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1. Introduction

1.1 We define Schwartz space §(R") consists of all indefinitely
differentiable functions f on R" such that
a /

25w

ox

sup
zER"

xa < ©o

’

for every multi-index « and (. In other words, f and all its derivatives are

required to be rapidly decreasing.

Example 1. An example of a Schwartz function in g(R") is the

) ) ) ) — rlal?
n-dimensional Gaussian given by e " .

The Fourier transform of a Schwartz function f is defined by

(1.1) fe)= [ fla)e ¥ $dz, for (ER™
o

Example 2. Let f and ¢ be the functions defined by

1 if |zl<1

) - 1=zl if [zl<1
flz)= X[-1,1] () = { 0 otherwise,

and glz)= { 0 otherwise .

Although f is not continuous, the integral defining its Fourier transform still
makes sense.

Show that

ﬂg)—“j—zﬁ and  §(€) =

with the understanding that f(O) = 2 and Q(O) = 1.

We also define inverse Fourier transform by

(1.2) flz)= Fl&)e*m - € g

R™



— lzl? . .
Example 3. The inverse Fourier transform of e ™ in R? is as follows :

— 7zl =2riz - —wal —2mizy - & —ma? —2miz, - €
/ e Mo Ly = /e e T e e T My |du,
R? R R

2 . 2
— Ty — 27Xy + & — &
_ [ s,
R

-n& o &

— e

RPT)
= ¢ ™

Let n> 2. For feg(R”) we consider the convolution operators
5 12\0 Gy ’ n
SFO= (-1 PN ), ¢ ERr .

and for ng(R”“)
s

—~ 12\
ﬂﬁﬁ@—g' HE€n) €= (€.6,0) SR <R,
n+1 /4

where 5= s for s >0, and s} =0 otherwise.

In this thesis, we study L?-boundedness for convolution operators S° and

-1
T°, when 1< p<co and §> nT for n=> 2.

The main results are as follows :

Theorem 1.1 Let §>0. The convolution operator S° is bounded from
n—1

L'(R") to LY(R") for 1< p<oco and 6> 5

Theorem 1.2 Let §>0. The convolution operator 7° is bounded from
n—1

2

LP(R™) to LP(R"™Y) for 1< p<oo and 6>

n—1

Remark . If § < >

, then the convolution operator S° and T° is

unbounded on LYR") and L'R""!), respectively.



2. Preliminaries

In this section we study some properties of a Schwartz function, Fourier,

inverse Fourier transform, and convolution (see [SS]).
Proposition 2.1 Let fE¢(R").

(D f(x-l-h)ﬁj’(g)em'h whenever hER".

(2) flx)e 2™ h 5 f(¢+h)  whenever hER".

(3) f(0x) > f(57%€)  whenever §>0.

(@) (G- fla)— @mig) }E).

(5) (—2mie)*f(z) — <6i£>a}<g>.

(6) f(Rx)%j’(}%’) whenever R is a rotation.

Proof. Property (1) is an immediate consequence of the translation

invariance of the integral. Property (2) follows from the definition (1.1),
/ f(x)e—mx.he—%mg de :/ f(x)672m‘x.(h+§)dx: }(§+h).
R” R”
Also, if §>0, then 5/ f(éx)def f(x)dx establishes property (3).
R” R”
Integrating by parts gives
N AN N .
f [ (x)e 2™ Sy = [f(x)ef%n'f]ﬂv + 2mix - £ / flz)e 2™ & dy,
-N -N

If we repeat this process ¢ times, and let N go to infinity, we get (4).

To verify the last property, simply change variables y= Rr in the integral.

Then, recall that |det(R)=1, and R 'y - =y - RE, because R is a rotation.



Corollary 2.2 The Fourier transform maps <(R") to itself.

— ol

Remark. (i) As an example we consider Gaussian e . Also, we observe

that when n=1, the radial functions are precisely the even functions, that

is, those for which f(z)=f(—=x).

(ii)) As for the Fourier transform of radial function, we refer the appendix

to the interested readers.

Definition 2.3 Given two integrable functions f and g on R", we define

their convolution f % g by

(f % g / fly

The above integral makes sense for each x, since the product of two

integrable functions is again integrable.

Proposition 2.4 Suppose that f, g, and h are 2w-periodic integrable

functions. Then the following holds :

(1) fk (g+h)=(f x g)+(f x h).

(2) (cf) *k g=c(f % g)=f * (cg) for any cEC.
(3) f*g=g*f

(4) (f x g)k h=f % (g % h).

(5) f >k g is continuous.

(6) > gln) = f(n)g(n).

proof. Since we have

[k (g+h)= /R”f(y)(ngh)(x—y)dy

— /R”f(y)g(x—y)der ‘/R"f(y)h(x_

= (f * 9)@)+(f xn)(z) ,

_4_



(1) follows at once. As for (2), we have
e 9= [(Ngla—ydy
= [fgle=p)dy  (=elf ¥ 9))

~ [ Fw)ep)a—y)dy

= f % (cg).

We turn to (3). If F is continuous and periodic, then
/ F(y)dyZ/ Flz—y)dy for any z€R,
R” R”

because of a change of variables y by —y, followed by a translation from y
to y—x. Then, if one takes Fly)=f(y)g(z—y), we obtain the desired.

In order to obtain (4), we consider

G xh= [ (¢ x eyhi)dy

—//f v —2)g(2)hly) dzdy

N fRu R”ﬂx_Z)Q(SU_y)h(y)dxdy

= R”f(x—z)(g X h)(z)dz

=fx (g h).
We proceed to (5). We show that if f and ¢ are continuous, then f X g is

continuous. First, we may write
(f % g)zy) — (f * g)(zy) 5 f fly —y)— gz, —y)l dy

Since ¢ is continuous it must be uniformly continuous on any closed and
bounded interval. But g is also periodic, so it must be uniformly continuous
on all of R; given e> 0 there exists 6>0 so that | g(s)— g(t)|< ¢ whenever

|s—tl< §. Then, |z, —x,|< § implies |(z, —y)— (x,—y)|< § for any y, hence



|(f*g 551 (f*g :C2)|§ o

L /j FWlgla, —y)— glz, —y)l dy

< % _W | fWl gz, —y)— g(zy—y)|dy

o f ylldy

€
< —27B
27 [t

IA

where B is chosen so that |f(z)|< B for all z. As a result, we conclude
that f> ¢ is continuous, and the proposition is proved, at least when f and

g are continuous.

Finally, we show (6). The Fourier transform of f/>|<\g is

—

o= [ G gl i

_/ /f (z—y) dy)e """ dy

= [ e ([ gle—yle 7 "V dr)dy
R" R"

= | flle ™ V([ glx)e > "dx)dy
R" R"

= f(n)g(n).

We finish the proof of Proposition 3.1. ]
Definition 2.5 A family of kernels {Kn(x)}zozl on the circle is said to be a
family of good kernels if it satisfies the following properties :

(1) For all n>1,

1

— Kn($)d$ = 1.
27 J _

(2) There exists M >0 such that for all n>1,

/:r |Kn($)|d$ < M.

s



(3) For every 6>0,

/ K, (z)|dx —0, as n—co
<zl n

The following theorem is called Plancherel Theorem.

Theorem 2.6 Suppose fEs(R"). Then
— : 2miz - €
f@= [ Heeca

Moreover

J Jiela= [ irara.

2 2
e . =
] s e ld

Proof. Stepl. The Fourier transform of e i . To prove this,

notice that the properties of the exponential functions imply that

—rlz? fmcf —z?
prm— e ..

" — 2mix. —27izy.& —2mz,.§,
e and e Tt =¢ e .

e

Thus the integrand in the Fourier transform is a product of n functions,
each depending on the variable z; (1 <j <n) only. Thus the assertion
follows by writing the integral over R"™ as a series of repeated integrals,

each taken over R.

2
n 77T|CL|

Step2. The family Kj(z)=4§ 2e 3 s a family of good kernels in R". By

this we mean that

(1) /R”K(;(x)deL
@ [ |K@]dr <M (n fact Kyx) = 0)
.

(3) For every >0, |K;(x)|de — 0 as 6 — 0.

lz|>n
The proofs of these assertions are almost identical to the case n=1.

As a result



/VK(s x)dr — F(0) as § — 0

when F'is a Schwartz function, or more generally when F' is bounded and

continuous at the origin.

Step3. ‘The multiplication formula

[ swierae= [ Hogoa

holds whenever f and ¢ are in ¢. The proof requires the evaluation of the
integral of f(z)g(y)e > Yover (z,y)ER*™ =R"xR" as a repeated integral,
with each separate integration taken over R".

The Fourier inversion is then a simple consequence of the multiplication

formula and the family of good kernels Kj. It also follows that the Fourier

transform f is a bijective map of ¢(R") to itself, whose inverse is

ita)= [ gl as

Step4. Next we turn to the convolution, defined by

(f % g)z /f (@—y)dy, f.9Ss

We have that f,g €c<(R"), fk g=g % f, and (f * g)€) = f(£)g(€). The

argument is similar to that in one—dimension. The calculation of the Fourier
transform of f % g involves an integration of f(y)g(z—y)e @ S(over
R*"=R"xR") expressed as a repeated integral.

This completes the proof of Theorem 2.5. L]
Example 2.7 This example is the application of Theorem 2.5, which shows

2
— 7l

that Plancherel Theorem holds for n—dimensional Gaussian e



Theorem 2.8 Chebyshev's Inequality. If fEL? (0<p< o), then for any
a>0,
I,

o

p

p{z:lf@)>a}) <

proof. Let E = {z:|f(z)|> a}. Then

IfIe= /Iflpz /Elflpz O/’/E1:apu(Ea). ]

2.1 L” and Weak L? spaces . In this section we consider the

definitions of L? and Weak L? spaces and study some properties.

Let X be a measure space and let p be a positive, not necessarily finite,

measure on X. For 0 <p< oo, LX,u) will denote the set of all

complex-valued p—measurable functions on X whose modulus to the pth

power is integrable. L (X,;) will be the set of all complex—-valued

p—measurable functions f on X such that for some B>0, the set

{z:|f(z)> B} has p—measure zero. Two functions in L?X,u) will be

considered equal if they are equal p—almost everywhere. The notation
LP(R") will be reserved for the space LP(R"|-|), where | -| denotes
n—dimensional Lebesgue measure. Lebesgue measure on R" will also be
denoted by dzx. Within context and in the lack of ambiguity, L/(X,u) will
simply be L”. The space L"(Z) equipped with counting measure will be
denoted by P(Z) or simply .

Definition 2.9 For 0<p < oo, we define the L” quasi-norm of a function f
by

(2.2.1) LA ey = (/X|f($)|pdu($));



and for p= oo by
(2.2.2) (Al L) = inf {B>0: p({z:|f(z)| > B})=0}.
It is well known that Minkowski's (or the triangle) inequality

(2.2.3) 1 FH+9 0 o < 11 e+ 100

holds for all f, g in L?= L”(X,u), whenever 1 <p < oo. Since in addition
Al X =0 implies that f=0 (u—a.e.), the L” spaces are normed linear

spaces or 1 <p <oo. For 0<p<1, inequality (2.2.3) is reversed when
f» g = 0. However, the following substitute of (2.2.3) holds:
1=p

(2.2.4) 1490 ey =2 7 (W e 101 )

and thus the spaces L?(X,u) are quasi-normed linear spaces.

Definition 2.10 For f a measurable function on X, the distribution function

of f is the function d; defined on [0,00) as follows:
dy(0) = € X [F()l> o).

Example 2.11 The simple functions are finite linear combinations of

characteristic functions of sets of finite measure

E CL]XE

j=1
where the sets E; are pairwise disjoint and a; > - > ay> 0. If a = q,
then clearly d;(o)=0. However if a, < a < a, then |f(z) > « precisely

when z&€FE, and, in general,

if a;y; < a< aj;, then If(z)l > « precisely when z € E/U --- UE,.

_10_



Setting
we have

where ay,,; =0.

We now state a few simple facts about the distribution function df. We

have

Proposition 2.12 Let f and g be measurable functions on (X,u). Then for all

a, 3> 0 we have

(D lg<Ifl p—ae. implies that d,< d,
(2) d;(a)= df(l%‘l), for all c€C\ {0}

() d; (a+8)= di(a)+d,(8)

4) d;,(ap) < dy(a)+d,(B).

Proposition 2.13 For f in LX,u), 0 <p< oo, we have
Ifie,= p/O & 1d () da.

proof. We use Fubini's theorem to obtain the second equality below

p/O o™ dy (o) dov = p/O OfpleX{z:If(x)l>a}dH($)da

If ()l
:// po? Yo dp(z)
xvY 0

_11_



= [ r@rdue)

=1fI ’2,,.
This completes the proof. ]

Definition 2.14 For 0<p < oo, the space weak L”(X,u) is defined as the set

of all p—measurable functions f such that

forall a> 0}

I £ 1 =inf {c> 0: d(a) < %

1
= sup {Vdf(v)p Doy> 0}
is finite. The space weak-L*(X,;) is by definition L*(X,pu).

The weak L?” spaces will also be denoted by L”%(X,u). Two functions in
L”*(X,;u) will be considered equal if they are equal p—a.e.. The notation

LP(R") is reserved for L”*(R"] -|). Using Proposition 2.12 (2), we can

easily show that
Il E&f | pe= KN £ P
for any complex nonzero constant k. The analogue of Proposition 2.12 is

I f4gll e < e, (N F I et gl ),

1

where ¢, = max (2,27) a fact that follows from Proposition 2.12 (3) with

.«
a4 =y =

We also have that

Ifll =0 = f=0 p-ae.

So that, L”® is a quasi—-normed linear space for 0 <p < co,

_12_



The weak L? spaces are larger than the usual L? spaces. We have the

following:
Proposition 2.15 For any 0 <p< oo, and any f in L*(X,x) we have
IfN e < I fI 0 hence LX) © LP"(X, ).

proof. This is just a trivial consequence of Chebychev's inquality:

(2.2.5) ozpdf(oz) < |f ()P dp().
{z:lf(@)l>a}

1
As the integral in (2.2.5) is at most [l fII7,, using sup {’ydf('y)p Doy> 0}

we obtain that

TP T 0

Remark. The inclusion L? € LP”® is strict. For example, on R" with the
n

usual Lebesgue measure, let h(z)= |x|7; Obviously, A is not in LP(R") but

h is in LP“(R") and we may check easily that Il Al is the measure

LP*(R" )

of the unit ball of R".

2.2 The Marcinkiewicz Interpolation Theorem (Real method).

Let T be an operator defined on a linear subspace of the space of all

complex-valued measurable functions on a measure space (X,u) and taking
values in the set of all complex-valued measurable functions on a measure

space (Y,v).

Definition 2.16

(1) T is called linear if for all f, g and all A&C, we have
T(f+g)= T(f)+T(g) and TOf)= AT(f).

(2) T is called sublinear if for all f, ¢ and all A&€C, we have

_13_



I T(f+ )l < IT(f)+IT(g)l  and [TOI= [NIT()L.
(3) T is called quasi-linear if for all f, g and all A&€C, we have
I T(f+g)l= KIT(HIHIT(9) and [TO)I= INIT(f)
for some constant K> 0. Sublinearity is a special case of quasi-linearity.
We begin with our first interpolation theorem.

Theorem 2.17 Let (X,u) and (Y,v) be two measure space and let

0<p,<p, =oco. Let T be a sublinear operator defined on the space

L"(X)+ L"(X) and taking values in the space of measurable functions on Y.

Assume that there exist two positive constants A, and A, such that
Py
I7(f) |l ) = Ay £ Y0 for all fEL™(X),

I T(f) ey = AT for all fEL"(X).

Then for all p, <p<p, and for all f in L”(X) we have the estimate

(2.3.1) T gy < AT FI
where
i1 1 1
P Do Py P
o1t 1t
A= 2( b + b )pAOpn Py Alpn Y21 )
P—Py P1—P
Proof. See p.32-35 in [LG]. O

_14_



3. Calderén—Zygmund decomposition

To prove that singular integrals are of weak type (1,1) we will need to

introduce the Calderén—Zygmund decomposition. This is a powerful stopping

time construction.

Theorem 3.1 Let fELYR") and «>0. Then there exist functions g and b

on R" such that
(1) f=g+b

@) lgl, < Ifll,iand llgl,.=<2".
3 b= ij, where each b; is supported in a dyadic cube ). Furthermore,
" . :

the cubes ), and ), have disjoint interiors when i k.

@ [ b,(x)de= 0.
K
) 1], <27 alQ).

®) MlQI < a " Ifll .
J

Remark. This is called the Calderon-Zygmund decomposition of f at height
a. The function g is called the good function of the decomposition since it
is both integrable and bounded; hence the letter g. The function b is called
the bad function since it contains the singular part of f (hence the letter
b), but it is carefully chosen to have mean value zero. It follows from (5)

and (6) that the bad function b is integrable and

11, = D00, <2 Y@= 2 I f 1,
J J

By (2) the good function is integrable and bounded; hence it is in all the

L? spaces for 1 <p < co, More specifically, we have the following estimate:

_15_



1 1 1

1 1
i 177 i
lgll,, < lghliglh, .? < IfIhQ2%)

-1 n 1
P=2"a? I fIlL

Proof. Recall that a dyadic cube in R" is a cube of the form

[26my, 28 (my +1))x -+ x[2m,,2F(m, +1)),

where k, my,---,m, are integers. Decompose R" into a mesh of equal size

disjoint dyadic cubes so that
1
Q= ™ Al I

for every cube @ in the mesh. Subdivide each cube in the mesh into 2"
congruent cubes by bisecting each of its sides. We now have a new mesh

of dyadic cubes. Select a cube in the new mesh if

1
@/QIf(x)Idx> a.

Let S be the set of all selected cubes. Now subdivide each nonselected

cube into 2" congruent subcubes by bisecting each side ad before. Then

1
select one of these new cubes if @/ |f(@)ldz> o holds. Put all selected
Q

cubes of this generation into the set S. Repeat this procedure indefinitely.

The set of all selected cubes S is exactly the set of the cubes Qj

proclaimed in the proposition. Let us observe that these cubes are disjoint,

for otherwise some (), would be a proper subset of some (), which is

impossible since the selected cube Qj was never subdivided. Now define

P .
bj_(f |Q¢|/ijd

Xqy

b:ij and g=f—5.
j

For a selected cube Qj there exists a unique nonselected cube Q' with

_16_



twice its side length that contains Q7 Let us call this cube the parent of

Q. Since its parent Q" was not selected, we have |Q'|71/ |fldr < o. Then
: o

1 =2 [ 1t = 2
@) Jrwa=1gr [ y@is 2

Consequently,

/ Qj|bj|dx < / leflda:+ Q) @ / Q],f d

which proves (5). To prove (6), simply observe that

O %Z/{;ﬂdx: %/wmdx < <7l

’

< 2/ flde < 27410|Q,
Q '

Next we need to obtain the estimates on g. Write R" = UJQjUF, where F

is a closed set. Since b=0 on F and f—b;= |Q]»|71/ fdr, we have
: : o

f on F|
1

(3.1) g= on @
|Q]| }ij dx

On the cube Q. ¢ is equal to the constant |Q]»|71/ fdx, and this is
: . o

bounded by 2"a.

It suffices to show that ¢ is bounded on the set F. Given z&F, we have

that x does not belong to any selected cube. Therefore, there exists a
sequence of cubes Q(k) whose closures contain z and whose side lengths

tend to zero as k— co. Since the cubes Q(k) were never selected, we have

1 / 1
o fdxg—,/ fldz < a.
’ |Q(k)| Q(k) |Q(k)| Q(k)

The balls are replaced with cubes, we conclude that

_17_



. 1
Ilm——+ / f dx
k—co |Q(k)| Q(k‘)

whenever x € F. But since g=f a.e. on F, if follows that g is bounded by
a on F. Finally, it follows (3.1) that [lgll . < I fI .. O

< «

f (@)l =

_18_



4. Proof of Theorems 1.1 and 1.2

For the kernel estimates, we shall use the idea of Muller and Seeger In
[MS]. They used dyadic decomposition of Bessel function to prove local
smoothing conjecture for spherically symmetric initial data including

endpoint results.

4.1 Dyadic decomposition of Bessel function. Let nE€ C;’(R) be supported in

1 11
(—5,2) and equal to 1 in (_Z’Z)' For m=0,1,2,--- we set
_ Inw(—0%)) if m=0
7““”>{MT%m—&»—mewm—£» it m>0
and

1

1 L
J™"(ww)= A, (uv)" el(“”)”(l—UQ)‘ 2n (o,v)do.
1 . m

I

For a positive integer M we define

1

(1_02)”7577?71((7#) if m=0
D (0) = 1 \M g \M A ]
L =) 2] im0

Then by integration by parts if m >0 we have

1
(4.0) J" (uw) = Aﬂ(uv)”/ ei(“”)"qﬁmu(a)da.
-1

1
We note that the integrand in (4.1) has the following upper bound:

1
|¢mu<a>| < CuiAIQ*mJ\I<2mV,1)l 2

and that ¢ vanishes unless either 1—¢* = 2"v ' for m>0, or
1—0®> < v ! for m=0 so if o is in the support of @,,, then either

lv—wvol < 2™ or lv+vol < 2™ . (see [MS, p.5])

_19_



Consider the family of Fourier multipliers

m’ (€)= -k, ¢ER

with m’(§)=0 when [£[>1. Then define convolution operators S° by

~

SOF(E) = m’ () (€).

such that Y, ¢(2%s)=1 for 0<s<1.

1
Let ¢€C,°(R) be supported in 5,2
k=1
Fix k.

We shall need point estimates for the kernels of
55 (2m)~ / H5 (z—vy)fly)dy
where

(.1 B@) = [ o -l -IgR)e <

We write Y, H=H’ and Y, 5=
k=1 k=1

We let |z/=7 and define H,(x)= L,(|lz|). By Bochner's formula (see

Appendix) and change of variables, we have

Y A N e e )

1
Here J, is the Bessel function of order p> Ty defined by

1

1 L
(4.3) J, (t)= A#t”/ e (1—o )l 2do
~1

1 71
where A,= 2‘T(2u+1)F(§)} :

For the following lemma, we use dyadic decompositions of Bessel

functions (see Appendix) following the article by Muller and Seeger [MS].
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Lemma 4.2 Suppose that |z|>2. Then for each k there is an estimate as

follows :
(4.4) 1L, ()] < ©2 FOTV |~ =D 2min {1, (27 Hazf) "V},
Therefore,
1
(4.5) H@)| < Y H, < ©

= k (1+|x|)5+(n+1)/2'

Proof. Fix k and v=r in subsection 4.1. We may decompose the kernel

(4.2) as

where

R / e (=)= )5 dp.

Formula (4.6) and straightforward computation imply that

@n I = A, 2/ 6 (o f<p2’“1 A= ) e dpds.

We integrate by parts with respect to p and in (4,7) and by Fubini's

theorem
(4.8) )= et e [0 [l o)
a \V
X’(a—p) e 1= -2 "V dpdo.
Note that
(4.9) G (0)] = C2T M@,

: : 2 k1
Moreover, ¢, vanishes unless either 1—o¢*~ 2" %! for m>0, or

1—¢> < 257! for m=0. Hence if o is in the support of @,,. then either
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lr—rol< 2% or |r4rol< 2m T,

Then using the estimates (4.9), the integrand of (4.8) is bounded by

1
€2 0 ) ——
* (1+2 k|ar|N1)
< coH=3)/2=Bgm((n=3)/2+N=M), ~(n—3)/2 1

(1+27 )N
If we integrate over the support of ¢(2"(1—p*))®¢, . for m >0 in (4.8),

we gain an additional factor of C2™r !. Since M> N+ (n—1)/2, we may

sum over m and the desired estimates (4.4) follow from (4.8). Hence we

obtain

’

{022 ((6+1),— (n— 1/2+Cz2 (6+1-N), ~ nl)/QN}

r <2t r>oF
and thus (4.5) is established.
Proof of Theorem 1.

—1
For § > nT we use Lemma 4.2 to have

FS°f I gy = / |5°F (@)| dae
R

- / (H % f)(@)) de

.
< Clfl / 1 d
- f L'(R") R (1+|x|)5+(n+1)/2 o
< Clfl gy

For L%*-bound we apply Plancherel Theorem in Section 2 to obtain

1 SF 0 oy = 182

LAR"Y)

Since the multiplier m’(¢)= (1—[¢?)’. is bounded by 1 for §>0, we have
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5 _ )
FS°F I oy = W’ f I oy
< || f ” LAR") = |l f [ LARY)"

We now interpolate with real method between the results on Ll(R") for

—1
5> and on LAR") for §>0. By Marcinkiewicz Theorem (see Section
. 1 6 1—460 . 5
2.3) with ;: T+ 5 and 0<60<1, we obtain the LP-bound of S° for
n—1

1<p<2and §> 5

. . 1
For 2<p< co, we will prove the duality between L? and LY ;—1— E:L and

the fact that the theorem is proved for L% 1< ¢<2. Observe the following
; if a function ) is locally integrable and if sup ’/@bqﬁ dx’ = A< oo, where

the sup is taken over all continuous ¢ with compact support which verify
l¢ll, <1, then YEL” and ¢l ,=A. We take fEL'NL?, (2<p< o),
and ¢ of the type described above. Since H’° € L% and because of our

choice of f and ¢, the double integral
[ | ma—ypreee)dsdy
rR"Y R"
converges absolutely ; its value 1s therefore

1= [ s Ha-yo)a

But the theorem is valid for 1<¢<2 (with the kernel H%—z) instead of

dy.

H%z), but with the same constant A,). Therefore / H(x—y) ¢(z)dz
.

belongs to LY and its LY norm is majorized by A ll¢ll = A, Holder's

v and taking the

inequality then shows that ’/ (S°f)o dx’: Il < A I f
-
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supremum of all the ¢'s indicated above gives the result that
s
” S f ” (R") < Aq I f I L(R")’ 2<p<oo, ]

We consider for 6>0

)

fO), e=(,¢.,).

+

€

|£n+1|2

T (€)= (1—

Using inverse Fourier transform, we denote by T°f(z)= K°* f(z) where

WWZF1W_|W

|€n+1|2

)

(x).

+

1 S .
Let ¢ € G°(R) be supported in (5,2) such that Y, (2 %)= 1 for t>0.

|=—o00

)

P27, )

+

If we write the kernel K} (z)= F~! (z), we notice

|€n+1|2

/12
(1 €]

that

K(z)= Y] 2" VK(2).

|=—o0
From the kernel estimates in [SH], we have for any N> 0
| Ky )|+ [V K ()]

c 1 1
- 1\(n X 2] < fa, 4 } (&
(1+]z |)( +1)/2 (1+|xn+1|>5+1 {lel < |z, 4 | }(2)

1 1
(1+ |0 (1+||xn+1|—|x'||)NX{|$/|Z|$”“|}($)'

Remark. The key tool in the proof of the weak type (1,1) estimate is the

Calderén—Zygmund decomposition of L' functions.
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.. —1
Proposition 4.3 If §> nT then for a>0

|{CE : |T5f<$)|> Ol}| < COZ71 ” f ” LR
where |E| denotes the Lebesgue measure of the set EcC R*"1

Proof. From the Calderén—Zygmund decomposition we assume that

f= g+b, where b= Zbk. We now have
k=1

el 77> o} fo 1Tl > S foe 0l > 2]

=TUIIL

Since lg(z)l< 2" o a.e., we use the L? boundedness of 7° and

Chebyshev's inequality to get
|I| < COZ72 “ g ” i?(RrH»l) < CVOli1 ” f ” Ll(RuH).
Let @, be certain non-overlapping cubes and @, be the cubes with the

same center as @, but twice the sidelength. If 2= U Q,, then

|Q*| < 02n+1a71 ” f ” Ll(Ru+l)-

So,

. | o o -1
{CEEQ : |Tb($)|> EHg Co ”f l LR

It remains to show that

* (6% _
{SE% Q : |T5b($)|> EH < COZ ! “ f ” Ll(Ru+l)-
Since T¢ is translation invariant, we may assume that
Q.= {x: max |x7| < R}.
We now consider

[ e ss)@lae = [ [ RO - ) )] dedy
vz Q) e o

Y Z Q)
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9
< 10l e / I QZR}’KO (a)] da.

. . n—1
By using the kernel estimates and 6 > — we have

/ ’Kg($)’d$
{x :max|z) > QIR}

1 1 ,
< // dzr dx
{|l’/|§ IR, |’L’,H1|>21R} |xr|(n+1)/2 |xn+1|5+1 n+1

1 ,
< - -
< // - | / | ,|5+(n+1)/2 dx dz,
{lz'|> 2R, |z, || > 2'R, Iz, ,,|— ' < 1} |

1 1 ,
+ // dx’ dz,
{lx/|> QIR, |I41+1|> 21R7 ”"L’u+1|7 S 1} |x'|5+(n+1)/2 ||xn+ 1| _ |xl||N n

n—1
— 57
< C(2'R) b }
On the other hand, Since/bkz 0, it follows that

20D (K92 by )(ar) = /

Rri+1

2! 22 ( —y)) — K(2') b, (y) dy.

—1
The mean value theorem, and d> nT to have

/ 20D (K@) % b,) ()| da
T & Q,:

:f : f 2RI (2 —y) — KJ(2'2)||b, (y)|da dy
yEQ ‘LQ/Q}f

IA

/ / 2l(n+D’VKg(le)“Qlyku(y)|dxdy

yEQY =ZQ,

< C'(QIR) | b, |l Ll(R”“)/ 21(n+1)’vK65(21$>’dx
er+l

=< C@R) b Il gy
Putting (4.5) and (4.6) together and applying the triangle inequality gives
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n—1

3 (2ZR)7{57T}+ Y 2R

2R>1 2R<1

(K% b)(@)|de < C||b,
S Jurne) 1]

= Ot

From b= Y,b,, it follows that
k=1

Coflz/ K5>|< bk)(x)’dx

:Lng

IA

{x%ﬁ | 7% () |>2H

< Co' Y 1l g
=1

< Ca I f I

From (4.4) and (4.7), we have
|11 < CIIfIIL(R
and thus (4.3) and (4.8) give (4.2).
Lemma 4.4 For 6 >0, we have
I 77 |l Dwy = clfl,

Proof. By Plancherel Theorem (see Section 2), we note that

LT g = 1 TF 1

)

2
Since the multiplier m5(£',§n+1)= __l¢l 5| 1s bounded by 1, we have
|€n+1| +
-3 _ 57
|| Tf || LAR™Y) T ” mf ” LAR™Y)

” f ” LAR™Y) - ” f ” LAR™Y) -

IA
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We turn to prove Theorem 2.

Proof of Theorem 2. Applying Lemmas 1 and 2, we interpolate with real

method between the results on LXR"™!) for §>0 and on LY“([®R"*!) for

—1
o> nT By Marcinkiewicz interpolation Theorem (see Section 2.3) with
1 6 1—06 . 5
;: T+ 5 and 0< 6 <1, we obtain the L? bound of T° for 1<p <2

—1
and §> nT Likewise Theorem 1 we use duality to have the LP-bound

-1
for 2<p < co. Therefore, we have the desired bound of T° for &> nT

and 1<p< oo, ]

Remark. When p= oo, T° is unbounded on L”(R""'), since the kernel of T°

n—1

is not integrable, when §>
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5. Appendix
In this section we study definition and properties of Bessel functions.

Definition A.1 We shall only consider Bessel functions J, of real order

1
k>—§(although some of the results can be extended easily to complex

. . 1
numbers k with real part bigger than _E)'

We will define the Bessel function J, of order k by its Poisson

representation formula

(5)° -

J= 2 [ et
Ik+5)0(5) " 1=s

1 . ..
where k>—§ and z€C. Among all equipment definitions of Bessel

functions, the preceding definition will be the most useful to us. Observe

that for t real, J,(t) is also a real number.

Proposition A.2 Let us summarize a few properties of Bessel functions.
(1) We have the following recurrence formula:

d , Lk 1
g(z ") = —2 ", (2), k>—§,

(2) We also have the companion recurrence formula:

d , 1
LB R )= g ), k>

(3) J, satisfies the differential equation

2f(2)+2f (2)+ (P —k)f(z) = 0.

(4) If kEZ", then J, can be written in the form
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1 27

2r .
J(2)= — el gy = L‘/ cos (zsinf—k#)do.
2 J 2m J

This was taken by Bessel as the definition of these functions for k integer.

1 . . .
(5) For k>—§ and t real we have the following identity:
1
1t U
- (— — J
Ji(®) 1 (2) Z}O( 1 I(Gj+Ek+1) 25)
F(E) J

Proof. We first verify property (1). We have

1
. 1 A k——
j (2 7kJ( ) = 11 1 / se™ (1—s?) st
Z k Y o -1
2L+ )I()
Lz Q)HE
— 1 f ZZS 1 ds
k =
2 Fk—i— 2
= _Z_k‘]kJrl(Z)’

where we integrated by parts and we used the fact that I'(z+1) = «(z).
Property (2) can be proved similarly.

Property (3) follows from a direct calculation. A calculation using the
definition of the Bessel function gives that the left-hand side of (3) is
equal to

L

2*/{2/{4’1 1 . 1 9 5
/ elzs((l—SQ)z—i-Qis(k—i-—) (1—s%) ds,
Ly - 2

which in turn is equal to

1

+1 ) E+ =

—z/ d —(e**(1—¢%*) 2%)ds= 0.
_, ds
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Property (4) can be derived directly from (1). Let

1 2
Gk (Z) — g ezzsmee Zked@,
0

for k>—1/2 and 2€C. We can show easily that G,= J,. If we had

d, —k
%(z ka(z))Z —z kaH(z), zeC

for k>0 we would immediately conclude that G,= J, for kEZ". We have

d( —k _ Kk dG;,

L6 = L - T
Tk sing e L (d izsinQ) kb
- c 0 2mz o \dz © e Tdb

—k

z g et i . izsing_—ikh
= - i—(————)+(cos#—isinf)e**"e” " dh
o dof z

2r )
— _Z—kf 6zzsmé’e—z(k+1)€d9 _ _z_ka-Jrl(Z)-
0
Finally, the identity in (5) can be derived by inserting the expression

f}()(— iy if;;j +isines)

for € in the definition of the Bessel function J,(t). Carrying out the

algebra gives

¢ \k
5) 0 ) 1 2 1 I
Jk(t)Z—Z( 1) ~—2 1 —s%) Zsds
F(%)]:O F(k—i—%) (2]) /0
t\F o1 1
) y F(]+§)F(k+§)

P E-VIPN t
a )jz()( Y s 1) 2)!  IG+k+1)
2




¢\ 1
. LTy

F@ ;0 IGG+k+1) 24 -
2
1 . .
Proposition A.3 Let u>—§, v>—1 and t>0. Then the following identity is
valid:
1 I'v+1)2”
fo J, (ts)s" 1 (1—s%)"ds = %J;ﬁuﬂ(ﬂ.

To prove this identity we use formula (5) in proposition 1. We have

/ Olju (ts)s" 1 (1 — s )ds

GV e CUTGEE
— —F(l) OJZO @) s (1—5*)s ds
2
, 1. ..
< V' o TG+
_ 1 1j+u _ul/ n
- (1) S,
2
L@y L G
12 i"] 27 Mu+ji+1)Irw+1)
B 2 r(i)f OF(]—i-/H-l)Qj I'(G+p+v+2)(2))
2
= w ;L+u+1(t)' D

Theorem A.4 Let do denote surface measure on S™ ! for n>2. Then the

following is true:

~ e 2
@)= [ et T, ().
Su*l —
g2
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We have

_ /'+1 —2mild - s 2) 2 ds
n—1 -1 1—s*
n—1 n—2 1 1
or 2 I( 5 +§)F(§)
= —9 Jn72 (27T|€|)
F(n_l) n2 2
2 (mlel)
2
g2

Theorem A.5 The Fourier Transform of a Radial Function is radial on R"

Let f(z)= f,(z]) be a radial function defined on R", where f, is defined on
[0,00). Then the Fourier transform of f is given by the formula

n

)

= 2n / f() 27 27Tr|§|)7” dr.

|€|

To obtain this formula, use polar coordinates to write

:/ fla)e 2™ S dg
R

= / for)e™ 2™ m0dg " Ly
Su*l

0

_ / OOO o (r)do(re " dr

= J o Qrrle)r dr
0

fr’|€| ?
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n
2 OO

— 7/ fo (T>JE (27T?”|€|)?”5d?“.

n—2 0
) 2 i
As an application we take f(z)=Xp(q. ), where B(0,1) is the unit ball in R”".
we obtain
L, )
XB(()J 27T|€| TQdT: = n ,
|€| ¢l

in view of the result in proposition 2. More generally, for § >—1, let

() = {(1—|xl2)‘S for |z]< 1,

0 for |z|>1.
Then
n 7, (o)
ot (= TOED
™ 54’(5
|€| i

also in view of the identity in proposition 2.

Proposition A.5 Here we take z=r a positive real number and we seek the
asymptotic behavior J,(r) as r—0 and as r— 0. let us fix k>—1/2. The
following is true:

k

kri‘i‘ O(Tk+1) as r—0
)2 r(k+1)
)= 2 k
= cos(r— 2Ty oG 3?) as 100
r 2 4

The asymptotic behavior of J,(r) as r—0 is rather trivial. We simply need
to note that

1 1

+1 E— = +1 E— =
/ e (1-1) dt= / 1-#) *+0(r)
-1 -1
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| =

(sing)dop+ O(r)

— /Oﬂ(sin%)k

I'(k+1/2)r@1/2)
- T+ Olr)

as r—0.

The asymptotic behavior of J,(r) as r—co is more delicate. Consider the

region in the complex plane obtained by excluding the rays (—oo,—1) and

1

2 in this region that is

(1,c0). We choose an analytic branch of (1—2z?)
real valued and nonnegative on the interval [—1,1]. We integrate the
analytic function

1

(1 _ 2’2> 2 eirz
over the boundary of the rectangle whose lower side is [—1,1] and whose

height is R> 0.

We obtain
R = 1 -1
z/ 1) (12 —9) 2dt+/ eM(1—12) 24t

0 -1

1
0 A k=
+/’ eI (24 9i4) 2qt4¢(R) = 0,
R

where e(R)—0 as R— co. It follows that

+1 b~
I:/ e"(1—t*) Cdt=I+1L,
-1

where

At

I = +ie” / e "(#*+2it) *dt, and
0
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o L

I = —z‘ei”/ e "2 +2it)  2dt
0

Next we observe that

1 1 kr w
k—— k== i(—+—
+2it) *=—i2t) e > * +¢,(t)
2 k_é k_é i(%ﬁ %)
(t* —2it) = +i(2t) ‘e +¢_ (t),

1
ket —
where |¢, (t)|+]¢_(t)] < Ct *. Note that the Laplace transform

L= [ rwe

. . e 1 )
of the function ¢’ is r "~ 'I'(b+1) when b>—§, and that the functions ¢,
and ¢_ have Laplace transforms bounded by a constant multiple of p k32

Therefore, we obtain

1(E+1) 77’7l k—l 1
I+ == (_’L‘>(—|—/L')6*Z7’e 2 4 r 22 2F(k+§)+0(7’7k’73/2)

kr ow 1 1
it ) ek
If = (+/L>(_’L)6”€ 2 4 r 22 2F<k+%)+0<,r*k*3/2)

as r— oo, Adding these two last inequalities and multiplying by the missing

(=)
2 1 . .
factor 71F(5) we obtain the equality
F(k+§)

Y N . .. ~3/2
J(r) = — cos(r 5 4)+0(7” )

as r—> 0o,
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