cc) Creative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-동일조건변경허락 $\mathbf{2 . 0}$ 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이차적 저작물을 작성할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우 에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.
이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

C)Collection

2013년 8월
교육학석사(수학교육전공)학위논문

Some Estimate for Bochner-Riesz type multipliers

조선대학교 교육대학원

수학교육전공

채 원 재

Some Estimate for Bochner-Riesz type multipliers

어떤 Bochner-Riesz 류의 승수계산

조선대학교 교육대학원

수학교육전공

채 원 재

Some Estimates for Bochner-Riesz type multipliers
 지도교수 홍 성 금

이 논문을 교육학석사(수학교육)학위 청구논문으로 제출함.

조선대학교 교육대학원

수학교육전공

채 원 재

채원재의 교육학 석사학위 논문을 인준함.

$$
\begin{array}{lll}
\text { 심사위원장 조선대학교 교수 } & \text { 정 윤 태 } & \text { 인 } \\
\text { 심사위원 조선대학교 교수 } & \text { 김 남 권 } & \text { 인 } \\
\text { 심사위원 조선대학교 교수 } & \text { 홍 성 금 } & \text { 인 }
\end{array}
$$

2013년 6월

조선대학교 교육대학원

CONTENT

ABSTRACT

1. Introduction 1
2. Preliminaries 3
$2-1$. L^{p} and Weak L^{p} spaces 9
2-2. The Marcinkiewicz Interpolation 13
Theorem (Real method)
3. Calderón-Zygmund decomposition 15
4. Proof of Theorems 19
Proof of theorem 1.1 20
Proof of theorem 1.2 24
5. Appendix 29
References 37

ABSTRACT

어떤 Bochner-Riesz 류의 승수계산

채 원 재
지도교수 : 홍 성 금 조선대학교 교육대학원 수학교육전공

우리는 이 논문에서 Bochner-Riesz type 승수 즉, 구와 콘 승수를 수반한 합성 곱 연산자에 대하여 L^{p} 유계성을 계측한다. 첫째로 구 승수를 수반한 합성곱 연산 자 S^{δ} 가 $\delta>\frac{n-1}{2}$ 이고 $1 \leq p \leq \infty$ 일 때, $L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ 유계됨을 재 증명 한다. 두 번째로 콘 승수를 수반한 합성곱 연산자 T^{δ} 가 $\delta>\frac{n-1}{2}$ 이고 $1<p<\infty$ 일 때, $L^{p}\left(\mathbb{R}^{n+1}\right) \rightarrow L^{p}\left(\mathbb{R}^{n+1}\right)$ 유계됨을 증명한다.

1. Introduction

1.1 We define Schwartz space $\varsigma\left(\mathbb{R}^{n}\right)$ consists of all indefinitely differentiable functions f on \mathbb{R}^{n} such that

$$
\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha}\left(\frac{\partial}{\partial x}\right)^{\beta} f(x)\right|<\infty
$$

for every multi-index α and β. In other words, f and all its derivatives are required to be rapidly decreasing.

Example 1. An example of a Schwartz function in $\varsigma\left(\mathbb{R}^{n}\right)$ is the n-dimensional Gaussian given by $e^{-\pi|x|^{2}}$.

The Fourier transform of a Schwartz function f is defined by

$$
\begin{equation*}
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x, \quad \text { for } \xi \in \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

Example 2. Let f and g be the functions defined by
$f(x)=\chi_{[-1,1]}(x)=\left\{\begin{array}{ll}1 & \text { if }|x| \leq 1 \\ 0 & \text { otherwise },\end{array} \quad\right.$ and $\quad g(x)= \begin{cases}1-|x| & \text { if }|x| \leq 1 \\ 0 & \text { otherwise } .\end{cases}$
Although f is not continuous, the integral defining its Fourier transform still makes sense.

Show that

$$
\hat{f}(\xi)=\frac{\sin 2 \pi \xi}{\pi \xi} \quad \text { and } \quad \hat{g}(\xi)=\left(\frac{\sin \pi \xi}{\pi \xi}\right)^{2}
$$

with the understanding that $\hat{f}(0)=2$ and $\hat{g}(0)=1$.

We also define inverse Fourier transform by

$$
\begin{equation*}
\check{f}(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi \tag{1.2}
\end{equation*}
$$

Example 3. The inverse Fourier transform of $e^{-\pi|x|^{2}}$ in \mathbb{R}^{2} is as follows :

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} e^{-\pi|x|^{2}} e^{-2 \pi i x \cdot \xi} d x & =\int_{\mathbb{R}} e^{-\pi x_{2}^{2}} e^{-2 \pi i x_{2} \cdot \xi_{2}}\left(\int_{\mathbb{R}} e^{-\pi x_{1}^{2}} e^{-2 \pi i x_{1} \cdot \xi_{1}} d x_{1}\right) d x_{2} \\
& =\int_{\mathbb{R}} e^{-\pi x_{2}^{2}} e^{-2 \pi i x_{2} \cdot \xi_{2}} e^{-\pi \xi_{1}^{2}} d x_{2} \\
& =e^{-\pi \xi_{1}^{2}-\pi \xi_{2}^{2}} e^{-\pi \mid\}^{2}} \\
& =e^{-\pi}
\end{aligned}
$$

Let $n \geq 2$. For $f \in \zeta\left(\mathbb{R}^{n}\right)$ we consider the convolution operators

$$
\widehat{S^{\delta}} f(\xi)=\left(1-\left|\xi^{\prime}\right|^{2}\right)_{+}^{\delta} \hat{f}\left(\xi^{\prime}\right), \quad \xi^{\prime} \in \mathbb{R}^{n}
$$

and for $f \in \varsigma\left(\mathbb{R}^{n+1}\right)$

$$
\widehat{T^{\delta}} f(\xi)=\left(1-\frac{\left|\xi^{\prime}\right|^{2}}{\xi_{n+1}^{2}}\right)_{+}^{\delta} \hat{f}\left(\xi^{\prime}, \xi_{n+1}\right), \quad \xi=\left(\xi^{\prime}, \xi_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R}
$$

where $s_{+}^{\delta}=s^{\delta}$ for $s>0$, and $s_{+}^{\delta}=0$ otherwise.
In this thesis, we study L^{p}-boundedness for convolution operators S^{δ} and T^{δ}, when $1<p<\infty$ and $\delta>\frac{n-1}{2}$ for $n \geq 2$.

The main results are as follows :
Theorem 1.1 Let $\delta>0$. The convolution operator S^{δ} is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for $1 \leq p \leq \infty \quad$ and $\quad \delta>\frac{n-1}{2}$.

Theorem 1.2 Let $\delta>0$. The convolution operator T^{δ} is bounded from $L^{p}\left(\mathbb{R}^{n+1}\right)$ to $L^{p}\left(\mathbb{R}^{n+1}\right)$ for $1<p<\infty$ and $\delta>\frac{n-1}{2}$.

Remark. If $\delta \leq \frac{n-1}{2}$, then the convolution operator S^{δ} and T^{δ} is unbounded on $L^{1}\left(\mathbb{R}^{n}\right)$ and $L^{1}\left(\mathbb{R}^{n+1}\right)$, respectively.

2. Preliminaries

In this section we study some properties of a Schwartz function, Fourier, inverse Fourier transform, and convolution (see [SS]).

Proposition 2.1 Let $f \in \varsigma\left(\mathbb{R}^{n}\right)$.
(1) $f(x+h) \rightarrow \hat{f}(\xi) e^{2 \pi i \xi \cdot h} \quad$ whenever $\quad h \in \mathbb{R}^{n}$.
(2) $f(x) e^{-2 \pi i x \cdot h} \rightarrow \hat{f}(\xi+h) \quad$ whenever $\quad h \in \mathbb{R}^{n}$.
(3) $f(\delta x) \rightarrow \delta^{-1} \hat{f}\left(\delta^{-1} \xi\right) \quad$ whenever $\quad \delta>0$.
(4) $\left(\frac{\partial}{\partial x}\right)^{\alpha} f(x) \rightarrow(2 \pi i \xi)^{\alpha} \hat{f}(\xi)$.
(5) $(-2 \pi i \xi)^{\alpha} f(x) \rightarrow\left(\frac{\partial}{\partial \xi}\right)^{\alpha} \hat{f}(\xi)$.
(6) $f(R x) \rightarrow \hat{f}(R \xi)$ whenever R is a rotation.

Proof. Property (1) is an immediate consequence of the translation invariance of the integral. Property (2) follows from the definition (1.1),

$$
\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot h} e^{-2 \pi i x \cdot \xi} d x=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot(h+\xi)} d x=\hat{f}(\xi+h) .
$$

Also, if $\delta>0$, then $\delta \int_{\mathbb{R}^{n}} f(\delta x) d x=\int_{\mathbb{R}^{n}} f(x) d x$ establishes property (3).
Integrating by parts gives

$$
\int_{-N}^{N} f^{\prime}(x) e^{-2 \pi i x \cdot \xi} d x=\left[f(x) e^{-2 \pi i x \cdot \xi}\right]_{-N}^{N}+2 \pi i x \cdot \xi \int_{-N}^{N} f(x) e^{-2 \pi i x \cdot \xi} d x
$$

If we repeat this process δ times, and let N go to infinity, we get (4).
To verify the last property, simply change variables $y=R x$ in the integral.
Then, recall that $|\operatorname{det}(R)|=1$, and $R^{-1} y \cdot \xi=y \cdot R \xi$, because R is a rotation.

Corollary 2.2 The Fourier transform maps $\varsigma\left(\mathbb{R}^{n}\right)$ to itself.
Remark. (i) As an example we consider Gaussian $e^{-\pi|x|^{2}}$. Also, we observe that when $n=1$, the radial functions are precisely the even functions, that is, those for which $f(x)=f(-x)$.
(ii) As for the Fourier transform of radial function, we refer the appendix to the interested readers.

Definition 2.3 Given two integrable functions f and g on \mathbb{R}^{n}, we define their convolution $f * g$ by

$$
(f * g)(x)=\int_{\mathbb{R}^{n}} f(y) g(x-y) d y
$$

The above integral makes sense for each x, since the product of two integrable functions is again integrable.

Proposition 2.4 Suppose that f, g, and h are 2π-periodic integrable functions. Then the following holds :
(1) $f *(g+h)=(f * g)+(f * h)$.
(2) $(c f) * g=c(f * g)=f *(c g)$ for any $c \in \mathbb{C}$.
(3) $f * g=g * f$
(4) $(f * g) * h=f *(g * h)$.
(5) $f * g$ is continuous.
(6) $f \widehat{*} g(n)=\hat{f}(n) \hat{g}(n)$.
proof. Since we have

$$
\begin{aligned}
f *(g+h) & =\int_{\mathbb{R}^{n}} f(y)(g+h)(x-y) d y \\
& =\int_{\mathbb{R}^{n}} f(y) g(x-y) d y+\int_{\mathbb{R}^{n}} f(y) h(x-y) d y \\
& =(f * g)(x)+(f * h)(x),
\end{aligned}
$$

(1) follows at once. As for (2), we have

$$
\begin{aligned}
(c f) * g & =\int(c f)(y) g(x-y) d y \\
& =c \int f(y) g(x-y) d y \quad(=c(f * g)) \\
& =\int f(y)(c g)(x-y) d y \\
& =f *(c g) .
\end{aligned}
$$

We turn to (3). If F is continuous and periodic, then

$$
\int_{\mathbb{R}^{n}} F(y) d y=\int_{\mathbb{R}^{n}} F(x-y) d y \quad \text { for any } x \in \mathbb{R},
$$

because of a change of variables y by $-y$, followed by a translation from y to $y-x$. Then, if one takes $F(y)=f(y) g(x-y)$, we obtain the desired. In order to obtain (4), we consider

$$
\begin{aligned}
(f * g) * h & =\int_{\mathbb{R}^{n}}(f * g)(x-y) h(y) d y \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x-z) g(z) h(y) d z d y \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x-z) g(x-y) h(y) d x d y \\
& =\int_{\mathbb{R}^{n}} f(x-z)(g * h)(x) d z \\
& =f *(g * h) .
\end{aligned}
$$

We proceed to (5). We show that if f and g are continuous, then $f * g$ is continuous. First, we may write

$$
(f * g)\left(x_{1}\right)-(f * g)\left(x_{2}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y)\left[g\left(x_{1}-y\right)-g\left(x_{2}-y\right)\right] d y
$$

Since g is continuous it must be uniformly continuous on any closed and bounded interval. But g is also periodic, so it must be uniformly continuous on all of \mathbb{R}; given $\epsilon>0$ there exists $\delta>0$ so that $|g(s)-g(t)|<\epsilon$ whenever $|s-t|<\delta$. Then, $\left|x_{1}-x_{2}\right|<\delta$ implies $\left|\left(x_{1}-y\right)-\left(x_{2}-y\right)\right|<\delta$ for any y, hence

$$
\begin{aligned}
\left|(f * g)\left(x_{1}\right)-(f * g)\left(x_{2}\right)\right| & \leq \frac{1}{2 \pi}\left|\int_{-\pi}^{\pi} f(y)\left[g\left(x_{1}-y\right)-g\left(x_{2}-y\right)\right] d y\right| \\
& \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f(y) \| g\left(x_{1}-y\right)-g\left(x_{2}-y\right)\right| d y \\
& \leq \frac{\epsilon}{2 \pi} \int_{-\pi}^{\pi}|f(y)| d y \\
& \leq \frac{\epsilon}{2 \pi} 2 \pi B
\end{aligned}
$$

where B is chosen so that $|f(x)| \leq B$ for all x. As a result, we conclude that $f * g$ is continuous, and the proposition is proved, at least when f and g are continuous.
Finally, we show (6). The Fourier transform of $f \widehat{\nVdash} g$ is

$$
\begin{aligned}
f \widehat{*} g(n)= & \int_{\mathbb{R}^{n}}(f * g)(x) e^{-2 \pi i n \cdot x} d x \\
= & \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} f(y) g(x-y) d y\right) e^{-2 \pi i n \cdot x} d x \\
= & \int_{\mathbb{R}^{n}} f(y) e^{-2 \pi i n \cdot y}\left(\int_{\mathbb{R}^{n}} g(x-y) e^{-2 \pi i n \cdot(x-y)} d x\right) d y \\
= & \int_{\mathbb{R}^{n}} f(y) e^{-2 \pi i n \cdot y}\left(\int_{\mathbb{R}^{n}} g(x) e^{-2 \pi i n \cdot x} d x\right) d y \\
& =\hat{f}(n) \hat{g}(n) .
\end{aligned}
$$

We finish the proof of Proposition 3.1.
Definition 2.5 A family of kernels $\left\{K_{n}(x)\right\}_{n=1}^{\infty}$ on the circle is said to be a family of good kernels if it satisfies the following properties:
(1) For all $n \geq 1$,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(x) d x=1
$$

(2) There exists $M>0$ such that for all $n \geq 1$,

$$
\int_{-\pi}^{\pi}\left|K_{n}(x)\right| d x \leq M
$$

(3) For every $\delta>0$,

$$
\int_{\delta \leq|x| \leq \pi}\left|K_{n}(x)\right| d x \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

The following theorem is called Plancherel Theorem.
Theorem 2.6 Suppose $f \in_{\varsigma}\left(\mathbb{R}^{n}\right)$. Then

$$
f(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

Moreover

$$
\int_{\mathbb{R}^{n}}|\hat{f}(\xi)|^{2} d \xi=\int_{\mathbb{R}^{n}}|f(x)|^{2} d x
$$

Proof. Step1. The Fourier transform of $e^{-\pi|x|^{2}}$ is $e^{-\pi|\xi|^{2}}$. To prove this, notice that the properties of the exponential functions imply that

$$
e^{-\pi|x|^{2}}=e^{-\pi x_{1}^{2}} \cdots e^{-\pi x_{n}^{2}} \quad \text { and } \quad e^{-2 \pi i x \cdot \xi}=e^{-2 \pi i x_{1} \cdot \xi_{1}} \cdots e^{-2 \pi i x_{n} \cdot \xi_{n}}
$$

Thus the integrand in the Fourier transform is a product of n functions, each depending on the variable $x_{j}(1 \leq j \leq n)$ only. Thus the assertion follows by writing the integral over \mathbb{R}^{n} as a series of repeated integrals, each taken over \mathbb{R}.

Step2. The family $K_{\delta}(x)=\delta^{-\frac{n}{2}} e^{\frac{-\pi|x|^{2}}{\delta}}$ is a family of good kernels in \mathbb{R}^{n}. By this we mean that
(1) $\int_{\mathbb{R}^{n}} K_{\delta}(x) d x=1$,
(2) $\int_{\mathbb{R}^{n}}\left|K_{\delta}(x)\right| d x \leq M \quad$ (in fact $\left.K_{\delta}(x) \geq 0\right)$,
(3) For every $\eta>0, \int_{|x| \geq \eta}\left|K_{\delta}(x)\right| d x \rightarrow 0$ as $\delta \rightarrow 0$.

The proofs of these assertions are almost identical to the case $n=1$.
As a result

$$
\int_{\mathbb{R}^{n}} K_{\delta}(x) F(x) d x \rightarrow F(0) \text { as } \delta \rightarrow 0
$$

when F is a Schwartz function, or more generally when F is bounded and continuous at the origin.

Step3. The multiplication formula

$$
\int_{\mathbb{R}^{n}} f(x) \hat{g}(x) d x=\int_{\mathbb{R}^{n}} \hat{f}(y) g(y) d y
$$

holds whenever f and g are in ς. The proof requires the evaluation of the integral of $f(x) g(y) e^{-2 \pi i x \cdot y}$ over $(x, y) \in \mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ as a repeated integral, with each separate integration taken over \mathbb{R}^{n}.

The Fourier inversion is then a simple consequence of the multiplication formula and the family of good kernels K_{δ}. It also follows that the Fourier transform \hat{f} is a bijective map of $\varsigma\left(\mathbb{R}^{n}\right)$ to itself, whose inverse is

$$
\check{g}(x)=\int_{\mathbb{R}^{n}} g(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

Step4. Next we turn to the convolution, defined by

$$
(f * g)(x)=\int_{\mathbb{R}^{n}} f(y) g(x-y) d y, \quad f, g \in_{\varsigma}
$$

We have that $f, g \in \varsigma\left(\mathbb{R}^{n}\right), f * g=g * f$, and $(\widehat{f * g})(\xi)=\hat{f}(\xi) \hat{g}(\xi)$. The argument is similar to that in one-dimension. The calculation of the Fourier transform of $f * g$ involves an integration of $f(y) g(x-y) e^{-2 \pi i x \cdot \xi}$ (over $\mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$) expressed as a repeated integral.

This completes the proof of Theorem 2.5.
Example 2.7 This example is the application of Theorem 2.5, which shows that Plancherel Theorem holds for n-dimensional Gaussian $e^{-\pi \mid x x^{2}}$.

Theorem 2.8 Chebyshev's Inequality. If $f \in L^{p}(0<p<\infty)$, then for any $\alpha>0$,

$$
\mu(\{x:|f(x)|>\alpha\}) \leq\left(\frac{\|f\|_{p}}{\alpha}\right)^{p} .
$$

proof. Let $E_{\alpha}=\{x:|f(x)|>\alpha\}$. Then

$$
\|f\|_{p}^{p}=\int|f|^{p} \geq \int_{E_{\alpha}}|f|^{p} \geq \alpha^{p} \int_{E_{\alpha}} 1=\alpha^{p} \mu\left(E_{\alpha}\right) .
$$

$2.1 L^{p}$ and Weak L^{p} spaces . In this section we consider the definitions of L^{p} and Weak L^{p} spaces and study some properties.

Let X be a measure space and let μ be a positive, not necessarily finite, measure on X. For $0<p<\infty, L^{p}(X, \mu)$ will denote the set of all complex-valued μ-measurable functions on X whose modulus to the p th power is integrable. $L^{\infty}(X, \mu)$ will be the set of all complex-valued μ-measurable functions f on X such that for some $B>0$, the set $\{x:|f(x)|>B\}$ has μ-measure zero. Two functions in $L^{p}(X, \mu)$ will be considered equal if they are equal μ-almost everywhere. The notation $L^{p}\left(\mathbb{R}^{n}\right)$ will be reserved for the space $L^{p}\left(\mathbb{R}^{n},|\cdot|\right)$, where $|\cdot|$ denotes n-dimensional Lebesgue measure. Lebesgue measure on \mathbb{R}^{n} will also be denoted by $d x$. Within context and in the lack of ambiguity, $L^{p}(X, \mu)$ will simply be L^{p}. The space $L^{p}(\mathbb{Z})$ equipped with counting measure will be denoted by $l^{p}(\mathbb{Z})$ or simply l^{p}.

Definition 2.9 For $0<p<\infty$, we define the L^{p} quasi-norm of a function f by

$$
\begin{equation*}
\|f\|_{L^{p}(X, \mu)}=\left(\int_{X}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}} \tag{2.2.1}
\end{equation*}
$$

and for $p=\infty$ by

$$
\begin{equation*}
\|f\|_{L^{\infty}(X, \mu)}=\inf \{B>0: \mu(\{x:|f(x)|>B\})=0\} . \tag{2.2.2}
\end{equation*}
$$

It is well known that Minkowski's (or the triangle) inequality

$$
\begin{equation*}
\|f+g\|_{L^{p}(X, \mu)} \leq\|f\|_{L^{p}(X, \mu)}+\|g\|_{L^{p}(X, \mu)} \tag{2.2.3}
\end{equation*}
$$

holds for all f, g in $L^{p}=L^{p}(X, \mu)$, whenever $1 \leq p \leq \infty$. Since in addition $\|f\|_{L^{p}(X, \mu)}=0$ implies that $f=0$ (μ-a.e.), the L^{p} spaces are normed linear spaces or $1 \leq p \leq \infty$. For $0<p<1$, inequality (2.2.3) is reversed when $f, g \geq 0$. However, the following substitute of (2.2.3) holds:

$$
\begin{equation*}
\|f+g\|_{L^{p}(X, \mu)} \leq 2^{\frac{1-p}{p}}\left(\|f\|_{L^{p}(X, \mu)}+\|g\|_{L^{p}(X, \mu)}\right) \tag{2.2.4}
\end{equation*}
$$

and thus the spaces $L^{p}(X, \mu)$ are quasi-normed linear spaces.

Definition 2.10 For f a measurable function on X, the distribution function of f is the function d_{f} defined on $[0, \infty)$ as follows:

$$
d_{f}(\alpha)=\mu(\{x \in X:|f(x)|>\alpha\}) .
$$

Example 2.11 The simple functions are finite linear combinations of characteristic functions of sets of finite measure

$$
f(x)=\sum_{j=1}^{N} a_{j} \chi_{E_{j}}(x)
$$

where the sets E_{j} are pairwise disjoint and $a_{1}>\cdots>a_{N}>0$. If $\alpha \geq a_{1}$, then clearly $d_{f}(\alpha)=0$. However if $a_{2}<\alpha<a_{1}$ then $|f(x)|>\alpha$ precisely when $x \in E_{1}$ and, in general,
if $a_{j+1} \leq \alpha<a_{j}$, then $|f(x)|>\alpha$ precisely when $x \in E_{1} \cup \cdots \cup E_{j}$.

Setting

$$
B_{j}=\sum_{k=1}^{j} \mu\left(E_{k}\right)
$$

we have

$$
d_{f}(\alpha)=\sum_{j=1}^{N} B_{j} \chi_{\left[a_{j+1}, a_{j}\right)}(\alpha),
$$

where $a_{N+1}=0$.
We now state a few simple facts about the distribution function d_{f}. We have

Proposition 2.12 Let f and g be measurable functions on (X, μ). Then for all $\alpha, \beta>0$ we have
(1) $|g| \leq|f| \mu$-a.e. implies that $d_{g} \leq d_{f}$
(2) $d_{c f}(\alpha)=d_{f}\left(\frac{\alpha}{|c|}\right)$, for all $c \in C \backslash\{0\}$
(3) $d_{f+g}(\alpha+\beta) \leq d_{f}(\alpha)+d_{g}(\beta)$
(4) $d_{f g}(\alpha \beta) \leq d_{f}(\alpha)+d_{g}(\beta)$.

Proposition 2.13 For f in $L^{p}(X, \mu), 0<p<\infty$, we have

$$
\|f\|_{L^{p}}^{p}=p \int_{0}^{\infty} \alpha^{p-1} d_{f}(\alpha) d \alpha
$$

proof. We use Fubini's theorem to obtain the second equality below

$$
\begin{aligned}
p \int_{0}^{\infty} \alpha^{p-1} d_{f}(\alpha) d \alpha & =p \int_{0}^{\infty} \alpha^{p-1} \int_{X} \chi_{\{x:|f(x)|>\alpha\}} d \mu(x) d \alpha \\
& =\int_{X} \int_{0}^{|f(x)|} p \alpha^{p-1} d \alpha d \mu(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{X}|f(x)|^{p} d \mu(x) \\
& =\|f\|_{L^{p} .}^{p}
\end{aligned}
$$

This completes the proof.
Definition 2.14 For $0<p<\infty$, the space weak $L^{p}(X, \mu)$ is defined as the set of all μ-measurable functions f such that

$$
\begin{aligned}
\|f\|_{L^{p, \infty}} & =\inf \left\{C>0: d_{f}(\alpha) \leq \frac{C^{p}}{\alpha^{p}} \quad \text { for all } \alpha>0\right\} \\
& =\sup \left\{\gamma d_{f}(\gamma)^{\frac{1}{p}}: \gamma>0\right\}
\end{aligned}
$$

is finite. The space weak- $L^{\infty}(X, \mu)$ is by definition $L^{\infty}(X, \mu)$.
The weak L^{p} spaces will also be denoted by $L^{p, \infty}(X, \mu)$. Two functions in $L^{p, \infty}(X, \mu)$ will be considered equal if they are equal μ-a.e.. The notation $L^{p, \infty}\left(\mathbb{R}^{n}\right)$ is reserved for $L^{p, \infty}\left(\mathbb{R}^{n},|\cdot|\right)$. Using Proposition 2.12 (2), we can easily show that

$$
\|k f\|_{L^{p, \infty}}=|k|\|f\|_{L^{p, \infty}}
$$

for any complex nonzero constant k. The analogue of Proposition 2.12 is

$$
\|f+g\|_{L^{p, \infty}} \leq c_{p}\left(\|f\|_{L^{p, \infty}}+\|g\|_{L^{p, \infty}}\right)
$$

where $c_{p}=\max \left(2,2^{\frac{1}{p}}\right)$ a fact that follows from Proposition 2.12 (3) with $\alpha_{1}=\alpha_{2}=\frac{\alpha}{2}$.

We also have that

$$
\|f\|_{L^{p, \infty}}=0 \Rightarrow f=0 \quad \mu \text {-a.e. }
$$

So that, $L^{p, \infty}$ is a quasi-normed linear space for $0<p<\infty$.

The weak L^{p} spaces are larger than the usual L^{p} spaces. We have the following:

Proposition 2.15 For any $0<p<\infty$, and any f in $L^{p}(X, \mu)$ we have $\|f\|_{L^{p, \infty}} \leq\|f\|_{L^{p}}$; hence $L^{p}(X, \mu) \subseteq L^{p, \infty}(X, \mu)$.
proof. This is just a trivial consequence of Chebychev's inquality:

$$
\begin{equation*}
\alpha^{p} d_{f}(\alpha) \leq \int_{\{x:|f(x)|>\alpha\}}|f(x)|^{p} d \mu(x) . \tag{2.2.5}
\end{equation*}
$$

As the integral in (2.2.5) is at most $\|f\|_{L^{p}}^{p}$, using $\sup \left\{\gamma d_{f}(\gamma)^{\frac{1}{p}}: \gamma>0\right\}$ we obtain that

$$
\|f\|_{L^{p, \infty}} \leq\|f\|_{L^{p}} .
$$

Remark. The inclusion $L^{p} \subseteq L^{p, \infty}$ is strict. For example, on \mathbb{R}^{n} with the usual Lebesgue measure, let $h(x)=|x|^{-\frac{n}{p}}$. Obviously, h is not in $L^{p}\left(\mathbb{R}^{n}\right)$ but h is in $L^{p, \infty}\left(\mathbb{R}^{n}\right)$ and we may check easily that $\|h\|_{L^{p, \infty}\left(\mathbb{R}^{n}\right)}$ is the measure of the unit ball of \mathbb{R}^{n}.

2.2 The Marcinkiewicz Interpolation Theorem (Real method).

Let T be an operator defined on a linear subspace of the space of all complex-valued measurable functions on a measure space (X, μ) and taking values in the set of all complex-valued measurable functions on a measure space (Y, ν).

Definition 2.16
(1) T is called linear if for all f, g and all $\lambda \in \mathbb{C}$, we have

$$
T(f+g)=T(f)+T(g) \quad \text { and } \quad T(\lambda f)=\lambda T(f) .
$$

(2) T is called sublinear if for all f, g and all $\lambda \in \mathbb{C}$, we have

$$
|T(f+g)| \leq|T(f)|+|T(g)| \quad \text { and } \quad|T(\lambda f)|=|\lambda \| T(f)| .
$$

(3) T is called quasi-linear if for all f, g and all $\lambda \in \mathbb{C}$, we have

$$
|T(f+g)| \leq K(|T(f)|+|T(g)|) \quad \text { and } \quad|T(\lambda f)|=|\lambda \| T(f)|
$$

for some constant $K>0$. Sublinearity is a special case of quasi-linearity.
We begin with our first interpolation theorem.
Theorem 2.17 Let (X, μ) and (Y, ν) be two measure space and let $0<p_{0}<p_{1} \leq \infty$. Let T be a sublinear operator defined on the space $L^{p_{0}}(X)+L^{p_{1}}(X)$ and taking values in the space of measurable functions on Y. Assume that there exist two positive constants A_{0} and A_{1} such that

$$
\begin{array}{ll}
\|T(f)\|_{L^{p_{0} \infty}(Y)} \leq A_{0}\|f\|_{L^{p_{0}}(X)} & \text { for all } f \in L^{p_{0}}(X), \\
\|T(f)\|_{L^{p_{0} \infty}(Y)} \leq A_{1}\|f\|_{L^{p_{1}}(X)} \quad \text { for all } f \in L^{p_{1}}(X) .
\end{array}
$$

Then for all $p_{0}<p<p_{1}$ and for all f in $L^{p}(X)$ we have the estimate

$$
\begin{equation*}
\|T(f)\|_{L^{p}(Y)} \leq A\|f\|_{L^{p}(X)}, \tag{2.3.1}
\end{equation*}
$$

where

$$
A=2\left(\frac{p}{p-p_{0}}+\frac{p}{p_{1}-p}\right)^{\frac{1}{p}} A_{0}^{\frac{\frac{1}{p}-\frac{1}{p_{0}}}{\frac{1}{p_{0}}-\frac{1}{p_{1}}}} A_{1}^{\frac{\frac{1}{p_{0}}-\frac{1}{p}}{\frac{1}{p_{0}}-\frac{1}{p_{1}}}} .
$$

Proof. See p.32-35 in [LG].

3. Calderón-Zygmund decomposition

To prove that singular integrals are of weak type $(1,1)$ we will need to introduce the Calderón-Zygmund decomposition. This is a powerful stopping time construction.

Theorem 3.1 Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$. Then there exist functions g and b on \mathbb{R}^{n} such that
(1) $f=g+b$
(2) $\|g\|_{L^{1}} \leq\|f\|_{L^{1}}$ and $\|g\|_{L^{\infty}} \leq 2^{n} \alpha$.
(3) $b=\sum_{j} b_{j}$, where each b_{j} is supported in a dyadic cube Q_{j}. Furthermore, the cubes Q_{k} and Q_{j} have disjoint interiors when $j \neq k$.
(4) $\int_{Q_{j}} b_{j}(x) d x=0$.
(5) $\left\|b_{j}\right\|_{L^{1}} \leq 2^{n+1} \alpha\left|Q_{j}\right|$.
(6) $\sum_{j}\left|Q_{j}\right| \leq \alpha^{-1}\|f\|_{L^{1}}$.

Remark. This is called the Calderón-Zygmund decomposition of f at height α. The function g is called the good function of the decomposition since it is both integrable and bounded; hence the letter g. The function b is called the bad function since it contains the singular part of f (hence the letter b), but it is carefully chosen to have mean value zero. It follows from (5) and (6) that the bad function b is integrable and

$$
\|b\|_{L^{1}} \leq \sum_{j}\|b\|_{L^{1}} \leq 2^{n+1} \alpha \sum_{j}\left|Q_{j}\right| \leq 2^{n+1}\|f\|_{L^{1}}
$$

By (2) the good function is integrable and bounded; hence it is in all the L^{p} spaces for $1 \leq p \leq \infty$. More specifically, we have the following estimate:

$$
\|g\|_{L^{p}} \leq\|g\|_{L^{1}}^{\frac{1}{p}}\|g\|_{L^{\infty}}^{1-\frac{1}{p}} \leq\|f\|_{L^{1}}^{\frac{1}{p}}\left(2^{n} \alpha\right)^{1-\frac{1}{p}}=2^{\frac{n}{p^{\prime}}} \alpha^{\frac{1}{p^{\prime}}}\|f\|_{L^{1}}^{\frac{1}{p}}
$$

Proof. Recall that a dyadic cube in \mathbb{R}^{n} is a cube of the form

$$
\left[2^{k} m_{1}, 2^{k}\left(m_{1}+1\right)\right) \times \cdots \times\left[2^{k} m_{n}, 2^{k}\left(m_{n}+1\right)\right),
$$

where k, m_{1}, \cdots, m_{n} are integers. Decompose \mathbb{R}^{n} into a mesh of equal size disjoint dyadic cubes so that

$$
|Q| \geq \frac{1}{\alpha}\|f\|_{L^{1}}
$$

for every cube Q in the mesh. Subdivide each cube in the mesh into 2^{n} congruent cubes by bisecting each of its sides. We now have a new mesh of dyadic cubes. Select a cube in the new mesh if

$$
\frac{1}{|Q|} \int_{Q}|f(x)| d x>\alpha
$$

Let S be the set of all selected cubes. Now subdivide each nonselected cube into 2^{n} congruent subcubes by bisecting each side ad before. Then select one of these new cubes if $\frac{1}{|Q|} \int_{Q}|f(x)| d x>\alpha$ holds. Put all selected cubes of this generation into the set S. Repeat this procedure indefinitely.

The set of all selected cubes S is exactly the set of the cubes Q_{j} proclaimed in the proposition. Let us observe that these cubes are disjoint, for otherwise some Q_{k} would be a proper subset of some Q_{j}, which is impossible since the selected cube Q_{j} was never subdivided. Now define

$$
b_{j}=\left(f-\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f d x\right) \chi_{Q_{j}},
$$

$b=\sum_{j} b_{j}$ and $g=f-b$.
For a selected cube Q_{j} there exists a unique nonselected cube Q^{\prime} with
twice its side length that contains Q_{j}. Let us call this cube the parent of Q_{j}. Since its parent Q^{\prime} was not selected, we have $\left|Q^{\prime}\right|^{-1} \int_{Q^{\prime}}|f| d x \leq \alpha$. Then

$$
\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}}|f(x)| d x=\frac{2^{n}}{\left|Q^{\prime}\right|} \int_{Q^{\prime}}|f(x)| \leq 2^{n} \alpha
$$

Consequently,

$$
\int_{Q_{j}}\left|b_{j}\right| d x \leq \int_{Q_{j}}|f| d x+\left|Q_{j}\right|\left|\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f d x\right| \leq 2 \int_{Q_{j}}|f| d x \leq 2^{n+1} \alpha\left|Q_{j}\right|
$$

which proves (5). To prove (6), simply observe that

$$
\sum_{j}\left|Q_{j}\right| \leq \frac{1}{\alpha} \sum_{j} \int_{Q_{j}}|f| d x=\frac{1}{\alpha} \int_{\cup_{j} Q_{j}}|f| d x \leq \frac{1}{\alpha}\|f\|_{L^{1 .}}
$$

Next we need to obtain the estimates on g. Write $\mathbb{R}^{n}=\cup_{j} Q_{j} \cup F$, where F is a closed set. Since $b=0$ on F and $f-b_{j}=\left|Q_{j}\right|^{-1} \int_{Q_{j}} f d x$, we have

$$
g=\left\{\begin{array}{cc}
f & \text { on } F \tag{3.1}\\
\frac{1}{\left|Q_{j}\right| \int_{Q_{j}} f d x} & \text { on } Q_{j .}
\end{array}\right.
$$

On the cube Q_{j}, g is equal to the constant $\left|Q_{j}\right|^{-1} \int_{Q_{j}} f d x$, and this is bounded by $2^{n} \alpha$.

It suffices to show that g is bounded on the set F. Given $x \in F$, we have that x does not belong to any selected cube. Therefore, there exists a sequence of cubes $Q^{(k)}$ whose closures contain x and whose side lengths tend to zero as $k \rightarrow \infty$. Since the cubes $Q^{(k)}$ were never selected, we have

$$
\left|\frac{1}{\left|Q^{(k)}\right|} \int_{Q^{(k)}} f d x\right| \leq \frac{1}{\left|Q^{(k)}\right|} \int_{Q^{(k)}}|f| d x \leq \alpha
$$

The balls are replaced with cubes, we conclude that

$$
|f(x)|=\left|\lim _{k \rightarrow \infty} \frac{1}{\left|Q^{(k)}\right|} \int_{Q^{(k)}} f d x\right| \leq \alpha
$$

whenever $x \in F$. But since $g=f$ a.e. on F, if follows that g is bounded by α on F. Finally, it follows (3.1) that $\|g\|_{L^{1}} \leq\|f\|_{L^{1}}$.

4. Proof of Theorems 1.1 and 1.2

For the kernel estimates, we shall use the idea of Müller and Seeger in [MS]. They used dyadic decomposition of Bessel function to prove local smoothing conjecture for spherically symmetric initial data including endpoint results.
4.1 Dyadic decomposition of Bessel function. Let $\eta \in C_{0}^{\infty}(\mathbb{R})$ be supported in $\left(-\frac{1}{2}, 2\right)$ and equal to 1 in $\left(-\frac{1}{4}, \frac{1}{4}\right)$. For $m=0,1,2, \cdots$ we set

$$
\eta_{m}(\sigma, \nu)= \begin{cases}\eta\left(\nu\left(1-\sigma^{2}\right)\right) & \text { if } m=0 \\ \eta\left(2^{-m} \nu\left(1-\sigma^{2}\right)\right)-\eta\left(2^{-m+1} \nu\left(1-\sigma^{2}\right)\right) & \text { if } m>0\end{cases}
$$

and

$$
J_{\mu}^{m}(u v)=A_{\mu}(u v)^{\mu} \int_{-1}^{1} e^{i(u v) \sigma}\left(1-\sigma^{2}\right)^{\mu-\frac{1}{2}} \eta_{m}(\sigma, \nu) d \sigma .
$$

For a positive integer M we define

$$
\phi_{m \nu}(\sigma)= \begin{cases}\left(1-\sigma^{2}\right)^{\mu-\frac{1}{2}} \eta_{m}(\sigma, \nu) & \text { if } m=0 \\ \left(\frac{1}{\text { iuv }}\right)^{M}\left(\frac{d}{d \sigma}\right)^{M}\left[\eta_{m}(\sigma, \nu)\left(1-\sigma^{2}\right)^{\mu-\frac{1}{2}}\right] & \text { if } m>0\end{cases}
$$

Then by integration by parts if $m>0$ we have

$$
\begin{equation*}
J_{\mu}^{m}(u v)=A_{\mu}(u v)^{\mu} \int_{-1}^{1} e^{i(u v) \sigma} \phi_{m \nu}(\sigma) d \sigma . \tag{4.0}
\end{equation*}
$$

We note that the integrand in (4.1) has the following upper bound:

$$
\left|\phi_{m \nu}(\sigma)\right| \leq C u^{-M} 2^{-m M}\left(2^{m} \nu^{-1}\right)^{\mu-\frac{1}{2}}
$$

and that $\phi_{m \nu}$ vanishes unless either $1-\sigma^{2} \approx 2^{m} \nu^{-1}$ for $m>0$, or $1-\sigma^{2} \leq \nu^{-1}$ for $m=0$ so if σ is in the support of $\phi_{m \nu}$ then either $|\nu-\nu \sigma| \leq 2^{m}$ or $|\nu+\nu \sigma| \leq 2^{m}$. (see [MS, p.5])

Consider the family of Fourier multipliers

$$
m^{\delta}(\xi)=\left(1-|\xi|^{2}\right)_{+}^{\delta}, \quad \xi \in \mathbb{R}^{n}
$$

with $m^{\delta}(\xi)=0$ when $|\xi|>1$. Then define convolution operators S^{δ} by

$$
\widehat{S^{\delta} f}(\xi)=m^{\delta}(\xi) \hat{f}(\xi)
$$

Let $\phi \in C_{0}^{\infty}(\mathbb{R})$ be supported in $\left(\frac{1}{2}, 2\right)$ such that $\sum_{k \geq 1} \phi\left(2^{k} s\right)=1$ for $0<s<1$. Fix k.

We shall need point estimates for the kernels of

$$
S_{k}^{\delta} f(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} H_{k}^{\delta}(x-y) f(y) d y
$$

where

$$
\begin{equation*}
H_{k}^{\delta}(x)=\int_{\mathbb{R}^{n}} \varphi\left(2^{k}\left(1-\left|\xi^{\prime}\right|^{2}\right)\right)\left(1-\left|\xi^{\prime}\right|^{2}\right)_{+}^{\delta} e^{i<x, \xi>} d \xi \tag{4.1}
\end{equation*}
$$

We write $\sum_{k \geq 1} H_{k}^{\delta}=H^{\delta}$ and $\sum_{k \geq 1} S_{k}^{\delta}=S^{\delta}$.
We let $|x|=r$ and define $H_{k}(x)=L_{k}(|x|)$. By Bochner's formula (see Appendix) and change of variables, we have

$$
\begin{equation*}
L_{k}(r)=r^{-(n-2) / 2} \int_{0}^{1} J_{\frac{n-2}{2}}(\rho r) \varphi\left(2^{k}\left(1-\rho^{2}\right)\right)\left(1-\rho^{2}\right)^{\delta} \rho^{n / 2} d \rho . \tag{4.2}
\end{equation*}
$$

Here J_{μ} is the Bessel function of order $\mu>-\frac{1}{2}$ defined by

$$
\begin{equation*}
J_{\mu}(t)=A_{\mu} t^{\mu} \int_{-1}^{1} e^{i s \sigma}\left(1-\sigma^{2}\right)^{\mu-\frac{1}{2}} d \sigma \tag{4.3}
\end{equation*}
$$

where $A_{\mu}=\left[2^{\mu} \Gamma(2 \mu+1) \Gamma\left(\frac{1}{2}\right)\right]^{-1}$.
For the following lemma, we use dyadic decompositions of Bessel functions (see Appendix) following the article by Müller and Seeger [MS].

Lemma 4.2 Suppose that $|x|>2$. Then for each k there is an estimate as follows :

$$
\begin{equation*}
\left|L_{k}(|x|)\right| \leq C 2^{-k(\delta+1)}|x|^{-(n-1) / 2} \min \left\{1,\left(2^{-k}|x|\right)^{-N}\right\} \tag{4.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left|H^{\delta}(x)\right| \leq \sum_{k \geq 1} H_{k} \leq C \frac{1}{(1+|x|)^{\delta+(n+1) / 2}} \tag{4.5}
\end{equation*}
$$

Proof. Fix k and $v=r$ in subsection 4.1. We may decompose the kernel (4.2) as

$$
L_{k, 0}=\sum_{m=0} L_{k, 0}^{m}
$$

where

$$
\begin{equation*}
L_{k, 0}^{m}(r)=r^{-(n-2) / 2} \int_{\mathbb{R}} \int_{0}^{1} J_{\frac{n-2}{2}, k}^{m}(\rho r) \varphi\left(2^{k}\left(1-\rho^{2}\right)\right)\left(1-\rho^{2}\right)^{\delta} \rho^{n / 2} d \rho \tag{4.6}
\end{equation*}
$$

Formula (4.6) and straightforward computation imply that

$$
\begin{equation*}
L_{k, 0}^{m}(r)=A_{\frac{n-2}{2}} \int_{-1}^{1} \phi_{m k r}(\sigma) \int_{0}^{1} \varphi\left(2^{k}\left(1-\rho^{2}\right)\right)\left(1-\rho^{2}\right)^{\delta} \rho^{n-1} e^{i p r \delta} d \rho d \sigma \tag{4.7}
\end{equation*}
$$

We integrate by parts with respect to ρ and in $(4,7)$ and by Fubini's theorem

$$
\begin{align*}
\left|L_{k, 0}^{m}(r)\right| \leq C 2^{-k(n-1) / 2} & \int_{-1}^{1} \int_{0}^{1}\left|\phi_{m k r}(\sigma)\right|(1+|\sigma r|)^{-N} \tag{4.8}\\
& \times\left|\left(\frac{\partial}{\partial \rho}\right)^{N} \varphi\left(2^{k}\left(1-\rho^{2}\right)\right)\left(1-\rho^{2}\right)^{\delta} \rho^{(n-1) / 2}\right| d \rho d \sigma .
\end{align*}
$$

Note that

$$
\begin{equation*}
\left|\phi_{m k r}(\sigma)\right| \leq C 2^{-m M}\left(2^{m+k} r^{-1}\right)^{(n-3) / 2} \tag{4.9}
\end{equation*}
$$

Moreover, $\phi_{m k \nu}$ vanishes unless either $1-\sigma^{2} \approx 2^{m+k} r^{-1}$ for $m>0$, or $1-\sigma^{2} \leq 2^{k} r^{-1}$ for $m=0$. Hence if σ is in the support of $\phi_{m k r}$ then either

$$
|r-r \sigma| \leq 2^{m+k} \text { or }|r+r \sigma| \leq 2^{m+k}
$$

Then using the estimates (4.9), the integrand of (4.8) is bounded by

$$
\begin{aligned}
& C 2^{-k \delta}\left|\phi_{m k r}(\sigma)\right| \frac{1}{\left(1+2^{-k}|\sigma r|^{N_{1}}\right)} \\
\leq & C 2^{k\{(n-3) / 2-\delta\}} 2^{m((n-3) / 2+N-M)} r^{-(n-3) / 2} \frac{1}{\left(1+2^{-k} r\right)^{N}}
\end{aligned}
$$

If we integrate over the support of $\varphi\left(2^{k}\left(1-\rho^{2}\right)\right) \otimes \phi_{m k r}$ for $m \geq 0$ in (4.8), we gain an additional factor of $C 2^{m} r^{-1}$. Since $M>N+(n-1) / 2$, we may sum over m and the desired estimates (4.4) follow from (4.8). Hence we obtain

$$
\left\{C \sum_{r \leq 2^{k}} 2^{-k(\delta+1)} r^{-(n-1) / 2}+C \sum_{r>2^{k}} 2^{-k(\delta+1-N)} r^{-(n-1) / 2-N}\right\}
$$

and thus (4.5) is established.

Proof of Theorem 1.

For $\delta>\frac{n-1}{2}$ we use Lemma 4.2 to have

$$
\begin{aligned}
\left\|S^{\delta} f\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} & =\int_{\mathbb{R}^{n}}\left|S^{\delta} f(x)\right| d x \\
& =\int_{\mathbb{R}^{n}}\left|\left(H^{\delta} * f\right)(x)\right| d x \\
& \leq C\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n}} \frac{1}{(1+|x|)^{\delta+(n+1) / 2}} d x \\
& \leq C\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

For L^{2}-bound we apply Plancherel Theorem in Section 2 to obtain

$$
\left\|S^{\delta} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\left\|\widehat{S}^{\widehat{\delta}} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Since the multiplier $m^{\delta}(\xi)=\left(1-|\xi|^{2}\right)_{+}^{\delta}$ is bounded by 1 for $\delta>0$, we have

$$
\begin{aligned}
\left\|S^{\delta} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} & =\left\|m^{\delta} \hat{f}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& \leq\|\hat{f}\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

We now interpolate with real method between the results on $L^{1}\left(\mathbb{R}^{n}\right)$ for $\delta>\frac{n-1}{2}$ and on $L^{2}\left(\mathbb{R}^{n}\right)$ for $\delta>0$. By Marcinkiewicz Theorem (see Section 2.3) with $\frac{1}{p}=\frac{\theta}{1}+\frac{1-\theta}{2}$ and $0<\theta<1$, we obtain the L^{p}-bound of S^{δ} for $1 \leq p \leq 2$ and $\delta>\frac{n-1}{2}$.

For $2<p<\infty$, we will prove the duality between L^{p} and L^{q}, $\frac{1}{p}+\frac{1}{q}=1$, and the fact that the theorem is proved for $L^{q}, 1<q<2$. Observe the following ; if a function ψ is locally integrable and if $\sup \left|\int \psi \phi d x\right|=A<\infty$, where the sup is taken over all continuous ϕ with compact support which verify $\|\phi\|_{q} \leq 1$, then $\psi \in L^{p}$ and $\|\psi\|_{q}=A$. We take $f \in L^{1} \cap L^{p},(2<p<\infty)$, and ϕ of the type described above. Since $H^{\delta} \in L^{2}$, and because of our choice of f and ϕ, the double integral

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} H^{\delta}(x-y) f(y) \phi(x) d x d y
$$

converges absolutely ; its value is therefore

$$
I=\int_{\mathbb{R}^{n}} f(y)\left(\int_{\mathbb{R}^{n}} H^{\delta}(x-y) \phi(x) d x\right) d y
$$

But the theorem is valid for $1<q<2$ (with the kernel $H^{\delta}(-x)$ instead of $H^{\delta}(x)$, but with the same constant A_{q}. Therefore $\int_{\mathbb{R}^{n}} H^{\delta}(x-y) \phi(x) d x$ belongs to L^{q}, and its L^{q} norm is majorized by $A_{q}\|\phi\|_{q}=A_{q}$. Hölder's inequality then shows that $\left|\int_{\mathbb{R}^{n}}\left(S^{\delta} f\right) \phi d x\right|=|I| \leq A_{q}\|f\|_{q}$, and taking the
supremum of all the ϕ 's indicated above gives the result that

$$
\left\|S^{\delta} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq A_{q}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}, \quad 2<p<\infty
$$

We consider for $\delta>0$

$$
\widehat{T^{\delta} f(\xi)}=\left(1-\frac{\left|\xi^{2}\right|^{2}}{\left|\xi_{n+1}\right|^{2}}\right)_{+}^{\delta} \hat{f}(\xi), \quad \xi=\left(\xi^{\prime}, \xi_{n+1}\right)
$$

Using inverse Fourier transform, we denote by $T^{\delta} f(x)=K^{\delta} * f(x)$ where

$$
K^{\delta}(x)=F^{-1}\left[\left(1-\frac{\left|\xi^{\prime}\right|^{2}}{\left|\xi_{n+1}\right|^{2}}\right)_{+}^{\delta}\right](x)
$$

Let $\psi \in C_{0}^{\infty}(\mathbb{R})$ be supported in $\left(\frac{1}{2}, 2\right)$ such that $\sum_{l=-\infty}^{\infty} \psi\left(2^{-l} t\right)=1$ for $t>0$. If we write the kernel $K_{l}^{\delta}(x)=F^{-1}\left[\left(1-\frac{\left|\xi^{\prime}\right|^{2}}{\left|\xi_{n+1}\right|^{2}}\right)_{+}^{\delta} \psi\left(2^{-l} \xi_{n+1}\right)\right](x)$, we notice that

$$
K^{\delta}(x)=\sum_{l=-\infty}^{\infty} 2^{l(n+1)} K_{0}^{\delta}\left(2^{l} x\right)
$$

From the kernel estimates in [SH], we have for any $N>0$

$$
\begin{aligned}
\left|K_{0}^{\delta}(x)\right|+ & \left|\nabla K_{0}^{\delta}(x)\right| \\
\leq & C \frac{1}{\left(1+\left|x^{\prime}\right|\right)^{(n+1) / 2}} \frac{1}{\left(1+\left|x_{n+1}\right|\right)^{\delta+1}} \chi_{\left\{\left|x^{\prime}\right| \leq\left|x_{n+1}\right|\right\}(x)} \\
& +C \frac{1}{\left(1+\left|x^{\prime}\right|\right)^{\delta+(n+1) / 2}} \frac{1}{\left(1+\| x_{n+1}\left|-\left|x^{\prime}\right|\right|\right)^{N}} \chi_{\left\{\left|x^{\prime}\right| \geq\left|x_{n+1}\right|\right\}(x)} .
\end{aligned}
$$

Remark. The key tool in the proof of the weak type $(1,1)$ estimate is the Calderón-Zygmund decomposition of L^{1} functions.

Proposition 4.3 If $\delta>\frac{n-1}{2}$, then for $\alpha>0$

$$
\left|\left\{x:\left|T^{\delta} f(x)\right|>\alpha\right\}\right| \leq C \alpha^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{n+1}\right)}
$$

where $|E|$ denotes the Lebesgue measure of the set $E \subset \mathbb{R}^{n+1}$.
Proof. From the Calderón-Zygmund decomposition we assume that $f=g+b$, where $b=\sum_{k=1}^{\infty} b_{k}$. We now have

$$
\begin{aligned}
\left\{x:\left|T^{\delta} f(x)\right|>\alpha\right\} & \subset\left\{x:\left|T^{\delta} g(x)\right|>\frac{\alpha}{2}\right\} \cup\left\{x:\left|T^{\delta} b(x)\right|>\frac{\alpha}{2}\right\} \\
& \doteq I \cup I I .
\end{aligned}
$$

Since $|g(x)|<2^{n+1} \alpha$ a.e., we use the L^{2} boundedness of T^{δ} and Chebyshev's inequality to get

$$
|I| \leq C \alpha^{-2}\|g\|_{L^{2}\left(\mathbb{R}^{n+1}\right)}^{2} \leq C \alpha^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{n+1}\right)}
$$

Let Q_{k} be certain non-overlapping cubes and Q_{k}^{*} be the cubes with the same center as Q_{k} but twice the sidelength. If $\Omega^{*}=\cup Q_{k}^{*}$, then
$\left|\Omega^{*}\right| \leq C 2^{n+1} \alpha^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{n+1}\right)}$.
So, $\left|\left\{x \in \Omega^{*}:\left|T^{\delta} b(x)\right|>\frac{\alpha}{2}\right\}\right| \leq C \alpha^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{n+1}\right)}$.
It remains to show that

$$
\left|\left\{x \notin \Omega^{*}:\left|T^{\delta} b(x)\right|>\frac{\alpha}{2}\right\}\right| \leq C \alpha^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{n+1}\right)}
$$

Since T^{α} is translation invariant, we may assume that

$$
Q_{k}=\left\{x: \max \left|x_{j}\right| \leq R\right\}
$$

We now consider

$$
\int_{x \notin Q_{k}^{*}}\left|2^{l(n+1)}\left(K_{0}^{\delta}\left(2^{l}\right) * b_{k}\right)(x)\right| d x=\int_{y \in Q_{k}^{*}} \int_{x \notin Q_{k}^{*}}\left|2^{l(n+1)} K_{0}^{\delta}\left(2^{l}(x-y)\right) b_{k}(y)\right| d x d y
$$

$$
\leq\left\|b_{k}\right\|_{L^{1}\left(\mathbb{R}^{n+1}\right)} \int_{\left\{x: \max \left|x_{j}\right\rangle>2^{l} R\right\}}\left|K_{0}^{\delta}(x)\right| d x .
$$

By using the kernel estimates and $\delta>\frac{n-1}{2}$, we have

$$
\begin{aligned}
\int_{\{x:} & \text { max } \left.\left|x_{j}\right|>2^{l} R\right\} \\
& \leq \int K_{\{ }^{\delta}(x) \mid d x \\
& \leq \iint_{\left\{\left|x^{\prime}\right| \leq 2^{l} R,\left|x_{d+1}\right|>2^{l} R\right\}} \frac{1}{\left|x^{\prime}\right|^{(n+1) / 2}} \frac{1}{\left|x_{n+1}\right|^{\delta+1}} d x^{\prime} d x_{n+1}\left|>2^{l} R,\left\|x_{n+1}|-| x^{\prime}\right\| \leq 1\right\} \\
& \frac{1}{\left|x^{\prime}\right|^{\delta+(n+1) / 2}} d x^{\prime} d x_{n+1} \\
& +\iint_{\left\{\left|x^{\prime}\right|>2^{l} R,\left|x_{d+1}\right|>2^{l} R,\left\|x_{n+1}|-| x^{\prime}\right\|>1\right\}} \frac{1}{\left|x^{\prime}\right|^{\delta+(n+1) / 2}} \frac{1}{\left\|x_{n+1}|-| x^{\prime}\right\|^{N}} d x^{\prime} d x_{n+1} \\
& \leq C\left(2^{l} R\right)^{-\left\{\delta-\frac{n-1}{2}\right\}} .
\end{aligned}
$$

On the other hand, since $\int b_{k}=0$, it follows that

$$
2^{l(n+1)}\left(K_{0}^{\delta}\left(2^{l}\right) * b_{k}\right)(x)=\int_{\mathbb{R}^{d+1}} 2^{l(n+1)}\left\{K_{0}^{\delta}\left(2^{l}(x-y)\right)-K_{0}^{\delta}\left(2^{l} x\right)\right\} b_{k}(y) d y
$$

The mean value theorem, and $\delta>\frac{n-1}{2}$ to have

$$
\begin{aligned}
\int_{x \notin Q_{k}^{*}} & 2^{l(n+1)}\left(K_{0}^{\delta}\left(2^{l}\right) * b_{k}\right)(x) \mid d x \\
& =\int_{y \in Q_{k}^{*}} \int_{x \notin Q_{k}^{*}} 2^{l(n+1)}\left|K_{0}^{\delta}\left(2^{l}(x-y)\right)-K_{0}^{\delta}\left(2^{l} x\right)\right|\left|b_{k}(y)\right| d x d y \\
& \leq \int_{y \in Q_{k}^{*}} \int_{x \not \subset Q_{k}^{*}} 2^{l(n+1)}\left|\nabla K_{0}^{\delta}\left(2^{l} x\right)\right|\left|2^{l} y\right|\left|b_{k}(y)\right| d x d y \\
& \leq C\left(2^{l} R\right)\left\|b_{k}\right\|_{L^{1}\left(\mathbb{R}^{n+1}\right)} \int_{\mathbb{R}^{n+1}} 2^{l(n+1)}\left|\nabla K_{0}^{\delta}\left(2^{l} x\right)\right| d x \\
& \leq C\left(2^{l} R\right)\left\|b_{k}\right\|_{L^{1}\left(\mathbb{R}^{n+1}\right)} .
\end{aligned}
$$

Putting (4.5) and (4.6) together and applying the triangle inequality gives

$$
\begin{aligned}
\int_{x \notin Q_{k}^{l}}\left|\left(K^{\delta} * b_{k}\right)(x)\right| d x & \leq C\left\|b_{k}\right\|_{L^{1}\left(\mathbb{R}^{n+1}\right)}\left(\sum_{2^{l} R \geq 1}\left(2^{l} R\right)^{-\left\{\delta-\frac{n-1}{2}\right\}}+\sum_{2^{l} R<1} 2^{l} R\right) \\
& \leq C\left\|b_{k}\right\|_{L^{1}\left(\mathbb{R}^{n+1}\right)} .
\end{aligned}
$$

From $b=\sum_{k=1}^{\infty} b_{k}$, it follows that

$$
\begin{aligned}
\left|\left\{x \notin \Omega^{*}:\left|T^{\delta} b(x)\right|>\frac{\alpha}{2}\right\}\right| & \leq C \alpha^{-1} \sum_{k=1}^{\infty} \int_{x \notin Q_{k}^{*}}\left|\left(K^{\delta} * b_{k}\right)(x)\right| d x \\
& \leq C \alpha^{-1} \sum_{k=1}^{\infty}\left\|b_{k}\right\|_{L^{1}\left(\mathbb{R}^{n+1}\right)} \\
& \leq C \alpha^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{n+1}\right)}
\end{aligned}
$$

From (4.4) and (4.7), we have

$$
|I I| \leq C\|f\|_{L^{1}\left(\mathbb{R}^{n+1}\right)}
$$

and thus (4.3) and (4.8) give (4.2).
Lemma 4.4 For $\delta>0$, we have

$$
\left\|T^{\delta} f\right\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{R}^{n+1}\right)}
$$

Proof. By Plancherel Theorem (see Section 2), we note that

$$
\left\|T^{\delta} f\right\|_{L^{2}\left(\mathbb{R}^{n+1}\right)}=\left\|\widehat{T^{\delta} f}\right\|_{L^{2}\left(\mathbb{R}^{n+1}\right)}
$$

Since the multiplier $m^{\delta}\left(\xi^{\prime}, \xi_{n+1}\right)=\left(1-\frac{\left|\xi^{\prime}\right|^{2}}{\left|\xi_{n+1}\right|^{2}}\right)_{+}^{\delta}$ is bounded by 1 , we have

$$
\begin{aligned}
\left\|\widehat{T^{\delta} f}\right\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} & =\left\|m^{\delta} \hat{f}\right\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \\
& \leq\|\hat{f}\|_{L^{2}\left(\mathbb{R}^{n+1}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} .
\end{aligned}
$$

We turn to prove Theorem 2.

Proof of Theorem 2. Applying Lemmas 1 and 2, we interpolate with real method between the results on $L^{2}\left(\mathbb{R}^{n+1}\right)$ for $\delta>0$ and on $L^{1, \infty}\left(\mathbb{R}^{n+1}\right)$ for $\delta>\frac{n-1}{2}$. By Marcinkiewicz interpolation Theorem (see Section 2.3) with $\frac{1}{p}=\frac{\theta}{1}+\frac{1-\theta}{2}$ and $0<\theta<1$, we obtain the L^{p} bound of T^{δ} for $1<p \leq 2$ and $\delta>\frac{n-1}{2}$. Likewise Theorem 1 we use duality to have the L^{p}-bound for $2<p<\infty$. Therefore, we have the desired bound of T^{δ} for $\delta>\frac{n-1}{2}$ and $1<p<\infty$.

Remark. When $p=\infty, T^{\delta}$ is unbounded on $L^{\infty}\left(\mathbb{R}^{n+1}\right)$, since the kernel of T^{δ} is not integrable, when $\delta>\frac{n-1}{2}$.

5. Appendix

In this section we study definition and properties of Bessel functions. Definition A. 1 We shall only consider Bessel functions J_{k} of real order $k>-\frac{1}{2}$ (although some of the results can be extended easily to complex numbers k with real part bigger than $-\frac{1}{2}$).

We will define the Bessel function J_{k} of order k by its Poisson representation formula

$$
J_{k}(z)=\frac{\left(\frac{z}{2}\right)^{2}}{\Gamma\left(k+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)} \int_{-1}^{+1} e^{i z s}\left(1-s^{2}\right)^{k} \frac{d s}{\sqrt{1-s^{2}}}
$$

where $k>-\frac{1}{2}$ and $z \in \mathrm{C}$. Among all equipment definitions of Bessel functions, the preceding definition will be the most useful to us. Observe that for t real, $J_{k}(t)$ is also a real number.

Proposition A. 2 Let us summarize a few properties of Bessel functions.
(1) We have the following recurrence formula:

$$
\frac{d}{d z}\left(z^{-k} J_{k}(z)\right)=-z^{-k} J_{k+1}(z), \quad k>-\frac{1}{2} .
$$

(2) We also have the companion recurrence formula:

$$
\frac{d}{d z}\left(z^{k} J_{k}(z)\right)=z^{k} J_{k-1}(z), \quad k>-\frac{1}{2}
$$

(3) J_{k} satisfies the differential equation

$$
z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)+\left(z^{2}-k^{2}\right) f(z)=0
$$

(4) If $k \in \mathbb{Z}^{+}$, then J_{k} can be written in the form

$$
J_{k}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i z \sin \theta} e^{-i k \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (z \sin \theta-k \theta) d \theta
$$

This was taken by Bessel as the definition of these functions for k integer.
(5) For $k>-\frac{1}{2}$ and t real we have the following identity:

$$
J_{k}(t)=\frac{1}{\Gamma\left(\frac{1}{2}\right)}\left(\frac{t}{2}\right)^{k} \sum_{j=0}^{\infty}(-1)^{j} \frac{\Gamma\left(j+\frac{1}{2}\right)}{\Gamma(j+k+1)} \frac{t^{2 j}}{(2 j)!}
$$

Proof. We first verify property (1). We have

$$
\begin{aligned}
\frac{d}{d z}\left(z^{-k} J_{k}(z)\right) & =\frac{i}{2^{k} \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)} \int_{-1}^{1} s e^{i z s}\left(1-s^{2}\right)^{k-\frac{1}{2}} d s \\
& =\frac{i}{2^{k} \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)} \int_{-1}^{1} \frac{i z}{2} e^{i z s} \frac{\left(1-s^{2}\right)^{k+\frac{1}{2}}}{k+\frac{1}{2}} d s \\
& =-z^{-k} J_{k+1}(z)
\end{aligned}
$$

where we integrated by parts and we used the fact that $\Gamma(x+1)=x \Gamma(x)$.
Property (2) can be proved similarly.
Property (3) follows from a direct calculation. A calculation using the definition of the Bessel function gives that the left-hand side of (3) is equal to

$$
\frac{2^{-k} z^{k+1}}{\Gamma\left(k+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)} \int_{-1}^{1} e^{i z s}\left(\left(1-s^{2}\right) z+2 i s\left(k+\frac{1}{2}\right)\right)\left(1-s^{2}\right)^{k-\frac{1}{2}} d s
$$

which in turn is equal to

$$
-i \int_{-1}^{+1} \frac{d}{d s}\left(e^{i s z}\left(1-s^{2}\right)^{k+\frac{1}{2}}\right) d s=0
$$

Property (4) can be derived directly from (1). Let

$$
G_{k}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i z \sin \theta} e^{-i k \theta} d \theta
$$

for $k>-1 / 2$ and $z \in C$. We can show easily that $G_{0}=J_{0}$. If we had

$$
\frac{d}{d z}\left(z^{-k} G_{k}(z)\right)=-z^{-k} G_{k+1}(z), \quad z \in C
$$

for $k \geq 0$ we would immediately conclude that $G_{k}=J_{k}$ for $k \in \mathbb{Z}^{+}$. We have

$$
\begin{aligned}
& \frac{d}{d z}\left(z^{-k} G_{k}(z)\right)=-z^{-k}\left(\frac{k}{z} G_{k}(z)-\frac{d G_{k}}{d z}(z)\right) \\
&=-z^{-k} \int_{0}^{2 \pi} \frac{k}{2 \pi z} e^{i z \sin \theta} e^{-i k z}-\frac{1}{2 \pi}\left(\frac{d}{d z} e^{i z \sin \theta}\right) e^{-i k \theta} d \theta \\
&=-\frac{z^{-k}}{2 \pi} \int_{0}^{2 \pi} i \frac{d}{d \theta}\left(\frac{e^{i z \sin \theta-i k \theta}}{z}\right)+(\cos \theta-i \sin \theta) e^{i z \sin \theta} e^{-i k \theta} d \theta \\
&=-z^{-k} \int_{0}^{2 \pi} e^{i z \sin \theta} e^{-i(k+1) \theta} d \theta=-z^{-k} G_{k+1}(z) .
\end{aligned}
$$

Finally, the identity in (5) can be derived by inserting the expression

$$
\sum_{j=0}^{\infty}(-j)^{j} \frac{(t s)^{2 j}}{(2 j)!}+i \sin (t s)
$$

for $e^{i t s}$ in the definition of the Bessel function $J_{k}(t)$. Carrying out the algebra gives

$$
\begin{array}{r}
J_{k}(t)=\frac{\left(\frac{t}{2}\right)^{k}}{\Gamma\left(\frac{1}{2}\right)^{k}} \sum_{j=0}^{\infty}(-1)^{j} \frac{1}{\Gamma\left(k+\frac{1}{2}\right)} \frac{t^{2 j}}{(2 j)!} 2 \int_{0}^{1} s^{2 j-1}\left(1-s^{2}\right)^{k-\frac{1}{2}} s d s \\
=\frac{\left(\frac{t}{2}\right)^{k}}{\Gamma\left(\frac{1}{2}\right)} \sum_{j=0}^{\infty}(-1)^{j} \frac{1}{\Gamma\left(k+\frac{1}{2}\right)} \frac{t^{2 j}}{(2 j)!} \frac{\Gamma\left(j+\frac{1}{2}\right) \Gamma\left(k+\frac{1}{2}\right)}{\Gamma(j+k+1)}
\end{array}
$$

$$
=\frac{\left(\frac{t}{2}\right)^{k}}{\Gamma\left(\frac{1}{2}\right)^{k}} \sum_{j=0}^{\infty}(-1)^{j} \frac{\Gamma\left(j+\frac{1}{2}\right)}{\Gamma(j+k+1)} \frac{t^{2 j}}{(2 j)!}
$$

Proposition A. 3 Let $\mu>-\frac{1}{2}, \nu>-1$ and $t>0$. Then the following identity is valid:

$$
\int_{0}^{1} J_{u}(t s) s^{u+1}\left(1-s^{2}\right)^{\nu} d s=\frac{\Gamma(\nu+1) 2^{\nu}}{t^{\nu+1}} J_{\mu+\nu+1}(t)
$$

To prove this identity we use formula (5) in proposition 1 . We have

$$
\begin{aligned}
& \int_{0}^{1} J_{u}(t s) s^{u+1}\left(1-s^{2}\right)^{\nu} d s \\
= & \frac{\left(\frac{t}{2}\right)^{\mu}}{\Gamma\left(\frac{1}{2}\right)} \int_{0}^{1} \sum_{j=0}^{\infty} \frac{(-1)^{j} \Gamma\left(j+\frac{1}{2}\right) t^{2 j}}{\Gamma(j+\mu+1)(2 j)!} s^{2 j+\mu+\mu}\left(1-s^{2}\right)^{\nu} s d s \\
= & \frac{1}{2} \frac{\left(\frac{t}{2}\right)^{\mu}}{\Gamma\left(\frac{1}{2}\right)} \sum_{j=0}^{\infty} \frac{(-1)^{j} \Gamma\left(j+\frac{1}{2}\right) t^{2 j}}{\Gamma(j+\mu+1)(2 j)!} \int_{0}^{1} u^{j+\mu}(1-u)^{\nu} d u \\
= & \frac{1}{2} \frac{\left(\frac{t}{2}\right)^{\mu}}{\Gamma\left(\frac{1}{2}\right)} \sum_{j=0}^{\infty} \frac{(-1)^{j} \Gamma\left(j+\frac{1}{2}\right) t^{2 j}}{\Gamma(j+\mu+1)(2 j)!} \frac{\Gamma(\mu+j+1) \Gamma(\nu+1)}{\Gamma(j+\mu+\nu+2)(2 j)!} \\
= & \frac{\Gamma(\nu+1) 2^{\nu}}{t^{\nu+1}} J_{\mu+\nu+1}(t) .
\end{aligned}
$$

Theorem A. 4 Let $d \sigma$ denote surface measure on S^{n-1} for $n \geq 2$. Then the following is true:

$$
\widehat{d \sigma}(\xi)=\int_{S^{n-1}} e^{-2 \pi i \xi \cdot \theta} d \theta=\frac{2 \pi}{|\xi|^{\frac{n-2}{2}}} J_{\frac{n-2}{2}}(2 \pi|\xi|)
$$

We have

$$
\begin{aligned}
\widehat{d \sigma}(\xi) & =\int_{S^{n-1}} e^{-2 \pi i \xi \cdot \theta} d \theta \\
& =\frac{2 \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} \int_{-1}^{+1} e^{-2 \pi i|\xi| \cdot s}\left(1-s^{2}\right)^{\frac{n-2}{2}} \frac{d s}{\sqrt{1-s^{2}}} \\
& =\frac{2 \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} \frac{\Gamma\left(\frac{n-2}{2}+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{(\pi|\xi|)^{\frac{n-2}{2}}} J_{\frac{n-2}{2}}(2 \pi|\xi|) \\
& =\frac{2 \pi}{|\xi|^{\frac{n-2}{2}} J_{\frac{n-2}{2}}^{2}}(2 \pi|\xi|) .
\end{aligned}
$$

Theorem A. 5 The Fourier Transform of a Radial Function is radial on \mathbb{R}^{n} Let $f(x)=f_{0}(|x|)$ be a radial function defined on \mathbb{R}^{n}, where f_{0} is defined on $[0, \infty)$. Then the Fourier transform of f is given by the formula

$$
\hat{f}(\xi)=\frac{2 \pi}{|\xi|^{\frac{n-2}{2}}} \int_{0}^{\infty} f_{0}(r) J_{\frac{n}{2}-1}(2 \pi r|\xi|) r^{\frac{n}{2}} d r
$$

To obtain this formula, use polar coordinates to write

$$
\begin{aligned}
\hat{f}(\xi) & =\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x \\
& =\int_{0}^{\infty} \int_{S^{n-1}} f_{0}(r) e^{-2 \pi i \xi \cdot r \theta} d \theta r^{n-1} d r \\
& =\int_{0}^{\infty} f_{0}(r) \widehat{d \sigma}(r \xi) r^{n-1} d r \\
& =\int_{0}^{\infty} \frac{2 \pi}{(r|\xi|)^{\frac{n-2}{2}}} J_{\frac{n-2}{2}}^{2}(2 \pi r|\xi|) r^{n-1} d r
\end{aligned}
$$

$$
=\frac{2 \pi}{(|\xi|)^{\frac{n-2}{2}}} \int_{0}^{\infty} f_{0}(r) J_{\frac{n-2}{2}}(2 \pi r|\xi|) r^{\frac{n}{2}} d r .
$$

As an application we take $f(x)=\chi_{B(0,1)}$, where $B(0,1)$ is the unit ball in \mathbb{R}^{n}. we obtain

$$
\widehat{\chi_{B(0,1)}}(\xi)=\frac{2 \pi}{|\xi|^{\frac{n-2}{2}}} \int_{0}^{1} J_{\frac{n}{2}-1}(2 \pi|\xi| r) r^{\frac{n}{2}} d r=\frac{J_{\frac{n}{2}}(2 \pi|\xi|)}{|\xi|^{\frac{n}{2}}}
$$

in view of the result in proposition 2. More generally, for $\delta>-1$, let

$$
m_{\delta}(x)=\left\{\begin{array}{cl}
\left(1-|x|^{2}\right)^{\delta} & \text { for }|x| \leq 1 \\
0 & \text { for }|x|>1
\end{array}\right.
$$

Then

$$
\widehat{m_{\delta}}(\xi)=\frac{2 \pi}{|\xi|^{\frac{n-2}{2}}} \int_{0}^{1} J_{\frac{n}{2}-1}(2 \pi|\xi| r) r^{\frac{n}{2}}\left(1-r^{2}\right)^{\delta} d r=\frac{\Gamma(\delta+1)}{\pi^{\delta}} \frac{J_{\frac{n}{2}+\delta}(2 \pi|\xi|)}{|\xi|^{\frac{n}{2}+\delta}}
$$

also in view of the identity in proposition 2.

Proposition A. 5 Here we take $z=r$ a positive real number and we seek the asymptotic behavior $J_{k}(r)$ as $r \rightarrow 0$ and as $r \rightarrow \infty$. let us fix $k>-1 / 2$. The following is true:

$$
J_{k}(r)= \begin{cases}\frac{r^{k}}{2^{k} \Gamma(k+1)}+O\left(r^{k+1}\right) & \text { as } r \rightarrow 0 \\ \sqrt{\frac{2}{\pi r}} \cos \left(r-\frac{\pi k}{2}-\frac{\pi}{4}\right)+O\left(r^{-3 / 2}\right) & \text { as } r \rightarrow \infty\end{cases}
$$

The asymptotic behavior of $J_{k}(r)$ as $r \longrightarrow 0$ is rather trivial. We simply need to note that

$$
\int_{-1}^{+1} e^{i r t}\left(1-t^{2}\right)^{k-\frac{1}{2}} d t=\int_{-1}^{+1}\left(1-t^{2}\right)^{k-\frac{1}{2}}+O(r)
$$

$$
\begin{aligned}
& =\int_{0}^{\pi}\left(\sin ^{2} \phi\right)^{k-\frac{1}{2}}(\sin \phi) d \phi+O(r) \\
& =\frac{\Gamma(k+1 / 2) \Gamma(1 / 2)}{\Gamma(k+1)}+O(r)
\end{aligned}
$$

as $r \rightarrow 0$.
The asymptotic behavior of $J_{k}(r)$ as $r \rightarrow \infty$ is more delicate. Consider the region in the complex plane obtained by excluding the rays $(-\infty,-1)$ and $(1, \infty)$. We choose an analytic branch of $\left(1-z^{2}\right)^{k-\frac{1}{2}}$ in this region that is real valued and nonnegative on the interval $[-1,1]$. We integrate the analytic function

$$
\left(1-z^{2}\right)^{k-\frac{1}{2}} e^{i r z}
$$

over the boundary of the rectangle whose lower side is $[-1,1]$ and whose height is $R>0$.

We obtain

$$
\begin{aligned}
i \int_{0}^{R} e^{i r(1+)}\left(t^{2}-2\right)^{k-\frac{1}{2}} d t & +\int_{-1}^{+1} e^{i r t}\left(1-t^{2}\right)^{k-\frac{1}{2}} d t \\
& +\int_{R}^{0} e^{i r(-1+i t)}\left(t^{2}+2 i t\right)^{k-\frac{1}{2}} d t+\varepsilon(R)=0
\end{aligned}
$$

where $\varepsilon(R) \rightarrow 0$ as $R \rightarrow \infty$. It follows that

$$
I=\int_{-1}^{+1} e^{i r t}\left(1-t^{2}\right)^{k-\frac{1}{2}} d t=I_{+}+I_{-}
$$

where

$$
I_{+}=+i e^{i r} \int_{0}^{\infty} e^{-r t}\left(t^{2}+2 i t\right)^{k-\frac{1}{2}} d t, \quad \text { and }
$$

$$
I_{-}=-i e^{i r} \int_{0}^{\infty} e^{-r t}\left(t^{2}+2 i t\right)^{k-\frac{1}{2}} d t
$$

Next we observe that

$$
\begin{aligned}
& \left(t^{2}+2 i t\right)^{k-\frac{1}{2}}=-i(2 t)^{k-\frac{1}{2}} e^{i\left(\frac{k \pi}{2}+\frac{\pi}{4}\right)}+\phi_{+}(t) \\
& \left(t^{2}-2 i t\right)^{k-\frac{1}{2}}=+i(2 t)^{k-\frac{1}{2}} e^{i\left(\frac{k \pi}{2}+\frac{\pi}{4}\right)}+\phi_{-}(t)
\end{aligned}
$$

where $\left|\phi_{+}(t)\right|+\left|\phi_{-}(t)\right| \leq C t^{k+\frac{1}{2}}$. Note that the Laplace transform

$$
\mathcal{L}(f)(r)=\int_{0}^{\infty} f(t) e^{-t r} d t
$$

of the function t^{b} is $r^{-b-1} \Gamma(b+1)$ when $b>-\frac{1}{2}$, and that the functions ϕ_{+} and $\quad \phi_{-}$have Laplace transforms bounded by a constant multiple of $r^{-k-3 / 2}$. Therefore, we obtain

$$
\begin{aligned}
& I_{+}=(-i)(+i) e^{-i r} e^{i\left(\frac{k \pi}{2}+\frac{\pi}{4}\right)} r r^{-r-\frac{1}{2}} 2^{k-\frac{1}{2}} \Gamma\left(k+\frac{1}{2}\right)+O\left(r^{-k-3 / 2}\right) \\
& I_{-}=(+i)(-i) e^{i r} e^{-i\left(\frac{k \pi}{2}+\frac{\pi}{4}\right)} r_{r-\frac{1}{2}} 2^{k-\frac{1}{2}} \Gamma\left(k+\frac{1}{2}\right)+O\left(r^{-k-3 / 2}\right)
\end{aligned}
$$

as $r \rightarrow \infty$. Adding these two last inequalities and multiplying by the missing factor $\frac{\left(\frac{r}{2}\right)^{k}}{\Gamma\left(k+\frac{1}{2}\right)} \Gamma\left(\frac{1}{2}\right)$, we obtain the equality

$$
J_{k}(r)=\sqrt{\frac{2}{\pi r}} \cos \left(r-\frac{\pi k}{2}-\frac{\pi}{4}\right)+O\left(r^{-3 / 2}\right)
$$

as $r \rightarrow \infty$.

References

[SS] E.M. Stein and R. Sharkarchi, Fourier Analysis, Princeton Univ. Press. 2003.
[LG] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., 2004.
[MS] D. Müller and A. Seeger, Inequalities for spherically symmetric solutions of the wave equation, Math. Z. 3, 417-426 (1995).
[SH] S. Hong, Weak type estimates for cone multipliers on H^{p} spaces, $p<1$, Proc. Amer. Math. Soc. 128 no.12, (2000), 3529-3539.

