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1. Introduction

One of the basic problems in the differential geometry is to study the set

of curvature function over a given manifold.

The well-known problem in differential geometry is whether a given met-

ric on a compact Riemannian manifold is necessarily pointwise conformal

to some metric with constant scalar curvature or not.

In a recent study ([10]), Jung and Kim have studied the problem of scalar

curvature functions on Lorentzian warped product manifolds and obtaind

partial results about the existence and nonexistence of Lorentzian warped

metric with some prescribed scalar curvature function. In this paper, we

study also the existence and nonexistence of Riemannian warped metric with

prescribed scalar curvature functions on some Riemannian warped product

manifolds.

By the results of Kazdan and Warner ([11], [12], [13]), if N is a compact

Riemannian n−manifold without boundary n ≥ 3, then N belongs to one

of the following three catagories :

(A) A smooth function on N is the scalar curvature of some Riemannian

metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian
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metric on N if and only if the function is either identically zero or strictly

negative somewhere.

(C) Any smooth function on N is the scalar curvature of some Riemann-

ian metric on N .

This completely answers the question of which smooth functions are

scalar curvatures of Riemannian metrics on a compact manifold N .

In [11], [12] and [13] Kazdan and Warner also showed that there exists

some obstruction of a Riemannian metric with positive scalar curvature (or

zero scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have

been done on the question how to determine which smooth functions are

scalar curvatures of complete Riemannian metrics on an open manifold. Re-

sults of Gromov and Lawson ([9]) show that some open manifolds cannot

carry complete Riemannian metrics of positive scalar curvature, for exam-

ple, weakly enlargeable manifolds.

Furthermore, they show that some open manifolds cannot even admit

complete Riemannian metrics with scalar curvatures uniformly positive out-

side a compact set and with Ricci curvatures bounded ([9], [16, p.322]).

On the other hand, it is well known that each open manifold of dimension

bigger than 2 admits a complete Riemannian metric of constant negative
4



scalar curvature ([6]). It follows from the results of Aviles and McOwen

([1]) that any bounded negative function on an open manifold of dimension

bigger than 2 is the scalar curvature of a complete Riemannian metric.

In [14] and [15], the author considered the scalar curvature of some Rie-

mannian warped product and its conformal deformation of warped product

metric.

In this paper, when N is a compact Riemannian manifold, we con-

sider the nonexistence of warping functions on a warped product manifold

M = [a,∞)×f N with specific scalar curvatures, where a is a positive con-

stant. That is, it is shown that if the fiber manifold N belongs to class

(C) then M does not admit a Riemannian metric with some positive scalar

curvature near the end outside a compact set.
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2. Preliminaries

First of all, in order to induce a partial differential equation, we need

some definitions of connections, curvatures and some results about warped

product manifolds.

Definition 2.1. Let X(M) denote the set of all smooth vector fields defined

on M , and let =(M) denote the ring of all smooth real-valued functions on

M . A connection ∇ on a smooth manifold M is a function

∇ : X(M)× X(M) → X(M)

such that

(D1) ∇V W is = -linear in V,

(D2) ∇V W is R-linear in W,

(D3) ∇V (fW ) = (V f)W + f∇vW for f ∈ =(M),

(D4) [V,W ] = ∇V W −∇W V , and

(D5) X < V,W >=< ∇XV, W > + < V,∇XW > for all X, V, W ∈

X(M).

If ∇ satisfies axioms (D1)∼(D3), then ∇V W is called the covariant de-

rivative of W with respect to V for the connection ∇. If ∇ satisfies axioms
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(D4)∼ (D5), then ∇ is called the Levi - Civita connection of M , which is

characterized by the Koszul formula ([17]).

A geodesic c : (a, b) → M is a smooth curve of M such that the tangent

vector c
′
moves by parallel translation along c. In order words, c is a geodesic

if

∇c′ c
′
= 0 (geodesic equation).

A pregeodesic is a smooth curve c which may be reparametrized to be

a geodesic. Any parameter for which c is a geodesic is called an affine pa-

rameter. If s and t are two affine parameters for the same pregeodesic, then

s = at+ b for some constants a, b ∈ R. A pregeodesic is said to be complete

if for some affine parameterizion (hence for all affine parameterizations) the

domain of the parametrization is all of R.

The equation∇c′ c
′
= 0 may be expressed as a system of linear differential

equations. To this end, we let (U, (x1, x2, ..., xn)) be local coordinates on

M and let
∂

∂x1
,

∂

∂x2
, ...,

∂

∂xn
denote the natural basis with respect to these

coordinates.

The connection coefficients Γk
ij of ∇ with respect to (x1, x2, ..., xn) are

defined by

∇ ∂

∂xi

(
∂

∂xj

)
=

n∑

k=1

Γk
ij

∂

∂xk
(connection coefficients).
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Using these coefficients, we may write equation as the system

d2xk

dt2
+

n∑

i,j=1

Γk
ij

dxi

dt

dxj

dt
= 0 (geodesic equations in coordinates).

Definition 2.2. The curvature tensor of the connection ∇ is a linear trans-

formation valued tensor R in Hom(X(M), X(M)) defined by :

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

Thus, for Z ∈ X(M),

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

It is well-known that R(X, Y )Z at p depends only upon the values of

X, Y and Z at p ([17]).

If w ∈ T ∗p (M) is a cotangent vector at p and x, y, z ∈ Tp(M) are tangent

vectors at p, then one defines

R(ω, X, Y, Z) = (ω, R(X, Y )Z) = ω(R(X, Y )Z)

for X,Y and Z smooth vector fields extending x, y and z, respectively.

The curvature tensor R is a (1,3) tensor field which is given in local

coordinates by

R =
n∑

i,j,k,m=1

Ri
jkm

∂

∂xi
⊗ dxj ⊗ dxk ⊗ dxm,
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where the curvature components Ri
jkm are given by

Ri
jkm =

∂Γi
mj

∂xk
− ∂Γi

kj

∂xm
+

n∑
a=1

(Γa
mjΓ

i
ka − Γa

kjΓ
i
ma).

Notice that R(X,Y )Z = −R(Y, X)Z, R(ω, X, Y, Z) = −R(ω, Y, X, Z)

and Ri
jkm = −Ri

jmk.

Furthermore, if X =
∑

xi∂
∂xi , Y =

∑ yi∂
∂xi , Z =

∑
zi∂
∂xi and ω =

∑
ωidxi

then

R(X,Y )Z =
n∑

i,j,k,m=1

Ri
jkmzjxkym ∂

∂xi

and

R(w,X, Y, Z) =
n∑

i,j,k,m=1

Ri
jkmwiz

jxkym.

Consequently, one has R
(
dxi, ∂

∂xk , ∂
∂xm , ∂

∂xj

)
= Ri

jkm.

Definition 2.3. From the curvature tensor R, one nonzero tensor (or its

negative) is obtained by contraction. It is called the Ricci tensor. Its compo-

nents are Rij =
n∑

k=1

Rk
ikj . The Ricci tensor is symmetric and its contraction

S =
n∑

ij=1

Rijg
ij is called the scalar curvature ([2], [3], [4]).

Definition 2.4. Suppose Ω is a smooth, bounded domain in Rn, and let

g : Ω × R → R be a Caratheodory function. Let u0 ∈ H1,2
0 (Ω) be given.

Consider the equation

∆u = g(x, u) in Ω
9



u = u0 on ∂Ω

u ∈ H1,2(Ω) is a (weak) sub-solution if u ≤ u0 on ∂Ω and

∫

Ω

∇u∇ϕdx +
∫

Ω

g(x, u)ϕdx ≤ 0 for all ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

Similarly u ∈ H1,2(Ω) is a (weak) super-solution if in the above the

reverse inequalities hold.

We briefly recall some results on warped product manifolds. Complete

details may be found in [3] or [17]. On a semi-Riemannian product manifold

B×F , let π and σ be the projections of B×F onto B and F , respectively,

and let f > 0 be a smooth function on B.

Definition 2.5. The warped product manifold M = B ×f F is the product

manifold M = B × F furnished with metric tensor

g = π∗(gB) + (f ◦ π)2σ∗gF

where gB and gF are metric tensors of B and F , respectively. In order

words, if v is tangent to M at (p, q), then

g(v, v) = gB(dπ(v), dπ(v)) + f2(p)gF (dσ(v), dσ(v)).

Here B is called the base of M and F the fiber ([17]).
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We denote the metric g by 〈 , 〉. In view of Remark 2.13 (1) and

Lemma 2.14, we may also denote the metric gB by 〈 , 〉. The metric gF

will be denoted by ( , ).

Remark 2.6. Some well known elementary properties of the warped prod-

uct manifold M = B ×f F are as follows :

(1) For each q ∈ F , the map π |σ−1(q)=B×q is an isometry onto B.

(2) For each p ∈ B, the map σ |π−1(p)=p×F is a positive homothetic map

onto F with homothetic factor 1
f(p) .

(3) For each (p, q) ∈ M , the horizontal leaf B × q and the vertical fiber

p× F are orthogonal at (p, q).

(4) The horizontal leaf σ−1(q) = B × q is a totally geodesic submanifold

of M and the vertical fiber π−1(p) = p× F is a totally umbilic submanifold

of M .

(5) If φ is an isometry of F , then 1×φ is an isometry of M , and if ψ is

an isometry of B such that f = f ◦ ψ, then ψ × 1 is an isometry of M .

Recall that vectors tangent to leaves are called horizontal and vector

tangent to fibers are called vertical. From now on, we will often use a

natural identification

T(p,q)(B ×f F ) ∼= T(p,q)(B × F ) ∼= TpB × TqF.
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The decomposition of vectors into horizontal and vertical parts plays a

role in our proofs. If X is a vector field on B, we define X at (p, q) by

setting X(p, q) = (Xp, 0q). Then X is π-related to X and σ-related to the

zero vector field on F . Similarly, if Y is a vector field of F , Y is defined by

Y (p, q) = (0p, Yq).

Lemma 2.7. If h is a smooth function on B, then the gradient of the lift

h ◦ π of h to M is the lift to M of gradient of h on B.

Proof. We must show that grad(h◦π) is horizonal and π-related to grad(h)

on B. If v is vertical tangent vector to M , then

〈grad(h ◦ π), v〉 = v(h ◦ π) = dπ(v)h = 0, since dπ(v) = 0.

Thus grad(h ◦ π) is horizonal. If x is horizonal,

〈dπ(grad(h ◦ π), dπ(x)〉 = 〈grad(h ◦ π), x〉 = x(h ◦ π) = dπ(x)h

= 〈grad(h), dπ(x)〉.

Hence at each point, dπ(grad(h ◦ π)) = grad(h). ¥

In view of Lemma 2.14, we simplify the notations by writing h for h ◦ π

and grad(h) for grad(h ◦ π). For a covariant tensor A on B, its lift A to
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M is just its pullback π∗(A) under the projection π : M → B. That is,

if A is a (1, s)-tensor, and if v1, v2, ..., vs ∈ T(p,q)M , then A(v1, ..., vs) =

A(dπ(v1), ..., dπ(vs)) ∈ Tp(B). Hence if vk is vertical, then A = 0 on B. For

example, if f is a smooth function on B, the lift to M of the Hessian of f is

also denoted by Hf . This agrees with the Hessian of the lift f ◦ π generally

only on horizontal vectors. For detailed computations, see Lemma 5.1 in

[5].

Now we recall the formula for the Ricci curvature tensor Ric on the

warped product manifold M = B×f F . We write RicB for the pullback by

π of the Ricci curvature of B and similarly for RicF .

Lemma 2.8. On a warped product manifold M = B×f F with n = dimF >

1, let X, Y be horizontal and V, W vertical.

Then

(1) Ric(X, Y ) = RicB(X, Y )− n
f Hf (X, Y ),

(2) Ric(X, V ) = 0,

(3) Ric(V,W ) = RicF (V, W )− 〈V, W 〉f ],

where f ] =
∆f

f
+ (n − 1)

〈grad(f), grad(f)〉
f2

and ∆f = trace(Hf ) is

the Laplacian on B.
13



Proof. See Corollary 7.43 in [17]. ¥

On the given warped product manifold M = B ×f F , we also write SB

for the pullback by π of the scalar curvature SB of B and similarly for SF .

From now on, we denote grad(f) by ∇f .

Lemma 2.9. If S is the scalar curvature of M = B×fF with n = dimF > 1,

then

(2.1) S = SB +
SF

f2
− 2n

∆f

f
− n(n− 1)

〈∇f,∇f〉
f2

where ∆ is the Laplacian on B.

Proof. For each (p, q) ∈ M = B ×f F , let {ei} be an orthonormal basis for

TpB. Then by the natural isomorphism {ei = (ei, 0)} is an orthonormal

set in T(p,q)M . We can choose {dj} on TqF such that {ei, dj} forms an

orthonormal basis for T(p,q)M . Then

1 = 〈dj , dj〉 = f(p)2(dj , dj) = (f(p)dj , f(p)dj)

which implies that {f(p)dj} forms an orthonormal basis for TqF . By Lemma

2.8 (1) and (3), for each i and j

Ric(ei, ei) = RicB(ei, ei)−
∑

i

n

f
Hf (ei, ei),
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and

Ric(dj , dj) = RicF (dj , dj)− f2(p)gF (dj , dj)
(

∆f

f
+ (n− 1)

〈∇f,∇f〉
f2

)
.

Hence, for εα = g(εα, εα)

S(p, q) =
∑
α

εαRαα

=
∑

i

εiRic(ei, ei) +
∑

j

εjRic(dj , dj)

= SB(p, q) +
SF

f2
− 2n

∆f

f
− n(n− 1)

〈∇f,∇f〉
f2

which is a nonlinear partial differential equation on B × q for each q ∈ F.

¥
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3. Main Results

Let (N, g) be a Riemannian manifold of dimension n and let f : [a,∞) →

R+ be a smooth function, where a is a positive number. A Riemannian

warped product of N and [a,∞) with warping function f defined to be the

product manifold ([a,∞)×f N, g
′
) with

(3.1) g
′
= dt2 + f2(t)g.

Let R(g) be the scalar curvature of (N, g). Then the scalar curvature

R(t, x) of g
′
is given by the equation

(3.2) R(t, x) =
1

f2(t)
[R(g)(x)− 2nf(t)f

′′
(t)− n(n− 1)|f ′(t)|2]

for t ∈ [a,∞) and x ∈ N (For details, [7] or [9]).

If we denote

u(t) = f
n+1

2 (t), t > a,

then equation (3.2) can be changed into

(3.3)
4n

n + 1
u
′′
(t) + R(t, x)u(t)−R(g)(x)u(t)1−

4
n+1 = 0.

In this paper, we assume that the fiber manifold N is nonempty, con-

nected and a compact Riemannian n−manifold without boundary.
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If N admits a Riemannian metric of negative or zero scalar curvature,

then we let u(t) = tα in (3.3), where α > 1 is a constant. We have

R(t, x) ≤ 4n

n + 1
α(1− α)

1
t2

< 0, t > α.

Then, by Theorem 3.1, Theorem 3.5 and Theorem 3.7 in [8], we have the

following theorem.

Theorem 3.1. For n ≥ 3, let M = [a,∞)×f N be the Riemannian warped

product (n + 1)-manifold with N compact n-manifold. Suppose that N is in

class (A) or (B), then on M there is a geodesically complete Riemannian

metric of negative scalar curvature outside a compact set.

Here the following lemma plays an important role in this paper, whose

proof is similar to that of Lemma 1.8 in [15].

Lemma 3.2. On [a,∞), there does not exist a positive solution u(t) such

that

(3.4) t2u
′′
(t) +

c

4
u(t) ≤ 0 for t ≥ t0,

where c > 1 and t0 > a are constants.
17



Proof. Assume that u(t) satisfies

t2u
′′
(t) +

c

4
u(t) ≤ 0 for t ≥ t0,

with c > 1. Let

u(t) = tαv(t), t ≥ t0

where α > 0 is a constant and v(t) > 0 is a smooth function. Then we have

u
′′
(t) = α(α− 1)tα−2v(t) + 2αtα−1v

′
(t) + tαv

′′
(t).

And we obtain

(3.5) tαv(t)
[
α(α− 1) +

c

4

]
+ 2αtα+1v

′
(t) + tα+2v

′′
(t) ≤ 0.

Let δ be a positive constant such that δ2 =
c− 1

4
. Then we have

α(α− 1) +
c

4
=

(
α− 1

2

)2

+
c− 1

4
≥ δ2.

Then δ is a constant independent on α. Equation (3.5) gives

(3.6) 2αtv
′
(t) + t2v

′′
(t) ≤ −δ2v(t).

Let β = 2α and we choose α > 0 such that β < 1, that is, α < 1
2 . Then

equation (3.6) becomes

(tβv
′
(t))

′ ≤ −δ2v(t)
t2−β

.
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Upon integration we have

(3.7) tβv
′
(t)− τβv

′
(τ) ≤ −

∫ t

τ

δ2v(s)
s2−β

ds, t > τ > t0.

Here we have two following cases :

[case1] If v
′
(τ) ≤ 0 for some τ > t0, then (3.7) implies that

tβv
′
(t) ≤ −C

for some positive constant C. We have

v(t) ≤ v(τ)−
∫ t

τ

C

sβ
ds = v(τ)− C

s1−β

1− β
|tτ→ −∞,

as β < 1. Hence v(t) < 0 for some t, contradicting that v(t) > 0 for all

t ≥ t0.

[case2] We have v
′
(τ) > 0 for all τ > t0. Equation (3.7) implies that

τβv
′
(τ)−

∫ t

τ

δ2v(s)
s2−β

ds ≥ 0

for all t > τ > t0. As v
′
(t) > 0 for all t > t0, we have

τβv
′
(τ) ≥ v(τ)

∫ t

τ

δ2

s2−β
ds = v(τ)[

1
s1−β

[− δ2

1− β
]] |tτ .

Let t →∞ we have

τβv
′
(τ) ≥ v(τ)

τ1−β

δ2

1− β
.
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Or after changing the parameter we have

v
′
(t)

v(t)
≥ 1

t

δ2

1− β
, t > t0.

Choose α < 1
2 close to 1

2 so that β < 1 is close to 1. Using the fact that

δ is independent on α or β, we have

v
′
(t)

v(t)
≥ N

t

for a big integer N > 2. This gives

v(t) ≥ CtN , t > t0

where C is a positive constant. The inequality (3.7) implies that

tβv
′
(t) ≤ τβv

′
(τ)−

∫ t

τ

Cδ2sN

s2−β
ds → −∞ as t →∞.

Thus v
′
(t) < 0 for t large, which is also a contradiction. Hence there is

no solution to equation (3.4). ¥

From now on, we assume that R(t, x) is the function of only t-variable.

Then we have the following theorems.
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Theorem 3.3. If N belongs to class (A) or (B), that is, R(g) ≤ 0, then

there is no positive solution to equation (3.3) with

R(t) ≥ 4n

n + 1
c

4
1
t2

for t ≥ t0,

where c > 1 and t0 > a are constants.

Proof. Assume that

R(t) ≥ 4n

n + 1
c

4
1
t2

for t ≥ t0,

with c > 1. Equation (3.3) gives

t2u
′′
(t) +

c

4
u(t) ≤ 0.

By Lemma 3.2, we complete the proof. ¥

If N belongs to (A), then a negative constant function on N is the scalar

curvature of some Riemannian metric. So we can take a Riemannian metric

g1 on N with scalar curvature R(g1) = − 4n

n + 1
k2, where k is a positive

constant. Then equation (3.3) becomes

(3.8)
4n

n + 1
u
′′
(t) +

4n

n + 1
k2u(t)1−

4
n+1 + R(t, x)u(t) = 0.

In order to prove the nonexistence of some warped product metric, we

need the following lemma.
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Lemma 3.4. Let u(t) be a positive smooth function on [a,∞). If u(t)

satisfies

u
′′
(t)

u(t)
≤ C

t2

for some constant C > 0, then there exists t0 > a such that for all t > t0.

u(t) ≤ C0t
ε

for some positive constant C0 and ε > 1.

Proof. Since C > 0, we can choose ε > 1 such that ε(ε− 1) = C. Then from

the hypothesis, we have

tεu
′′
(t) ≤ ε(ε− 1)tε−2u(t).

Upon integration from t1(≥ a) to t(> t1 ≥ a), and using twice integration

by parts, we obtain

tεu
′
(t)− εtε−1u(t)− tε1u

′
(t1) + εt1

ε−1u(t1) + ε(ε− 1)
∫ t

t1

sε−2u(s)ds

≤ C

∫ t

t1

sε−2u(s)ds.

Therefore we have

(3.9) tεu
′
(t)− εtε−1u(t) ≤ tε1u

′
(t1)− εtε−1

1 u(t1).
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We consider two following cases :

[Case 1] There exists t1 ≥ a such that u′(t1) ≤ 0. If there is a number

t1 ≥ a such that u′(t1) ≤ 0, then we have

tεu′(t)− εtε−1u(t) ≤ 0.

This gives

(lnu(t))′ ≤ ε(lnt)′.

Hence

u(t) ≤ c1t
ε

for all t > t1, where c1 is a positive constant.

[Case 2] There does not exist t1 ≥ a such that u′(t1) ≤ 0.

In other words, if u′(t) > 0 for all t ≥ a, then u(t) ≥ c′ for some positive

constant c′. Let c2 be a positive constant such that

tε1u
′(t1)− εtε−1

1 u(t1) ≤ c2,

then equation (3.9) gives

tεu′(t)− εtε−1u(t) ≤ c2
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for all t > t1. Thus

u′(t)
u(t)

≤ ε

t
+

c2

u(t)tε
≤ ε

t
+

c2

c′tε
.

Integrating from t1 to t we have

ln
u(t)
u(t1)

≤ εln
(

t

t1

)
+

c2

(ε− 1)c′tε−1
1

≤ εln
(

c3t

t1

)
,

as ε > 1. Here c3 is a positive constant such that lnc3 ≥ c2

ε(ε− 1)c′tε−1
1

.

Hence we again obtain the inequality

u(t) ≤ btε

for some positive constant b and for all t ≥ t1.

Thus from two cases we always find t0 > a and a constant C0 > 0 such

that

u(t) ≤ C0t
ε

for all t ≥ t0.

¥

Using the above lemma, we can prove the following theorem about the

nonexistence of warping function, whose proof is similar to that of Lemma

3.3 in [15].
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Theorem 3.5. Suppose that N belongs to class (A). Let g be a Riemannian

metric on N of dimension n(≥ 3). We may assume that R(g) = − 4n

n + 1
k2,

where k is a positive constant. On [a,∞) × N , there does not exist a Rie-

mannian warped product metric

g
′
= dt2 + f2(t)g

with scalar curvature

R(t) ≥ −n(n− 1)
t2

for all x ∈ N and t > t0 > a, where t0 and a are positive constants.

Proof. Assume that we can find a Riemannian warped product metric on

[a,∞)×N with

R(t) ≥ −n(n− 1)
t2

for all x ∈ N and t > t0 > a. In equation (3.3), we have

(3.10)
4n

n + 1

[
u
′′
(t)

u(t)
+

k2

u(t)
4

n+1

]
= −R(t) ≤ n(n− 1)

t2

and

(3.11)
u
′′
(t)

u(t)
≤

(n−1)(n+1)
4

t2
.
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In equation (3.11), we can apply Lemma 3.4 and take ε = n+1
2 . Hence

we have t0 > a such that

u(t) ≤ c0t
n+1

2

for some positive constants c0 and all t > t0. Then

k2

u(t)
4

n+1
≥ c

′

t2

where 0 < c
′ ≤ k2

c
4

n+1
0

is a positive constant. Hence equation (3.10) gives

u
′′
(t)

u(t)
≤ (n + 1)(n− 1)− δ

4t2
,

where 4c
′ ≥ δ ≥ 0 is a constant. We can choose δ

′
> 0 such that

(n + 1)(n− 1)− δ

4
=

(
n + 1

2
− δ

′
)(

n− 1
2

− δ
′
)

for small positive δ. Applying the Lemma 3.4 again, we have t1 > a such

that

u(t) ≤ c1t
n+1

2 −δ
′

for some c1 > 0 and all t > t1. And

(3.12)
k2

u(t)
4

n+1
≥ c

′′

t2−ε
,

where ε =
4

n + 1
δ
′

and 0 < c
′′ ≤ k2

c
4

n+1
1

. Thus equation (3.11) and (3.12)

give

u
′′
(t)

u(t)
≤ (n− 1)(n + 1)

4t2
− c

′′

t2−ε
,
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which implies that

u
′′
(t) ≤ 0

for t large. Hence u(t) ≤ c2t for some constant c2 > 0 and large t. From

equation (3.10) we have

u
′′
(t)

u(t)
≤ −c3

t
4

n+1
+

(n + 1)(n− 1)
4t2

≤ −c3

t

for t large enough, as n ≥ 3. Here c3 is a positive constant. Multiplying

u(t) and integrating from t
′
to t, we have

u
′
(t)− u

′
(t
′
) ≤ −c3

∫ t

t′

u(s)
s

ds, t > t
′
.

We consider two following cases :

[Case 1] There exists t
′ ≥ max{t0, t1} such that u

′
(t
′
) ≤ 0.

If u
′
(t
′
) ≤ 0 for some t

′
, then u

′
(t) ≤ −c4 for some positive constant c4.

Hence u(t) ≤ 0 for t large enough, contradicting the fact that u is positive.

[Case 2] There does not exist t
′ ≥ max{t0, t1} such that u

′
(t
′
) ≤ 0.

In order words, if u
′
(t) > 0 for all t large, then u(t) is increasing, hence

∫ t

t′

u(s)
s

ds ≥ u(t
′
)
∫ t

t′

1
s
ds →∞.

Thus u
′
(t) has to be negative for some t large, which is a contradiction

to the hypothesis.
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Therefore there does not exist such warped product metric. ¥

If N belongs to class (C), then by the results of Kazdan and Warner ([11],

[12], [13]), some positive constant function on N is the scalar curvature of

some Riemannian metric. So we can take a Riemannian metric g1 on N

with scalar curvature

R(g1) =
4n

n + 1
k2, where k is a positive constant. Then equation (3.3)

becomes

(3.13)
4n

n + 1
u
′′
(t)− 4n

n + 1
k2u(t)1−

4
n+1 + R(t, x)u(t) = 0.

If R(t, x) = R(t) is the bounded function of only t-variable, our first main

theorem is as follows :

Theorem 3.6. Suppose that R(g) =
4n

n + 1
k2 for n ≥ 3 and R(t, x) =

R(t) ∈ C∞([a,∞)). Assume that for t > t0, there exists a positive solution

u(t) of equation (3.13) with 0 > R(t) > −M for some positive constant M .

Then u(t) ≥ tα for large t and all α > 0.

Proof. Suppose u(t) > 0 satisfies equation (3.13), i.e.,

(3.14)
4n

n + 1
u
′′
(t) = −R(t)u(t) +

4n

n + 1
k2u(t)1−

4
n+1 .
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Since R(t) ≤ 0 and
4n

n + 1
k2u(t)1−

4
n+1 > 0, integrating equation (3.14)

from τ(≥ a) to t, we have

u
′
(t)− u

′
(τ) > 0

for all t(> τ).

Here we have two following cases :

[Case 1] There exists τ(≥ a) such that u
′
(τ) ≥ 0. Then u

′
(t) ≥ 0,

so u(t) is an increasing function. Thus u(t) ≥ u(τ) > 0. Therefore from

equation (3.14) we have

u
′′
(t) ≥ k2u(t)1−

4
n+1 ≥ c0

for large t and some positive constant c0. Hence we have

(3.15) u(t) ≥ c0

2
t2 + c1t + c2

for some constants c1, c2. Again substituting equation (3.15) to equation

(3.14), we have

u
′′
(t) > k2

(c0

2
t2 + c1t + c2

)1− 4
n+1

u(t) > c3t
2+2(1− 4

n+1 )

for some positive constant c3. Reiterating this method, we complete the

theorem.
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[Case 2] There does not exist τ(≥ a) such that u
′
(τ) ≥ 0. In other

words, we have u
′
(t) < 0 for all t(≥ a). Then u(t) is a decreasing function.

If u(t) ≥ c0 for some positive constant c0, then by [Case 1] our theorem

holds. Otherwise, since u(t) is a decreasing function, u(t) → +0 as t →∞.

From equation (3.14) R(t) is bounded and 1 − 4
n+1 > 0, so u

′′
(t) → +0 as

t →∞ and u
′
(t) is an increasing function.

Put u(t) = e−g(t). Then u
′
(t) = −e−g(t)g

′
(t) < 0, so g

′
(t) > 0 and g(t)

is an increasing function. Thus we have

u
′′
(t) = e−g(t)((g

′
(t))2 − g

′′
(t)) → +0

as t → ∞, so g
′′
(t) > 0 because

(g
′
(t))2

eg(t)
≈ 2g

′
(t)g

′′
(t)

eg(t)g′(t)
=

2g
′′
(t)

eg(t)
by

L’Hospital’s Theorem.

Therefore from equation (3.14) we have

(g
′
(t))2 − g

′′
(t) = −n + 1

4n
R(t) + k2e

4
n+1 g(t).

Since g
′′
(t) > 0 and R(t) ≤ 0, we have

(g
′
(t))2 ≥ k2e

4
n+1 g(t).

And since g
′
(t) > 0, we have

(3.16) g
′
(t) ≥ ke

2
n+1 g(t).
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Since g(t) is increasing, from equation (3.16) g
′
(t) ≥ c0 for some positive

constant c0. Hence we have

(3.17) g(t) ≥ c0t + c1

for some constant c1. Again, substituting equation (3.17) to equation (3.16),

we have

g
′
(t) ≥ ke

2
n+1 (c0t+c1)

and, integrating the above equation, we have

(3.18) g(t) ≥ a1e
2

n+1 c0t

for some positive constants a1 and c0. Again plugging equation (3.18) into

equation (3.16), we have

g
′
(t) ≥ ke

2
n+1 a1e

2
n+1 c0t

and, integrating the above equation, we have

g(t) ≥ a2e
2

n+1 a1e
2

n+1 c0t

for some positive constant a2. And again, iterating this way, we have

g(t) ≥ ane
2

n+1 an−1e
2

n+1 ...ea1e
2

n+1 c0t

,
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which is impossible.

From [Case 1] and [Case 2], we complete the theorem. ¥

If R(t, x) is also the function of only t-variable, our second main theorem

is as follows :

Theorem 3.7. Suppose that R(g) =
4n

n + 1
k2. Assume that R(t, x) =

R(t) ∈ C∞([a,∞)) is a function such that

−n(n− 1)
t2

≤ R(t) < 0 for t > t0,

where t0 > a and 1 ≤ C is a constant. Then equation (3.13) has no positive

solution on [a,∞).

Proof. Assume that for t > t0, there exists a solution u(t) of equation (3.13)

with 0 > R(t) > −M . Then by Theorem 3.6 u(t) is an increasing function

such that u(t) ≥ tα for large t and all α > 0. From equation (3.13), we have

4n

n + 1
u
′′
(t)

u(t)
= −R(t) +

4n

n + 1
k2u(t)−

4
n+1 ≤ C

t2

for some constant C ≥ 1 and large t. Hence the Lemma 3.4 implies that for

all large t

u(t) ≤ C0t
ε
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for some positive constant C0 and ε > 1, which is a contradiction to the

fact that u(t) ≥ tα for large t and all α > 0. Therefore equation (3.13) has

no positive solution on [a,∞). ¥
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