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  문    록

The Nonexistence of Conformal Deformations 

on Riemannian Warped Product Manifolds

  

지도 수 :   태

학  학원 수학 공

  미 하학에  본  문   하 는 미 다양체가 가지고 는 곡 함수

에 한 연 다. 특 , 어  함수가 주어진 미 다양체  곡 함수가 는 문

는 해   하여 주어진 다양체 에  편미 식  해  재

 문 로 꿀 수 다. 

  Kazdan and Warner([13], [14], [15])  결과에 하    함수  가 

 Riemannian metric  scalar curvature가 는  가지 경우  타  다.

(A)   함수  가 Riemannian metric  scalar curvature  그 함수       

    가 당한 에         다.   에 negative constant        

    scalar curvature  갖는 Riemannian metric  재하는 경우 다.

(B)   함수 가 Riemannian metric  scalar curvature  그 함수       

    가 항등 로  ≡   거  든 에      경우 다. ,        

    에  zero scalar curvature  갖는 Riemannian metric  재하는 경     

    우 다.

(C)   어  라도 positive constant scalar curvature  갖는 Riemannian 

metric  재하는 경우 다.



  본 문에 는 엽다양체   (C)에 하는 compact Riemannian manifold  

, Riemannian warped product manifold      ∞  ×  에 함수 

  가 Riemannian warped product metric  scalar curvature가 도록 하

는 conformal deformation  재할 수 없  하 다.
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1. INTRODUCTION

  One of the basic problems in the differential geometry is to study the set 

of curvature function over a given manifold.

  The well-known problem in differential geometry is whether a given 

metric on a compact Riemannian manifold is necessarily pointwisely 

conformal to some metric with constant scalar curvature or not.

  In a recent study([10]), Jung and Kim have studied the problem of scalar 

curvature functions on Lorentzian warped product manifolds and obtained 

partial results about the existence and nonexistence of Lorentzian warped 

metric with some prescribed scalar curvature function. In this paper, we 

study also the existence and nonexistence of Riemannian warped metric 

with prescribed scalar curvature functions on some Riemannian warped 

product manifolds.

  By the results of Kazdan and Warner([13], [14], [15]), if   is a 

compact Riemannian  manifold without boundary ≥    then   belongs 

to one of the following three catagories :

  (A) A smooth function on   is the scalar curvature of some Riemannian 

metric on   if and only if the function is negative somewhere.

  (B) A smooth function on   is the scalar curvature of some Riemannian 

metric on   if and only if the function is either identically zero or strictly 

negative somewhere.

  (C) Any smooth function on   is the scalar curvature of some 
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Riemannian metric on  .

  This completely answers the question of which smooth functions are 

scalar curvatures of Riemannian metrics on a compact manifold  .

  In [13], [14] and [15] Kazdan and Warner also showed that there exists 

some obstruction of a Riemannian metric with positive scalar curvature (or 

zero scalar curvature) on a compact manifold.

  For noncompact Riemannian manifolds, many important works have been 

done on the question how to determine which smooth functions are scalar 

curvatures of complete Riemannian metrics on an open manifold. Results of 

Gromov and Lawson([9]) show that some open manifolds cannot carry 

complete Riemannian metrics of positive scalar curvature, for example, 

weakly enlargeable manifolds.

  Furthermore, they show that some open manifolds cannot even admit 

complete Riemannian metrics with scalar curvatures uniformly positive 

outside a compact set and with Ricci curvatures bounded([9], [16, p.322]).

  On the other hand, it is well known that each open manifold of dimension 

bigger than 2 admits a complete Riemannian metric of constant negative 

scalar curvature([6]). It follows from the results of Aviles and McOwen([1]) 

that any bounded negative function on an open manifold of dimension 

bigger than 2 is the scalar curvature of a complete Riemannian metric.

  In [16] and [17], the author considered the scalar curvature of some 

Riemannian warped product and its conformal deformation of warped 

product metric.

  In this paper, when   is a compact Riemannian manifold, we consider 
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the nonexistence of warping functions on a warped product manifold 

   ∞  ×   with specific scalar curvatures, where is a positive 

constant. That is, it is shown that if the fiber manifold   belongs to class 

(C) then   does not admit a Riemannian metric with some positive scalar 

curvature near the end outside a compact set.
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2. PRELIMINARIES

  First of all, in order to induce a partial differential equation, we need 

some definitions of connections, curvatures and some results about warped 

product manifolds.

Definition 2.1.  Let i  denote the set of all smooth vector fields 

defined on    and let ℑ  denote the ring of all smooth real-valued 

functions on  . A connection ∇  on a smooth manifold   is a function

∇  i × i → i

such that

   (D1) ∇   is ℑ -linear in  ,

   (D2) ∇  is   -linear in  

   (D3) ∇      ∇  for ∈ ℑ ,

   (D4)      ∇  ∇   and

   (D5)       ∇      ∇   for all 

             ∈ i 

   If ∇ satisfies axioms (D1)~(D3), then ∇  is called the covariant 

derivative of   with respect to   for the connection ∇ . If ∇ satisfies 
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axioms (D4)~ (D5), then ∇  is called the    of    

which is characterized by the Koszul formula([17]).

  A geodesic      →   is a smooth curve of   such that the tangent 

vector  ′  moves by parallel translation along    In order words,   is a 

geodesic if

∇  ′  ′     (geodesic equation).

  A pregeodesic is a smooth curve  which may be reparametrized to be a 

geodesic. Any parameter for which  is a geodesic is called an affine 

parameter. If   and   are two affine parameters for the same pregeodesic, 

then      for some constants  ∈ ℝ  A pregeodesic is said to be 

complete if for some affine parameterizion (hence for all affine 

parameterizations) the domain of the para metrization on is all of ℝ .

  The equation ∇  ′  ′    may be expressed as a system of linear 

differential equations. To this end, we let       ⋯     be local 

coordinates on   and let 
 

 


 ⋯  




 denote the natural basis 

with respect to these coordinates.

  The connection coefficients 
  of ∇  with respect to       ⋯       

are defined by

∇

 
 

   
  



 





  (connection coefficients).

 Using these coefficients, we may write the geodesic equation as the 
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following system 

   

 

 
   



 



 



 
     (geodesic equations in coordinates).

Definition2.2.  The curvature tensor of the connection ∇  is a linear 

transformation valued tensor   in om i  i  defined by :

      ∇ ∇  ∇ ∇  ∇     

   Thus, for  ∈ i  ,  

       ∇ ∇   ∇  ∇   ∇       

   It is well-known that        at   depends only upon the values of 

    and   at  ([21]).

   If ∈ 
    is a cotangent vector at   and      ∈     are 

tangent vectors at    then one defines

                            

for    and  smooth vector fields extending    and   respectively.

  The curvature tensor   is a     - tensor field which is given in local 

coordinates by 

  
        



   


 

⊗   ⊗   ⊗  
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where the curvature components    
 are given by

  
 


 





  



 
  



 
   

    
  

  

   Notice that 

                               

 and    
      

 

   Furthermore, if   ∑  
 

   ∑  

 

   ∑  

 


  and

   ∑    
 ,

then we have

       
       



  
     

 


and

          
        



  
   

   

  Consequently, one has     
 

 



 

     

 

Definition2.3.  From the curvature tensor  , one nonzero tensor (or its 

negative) is obtained by contraction. It is called the Ricci tensor. Its 
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components are    
  



  
   The Ricci tensor is  symmetric and  its 

contraction   
   



   
  is called the scalar curvature ([2], [3], [4]).

Definition2.4. Suppose   is a smooth, bounded domain in     and let 

   ×  →   be a Caratheodory function.

Let   ∈  
     be given. Consider the equation

∆         in  

      on  

∈        is a (weak) sub-solution if  ≤   on   and




∇∇   


    ≤  for all ∈  
∞    ≥  

  Similarly ∈        is a (weak) super-solution if in the above the 

reverse inequalities hold.

  We briefly recall some results on warped product manifolds. Complete 

details may be found in [3] or [21]. On a semi-Riemannian product manifold 

 ×    let   and   be the projections of  ×  onto   and    

respectively, and let     be a smooth function on  .
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Definition2.5.  The warped product manifold    ×   is the product 

manifold    ×    furnished with metric tensor

          ∘
   

where   and   are metric tensors of   and  , respectively. In order 

words, if   is tangent to   at       then

            
         

  Here   is called the base of   and   the fiber([21]).

  We denote the metric   by < , >.  In view of Remark 2.6. (1) and

Lemma 2.7., we may also denote the metric   by < , >. The metric   

will be denoted by (  ,  ).

Remark 2.6.  Some well known elementary properties of the warped 

product manifold    ×   are as follows :

   (1) For each ∈    the map          ×    is an isometry onto  

   (2) For each ∈    the map          ×   is a positive homothetic 

map onto   with homothetic factor 



   (3) For each      ∈    the horizontal leaf  ×   and the vertical 

fiber  ×   are orthogonal at     
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   (4) The horizontal leaf        ×   is a totally geodesic 

submanifold of   and the vertical fiber        ×   is a totally 

umbilic submanifold of  .

   (5) If   is an isometry of  , then  ×   is an isometry of  , and if 

  is an isometry of   such that    ∘  , then  ×   is an isometry of 

 .

   Recall that vectors tangent to leaves are called horizontal and vector 

tangent to fibers are called vertical. From now on, we will often use a 

natural identification

      ×    ≅        ×   ≅    ×    

   The decomposition of vectors into horizontal and vertical parts play a 

role in our proofs.  If   is a vector field on  , we define   at       

by setting                Then   and  related to the zero vector 

field on    Similarly, if   is a vector field of   ,   is defined by 

            

Lemma2.7.  If   is a smooth function on  , then the gradient of the lift 

 ∘   of   to   is the lift to   gradient of   on  .

Proof.  We must show that grad   ∘   is horizontal and related to  

grad    on  . If  is vertical tangent vector to    then
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⟨   ∘  ⟩     ∘      

since      Thus grad  ∘  is horizontal. If   is horizontal,

⟨  ∘   ⟩  ⟨  ∘    ∘  

 〈       〉

 
Hence at each point,   ∘                               □

    In view of Lemma 2.7, we simplify the notations by writing   for 

 ∘   and    for   ∘    For a covariant tensor   on  , its 

lift   to   is just its pullback      under the projection    →     

That is, if   is a        tensor, and if      ⋯    ∈          then 

   ⋯             ⋯      ∈     . Hence if    is vertical, 

than     on   For example, if   is a smooth function on , the lift to 

  of the Hessian of   is also denoted by    This agrees with the 

Hessian of the lift  ∘   generally only on horizontal vectors. For detailed 

computations, see Lemma 5.1 in [5].                                      □

  Now we recall the formula for the Ricci curvature tensor  on the 

warped product manifold    ×    We write    for the pullback by 

  of the Ricci curvature of   and similarly for    
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Lemma2.8. On a warped product manifold    ×   with  dim      

let     be horizontal and     vertical.

  Then

  (1)               

     

  (2)           

  (3)              ⟨   ⟩⌗

where ⌗  
∆

  
 

⟨     ⟩
 and ∆       is 

the Laplacian on  

Proof. See Corollary 7. 43. in [17].                                      □

  On the given warped product manifold    ×    we also write   for 

the pullback by  of the scalar curvature   of   and similarly for     

From now on, we denote    by ∇ 

Lemma2.9.  If   is the scalar curvature of    ×   with   dim    ,

then

(2.1)                   
 
 
 

∆ 
   

 
⟨∇ ∇⟩

where ∆ is the Laplacian on  
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Proof. For each     ∈    ×    let   be an orthonormal basis for 

    Then by the natural isomorphism          is an orthonormal 

set in          We can choose  on    such that       forms an 

orthonormal basis for          Then

  ⟨ 
 ⟩   

                

which implies that   forms an orthonormal basis for     By 

Lemma 2.8. (1) and (3), for each  and 

     
     

   
   





   
   

and

    
    

   
   

        

∆
  

 
⟨∇∇⟩



 
  Hence, for          

               


   

         




 
  
    



 
 
  

                        
 
 
 

∆
  

 
⟨∇  ∇⟩

which  is  a  nonlinear  partial  differential  equation  on   ×    for  

each ∈                                                                 □
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3. Main Results

  M.C. Leung ([16], [17], [18]), has studied the problem of scalar 

curvature functions on Riemannian warped product manifolds and obtained 

partial results about the existence and nonexistence of Riemannian warped 

metric with some prescribed scalar curvature function. He has studied the 

uniqueness of positive solution to the equation

    ∆ 
      

 

 



where ∆ 
 is the Laplacian operator for an dimensional Riemannian manifold 

       and     
 

. Equation (3.1) is derived from the conformal 

deformation of Riemannian metric ([1], [12], [13], [17], [18]).

  Similarly, let        be a compact Riemannian dimensional manifold. 

We consider the   dimensional Riemannian warped product manifold 

     ∞  ×    with the metric           where  is a 

positive function on   ∞  . Let        be a positive smooth function on 

  and let   have a scalar curvature equal to       If the conformal 

metric       
 



  has a prescribed function      as a scalar 

curvature, then it is well known that      satisfies equation
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□                             

 

 

  

where □ is the d'Alembertian for a Riemannian warped manifold 

    ∞  ×   

  In this paper, we study the nonexistence of a positive solution to 

equation (3.2). This paper contains the results of Riemannian version of 

[20].

  First of all, in order to prove the nonexistence of solutions of some 

partial differential equations, we need brief results about Young's inequality. 

The following proposition is well known(Theorem 1 in [20], p.48).

Proposition 3.1. Let  be a real-valued, continuous and strictly 

increasing function on       with       If       ∈       and 

∈      , then

    






     





    ≥  

where   is the inverse function of    Equality holds if and only if 
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 Corollary3.2.  Let   ≥   and         such that 

 


    

For any    

 


  


 







  ≥  

 Proof.  In Proposition 1, we choose        for    

  From now on, we let       be a compact Riemannian dimensional 

manifold with  ≥   and without boundary. The following proposition is 

also well known(Theorem 5.4, [5]).

Proposition 3.3.  Let      ∞  ×    have a Riemannian warped 

product metric             Then the Laplacian □   is given by

□   
 
 


′



 


∆  

where ∆   is the Laplacian on fiber manifold  

  By Proposition 3.3, equation (3.2) is changed into the following equation

   
    



′


   
 



∆       
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  If         is a positive function with one variable   and if 

         and         are also functions of one variable   

then equation (3.3) becomes

    ″ 
′

′            
 

 



where     
 

  and     
 

 

  The proof of the following theorem is similar to that of Theorem 2 in 

[12]. 

Theorem3.4.  Let   be a positive solution of equation (3.4). And let 

         satisfy the following condition :   ≥   and    ≤      

where   is positive constant. Assume that there exist positive constants  

and    such that 
′  ≤    for all       Then    is bounded from 

above.

  Proof. From equation (3.4) we have

   
 

  ′ ′
      

 

 



  Let  ∈  
∞     ∞    be a cut-off function. Multiplying both sides of 

equation (3.5) by      and then using integration by parts we obtain
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∞

  ′
 
  

′


∞

 
   



∞

    
 

  

 

                                      
Since   ≥   and    ≤      where   is a positive constant, equation 

(3.6) implies




∞

   ′ 
 

  
′  ≥ 



∞

 
  


  

 

  From the left side of the above equation, we have

  ′
 

 
  

 ′       ′′   
  ′    

 ′

′


Applying the Cauchy inequality, we get

     ′ ′      


 
 

 ′  





 

 ′ 

≤      
     ′    


      ′ 

and

      ′

′
  


 

 

′
 





 

′  

                 ≤  
  

′
   


    ′  

  Together with the above equations, we obtain
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∞



′
  

        


∞

 
     ′  

≥ 


∞

    


 

  




∞

     ′  

  Applying Corollary 2 and using the bound  
′ ≤     we have




∞

 
     



∞

   
   

                ≤ 
 



∞

     


 






  


∞

    


  



and




∞

     ′   


∞

 ′   
   

                    ≤ 
 



∞

  ′    


 






  


∞

   


  

 

  For large      we obtain

     ′


∞

 
  


  

 

 


∞


   ′   

                          ≤  ″


∞

   ′
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where  ′  ″  are positive constants. Let  ≡   on      ∪    ∞   with 

     and  ≡   on            ≥   on    ∞   and   ′ ≤     

From equation      we have

   

 ′
  

  


 

 

  

 
  

  

  ′  ≤  ″′

for all       where  ″′  is a constant independent on  

  Therefore  is bounded from above.                                    □

 Theorem 3.5.  Let      be a Riemannian manifold with scalar 

curvature equal to      Assume that there exist positive constants  and 

   such that 
′  ≤    for all       For a smooth function      

let        satisfy the following condition :  ≥      ≤     

where   is positive constant. Then equation      has no positive solution.

Proof.  If      is a positive solution of equation       then by 

Theorem 4   is bounded from above on   ∞   Then, by Omori-Yau 

maximum principle(c.f. [22]), there exists a sequence    such that 

lim
→∞
      ′  ≤ 


 and  ″    ≤ 


  Since  ∈    ∞           

there exist a number     and   such that
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for all      which is a contradiction to the fact that

 ″     

′  
′    ≤

  

for all      Therefore equation      has no positive solution.         □

  The following corollary is easily derived from the previous theorems.

Corollary3.6. Let          ∞  ×       be a Riemannian manifold 

with scalar curvature equal to      Assume that there exist positive 

constants   and    such that 
′  ≤    for all       For a smooth 

function      let         satisfy the following condition:   ≥    

   ≤     where   is positive constant. Then there does not exist a 

conformal deformation on   with scalar curvature    
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