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ABSTRACT

어떤 Bochner-Riesz 류의 승수계산

                                                     채 원 재

                           지도교수 : 홍 성 금

                           조선대학교 교육대학원 수학교육전공

 우리는 이 논문에서 Bochner-Riesz type 승수 즉, 구와 콘 승수를 수반한 합성

곱 연산자에 대하여  유계성을 계측한다. 첫째로 구 승수를 수반한 합성곱 연산

자  가  


이고 ≤≤∞  일 때,  →  유계됨을 재 증명 

한다. 두 번째로 콘 승수를 수반한 합성곱 연산자  가  


이고  ∞ 

일 때,  →  유계됨을 증명한다.
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1. Introduction

1.1  We define Schwartz space  consists of all indefinitely 

differentiable functions  on   such that

 
sup

∈ 
 


 ∞  ,

for every multi-index  and . In other words,  and all its derivatives are 

required to be rapidly decreasing.

Example 1. An example of a Schwartz function in  is the 

-dimensional Gaussian given by 


. 

The Fourier transform of a Schwartz function  is defined by

(1.1)               

⋅ ,  for ∈.                     

      

Example 2. Let  and  be the functions defined by

    i f ≤
 otherwise 

    and       i f ≤
 otherwise 

Although  is not continuous, the integral defining its Fourier transform still 

makes sense.

Show that 

 

sin
  and     

sin 


with the understanding that    and   .

We also define  inverse Fourier transform by

(1.2)                       


⋅ .                         
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Example 3. The inverse Fourier transform of 


 in   is as follows :

       
 

⋅   









⋅









⋅

                           








⋅






                            









                            


.

Let ≥. For ∈ we consider the convolution operators

                     

    ′

 ′,    ′∈ .

and for ∈

                    

  

′ 




′ ,     ′ ∈
×,

where 
   for   , and 

   otherwise.

In this thesis, we study  -boundedness for convolution operators   and 

 , when  ∞ and 


 for ≥.

The main results are as follows : 

Theorem 1.1 Let  . The convolution operator   is bounded from 

  to   for ≤ ≤∞  and  


. 

Theorem 1.2 Let  . The convolution operator   is bounded from 

  to   for  ∞  and  


.

Remark . If ≤


, then the convolution operator   and   is 

unbounded on   and  , respectively.



- 3 -

2. Preliminaries 

In this section we study some properties of a Schwartz function, Fourier, 

inverse Fourier transform, and convolution (see [SS]).

Proposition 2.1 Let ∈.

(1) →⋅  whenever  ∈.

(2) 
⋅→   whenever  ∈.

(3) → 
   whenever   .

(4) 


→ .

(5)  → 


 .

(6) →  whenever  is a rotation.

Proof.  Property (1) is an immediate consequence of the translation 

invariance of the integral. Property (2) follows from the definition (1.1),

 

  


 .

Also, if  , then 




 establishes property (3).

Integrating by parts gives






′⋅   

 ⋅





⋅ .

If we repeat this process  times, and let  go to infinity, we get (4).

To verify the last property, simply change variables  in the integral. 

Then, recall that det, and ⋅ ⋅, because  is a rotation.  
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Corollary 2.2 The Fourier transform maps  to itself.

Remark. (i) As an example we consider Gaussian 


. Also, we observe 

that when  , the radial functions are precisely the even functions, that 

is, those for which  .

(ii) As for the Fourier transform of radial  function, we refer the appendix 

to the interested readers. 

Definition 2.3 Given two integrable functions  and  on  , we define 

their convolution  ∗  by

∗ 

.

The above integral makes sense for each , since the product of two 

integrable functions is again integrable. 

Proposition 2.4 Suppose that , , and  are -periodic integrable 

functions.  Then the following holds : 

(1)  ∗   ∗  ∗ .

(2) ∗   ∗   ∗  for any ∈.

(3)  ∗    ∗ 

(4)  ∗ ∗  ∗ ∗ .

(5)  ∗  is continuous.

(6) ∗.

proof. Since we have

                    ∗ 

                       

                             




          

                              ∗  ∗ ,
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(1) follows at once. As for (2), we have

                      ∗  

                                      ( ∗  )

                               
                                ∗ .

We turn to (3).  If  is continuous and periodic, then 

                    

 


    for any ∈,

because of a change of variables  by , followed by a translation from  

to . Then, if one takes  , we obtain the desired.

In order to obtain (4), we consider 

                    ∗ ∗ 

 ∗ 

                              



         

                              





                              

 ∗ 

                               ∗  ∗ .

 We proceed to (5). We show that if  and  are continuous, then ∗ is 

continuous. First, we may write

∗   ∗  

 




  

Since  is continuous it must be uniformly continuous on any closed and 

bounded interval. But  is also periodic, so it must be uniformly continuous 

on all of ; given   there exists   so that     whenever 

   . Then,     implies    for any , hence
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        ∗   ∗≤ 
 





  
                               ≤ 

 




  

                               ≤ 

 






                               ≤ 


,

where  is chosen so that ≤  for all . As a result, we conclude 

that ∗ is continuous, and the proposition is proved, at least when  and 

 are continuous.

Finally, we show (6). The Fourier transform of ∗ is 

                 ∗

 ∗ ⋅

                         



⋅                  

                         

⋅


⋅

                         

⋅


⋅

                               .  

We finish the proof of Proposition 3.1.                                   □

Definition 2.5 A family of kernels   
∞  on the circle is said to be a 

family of good kernels if it satisfies the following properties :

(1) For all ≥,



 




  .

(2) There exists  such that for all ≥,






≤ .
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(3) For every  ,


≤ ≤ 

→ ,  as →∞

The following theorem is called Plancherel Theorem.

Theorem 2.6 Suppose ∈. Then




⋅

Moreover









.

Proof.  Step1. The Fourier transform of 


 is 


. To prove this, 

notice that the properties of the exponential functions imply that 


 




⋯




  and   
⋯

.

Thus the integrand in the Fourier transform is a product of  functions, 

each depending on the variable  (≤≤) only. Thus the assertion 

follows by writing the integral over  as a series of repeated integrals, 

each taken over . 

Step2. The family  
 








 is a family of good kernels in . By 

this we mean that

(1) 

 ,

(2) 

 ≤  (in fact ≥),

(3) For every  , 
≥ 
 →  as  → .

The proofs of these assertions are almost identical to the case  . 

As a result
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 

 →  as  → 

when  is a Schwartz function, or more generally when  is bounded and 

continuous at the origin.

Step3.  The multiplication formula



  





holds whenever  and  are in . The proof requires the evaluation of the 

integral of 
⋅over ∈ × as a repeated integral, 

with each separate integration taken over .

 The Fourier inversion is then a simple consequence of the multiplication 

formula and the family of good kernels . It also follows that the Fourier 

transform  is a bijective map of  to itself, whose inverse is 



⋅

Step4. Next we turn to the convolution, defined by

 ∗ 

,   ∈

We have that  ∈,  ∗    ∗ , and ∗. The 

argument is similar to that in one-dimension. The calculation of the Fourier 

transform of  ∗ involves an integration of ⋅(over 

 ×) expressed as a repeated integral.

This completes the proof of Theorem 2.5.                                □

Example 2.7  This example is the application of Theorem 2.5, which shows 

that Plancherel Theorem holds for -dimensional Gaussian 


.
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Theorem 2.8 Chebyshev's Inequality.  If ∈   ∞, then for any 

, 

   ≤ 
∥∥ 



.

proof. Let     . Then

                  ∥∥
  ≥ 



≥ 


  .           □

2.1   and Weak   spaces .  In this section we consider the 

definitions of   and Weak   spaces and study some properties. 

Let  be a measure space and let  be a positive, not necessarily finite, 

measure on . For  ∞,   will denote the set of all 

complex-valued -measurable functions on  whose modulus to the th 

power is integrable. ∞ will be the set of all complex-valued 

-measurable functions  on  such that for some , the set 

  has -measure zero. Two functions in   will be 

considered equal if they are equal -almost everywhere. The notation 

  will be reserved for the space   ⋅, where ⋅ denotes 

-dimensional Lebesgue measure. Lebesgue measure on  will also be 

denoted by . Within context and in the lack of ambiguity,   will 

simply be  . The space   equipped with counting measure will be 

denoted by  or simply .

Definition 2.9 For  ∞, we define the   quasi-norm of a function  

by

(2.2.1)                  ∥∥   





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and for  ∞ by

(2.2.2)           ∥∥
∞

 inf       .

 It is well known that Minkowski's (or the triangle) inequality

(2.2.3)            ∥∥
 

≤∥∥
 

∥∥


holds for all ,  in     , whenever ≤≤∞. Since in addition 

∥∥  implies that   ae, the   spaces are normed linear 

spaces or ≤≤∞. For  , inequality (2.2.3) is reversed when 

  ≥. However, the following substitute of (2.2.3) holds:

(2.2.4)          ∥∥≤




∥∥∥∥ 

and thus the spaces   are quasi-normed linear spaces. 

 

Definition 2.10 For  a measurable function on , the distribution function 

of  is the function  defined on ∞ as follows:

∈  .

Example 2.11 The simple functions are finite linear combinations of 

characteristic functions of sets of finite measure 

  
  




,

where the sets  are pairwise disjoint and   ⋯    . If ≥ , 

then clearly  . However if    then    precisely 

when ∈ and, in general,

if ≤  , then    precisely when ∈ ∪⋯∪.
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Setting

  
 





we have

  
  



,

where  . 

 We now state a few simple facts about the distribution function . We 

have

Proposition 2.12 Let  and  be measurable functions on . Then for all 

    we have

(1) ≤   implies that ≤ 

(2)  


,  for all ∈ \ 

(3)  ≤  

(4) ≤  .

Proposition 2.13 For  in  ,  ∞, we have

∥∥ 
  



∞

.

proof. We use Fubini's theorem to obtain the second equality below 

          


∞

   


∞



  

                            






 
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                            




                            ∥∥

 .

  This completes the proof.                                            □

Definition 2.14 For  ∞, the space weak   is defined as the set 

of all -measurable functions  such that

∥∥ ∞ inf    ≤ 
 

for all  

                       sup  


    

is finite. The space weak-∞ is by definition ∞.

The weak   spaces will also be denoted by  ∞. Two functions in 

 ∞ will be considered equal if they are equal -a.e.. The notation 

 ∞ is reserved for  ∞ ⋅. Using Proposition 2.12 (2), we can 

easily show that

∥∥∞ ∥∥∞,

for any complex nonzero constant . The analogue of Proposition 2.12 is 

∥∥ ∞≤∥∥∞∥∥ ∞,

where   max 




 a fact that follows from Proposition 2.12 (3) with 

   


. 

We also have that 

∥∥
 ∞
  ⇒     -a.e.

So that,  ∞ is a quasi-normed linear space for  ∞.
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  The weak   spaces are larger than the usual   spaces. We have the 

following:

Proposition 2.15 For any  ∞, and any  in   we have 

∥∥∞≤∥∥ ; hence  ⊆ ∞.

proof.  This is just a trivial consequence of Chebychev's inquality:

(2.2.5)               ≤ 
  

.

As the integral in (2.2.5) is at most ∥∥
 
 , using sup  



   
we obtain that

                            ∥∥∞≤∥∥.                            □

Remark. The inclusion  ⊆ ∞ is strict. For example, on  with the 

usual Lebesgue measure, let  
 



. Obviously,  is not in   but 

 is in  ∞ and we may check easily that ∥∥∞ is the measure 

of the unit ball of . 

2.2 The Marcinkiewicz Interpolation Theorem (Real method). 

 Let  be an operator defined on a linear subspace of the space of all 

complex-valued measurable functions on a measure space  and taking 

values in the set of all complex-valued measurable functions on a measure 

space .

Definition 2.16 

(1)  is called linear if for all ,  and all ∈, we have

    and   .

(2)  is called sublinear if for all ,  and all ∈, we have
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 ≤    and   .

(3)  is called quasi-linear if for all ,  and all ∈, we have

 ≤   and   

for some constant . Sublinearity is a special case of quasi-linearity.

 We begin with our first interpolation theorem.

Theorem 2.17 Let  and  be two measure space and let 

   ≤∞. Let  be a sublinear operator defined on the space 




 and taking values in the space of measurable functions on . 

Assume that there exist two positive constants  and  such that 

∥∥

∞

≤∥∥      for all ∈
,

∥∥

∞

≤∥∥      for all ∈
.

Then for all   and for all  in   we have the estimate

(2.3.1)                 ∥∥ ≤∥∥ ,

where 

                     



 


















 










 






 



.

Proof. See p.32-35 in [LG].                                             □
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3. Calderon-Zygmund decomposition

 To prove that singular integrals are of weak type  we will need to 

introduce the Calderon-Zygmund decomposition. This is a powerful stopping 

time construction.

Theorem 3.1 Let ∈  and . Then there exist functions  and  

on  such that

(1)  

(2) ∥∥

≤∥∥ and ∥∥∞≤

.

(3) 


, where each  is supported in a dyadic cube . Furthermore, 

the cubes  and  have disjoint interiors when .

(4) 


  .

(5) ∥∥≤
 .

(6) 

≤ 

∥∥.

Remark. This is called the Calderon-Zygmund decomposition of  at height 

. The function  is called the good function of the decomposition since it 

is both integrable and bounded; hence the letter . The function  is called 

the bad function since it contains the singular part of  (hence the letter 

), but it is carefully chosen to have mean value zero. It follows from (5) 

and (6) that the bad function  is integrable and

∥∥

≤



∥∥ ≤



≤

∥∥

By (2) the good function is integrable and bounded; hence it is in all the 

  spaces for ≤≤∞. More specifically, we have the following estimate:
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∥∥

≤∥∥

 




∥∥
∞

 



≤∥∥






 



 
′




′



∥∥





Proof. Recall that a dyadic cube in  is a cube of the form 

                       
× ⋯ ×

,

where , ⋯ are integers. Decompose  into a mesh of equal size 

disjoint dyadic cubes so that 

 ≥ 


∥∥ 

for every cube  in the mesh. Subdivide each cube in the mesh into  

congruent cubes by bisecting each of its sides. We now have a new mesh 

of dyadic cubes. Select a cube in the new mesh if 

 
 



 .

 Let  be the set of all selected cubes. Now subdivide each nonselected 

cube into  congruent subcubes by bisecting each side ad before. Then 

select one of these new cubes if  
 



  holds. Put all selected 

cubes of this generation into the set . Repeat this procedure indefinitely.

 The set of all selected cubes  is exactly the set of the cubes  

proclaimed in the proposition. Let us observe that these cubes are disjoint, 

for otherwise some  would be a proper subset of some , which is 

impossible since the selected cube  was never subdivided. Now define

  
 



 ,
 



 and   .

 For a selected cube  there exists a unique nonselected cube  ′ with 
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twice its side length that contains . Let us call this cube the parent of 

. Since its parent  ′ was not selected, we have  ′
 ′

≤. Then 


 



    ′
 

 ′

≤ .

Consequently, 




 ≤ 


  
 



 ≤  ≤ 
 ,

which proves (5). To prove (6), simply observe that



≤ 







  


∪

 ≤ 


∥∥.

Next we need to obtain the estimates on . Write   ∪∪, where  

is a closed set. Since    on  and   




 , we have

(3.1)                    










 on 


 



 


on 

On the cube ,  is equal to the constant 




 , and this is 

bounded by .

It suffices to show that  is bounded on the set . Given ∈, we have 

that  does not belong to any selected cube. Therefore, there exists a 

sequence of cubes   whose closures contain  and whose side lengths 

tend to zero as →∞. Since the cubes   were never selected, we have

 
 

 
 ≤ 

 
 
 ≤ .

The balls are replaced with cubes, we conclude that
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  lim
→∞
 
 

 
 ≤ 

whenever ∈ . But since   a.e. on , if follows that  is bounded by 

 on . Finally, it follows (3.1) that ∥∥ ≤∥∥.                   □
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 4. Proof of Theorems 1.1 and 1.2

For the kernel estimates, we shall use the idea of Muller and Seeger in 

[MS]. They used dyadic decomposition of Bessel function to prove local 

smoothing conjecture for spherically symmetric initial data including 

endpoint results. 

4.1 Dyadic decomposition of Bessel function. Let ∈
∞ be supported in 

 


 and equal to 1 in  





. For     ⋯ we set

  
 i f 

  i f 

and


  







 



.

For a positive integer  we define













 




i f 


 




 


 

 



 i f 

Then by integration by parts if  we have

(4.0)                 
  






.                  

We note that the integrand in (4.1) has the following upper bound:

 ≤ 
 

 



and that  vanishes unless either ≈  for , or 

≤  for  so if  is in the support of  then either 

  ≤  or   ≤  . (see [MS, p.5])
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Consider the family of Fourier multipliers 

  
 ,    ∈

with   when . Then define convolution operators   by 


  .

 Let ∈
∞ be supported in 


 such that 

≥

  for   . 

Fix .

We shall need point estimates for the kernels of 


  





where 

(4.1)             
  


′ ′

 .

We write 
≥


   and 

≥


  .

 We let  and define   By Bochner's formula (see 

Appendix) and change of variables, we have

(4.2)          









 
.

Here  is the Bessel function of order  


 defined by 

(4.3)                 







 





where 













. 

 For the following lemma, we use dyadic decompositions of Bessel 

functions (see Appendix) following the article by Muller and Seeger [MS].
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Lemma 4.2 Suppose that . Then for each  there is an estimate as 

follows : 

(4.4)              ≤ 
   min.

Therefore,

(4.5)                ≤ 
≥

≤  


.

Proof. Fix  and    in subsection 4.1. We may decompose the kernel 

(4.2) as 

 





where

(4.6)      
  













 .

 Formula (4.6) and straightforward computation imply that 

(4.7)     
   







 




 .

We integrate by parts with respect to  and in (4,7) and by Fubini's 

theorem

(4.8)        
 ≤  










  


                          × 
 


.
Note that

(4.9)                ≤ 
 .

 Moreover,  vanishes unless either ≈  for , or 

≤  for . Hence if  is in the support of  then either 
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≤ or ≤.

Then using the estimates (4.9), the integrand of (4.8) is bounded by

                     
 






                   ≤  


.

If we integrate over the support of ⊗ for ≥ in (4.8), 

we gain an additional factor of . Since , we may 

sum over  and the desired estimates (4.4) follow from (4.8). Hence we 

obtain

  ≤ 


 
  ,

and thus (4.5) is established.

Proof of Theorem 1.   

For 


 we use Lemma 4.2 to have 

                      ∥ ∥ 

 

                                  

 ∗

                                  ≤ ∥∥

 




                                  ≤ ∥∥.

 For  -bound we apply Plancherel Theorem in Section 2 to obtain 

∥ ∥
 

 ∥ ∥
.

Since the multiplier   
  is bounded by 1 for  , we have
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                          ∥ ∥


 ∥∥


                                     ≤∥∥


 ∥∥
 

.

 We now interpolate with real method between the results on   for 




 and on   for  . By Marcinkiewicz Theorem (see Section 

2.3) with 


 





 and   , we obtain the  -bound of   for 

≤≤ and 


.

For  ∞, we will prove the duality between   and  , 


 


 , and 

the fact that the theorem is proved for      . Observe the following 

; if a function  is locally integrable and if sup     ∞, where 

the sup is taken over all continuous  with compact support which verify 

∥∥≤, then ∈  and ∥∥ .  We take ∈ ∩     ∞, 

and  of the type described above. Since  ∈ , and because of our 

choice of  and , the double integral





 

converges absolutely ; its value is therefore

 



.

 But the theorem is valid for   (with the kernel   instead of 

 , but with the same constant ). Therefore 

  

belongs to  , and its   norm is majorized by ∥∥ . Holder's 

inequality then shows that 
   ≤ ∥∥, and taking the 



- 24 -

supremum of all the 's indicated above gives the result that 

                ∥ ∥
 ≤ ∥∥ ,       ∞.              □

  We consider for  

  
′ 





,    ′  .

Using inverse Fourier transform, we denote by     ∗ where

   





′ 


 


.

Let ∈ 
∞ be supported in 


 such that 

 ∞

∞

    for   .

If we write the kernel 
  






′ 




 



, we notice 

that

  
 ∞

∞


.

From the kernel estimates in [SH], we have for any 

            
 ∇



                  ≤  ′

 




′≤ 

                      ′

  ′




′≥ .

Remark. The key tool in the proof of the weak type  estimate is the 

Calderon-Zygmund decomposition of   functions.
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Proposition 4.3 If 


, then for 

   ≤ ∥∥ ,

where   denotes the Lebesgue measure of the set ⊂ .

Proof.  From the Calderon-Zygmund decomposition we assume that 

 , where  
 

∞

. We now have

    ⊂     
 ∪    

 
                           ≐∪.

 Since   a.e., we use the   boundedness of   and 

Chebyshev's inequality to get 

  ≤ ∥∥ 
 ≤ ∥∥ . 

Let  be certain non-overlapping cubes and 
 be the cubes with the 

same center as  but twice the sidelength. If   ∪
, then 

 ≤ ∥∥


.

 So, ∈     
 ≤ ∥∥.

It remains to show that 

∉    
 ≤ ∥∥.

Since  is translation invariant, we may assume that 

  max ≤.

We now consider


∉




∗ 
∈



∉





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                               ≤ ∥∥ max   

.

By using the kernel estimates and 


, we have

      
 max  





           ≤
′≤  


′







′

           ≤
′  

  ′ ≤ 
′


′             

           
′  

  ′  
′


  ′




′

           ≤


 
.

On the other hand, since , it follows that


∗





.

The mean value theorem, and 


 to have 

              
∉ 




∗

                  
∈



∈







                  ≤
∈



∈


∇



                  ≤ ∥∥


∇



                  ≤ ∥∥.

Putting (4.5) and (4.6) together and applying the triangle inequality gives
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       
∉


 ∗  ≤ ∥∥ 

≥ 


 

 
 



                             ≤ ∥∥ .

From  
 

∞

, it follows that

         ∉    
  ≤ 

 

∞


∉


 ∗ 

         ≤ 
 

∞

∥∥

                                ≤ ∥∥.

From (4.4) and (4.7), we have 

 ≤ ∥∥,

and thus (4.3) and (4.8) give (4.2).                                       □

Lemma 4.4 For  , we have 

∥ ∥
 

≤∥∥.

Proof. By Plancherel Theorem (see Section 2), we note that

∥ ∥
 

 ∥ ∥


.

Since the multiplier ′ 
′ 





 is bounded by 1, we have     

       

                     ∥ ∥


 ∥∥
 

                                  ≤∥∥
 

 ∥∥
 

.            □
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We turn to prove Theorem 2.

Proof of Theorem 2.  Applying Lemmas 1 and 2, we interpolate with real 

method between the results on   for   and on  ∞ for 




. By Marcinkiewicz interpolation Theorem (see Section 2.3) with 




 





 and  , we obtain the   bound of   for  ≤ 

and 


.  Likewise Theorem 1 we use duality to have the  -bound 

for  ∞. Therefore, we have the desired bound of   for 


 

and  ∞.                                                           □  

                                                                           

Remark. When ∞,   is unbounded on ∞, since the kernel of   

is not integrable, when 


.
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5. Appendix

In this section we study definition and properties of Bessel functions.

Definition A.1 We shall only consider Bessel functions  of real order 

 


(although some of the results can be extended easily to complex 

numbers  with real part bigger than 


).

 We will define the Bessel function  of order  by its Poisson 

representation formula























,

where 


 and ∈C. Among all equipment definitions of Bessel 

functions, the preceding definition will be the most useful to us. Observe 

that for  real,  is also a real number.

Proposition A.2 Let us summarize a few properties of Bessel functions.

(1) We have the following recurrence formula:




  

,  


.

(2) We also have the companion recurrence formula:




  

,  


.

(3)  satisfies the differential equation

″′  .

(4) If ∈, then  can be written in the form 
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 

 




sin   

 




cossin.

This was taken by Bessel as the definition of these functions for  integer.

(5) For 


 and  real we have the following identity:

  










  

∞



 







.

Proof. We first verify property (1). We have




 









 





 





               
 







 














 





                          ,

where we integrated by parts and we used the fact that   .

Property (2) can be proved similarly.

 Property (3) follows from a direct calculation. A calculation using the 

definition of the Bessel function gives that the left-hand side of (3) is 

equal to 










 




 


 

 



,

which in turn is equal to











 



  .
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Property (4) can be derived directly from (1). Let

  

 




 sin,

for  and ∈. We can show easily that   . If we had 




  

,  ∈

for ≥ we would immediately conclude that   for ∈. We have

          


  

 







                         









sin 

  


sin  

                        

 











 sin 
cossinsin

                        






 sin  .

Finally, the identity in (5) can be derived by inserting the expression


  

∞




sin

for  in the definition of the Bessel function . Carrying out the 

algebra gives

  






 



  

∞

















 
 





                   






 



 

∞





















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                   






 



 

∞











.                      □

Proposition A.3 Let  


,   and   . Then the following identity is 

valid:







 


.

To prove this identity we use formula (5) in proposition 1. We have

                  





                                     

                  
















  

∞








  

                  














  

∞













 

                 














  

∞



 








                



.                                   □

Theorem A.4 Let  denote surface measure on    for  ≥. Then the 

following is true:

  
 
⋅ 










 .
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We have

                       
 
⋅

                           















⋅







                           































 

                           










 .                           □

Theorem A.5 The Fourier Transform of a Radial Function is radial on 

Let    be a radial function defined on , where  is defined on 

∞. Then the Fourier transform of  is given by the formula

 






 


∞












. 

To obtain this formula, use polar coordinates to write 

                       

⋅ 

                            


∞


 


⋅ 

                            


∞




                           


∞












 

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                           






 


∞




 




.

As an application we take , where  is the unit ball in . 

we obtain

 






 















 









 

,

in view of the result in proposition 2. More generally, for , let

  
 for ≤

 for 

Then

 






 















 
















,

also in view of the identity in proposition 2.

Proposition A.5 Here we take    a positive real number and we seek the 

asymptotic behavior  as  →  and as →∞. let us fix . The 

following is true:















 as →







cos





   as →∞

      

The asymptotic behavior of  as → is rather trivial. We simply need 

to note that

              




 
 



  





 







- 35 -

                                  




sin
 



sin

                                 




as → .

 The asymptotic behavior of  as  →∞ is more delicate. Consider the 

region in the complex plane obtained by excluding the rays ∞ and 

∞. We choose an analytic branch of 
 



 in this region that is 

real valued and nonnegative on the interval . We integrate the 

analytic function


 





over the boundary of the rectangle whose lower side is  and whose 

height is .

We obtain

            




 
 



 




 
 





                                  





 



  ,

where →  as →∞. It follows that

  




 
 



  ,

where

  




∞

 
 



,    and
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                            




∞

 
 





Next we observe that


 



 
 







 







 



 
 












 ,

where  ≤ 
 



. Note that the Laplace transform

ℒ  


∞

 

of the function  is 
 when 


, and that the functions  

and   have Laplace transforms bounded by a constant multiple of . 

Therefore, we obtain

  
 




 





  




 








  




 





  




 








as →∞. Adding these two last inequalities and multiplying by the missing 

factor 













, we obtain the equality 

  





cos


 




as →∞.
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