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국  문  초  록

The Nonexistence of Conformal Deformations 

on Riemannian Warped Product Manifolds

김 잔 디

지도교수 : 정 윤 태

조선대학교 교육대학원 수학교육전공

  미분기하학에서 기본적인 문제 중의 하나는 미분다양체가 가지고 있는 곡률함수

에 관한 연구이다. 특히, 어떤 함수가 주어진 미분다양체의 곡률함수가 되는 문제

는 해석적인 방법을 적용하여 주어진 다양체 위에서의 편미분방정식의 해의 존재

성의 문제로 바꿀 수 있다. 

  Kazdan and Warner([13], [14], [15])의 결과에 의하면  위의 함수  가 

위의 Riemannian metric의 scalar curvature가 되는 세 가지 경우의 타입이 있다.

(A)  위의 함수  가 Riemannian metric의 scalar curvature이면 그 함수       

    가 적당한 점에서       일 때이다. 즉  위에 negative constant        

    scalar curvature를 갖는 Riemannian metric이 존재하는 경우이다.

(B)  위의 함수 가 Riemannian metric의 scalar curvature이면 그 함수       

    가 항등적으로  ≡   이거나 모든 점에서    인 경우이다. 즉,        

    위에서 zero scalar curvature를 갖는 Riemannian metric이 존재하는 경     

    우이다.

(C)  위의 어떤 라도 positive constant scalar curvature를 갖는 Riemannian 

metric이 존재하는 경우이다.



  본 논문에서는 엽다양체  이 (C)에 속하는 compact Riemannian manifold 일 

때, Riemannian warped product manifold인     ∞  ×  위에 함수 

  가 Riemannian warped product metric의 scalar curvature가 되도록 하

는 conformal deformation이 존재할 수 없음을 증명하였다.
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1. INTRODUCTION

  One of the basic problems in the differential geometry is to study the set 

of curvature function over a given manifold.

  The well-known problem in differential geometry is whether a given 

metric on a compact Riemannian manifold is necessarily pointwisely 

conformal to some metric with constant scalar curvature or not.

  In a recent study([10]), Jung and Kim have studied the problem of scalar 

curvature functions on Lorentzian warped product manifolds and obtained 

partial results about the existence and nonexistence of Lorentzian warped 

metric with some prescribed scalar curvature function. In this paper, we 

study also the existence and nonexistence of Riemannian warped metric 

with prescribed scalar curvature functions on some Riemannian warped 

product manifolds.

  By the results of Kazdan and Warner([13], [14], [15]), if   is a 

compact Riemannian  manifold without boundary ≥    then   belongs 

to one of the following three catagories :

  (A) A smooth function on   is the scalar curvature of some Riemannian 

metric on   if and only if the function is negative somewhere.

  (B) A smooth function on   is the scalar curvature of some Riemannian 

metric on   if and only if the function is either identically zero or strictly 

negative somewhere.

  (C) Any smooth function on   is the scalar curvature of some 
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Riemannian metric on  .

  This completely answers the question of which smooth functions are 

scalar curvatures of Riemannian metrics on a compact manifold  .

  In [13], [14] and [15] Kazdan and Warner also showed that there exists 

some obstruction of a Riemannian metric with positive scalar curvature (or 

zero scalar curvature) on a compact manifold.

  For noncompact Riemannian manifolds, many important works have been 

done on the question how to determine which smooth functions are scalar 

curvatures of complete Riemannian metrics on an open manifold. Results of 

Gromov and Lawson([9]) show that some open manifolds cannot carry 

complete Riemannian metrics of positive scalar curvature, for example, 

weakly enlargeable manifolds.

  Furthermore, they show that some open manifolds cannot even admit 

complete Riemannian metrics with scalar curvatures uniformly positive 

outside a compact set and with Ricci curvatures bounded([9], [16, p.322]).

  On the other hand, it is well known that each open manifold of dimension 

bigger than 2 admits a complete Riemannian metric of constant negative 

scalar curvature([6]). It follows from the results of Aviles and McOwen([1]) 

that any bounded negative function on an open manifold of dimension 

bigger than 2 is the scalar curvature of a complete Riemannian metric.

  In [16] and [17], the author considered the scalar curvature of some 

Riemannian warped product and its conformal deformation of warped 

product metric.

  In this paper, when   is a compact Riemannian manifold, we consider 
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the nonexistence of warping functions on a warped product manifold 

   ∞  ×   with specific scalar curvatures, where is a positive 

constant. That is, it is shown that if the fiber manifold   belongs to class 

(C) then   does not admit a Riemannian metric with some positive scalar 

curvature near the end outside a compact set.
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2. PRELIMINARIES

  First of all, in order to induce a partial differential equation, we need 

some definitions of connections, curvatures and some results about warped 

product manifolds.

Definition 2.1.  Let i  denote the set of all smooth vector fields 

defined on    and let ℑ  denote the ring of all smooth real-valued 

functions on  . A connection ∇  on a smooth manifold   is a function

∇  i × i → i

such that

   (D1) ∇   is ℑ -linear in  ,

   (D2) ∇  is   -linear in  

   (D3) ∇      ∇  for ∈ ℑ ,

   (D4)      ∇  ∇   and

   (D5)       ∇      ∇   for all 

             ∈ i 

   If ∇ satisfies axioms (D1)~(D3), then ∇  is called the covariant 

derivative of   with respect to   for the connection ∇ . If ∇ satisfies 
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axioms (D4)~ (D5), then ∇  is called the    of    

which is characterized by the Koszul formula([17]).

  A geodesic      →   is a smooth curve of   such that the tangent 

vector  ′  moves by parallel translation along    In order words,   is a 

geodesic if

∇  ′  ′     (geodesic equation).

  A pregeodesic is a smooth curve  which may be reparametrized to be a 

geodesic. Any parameter for which  is a geodesic is called an affine 

parameter. If   and   are two affine parameters for the same pregeodesic, 

then      for some constants  ∈ ℝ  A pregeodesic is said to be 

complete if for some affine parameterizion (hence for all affine 

parameterizations) the domain of the para metrization on is all of ℝ .

  The equation ∇  ′  ′    may be expressed as a system of linear 

differential equations. To this end, we let       ⋯     be local 

coordinates on   and let 
 

 


 ⋯  




 denote the natural basis 

with respect to these coordinates.

  The connection coefficients 
  of ∇  with respect to       ⋯       

are defined by

∇

 
 

   
  



 





  (connection coefficients).

 Using these coefficients, we may write the geodesic equation as the 
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following system 

   

 

 
   



 



 



 
     (geodesic equations in coordinates).

Definition2.2.  The curvature tensor of the connection ∇  is a linear 

transformation valued tensor   in om i  i  defined by :

      ∇ ∇  ∇ ∇  ∇     

   Thus, for  ∈ i  ,  

       ∇ ∇   ∇  ∇   ∇       

   It is well-known that        at   depends only upon the values of 

    and   at  ([21]).

   If ∈ 
    is a cotangent vector at   and      ∈     are 

tangent vectors at    then one defines

                            

for    and  smooth vector fields extending    and   respectively.

  The curvature tensor   is a     - tensor field which is given in local 

coordinates by 

  
        



   


 

⊗   ⊗   ⊗  



- 7 -

where the curvature components    
 are given by

  
 


 





  



 
  



 
   

    
  

  

   Notice that 

                               

 and    
      

 

   Furthermore, if   ∑  
 

   ∑  

 

   ∑  

 


  and

   ∑    
 ,

then we have

       
       



  
     

 


and

          
        



  
   

   

  Consequently, one has     
 

 



 

     

 

Definition2.3.  From the curvature tensor  , one nonzero tensor (or its 

negative) is obtained by contraction. It is called the Ricci tensor. Its 
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components are    
  



  
   The Ricci tensor is  symmetric and  its 

contraction   
   



   
  is called the scalar curvature ([2], [3], [4]).

Definition2.4. Suppose   is a smooth, bounded domain in     and let 

   ×  →   be a Caratheodory function.

Let   ∈  
     be given. Consider the equation

∆         in  

      on  

∈        is a (weak) sub-solution if  ≤   on   and




∇∇   


    ≤  for all ∈  
∞    ≥  

  Similarly ∈        is a (weak) super-solution if in the above the 

reverse inequalities hold.

  We briefly recall some results on warped product manifolds. Complete 

details may be found in [3] or [21]. On a semi-Riemannian product manifold 

 ×    let   and   be the projections of  ×  onto   and    

respectively, and let     be a smooth function on  .
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Definition2.5.  The warped product manifold    ×   is the product 

manifold    ×    furnished with metric tensor

          ∘
   

where   and   are metric tensors of   and  , respectively. In order 

words, if   is tangent to   at       then

            
         

  Here   is called the base of   and   the fiber([21]).

  We denote the metric   by < , >.  In view of Remark 2.6. (1) and

Lemma 2.7., we may also denote the metric   by < , >. The metric   

will be denoted by (  ,  ).

Remark 2.6.  Some well known elementary properties of the warped 

product manifold    ×   are as follows :

   (1) For each ∈    the map          ×    is an isometry onto  

   (2) For each ∈    the map          ×   is a positive homothetic 

map onto   with homothetic factor 



   (3) For each      ∈    the horizontal leaf  ×   and the vertical 

fiber  ×   are orthogonal at     
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   (4) The horizontal leaf        ×   is a totally geodesic 

submanifold of   and the vertical fiber        ×   is a totally 

umbilic submanifold of  .

   (5) If   is an isometry of  , then  ×   is an isometry of  , and if 

  is an isometry of   such that    ∘  , then  ×   is an isometry of 

 .

   Recall that vectors tangent to leaves are called horizontal and vector 

tangent to fibers are called vertical. From now on, we will often use a 

natural identification

      ×    ≅        ×   ≅    ×    

   The decomposition of vectors into horizontal and vertical parts play a 

role in our proofs.  If   is a vector field on  , we define   at       

by setting                Then   and  related to the zero vector 

field on    Similarly, if   is a vector field of   ,   is defined by 

            

Lemma2.7.  If   is a smooth function on  , then the gradient of the lift 

 ∘   of   to   is the lift to   gradient of   on  .

Proof.  We must show that grad   ∘   is horizontal and related to  

grad    on  . If  is vertical tangent vector to    then
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⟨   ∘  ⟩     ∘      

since      Thus grad  ∘  is horizontal. If   is horizontal,

⟨  ∘   ⟩  ⟨  ∘    ∘  

 〈       〉

 
Hence at each point,   ∘                               □

    In view of Lemma 2.7, we simplify the notations by writing   for 

 ∘   and    for   ∘    For a covariant tensor   on  , its 

lift   to   is just its pullback      under the projection    →     

That is, if   is a        tensor, and if      ⋯    ∈          then 

   ⋯             ⋯      ∈     . Hence if    is vertical, 

than     on   For example, if   is a smooth function on , the lift to 

  of the Hessian of   is also denoted by    This agrees with the 

Hessian of the lift  ∘   generally only on horizontal vectors. For detailed 

computations, see Lemma 5.1 in [5].                                      □

  Now we recall the formula for the Ricci curvature tensor  on the 

warped product manifold    ×    We write    for the pullback by 

  of the Ricci curvature of   and similarly for    
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Lemma2.8. On a warped product manifold    ×   with  dim      

let     be horizontal and     vertical.

  Then

  (1)               

     

  (2)           

  (3)              ⟨   ⟩⌗

where ⌗  
∆

  
 

⟨     ⟩
 and ∆       is 

the Laplacian on  

Proof. See Corollary 7. 43. in [17].                                      □

  On the given warped product manifold    ×    we also write   for 

the pullback by  of the scalar curvature   of   and similarly for     

From now on, we denote    by ∇ 

Lemma2.9.  If   is the scalar curvature of    ×   with   dim    ,

then

(2.1)                   
 
 
 

∆ 
   

 
⟨∇ ∇⟩

where ∆ is the Laplacian on  
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Proof. For each     ∈    ×    let   be an orthonormal basis for 

    Then by the natural isomorphism          is an orthonormal 

set in          We can choose  on    such that       forms an 

orthonormal basis for          Then

  ⟨ 
 ⟩   

                

which implies that   forms an orthonormal basis for     By 

Lemma 2.8. (1) and (3), for each  and 

     
     

   
   





   
   

and

    
    

   
   

        

∆
  

 
⟨∇∇⟩



 
  Hence, for          

               


   

         




 
  
    



 
 
  

                        
 
 
 

∆
  

 
⟨∇  ∇⟩

which  is  a  nonlinear  partial  differential  equation  on   ×    for  

each ∈                                                                 □
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3. Main Results

  M.C. Leung ([16], [17], [18]), has studied the problem of scalar 

curvature functions on Riemannian warped product manifolds and obtained 

partial results about the existence and nonexistence of Riemannian warped 

metric with some prescribed scalar curvature function. He has studied the 

uniqueness of positive solution to the equation

    ∆ 
      

 

 



where ∆ 
 is the Laplacian operator for an dimensional Riemannian manifold 

       and     
 

. Equation (3.1) is derived from the conformal 

deformation of Riemannian metric ([1], [12], [13], [17], [18]).

  Similarly, let        be a compact Riemannian dimensional manifold. 

We consider the   dimensional Riemannian warped product manifold 

     ∞  ×    with the metric           where  is a 

positive function on   ∞  . Let        be a positive smooth function on 

  and let   have a scalar curvature equal to       If the conformal 

metric       
 



  has a prescribed function      as a scalar 

curvature, then it is well known that      satisfies equation
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    


□                             

 

 

  

where □ is the d'Alembertian for a Riemannian warped manifold 

    ∞  ×   

  In this paper, we study the nonexistence of a positive solution to 

equation (3.2). This paper contains the results of Riemannian version of 

[20].

  First of all, in order to prove the nonexistence of solutions of some 

partial differential equations, we need brief results about Young's inequality. 

The following proposition is well known(Theorem 1 in [20], p.48).

Proposition 3.1. Let  be a real-valued, continuous and strictly 

increasing function on       with       If       ∈       and 

∈      , then

    






     





    ≥  

where   is the inverse function of    Equality holds if and only if 

  
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 Corollary3.2.  Let   ≥   and         such that 

 


    

For any    

 


  


 







  ≥  

 Proof.  In Proposition 1, we choose        for    

  From now on, we let       be a compact Riemannian dimensional 

manifold with  ≥   and without boundary. The following proposition is 

also well known(Theorem 5.4, [5]).

Proposition 3.3.  Let      ∞  ×    have a Riemannian warped 

product metric             Then the Laplacian □   is given by

□   
 
 


′



 


∆  

where ∆   is the Laplacian on fiber manifold  

  By Proposition 3.3, equation (3.2) is changed into the following equation

   
    



′


   
 



∆       

          

 
          

 
        

 

 

  
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  If         is a positive function with one variable   and if 

         and         are also functions of one variable   

then equation (3.3) becomes

    ″ 
′

′            
 

 



where     
 

  and     
 

 

  The proof of the following theorem is similar to that of Theorem 2 in 

[12]. 

Theorem3.4.  Let   be a positive solution of equation (3.4). And let 

         satisfy the following condition :   ≥   and    ≤      

where   is positive constant. Assume that there exist positive constants  

and    such that 
′  ≤    for all       Then    is bounded from 

above.

  Proof. From equation (3.4) we have

   
 

  ′ ′
      

 

 



  Let  ∈  
∞     ∞    be a cut-off function. Multiplying both sides of 

equation (3.5) by      and then using integration by parts we obtain
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    


∞

  ′
 
  

′


∞

 
   



∞

    
 

  

 

                                      
Since   ≥   and    ≤      where   is a positive constant, equation 

(3.6) implies




∞

   ′ 
 

  
′  ≥ 



∞

 
  


  

 

  From the left side of the above equation, we have

  ′
 

 
  

 ′       ′′   
  ′    

 ′

′


Applying the Cauchy inequality, we get

     ′ ′      


 
 

 ′  





 

 ′ 

≤      
     ′    


      ′ 

and

      ′

′
  


 

 

′
 





 

′  

                 ≤  
  

′
   


    ′  

  Together with the above equations, we obtain
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


∞



′
  

        


∞

 
     ′  

≥ 


∞

    


 

  




∞

     ′  

  Applying Corollary 2 and using the bound  
′ ≤     we have




∞

 
     



∞

   
   

                ≤ 
 



∞

     


 






  


∞

    


  



and




∞

     ′   


∞

 ′   
   

                    ≤ 
 



∞

  ′    


 






  


∞

   


  

 

  For large      we obtain

     ′


∞

 
  


  

 

 


∞


   ′   

                          ≤  ″


∞

   ′
  

                           
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where  ′  ″  are positive constants. Let  ≡   on      ∪    ∞   with 

     and  ≡   on            ≥   on    ∞   and   ′ ≤     

From equation      we have

   

 ′
  

  


 

 

  

 
  

  

  ′  ≤  ″′

for all       where  ″′  is a constant independent on  

  Therefore  is bounded from above.                                    □

 Theorem 3.5.  Let      be a Riemannian manifold with scalar 

curvature equal to      Assume that there exist positive constants  and 

   such that 
′  ≤    for all       For a smooth function      

let        satisfy the following condition :  ≥      ≤     

where   is positive constant. Then equation      has no positive solution.

Proof.  If      is a positive solution of equation       then by 

Theorem 4   is bounded from above on   ∞   Then, by Omori-Yau 

maximum principle(c.f. [22]), there exists a sequence    such that 

lim
→∞
      ′  ≤ 


 and  ″    ≤ 


  Since  ∈    ∞           

there exist a number     and   such that
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          
 

 

 

for all      which is a contradiction to the fact that

 ″     

′  
′    ≤

  

for all      Therefore equation      has no positive solution.         □

  The following corollary is easily derived from the previous theorems.

Corollary3.6. Let          ∞  ×       be a Riemannian manifold 

with scalar curvature equal to      Assume that there exist positive 

constants   and    such that 
′  ≤    for all       For a smooth 

function      let         satisfy the following condition:   ≥    

   ≤     where   is positive constant. Then there does not exist a 

conformal deformation on   with scalar curvature    
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