
 

 

저 시-동 조건 경허락 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

l 차적 저 물  성할 수 습니다.  

l  저 물  리 적  할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적  허락조건
 확하게 나타내어야 합니다.  

l 저 터  허가를  러한 조건들  적 지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

동 조건 경허락. 하가  저 물  개 , 형 또는 가공했  경
에는,  저 물과 동 한 허락조건하에서만 포할 수 습니다. 

http://creativecommons.org/licenses/by-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-sa/2.0/kr/


2013년 8월

학 사(수학 공)학 논문

Some Estimate for Bochner-Riesz

 type multipliers

학  학원

수학 공

채 원 재

[UCI]I804:24011-200000263929





Some Estimate for Bochner-Riesz

 type multipliers

어떤 Bochner-Riesz 류  승수계산

2013년 8월

학  학원

수학 공

채 원 재



Some Estimates for Bochner-Riesz 

type multipliers

지도 수 홍  금

 논문  학 사(수학 )학  청 논문 로 함.

2013년 4월

학  학원

수학 공

채 원 재



채원재  학 사학  논문  준함.

심사 원  학  수      태    

  심사 원 학  수    김 남     

  심사 원 학  수    홍  금    

2013년 6월

학  학원



- i -

ABSTRACT

1. Introduction --------------------------------- 1

2. Preliminaries ----------------------- 3

 2-1.   and Weak   spaces --------------------- 9

 2-2. The Marcinkiewicz Interpolation  

        Theorem (Real method)
-------------13

3. Calderon-Zygmund decomposition ---------15

4. Proof of Theorems --------------------19

  Proof of theorem 1.1 -----------------20

  Proof of theorem 1.2 ---------------- 24

5. Appendix ---------------- 29

References --------------- 37

CONTENT



- ii -

ABSTRACT

어떤 Bochner-Riesz 류  승수계산

                                                     채 원 재

                           지도 수 : 홍  금

                           학  학원 수학 공

 우리는  논문에  Bochner-Riesz type 승수 즉,  콘 승수를 수반한 합

곱 연산 에 하여   계  계측한다. 첫째로  승수를 수반한 합 곱 연산

  가  


고 ≤≤∞   때,  →  계  재 증  

한다.  번째로 콘 승수를 수반한 합 곱 연산   가  


고  ∞ 

 때,  →  계  증 한다.
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1. Introduction

1.1  We define Schwartz space  consists of all indefinitely 

differentiable functions  on   such that

 
sup

∈ 
 


 ∞  ,

for every multi-index  and . In other words,  and all its derivatives are 

required to be rapidly decreasing.

Example 1. An example of a Schwartz function in  is the 

-dimensional Gaussian given by 


. 

The Fourier transform of a Schwartz function  is defined by

(1.1)               

⋅ ,  for ∈.                     

      

Example 2. Let  and  be the functions defined by

    i f ≤
 otherwise 

    and       i f ≤
 otherwise 

Although  is not continuous, the integral defining its Fourier transform still 

makes sense.

Show that 

 

sin
  and     

sin 


with the understanding that    and   .

We also define  inverse Fourier transform by

(1.2)                       


⋅ .                         
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Example 3. The inverse Fourier transform of 


 in   is as follows :

       
 

⋅   









⋅









⋅

                           








⋅






                            









                            


.

Let ≥. For ∈ we consider the convolution operators

                     

    ′

 ′,    ′∈ .

and for ∈

                    

  

′ 




′ ,     ′ ∈
×,

where 
   for   , and 

   otherwise.

In this thesis, we study  -boundedness for convolution operators   and 

 , when  ∞ and 


 for ≥.

The main results are as follows : 

Theorem 1.1 Let  . The convolution operator   is bounded from 

  to   for ≤ ≤∞  and  


. 

Theorem 1.2 Let  . The convolution operator   is bounded from 

  to   for  ∞  and  


.

Remark . If ≤


, then the convolution operator   and   is 

unbounded on   and  , respectively.
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2. Preliminaries 

In this section we study some properties of a Schwartz function, Fourier, 

inverse Fourier transform, and convolution (see [SS]).

Proposition 2.1 Let ∈.

(1) →⋅  whenever  ∈.

(2) 
⋅→   whenever  ∈.

(3) → 
   whenever   .

(4) 


→ .

(5)  → 


 .

(6) →  whenever  is a rotation.

Proof.  Property (1) is an immediate consequence of the translation 

invariance of the integral. Property (2) follows from the definition (1.1),

 

  


 .

Also, if  , then 




 establishes property (3).

Integrating by parts gives






′⋅   

 ⋅





⋅ .

If we repeat this process  times, and let  go to infinity, we get (4).

To verify the last property, simply change variables  in the integral. 

Then, recall that det, and ⋅ ⋅, because  is a rotation.  
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Corollary 2.2 The Fourier transform maps  to itself.

Remark. (i) As an example we consider Gaussian 


. Also, we observe 

that when  , the radial functions are precisely the even functions, that 

is, those for which  .

(ii) As for the Fourier transform of radial  function, we refer the appendix 

to the interested readers. 

Definition 2.3 Given two integrable functions  and  on  , we define 

their convolution  ∗  by

∗ 

.

The above integral makes sense for each , since the product of two 

integrable functions is again integrable. 

Proposition 2.4 Suppose that , , and  are -periodic integrable 

functions.  Then the following holds : 

(1)  ∗   ∗  ∗ .

(2) ∗   ∗   ∗  for any ∈.

(3)  ∗    ∗ 

(4)  ∗ ∗  ∗ ∗ .

(5)  ∗  is continuous.

(6) ∗.

proof. Since we have

                    ∗ 

                       

                             




          

                              ∗  ∗ ,
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(1) follows at once. As for (2), we have

                      ∗  

                                      ( ∗  )

                               
                                ∗ .

We turn to (3).  If  is continuous and periodic, then 

                    

 


    for any ∈,

because of a change of variables  by , followed by a translation from  

to . Then, if one takes  , we obtain the desired.

In order to obtain (4), we consider 

                    ∗ ∗ 

 ∗ 

                              



         

                              





                              

 ∗ 

                               ∗  ∗ .

 We proceed to (5). We show that if  and  are continuous, then ∗ is 

continuous. First, we may write

∗   ∗  

 




  

Since  is continuous it must be uniformly continuous on any closed and 

bounded interval. But  is also periodic, so it must be uniformly continuous 

on all of ; given   there exists   so that     whenever 

   . Then,     implies    for any , hence
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        ∗   ∗≤ 
 





  
                               ≤ 

 




  

                               ≤ 

 






                               ≤ 


,

where  is chosen so that ≤  for all . As a result, we conclude 

that ∗ is continuous, and the proposition is proved, at least when  and 

 are continuous.

Finally, we show (6). The Fourier transform of ∗ is 

                 ∗

 ∗ ⋅

                         



⋅                  

                         

⋅


⋅

                         

⋅


⋅

                               .  

We finish the proof of Proposition 3.1.                                   □

Definition 2.5 A family of kernels   
∞  on the circle is said to be a 

family of good kernels if it satisfies the following properties :

(1) For all ≥,



 




  .

(2) There exists  such that for all ≥,






≤ .
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(3) For every  ,


≤ ≤ 

→ ,  as →∞

The following theorem is called Plancherel Theorem.

Theorem 2.6 Suppose ∈. Then




⋅

Moreover









.

Proof.  Step1. The Fourier transform of 


 is 


. To prove this, 

notice that the properties of the exponential functions imply that 


 




⋯




  and   
⋯

.

Thus the integrand in the Fourier transform is a product of  functions, 

each depending on the variable  (≤≤) only. Thus the assertion 

follows by writing the integral over  as a series of repeated integrals, 

each taken over . 

Step2. The family  
 








 is a family of good kernels in . By 

this we mean that

(1) 

 ,

(2) 

 ≤  (in fact ≥),

(3) For every  , 
≥ 
 →  as  → .

The proofs of these assertions are almost identical to the case  . 

As a result
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 →  as  → 

when  is a Schwartz function, or more generally when  is bounded and 

continuous at the origin.

Step3.  The multiplication formula



  





holds whenever  and  are in . The proof requires the evaluation of the 

integral of 
⋅over ∈ × as a repeated integral, 

with each separate integration taken over .

 The Fourier inversion is then a simple consequence of the multiplication 

formula and the family of good kernels . It also follows that the Fourier 

transform  is a bijective map of  to itself, whose inverse is 



⋅

Step4. Next we turn to the convolution, defined by

 ∗ 

,   ∈

We have that  ∈,  ∗    ∗ , and ∗. The 

argument is similar to that in one-dimension. The calculation of the Fourier 

transform of  ∗ involves an integration of ⋅(over 

 ×) expressed as a repeated integral.

This completes the proof of Theorem 2.5.                                □

Example 2.7  This example is the application of Theorem 2.5, which shows 

that Plancherel Theorem holds for -dimensional Gaussian 


.
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Theorem 2.8 Chebyshev's Inequality.  If ∈   ∞, then for any 

, 

   ≤ 
∥∥ 



.

proof. Let     . Then

                  ∥∥
  ≥ 



≥ 


  .           □

2.1   and Weak   spaces .  In this section we consider the 

definitions of   and Weak   spaces and study some properties. 

Let  be a measure space and let  be a positive, not necessarily finite, 

measure on . For  ∞,   will denote the set of all 

complex-valued -measurable functions on  whose modulus to the th 

power is integrable. ∞ will be the set of all complex-valued 

-measurable functions  on  such that for some , the set 

  has -measure zero. Two functions in   will be 

considered equal if they are equal -almost everywhere. The notation 

  will be reserved for the space   ⋅, where ⋅ denotes 

-dimensional Lebesgue measure. Lebesgue measure on  will also be 

denoted by . Within context and in the lack of ambiguity,   will 

simply be  . The space   equipped with counting measure will be 

denoted by  or simply .

Definition 2.9 For  ∞, we define the   quasi-norm of a function  

by

(2.2.1)                  ∥∥   
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and for  ∞ by

(2.2.2)           ∥∥
∞

 inf       .

 It is well known that Minkowski's (or the triangle) inequality

(2.2.3)            ∥∥
 

≤∥∥
 

∥∥


holds for all ,  in     , whenever ≤≤∞. Since in addition 

∥∥  implies that   ae, the   spaces are normed linear 

spaces or ≤≤∞. For  , inequality (2.2.3) is reversed when 

  ≥. However, the following substitute of (2.2.3) holds:

(2.2.4)          ∥∥≤




∥∥∥∥ 

and thus the spaces   are quasi-normed linear spaces. 

 

Definition 2.10 For  a measurable function on , the distribution function 

of  is the function  defined on ∞ as follows:

∈  .

Example 2.11 The simple functions are finite linear combinations of 

characteristic functions of sets of finite measure 

  
  




,

where the sets  are pairwise disjoint and   ⋯    . If ≥ , 

then clearly  . However if    then    precisely 

when ∈ and, in general,

if ≤  , then    precisely when ∈ ∪⋯∪.
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Setting

  
 





we have

  
  



,

where  . 

 We now state a few simple facts about the distribution function . We 

have

Proposition 2.12 Let  and  be measurable functions on . Then for all 

    we have

(1) ≤   implies that ≤ 

(2)  


,  for all ∈ \ 

(3)  ≤  

(4) ≤  .

Proposition 2.13 For  in  ,  ∞, we have

∥∥ 
  



∞

.

proof. We use Fubini's theorem to obtain the second equality below 

          


∞

   


∞



  

                            






 



- 12 -

                            




                            ∥∥

 .

  This completes the proof.                                            □

Definition 2.14 For  ∞, the space weak   is defined as the set 

of all -measurable functions  such that

∥∥ ∞ inf    ≤ 
 

for all  

                       sup  


    

is finite. The space weak-∞ is by definition ∞.

The weak   spaces will also be denoted by  ∞. Two functions in 

 ∞ will be considered equal if they are equal -a.e.. The notation 

 ∞ is reserved for  ∞ ⋅. Using Proposition 2.12 (2), we can 

easily show that

∥∥∞ ∥∥∞,

for any complex nonzero constant . The analogue of Proposition 2.12 is 

∥∥ ∞≤∥∥∞∥∥ ∞,

where   max 




 a fact that follows from Proposition 2.12 (3) with 

   


. 

We also have that 

∥∥
 ∞
  ⇒     -a.e.

So that,  ∞ is a quasi-normed linear space for  ∞.
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  The weak   spaces are larger than the usual   spaces. We have the 

following:

Proposition 2.15 For any  ∞, and any  in   we have 

∥∥∞≤∥∥ ; hence  ⊆ ∞.

proof.  This is just a trivial consequence of Chebychev's inquality:

(2.2.5)               ≤ 
  

.

As the integral in (2.2.5) is at most ∥∥
 
 , using sup  



   
we obtain that

                            ∥∥∞≤∥∥.                            □

Remark. The inclusion  ⊆ ∞ is strict. For example, on  with the 

usual Lebesgue measure, let  
 



. Obviously,  is not in   but 

 is in  ∞ and we may check easily that ∥∥∞ is the measure 

of the unit ball of . 

2.2 The Marcinkiewicz Interpolation Theorem (Real method). 

 Let  be an operator defined on a linear subspace of the space of all 

complex-valued measurable functions on a measure space  and taking 

values in the set of all complex-valued measurable functions on a measure 

space .

Definition 2.16 

(1)  is called linear if for all ,  and all ∈, we have

    and   .

(2)  is called sublinear if for all ,  and all ∈, we have
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 ≤    and   .

(3)  is called quasi-linear if for all ,  and all ∈, we have

 ≤   and   

for some constant . Sublinearity is a special case of quasi-linearity.

 We begin with our first interpolation theorem.

Theorem 2.17 Let  and  be two measure space and let 

   ≤∞. Let  be a sublinear operator defined on the space 




 and taking values in the space of measurable functions on . 

Assume that there exist two positive constants  and  such that 

∥∥

∞

≤∥∥      for all ∈
,

∥∥

∞

≤∥∥      for all ∈
.

Then for all   and for all  in   we have the estimate

(2.3.1)                 ∥∥ ≤∥∥ ,

where 

                     



 


















 










 






 



.

Proof. See p.32-35 in [LG].                                             □
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3. Calderon-Zygmund decomposition

 To prove that singular integrals are of weak type  we will need to 

introduce the Calderon-Zygmund decomposition. This is a powerful stopping 

time construction.

Theorem 3.1 Let ∈  and . Then there exist functions  and  

on  such that

(1)  

(2) ∥∥

≤∥∥ and ∥∥∞≤

.

(3) 


, where each  is supported in a dyadic cube . Furthermore, 

the cubes  and  have disjoint interiors when .

(4) 


  .

(5) ∥∥≤
 .

(6) 

≤ 

∥∥.

Remark. This is called the Calderon-Zygmund decomposition of  at height 

. The function  is called the good function of the decomposition since it 

is both integrable and bounded; hence the letter . The function  is called 

the bad function since it contains the singular part of  (hence the letter 

), but it is carefully chosen to have mean value zero. It follows from (5) 

and (6) that the bad function  is integrable and

∥∥

≤



∥∥ ≤



≤

∥∥

By (2) the good function is integrable and bounded; hence it is in all the 

  spaces for ≤≤∞. More specifically, we have the following estimate:
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∥∥

≤∥∥

 




∥∥
∞

 



≤∥∥






 



 
′




′



∥∥





Proof. Recall that a dyadic cube in  is a cube of the form 

                       
× ⋯ ×

,

where , ⋯ are integers. Decompose  into a mesh of equal size 

disjoint dyadic cubes so that 

 ≥ 


∥∥ 

for every cube  in the mesh. Subdivide each cube in the mesh into  

congruent cubes by bisecting each of its sides. We now have a new mesh 

of dyadic cubes. Select a cube in the new mesh if 

 
 



 .

 Let  be the set of all selected cubes. Now subdivide each nonselected 

cube into  congruent subcubes by bisecting each side ad before. Then 

select one of these new cubes if  
 



  holds. Put all selected 

cubes of this generation into the set . Repeat this procedure indefinitely.

 The set of all selected cubes  is exactly the set of the cubes  

proclaimed in the proposition. Let us observe that these cubes are disjoint, 

for otherwise some  would be a proper subset of some , which is 

impossible since the selected cube  was never subdivided. Now define

  
 



 ,
 



 and   .

 For a selected cube  there exists a unique nonselected cube  ′ with 
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twice its side length that contains . Let us call this cube the parent of 

. Since its parent  ′ was not selected, we have  ′
 ′

≤. Then 


 



    ′
 

 ′

≤ .

Consequently, 




 ≤ 


  
 



 ≤  ≤ 
 ,

which proves (5). To prove (6), simply observe that



≤ 







  


∪

 ≤ 


∥∥.

Next we need to obtain the estimates on . Write   ∪∪, where  

is a closed set. Since    on  and   




 , we have

(3.1)                    










 on 


 



 


on 

On the cube ,  is equal to the constant 




 , and this is 

bounded by .

It suffices to show that  is bounded on the set . Given ∈, we have 

that  does not belong to any selected cube. Therefore, there exists a 

sequence of cubes   whose closures contain  and whose side lengths 

tend to zero as →∞. Since the cubes   were never selected, we have

 
 

 
 ≤ 

 
 
 ≤ .

The balls are replaced with cubes, we conclude that
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  lim
→∞
 
 

 
 ≤ 

whenever ∈ . But since   a.e. on , if follows that  is bounded by 

 on . Finally, it follows (3.1) that ∥∥ ≤∥∥.                   □
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 4. Proof of Theorems 1.1 and 1.2

For the kernel estimates, we shall use the idea of Muller and Seeger in 

[MS]. They used dyadic decomposition of Bessel function to prove local 

smoothing conjecture for spherically symmetric initial data including 

endpoint results. 

4.1 Dyadic decomposition of Bessel function. Let ∈
∞ be supported in 

 


 and equal to 1 in  





. For     ⋯ we set

  
 i f 

  i f 

and


  







 



.

For a positive integer  we define













 




i f 


 




 


 

 



 i f 

Then by integration by parts if  we have

(4.0)                 
  






.                  

We note that the integrand in (4.1) has the following upper bound:

 ≤ 
 

 



and that  vanishes unless either ≈  for , or 

≤  for  so if  is in the support of  then either 

  ≤  or   ≤  . (see [MS, p.5])



- 20 -

Consider the family of Fourier multipliers 

  
 ,    ∈

with   when . Then define convolution operators   by 


  .

 Let ∈
∞ be supported in 


 such that 

≥

  for   . 

Fix .

We shall need point estimates for the kernels of 


  





where 

(4.1)             
  


′ ′

 .

We write 
≥


   and 

≥


  .

 We let  and define   By Bochner's formula (see 

Appendix) and change of variables, we have

(4.2)          









 
.

Here  is the Bessel function of order  


 defined by 

(4.3)                 







 





where 













. 

 For the following lemma, we use dyadic decompositions of Bessel 

functions (see Appendix) following the article by Muller and Seeger [MS].
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Lemma 4.2 Suppose that . Then for each  there is an estimate as 

follows : 

(4.4)              ≤ 
   min.

Therefore,

(4.5)                ≤ 
≥

≤  


.

Proof. Fix  and    in subsection 4.1. We may decompose the kernel 

(4.2) as 

 





where

(4.6)      
  













 .

 Formula (4.6) and straightforward computation imply that 

(4.7)     
   







 




 .

We integrate by parts with respect to  and in (4,7) and by Fubini's 

theorem

(4.8)        
 ≤  










  


                          × 
 


.
Note that

(4.9)                ≤ 
 .

 Moreover,  vanishes unless either ≈  for , or 

≤  for . Hence if  is in the support of  then either 
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≤ or ≤.

Then using the estimates (4.9), the integrand of (4.8) is bounded by

                     
 






                   ≤  


.

If we integrate over the support of ⊗ for ≥ in (4.8), 

we gain an additional factor of . Since , we may 

sum over  and the desired estimates (4.4) follow from (4.8). Hence we 

obtain

  ≤ 


 
  ,

and thus (4.5) is established.

Proof of Theorem 1.   

For 


 we use Lemma 4.2 to have 

                      ∥ ∥ 

 

                                  

 ∗

                                  ≤ ∥∥

 




                                  ≤ ∥∥.

 For  -bound we apply Plancherel Theorem in Section 2 to obtain 

∥ ∥
 

 ∥ ∥
.

Since the multiplier   
  is bounded by 1 for  , we have
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                          ∥ ∥


 ∥∥


                                     ≤∥∥


 ∥∥
 

.

 We now interpolate with real method between the results on   for 




 and on   for  . By Marcinkiewicz Theorem (see Section 

2.3) with 


 





 and   , we obtain the  -bound of   for 

≤≤ and 


.

For  ∞, we will prove the duality between   and  , 


 


 , and 

the fact that the theorem is proved for      . Observe the following 

; if a function  is locally integrable and if sup     ∞, where 

the sup is taken over all continuous  with compact support which verify 

∥∥≤, then ∈  and ∥∥ .  We take ∈ ∩     ∞, 

and  of the type described above. Since  ∈ , and because of our 

choice of  and , the double integral





 

converges absolutely ; its value is therefore

 



.

 But the theorem is valid for   (with the kernel   instead of 

 , but with the same constant ). Therefore 

  

belongs to  , and its   norm is majorized by ∥∥ . Holder's 

inequality then shows that 
   ≤ ∥∥, and taking the 
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supremum of all the 's indicated above gives the result that 

                ∥ ∥
 ≤ ∥∥ ,       ∞.              □

  We consider for  

  
′ 





,    ′  .

Using inverse Fourier transform, we denote by     ∗ where

   





′ 


 


.

Let ∈ 
∞ be supported in 


 such that 

 ∞

∞

    for   .

If we write the kernel 
  






′ 




 



, we notice 

that

  
 ∞

∞


.

From the kernel estimates in [SH], we have for any 

            
 ∇



                  ≤  ′

 




′≤ 

                      ′

  ′




′≥ .

Remark. The key tool in the proof of the weak type  estimate is the 

Calderon-Zygmund decomposition of   functions.
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Proposition 4.3 If 


, then for 

   ≤ ∥∥ ,

where   denotes the Lebesgue measure of the set ⊂ .

Proof.  From the Calderon-Zygmund decomposition we assume that 

 , where  
 

∞

. We now have

    ⊂     
 ∪    

 
                           ≐∪.

 Since   a.e., we use the   boundedness of   and 

Chebyshev's inequality to get 

  ≤ ∥∥ 
 ≤ ∥∥ . 

Let  be certain non-overlapping cubes and 
 be the cubes with the 

same center as  but twice the sidelength. If   ∪
, then 

 ≤ ∥∥


.

 So, ∈     
 ≤ ∥∥.

It remains to show that 

∉    
 ≤ ∥∥.

Since  is translation invariant, we may assume that 

  max ≤.

We now consider


∉




∗ 
∈



∉
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                               ≤ ∥∥ max   

.

By using the kernel estimates and 


, we have

      
 max  





           ≤
′≤  


′







′

           ≤
′  

  ′ ≤ 
′


′             

           
′  

  ′  
′


  ′




′

           ≤


 
.

On the other hand, since , it follows that


∗





.

The mean value theorem, and 


 to have 

              
∉ 




∗

                  
∈



∈







                  ≤
∈



∈


∇



                  ≤ ∥∥


∇



                  ≤ ∥∥.

Putting (4.5) and (4.6) together and applying the triangle inequality gives
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∉


 ∗  ≤ ∥∥ 

≥ 


 

 
 



                             ≤ ∥∥ .

From  
 

∞

, it follows that

         ∉    
  ≤ 

 

∞


∉


 ∗ 

         ≤ 
 

∞

∥∥

                                ≤ ∥∥.

From (4.4) and (4.7), we have 

 ≤ ∥∥,

and thus (4.3) and (4.8) give (4.2).                                       □

Lemma 4.4 For  , we have 

∥ ∥
 

≤∥∥.

Proof. By Plancherel Theorem (see Section 2), we note that

∥ ∥
 

 ∥ ∥


.

Since the multiplier ′ 
′ 





 is bounded by 1, we have     

       

                     ∥ ∥


 ∥∥
 

                                  ≤∥∥
 

 ∥∥
 

.            □
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We turn to prove Theorem 2.

Proof of Theorem 2.  Applying Lemmas 1 and 2, we interpolate with real 

method between the results on   for   and on  ∞ for 




. By Marcinkiewicz interpolation Theorem (see Section 2.3) with 




 





 and  , we obtain the   bound of   for  ≤ 

and 


.  Likewise Theorem 1 we use duality to have the  -bound 

for  ∞. Therefore, we have the desired bound of   for 


 

and  ∞.                                                           □  

                                                                           

Remark. When ∞,   is unbounded on ∞, since the kernel of   

is not integrable, when 


.
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5. Appendix

In this section we study definition and properties of Bessel functions.

Definition A.1 We shall only consider Bessel functions  of real order 

 


(although some of the results can be extended easily to complex 

numbers  with real part bigger than 


).

 We will define the Bessel function  of order  by its Poisson 

representation formula























,

where 


 and ∈C. Among all equipment definitions of Bessel 

functions, the preceding definition will be the most useful to us. Observe 

that for  real,  is also a real number.

Proposition A.2 Let us summarize a few properties of Bessel functions.

(1) We have the following recurrence formula:




  

,  


.

(2) We also have the companion recurrence formula:




  

,  


.

(3)  satisfies the differential equation

″′  .

(4) If ∈, then  can be written in the form 
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sin   

 




cossin.

This was taken by Bessel as the definition of these functions for  integer.

(5) For 


 and  real we have the following identity:

  










  

∞



 







.

Proof. We first verify property (1). We have




 









 





 





               
 







 














 





                          ,

where we integrated by parts and we used the fact that   .

Property (2) can be proved similarly.

 Property (3) follows from a direct calculation. A calculation using the 

definition of the Bessel function gives that the left-hand side of (3) is 

equal to 










 




 


 

 



,

which in turn is equal to











 



  .
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Property (4) can be derived directly from (1). Let

  

 




 sin,

for  and ∈. We can show easily that   . If we had 




  

,  ∈

for ≥ we would immediately conclude that   for ∈. We have

          


  

 







                         









sin 

  


sin  

                        

 











 sin 
cossinsin

                        






 sin  .

Finally, the identity in (5) can be derived by inserting the expression


  

∞




sin

for  in the definition of the Bessel function . Carrying out the 

algebra gives

  






 



  

∞

















 
 





                   






 



 

∞
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∞











.                      □

Proposition A.3 Let  


,   and   . Then the following identity is 

valid:







 


.

To prove this identity we use formula (5) in proposition 1. We have

                  





                                     

                  
















  

∞








  

                  














  

∞













 

                 














  

∞



 








                



.                                   □

Theorem A.4 Let  denote surface measure on    for  ≥. Then the 

following is true:

  
 
⋅ 










 .
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We have

                       
 
⋅

                           















⋅







                           































 

                           










 .                           □

Theorem A.5 The Fourier Transform of a Radial Function is radial on 

Let    be a radial function defined on , where  is defined on 

∞. Then the Fourier transform of  is given by the formula

 






 


∞












. 

To obtain this formula, use polar coordinates to write 

                       

⋅ 

                            


∞


 


⋅ 

                            


∞




                           


∞
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∞




 




.

As an application we take , where  is the unit ball in . 

we obtain

 






 















 









 

,

in view of the result in proposition 2. More generally, for , let

  
 for ≤

 for 

Then

 






 















 
















,

also in view of the identity in proposition 2.

Proposition A.5 Here we take    a positive real number and we seek the 

asymptotic behavior  as  →  and as →∞. let us fix . The 

following is true:















 as →







cos





   as →∞

      

The asymptotic behavior of  as → is rather trivial. We simply need 

to note that
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sin
 



sin

                                 




as → .

 The asymptotic behavior of  as  →∞ is more delicate. Consider the 

region in the complex plane obtained by excluding the rays ∞ and 

∞. We choose an analytic branch of 
 



 in this region that is 

real valued and nonnegative on the interval . We integrate the 

analytic function


 





over the boundary of the rectangle whose lower side is  and whose 

height is .

We obtain

            




 
 



 




 
 





                                  





 



  ,

where →  as →∞. It follows that

  




 
 



  ,

where

  




∞

 
 



,    and
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∞

 
 





Next we observe that


 



 
 







 







 



 
 












 ,

where  ≤ 
 



. Note that the Laplace transform

ℒ  


∞

 

of the function  is 
 when 


, and that the functions  

and   have Laplace transforms bounded by a constant multiple of . 

Therefore, we obtain

  
 




 





  




 








  




 





  




 








as →∞. Adding these two last inequalities and multiplying by the missing 

factor 













, we obtain the equality 

  





cos


 




as →∞.
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