Vchpdx+f glz,u)pder <0 for all p€ C;(2), p=0.
0 o

Similarly v € H"?(2) is a (weak) super-solution if in the above the
reverse inequalities hold.

We briefly recall some results on warped product manifolds. Complete
details may be found in [3] or [21]. On a semi-Riemannian product manifold
Bx F, let # and o be the projections of B X Fonto B and F,

respectively, and let f > 0 be a smooth function on B .



Definition 2.5. The warped product manifold M = B X, F 1s the product

manifold M = B X F  furnished with metric tensor

g=1m(gp)+ (f e 1) 0*gp

where gz and gp are metric tensors of B and F, respectively. In order

words, if v is tangent to M at (p, ¢), then
g (’U, ’U) = gB (d’]T(’U), d’]T(’U)) + fQ(p)gF(dg(v)a dO’(’U))
Here B is called the base of M and F the fiber([21]).

We denote the metric ¢ by <, >. In view of Remark 2.6. (1) and
Lemma 2.7., we may also denote the metric gz by < , >. The metric gp

will be denoted by ( , ).

Remark 2.6. Some well known elementary properties of the warped

product manifold M = BXx ,F are as follows :

(1) For each ¢ € F, the map 7T|ﬂu—1<q) is an isometry onto B.

=B Xgq

(2) For each p& B, the map ol is a positive homothetic

p)=pxXF

map onto F with homothetic factor 1 )
f(p)
(3) For each (p,q) € M, the horizontal leaf B x ¢ and the vertical

fiber p X F are orthogonal at (p, q).



(4) The horizontal leaf o '(¢)= B xg¢q is a totally geodesic
submanifold of M and the vertical fiber 7 '(p)=p < F is a totally
umbilic submanifold of M.

(5) If ¢ is an isometry of F, then 1X ¢ is an isometry of M, and if
v is an isometry of B such that f = f o ¢ , then ¢ X 1 1is an isometry of
M.

Recall that vectors tangent to leaves are called horizontal and vector
tangent to fibers are called vertical. From now on, we will often use a

natural identification
T, )(Bx,F)=T( ,(BXF)=T,BxT,F.

The decomposition of vectors into horizontal and vertical parts play a
role in our proofs. If X is a vector field on B, we define X at (p,q)
by setting X (p, q) = (X, 0,). Then X and o—related to the zero vector
field on F. Similarly, if Y is a vector field of F , Y 1is defined by

Y (p,q¢)= (0, Y,).

Lemma 2.7. If h i1s a smooth function on B, then the gradient of the lift

h o m of h to M 1is the lift to M gradient of h on B .

Proof. We must show that grad (h o w) is horizontal and = —related to

grad(h) on B . If v is vertical tangent vector to M, then

_10_



(grad(h o 7),v) =v(h o7)=dr(v)h =0,
since dn(v) = 0. Thus grad (h o x) is horizontal. If z is horizontal,

(dn(grad(h o n), dn(z)) = {grad(h o w), z=2(h o 7)=dn(z)h

= {grad(h),dn(z)).

Hence at each point, dn(grad(h o 7)) = grad(h). J

In view of Lemma 2.7, we simplify the notations by writing h for
h o 7 and grad(h) for grad(h o 7). For a covariant tensor A on B, its
lift A to M is just its pullback « (A4) under the projection 7#: M — B.
That is, if A is a (1,s)— tensor, and if v,,vy, -, v

ET( )M, then

s psq

A (v, v,)=A(dr (vy), -, dr(v,)) € T,(B). Hence if v, is vertical,

than A =0 on B. For example, if f is a smooth function on B, the lift to

M of the Hessian of f is also denoted by H/. This agrees with the
Hessian of the lift f o = generally only on horizontal vectors. For detailed

computations, see Lemma 5.1 in [5]. OJ

Now we recall the formula for the Ricci curvature tensor Ric on the
warped product manifold M= B X, F. We write Ric? for the pullback by

7 of the Ricci curvature of B and similarly for Ric®.

_11_



Lemma 2.8. On a warped product manifold M= Bx,F with n=dim F' > 1,
let X, Y be horizontal and V, W vertical.
Then

n

(1) Rie(X,Y)=Ric®(X,Y) 7

HI(X,Y),

(2) Riec(X,V)=0,
(3) Ric(V,W)=Ric"(V, W)= (V, W) f*"

A ( d(f), d )
ALy (o) Lere ”’f;”"“ (7)

where f% = and A f=trace (H) is

the Laplacian on B.

Proof. See Corollary 7. 43. in [17]. ]

On the given warped product manifold M = B X F', we also write S8 for

the pullback by 7 of the scalar curvature S, of B and similarly for S*.

From now on, we denote grad(f) by Vf.

Lemma 2.9. If S is the scalar curvature of M= B X ;F with n=dim F> 1,

then

st A (VI V)
(2.1) §=5%+ ?—2an—n(n— 1)%

where A is the Laplacian on B.

_12_



Proof. For each (p,q) €E M= B x F, let {e,} be an orthonormal basis for
T,B. Then by the natural isomorphism {e_i: (ei,O)} 1S an orthonormal

set in T(, ,) M. We can choose {d;} on T, F such that {e,,d,} forms an

orthonormal basis for T'(, ,) M. Then

1= (d;.d;> = f(p)*(d;, d))= (f(p)d;, f(p)d;)

which implies that {f(p)d;} forms an orthonormal basis for T F. By

Lemma 2.8. (1) and (3), for each i and j

Ric(ei ) Ric® ,,e Z Hf ,,e)

and

Ric(d;. ;)= Ric’ (4. d)~ (), (d, d) (G + (0= 1><Vf;ff>>.
Hence, for e, = g (c,.c,)

= DicaRua

—Zech e e;)+ %]ejmc(d_j,d_j)

— 5%(p, q) + i—F— 2nATf_n(n_1)<Vf];—2Vf>

which is a nonlinear partial differential equation on B X ¢q for

each g€ F. U]

_13_



3. Main Results

M.C. Leung ([16], [17], [18]), has studied the problem of scalar
curvature functions on Riemannian warped product manifolds and obtained
partial results about the existence and nonexistence of Riemannian warped
metric with some prescribed scalar curvature function. He has studied the
uniqueness of positive solution to the equation

n+2

(3.1) A, ulz)+ d,ulz) = d,ulz)" 2,

where A " is the Laplacian operator for an n—dimensional Riemannian manifold

n—2
4(n—1)

deformation of Riemannian metric ([1], [12], [13], [17], [18]).

(N, g,) and d,= . Equation (3.1) is derived from the conformal

Similarly, let (N, g,) be a compact Riemannian n—dimensional manifold.
We consider the (n+1)—dimensional Riemannian warped product manifold
M= (a, ©)x ;N with the metric g=dt’+ f(t)*g,, where f is a
positive function on (a, ). Let w (¢, ) be a positive smooth function on

M and let ¢ have a scalar curvature equal to (¢, ). If the conformal

4
metric g,= u(t,z)" 'g has a prescribed function R(t, z) as a scalar

curvature, then it is well known that «(¢, ) satisfies equation

_14_



n+3

Dgu(t’x)_ T(t,x)u(t,x)—i— R(t,x)u(t,x)"'_l - 03

4n
n—1

(3.2)

where Dg is the d'Alembertian for a Riemannian warped manifold

M= (a,©)x;N.
In this paper, we study the nonexistence of a positive solution to
equation (3.2). This paper contains the results of Riemannian version of

[20].

First of all, in order to prove the nonexistence of solutions of some
partial differential equations, we need brief results about Young's inequality.

The following proposition is well known(Theorem 1 in [20], p.48).

Proposition 3.1. Let f be a real-valued, continuous and strictly
increasing function on [0, ¢] with ¢> 0. If f(0)=0, < [0, c] and

be [0, f(e)], then
faf(t)dtJr fbf_l(t)dt > ab,

where f~' is the inverse function of f. Equality holds if and only if

b= f(a).

_15_



1 1
Corollary 3.2. Let a,b>=0 and p> 1, ¢> 1 such that ;—k ” =1.

For any € > 0,

1

Proof. In Proposition 1, we choose f(t) = et? ' for p> 1.

From now on, we let (N, g,) be a compact Riemannian n—dimensional
manifold with n > 3 and without boundary. The following proposition 1s

also well known(Theorem 5.4, [5]).

Proposition 3.3. Let M= (a, ) X ;N have a Riemannian warped

product metric g = dt®>+ f(t)*g,. Then the Laplacian [J, is given by
0 g

_ o', nft) o 1
TR R f@r

where A, is the Laplacian on fiber manifold N.

By Proposition 3.3, equation (3.2) is changed into the following equation

o’ult,z) | nf(t) oult,z) 1
(3.3) o 10 T I A, ult,z)
n+3
T r(t,z)ult, o)+ DR(t,x) w(t,z)" '=0
4n 4n

_16_



If w(t,z) = w(t) is a positive function with one variable ¢ and if
R(t,z)= R(t) and r(t,z)= r(t) are also functions of one variable ¢,

then equation (3.3) becomes

nf (t) o
(3.4) u”(t) + ) Y W)=ht)ult)—HE)ult)""",
where h(t)= n4—nl r(t) and H(t) = n4—nl R(t).

The proof of the following theorem is similar to that of Theorem 2 in

[12].

Theorem 3.4. Let u(t) be a positive solution of equation (3.4). And let

h(t), H(t) satisfy the following condition : h(t) > 0 and H(t) < —¢,,

where ¢, is positive constant. Assume that there exist positive constants

and C, such that ‘]}((f)) ‘ < C, for all t>t,. Then u(t) is bounded from

above.

Proof. From equation (3.4) we have

(3.5) M:h(t)u—H(t)u"’l.

f"
Let x€ Cy ((a,)) be a cut-off function. Multiplying both sides of

n+1

equation (3.5) by x""'w« and then using integration by parts we obtain

_17_



+

[*9) n+1 oS o 2n+2
(3.6) —/ ( "U/)(anu)/dt:f h(t)x'l+1u2dt—f Ht)x" tu "™t dt.

Since h(t) > 0 and H(t) < —c¢,, where ¢, is a positive constant, equation

(3.6) implies

oo 7l+1u oo 2nt 2
_f ( nu/)(an )y dt > le Xn+1un—1 dt.
a a

From the left side of the above equation, we have

nt+1

— (") (A—) =—(n+ D) x"ux'v' — x" "W+ n “+1uu/i.
Iz X" ux X X 7

Applying the Cauchy inequality, we get

n+1 n+1
n ror -1 ’ 1 ’
—(n+1)x"ux'uv = —2((n+1)x °* ux') (5 x > u')

n— ’ 1 n ’
< (n+1)%x" 'u?y' 1+ TX Ty
and
’ n+1 , n+1
i tuw L =2t a )Gt )
2. . nt+1_ 2 f, 2 n+1 72
< n'y U (7) + —x [u'|?.

Together with the above equations, we obtain

_18_



n?/ (f7)2X71,+1u2dt+ (n+1)2f Xn—1u2|x/|2dt

a
2n+2

[ee) f 1 [ee) ,
> le Xn+1un 1 dfi'i‘;/ X"+1|u|2dt.

a a

< C,, we have

Applying Corollary 2 and using the bound ‘fT

/ "t lu?dt :f Yix " lutdt

2n+ 2
2 foo n+1 1 n_lfoo n+1 n—1
<
< €17 ax dt + PR ax U dt
En—l
and
/ Xn—1u2|x/|2dt :/ |X/|2Xn—1u2dt
9 o 1 1 o 2n+2
< "n+1 n— / ntl,  n—1 .
_en+1/a [yl dt + — ——) ax U dt
Enfl
For large ¢ > 0, we obtain
- 2n+2 1 .
(37> C// Xn+1un—1 dt_’_if Xn+1|u/|2dt

< C”/ (|X/|71,+1_'_Xn+l)dt7

a

_19_



where C', C” are positive constants. Let y = 0 on (a,r] U[r+3, o] with
r>t, and y=1 on [r+1,r+2], x>0 on [a,o] and x| < 1.

From equation (3.7) we have

2n+ 2

r+2 — 1 r+2 ,
C’f u ™ 1dt+—f lu'?dt < C"
r+1 2J 4

for all r> t,, where C"” is a constant independent on r.

Therefore w 1s bounded from above. ]

Theorem 3.5. Let (M, g) be a Riemannian manifold with scalar

curvature equal to h(t). Assume that there exist positive constants ¢, and
C, such that ‘%‘ < C, for all t> t,. For a smooth function H(t),

let h(t), H(t) satisfy the following condition : h(t)> 0, H(t) < —¢,,

where ¢, is positive constant. Then equation (3.4) has no positive solution.

Proof. If w= u(t) 1is a positive solution of equation (3.4), then by
Theorem 4 w(t) is bounded from above on (a, ). Then, by Omori-Yau
maximum principle(c.f. [22]), there exists a sequence {t¢,} such that

1

and u"(tk)ﬁ E Since tE(a,oo)u(t): cy,> 0,

limu(t,) = |u'(t,)]| <

k— oo

1
k

there exist a number ¢ >0 and K such that

_20_



n+3

h(ty )u(t,) — H(t)u(t,)" ' > e

for all ¥k > K, which is a contradiction to the fact that

. nf'(t,) 14+ nC,
u (tk;)+ Wu(tk)ﬁ T
for all k> K. Therefore equation (3.4) has no positive solution. ]

The following corollary is easily derived from the previous theorems.

Corollary 3.6. Let (M, g)= ((a, )X ;N,g) be a Riemannian manifold

with scalar curvature equal to »(¢). Assume that there exist positive

f(t)
f(t)

function R(t), let r(t), R(t) satisfy the following condition: r(t) > 0,

constants ¢, and C, such that ‘ ‘S C, for all t> ¢,. For a smooth

R(t)< —c¢, where ¢, is positive constant. Then there does not exist a

conformal deformation on M with scalar curvature R (%) .

_21_
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