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1. INTRODUCTION

One of the basic problems in the differential geometry is to study the set
of curvature function over a given manifold.

The well-known problem in differential geometry is whether a given met-
ric on a compact Riemannian manifold is necessarily pointwise conformal
to some metric with constant scalar curvature or not.

In a recent study ([10]), Jung and Kim have studied the problem of scalar
curvature functions on Lorentzian warped product manifolds and obtaind
partial results about the existence and nonexistence of Lorentzian warped
metric with some prescribed scalar curvature function. In this paper, we
study also the existence and nonexistence of Riemannian warped metric with
prescribed scalar curvature functions on some Riemannian warped product
manifolds.

By the results of Kazdan and Warner ([11], [12], [13]), if IV is a compact
Riemannian n—manifold without boundary n > 3, then N belongs to one
of the following three catagories :

(A) A smooth function on N is the scalar curvature of some Riemannian
metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian
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metric on N if and only if the function is either identically zero or strictly
negative somewhere.

(C) Any smooth function on N is the scalar curvature of some Riemann-
ian metric on N.

This completely answers the question of which smooth functions are
scalar curvatures of Riemannian metrics on a compact manifold V.

In [11], [12] and [13] Kazdan and Warner also showed that there exists
some obstruction of a Riemannian metric with positive scalar curvature (or
zero scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have
been done on the question how to determine which smooth functions are
scalar curvatures of complete Riemannian metrics on an open manifold. Re-
sults of Gromov and Lawson ([9]) show that some open manifolds cannot
carry complete Riemannian metrics of positive scalar curvature, for exam-
ple, weakly enlargeable manifolds.

Furthermore, they show that some open manifolds cannot even admit
complete Riemannian metrics with scalar curvatures uniformly positive out-
side a compact set and with Ricci curvatures bounded ([9], [16, p.322]).

On the other hand, it is well known that each open manifold of dimension

bigger than 2 admits a complete Riemannian metric of constant negative
4



scalar curvature ([6]). It follows from the results of Aviles and McOwen
([1]) that any bounded negative function on an open manifold of dimension
bigger than 2 is the scalar curvature of a complete Riemannian metric.

In [14] and [15], the author considered the scalar curvature of some Rie-
mannian warped product and its conformal deformation of warped product
metric.

In this paper, when N is a compact Riemannian manifold, we con-
sider the nonexistence of warping functions on a warped product manifold
M = [a,00) x ¢ N with specific scalar curvatures, where a is a positive con-
stant. That is, it is shown that if the fiber manifold N belongs to class
(C) then M does not admit a Riemannian metric with some positive scalar

curvature near the end outside a compact set.



2. PRELIMINARIES

First of all, in order to induce a partial differential equation, we need
some definitions of connections, curvatures and some results about warped

product manifolds.

Definition 2.1. Let X(M) denote the set of all smooth vector fields defined
on M, and let (M) denote the ring of all smooth real-valued functions on

M. A connection V on a smooth manifold M is a function

V: X(M) x X(M) — X(M)

such that
(D1) VyW is & -linear in V,
(D2) VyW is R-linear in W,
(D3) Vy (fW) = (V)W + VW for f € S(M),
(D4) [V,W]=VyW —VyV, and
(D5) X < VW >=< VxV,W > + < V,VxW > for all X, VW €

x(M).

If V satisfies axioms (D1)~(D3), then Vy W is called the covariant de-

riwvative of W with respect to V' for the connection V. If V satisfies axioms
6



(D4)~ (D5), then V is called the Levi - Civita connection of M, which is
characterized by the Koszul formula ([17]).

A geodesic ¢ : (a,b) — M is a smooth curve of M such that the tangent
vector ¢ moves by parallel translation along c. In order words, c is a geodesic
if

V. ¢ =0 (geodesic equation).

A pregeodesic is a smooth curve ¢ which may be reparametrized to be
a geodesic. Any parameter for which c¢ is a geodesic is called an affine pa-
rameter. If s and ¢ are two affine parameters for the same pregeodesic, then
s = at + b for some constants a,b € R. A pregeodesic is said to be complete
if for some affine parameterizion (hence for all affine parameterizations) the
domain of the parametrization is all of R.

The equation V ¢ =0 may be expressed as a system of linear differential

equations. To this end, we let (U, (z!, 2%, ...,2™)) be local coordinates on

o 0
M and let , e denote the natural basis with respect to these
oxl’ Ox? ox" v P
coordinates.
The connection coefficients Ffj of V with respect to (z!,22%,...,2™) are
defined by

0 . 0
\Y 2, <@) = ;Ffjw (connection coefficients).
7



Using these coefficients, we may write equation as the system

d?zk ~ i dzt da?
7 + .Zzzlrij%% =0 (geodesic equations in coordinates).

Definition 2.2. The curvature tensor of the connection V is a linear trans-

formation valued tensor R in Hom(X(M),X(M)) defined by :
R(X,Y)=VxVy - VyVx - Vixy]
Thus, for Z € X(M),

R(X,Y)Z =VxVyZ -~ VyVxZ — VixyZ.

It is well-known that R(X,Y)Z at p depends only upon the values of
X,Y and Z at p ([17]).
If w e T; (M) is a cotangent vector at p and x,y, z € T,,(M) are tangent

vectors at p, then one defines
R(w, X, Y, Z) = (w, R(X,Y)Z) = w(R(X,Y)Z)

for X,Y and Z smooth vector fields extending x,y and z, respectively.
The curvature tensor R is a (1,3) tensor field which is given in local

coordinates by

R = m ® dr! @ da® @ da™
,jkzr:n 1 k a

8



7: .
where the curvature components R, are given by

, (91"Z
jkm 6:1:"“ 6$m +Z - k] ma)

Notice that R(X,Y)Z = —R(Y,X)Z, R(w,X,Y,Z) = —R(w,Y, X, Z)

Furthermore, if X = ) gﬁ, Y = Z 83:“ Z 2 and w = Y wdat
then
B m O
R(X,Y)Z_' Z Rl 2z "
i,7,k,m=1
and
R(w, X,Y,Z) Z Ry wizd o
i,7,k,m=1
Consequently, one has R (dz?, 525, 5%, 525 ) = -

Definition 2.3. From the curvature tensor R, one nonzero tensor (or its
negative) is obtained by contraction. It is called the Ricci tensor. Its compo-

nents are R;; = E lej The Ricci tensor is symmetric and its contraction
k=1

S = Z Ri;g" is called the scalar curvature ([2],[3], [4]).

ij=1
Definition 2.4. Suppose ) is a smooth, bounded domain in R™, and let
g: QxR — R be a Caratheodory function. Let ug € Hé’2(Q) be given.
Consider the equation

Au = g(x,u) in
9



u=1uy on 0N

u € HY2(Q) is a (weak) sub-solution if u < ug on 0 and

/ VuVdx +/ g(xz,u)pdx <0 forall ¢e C®(N), ¢>0.
Q Q

Similarly u € H%2(Q) is a (weak) super-solution if in the above the
reverse inequalities hold.

We briefly recall some results on warped product manifolds. Complete
details may be found in [3] or [17]. On a semi-Riemannian product manifold
B x F, let m and o be the projections of B x F' onto B and F', respectively,

and let f > 0 be a smooth function on B.

Definition 2.5. The warped product manifold M = B x ¢ F' is the product

manifold M = B x F furnished with metric tensor

g=1"(g) + (fom)’c*gr

where gp and gr are metric tensors of B and F', respectively. In order

words, if v is tangent to M at (p,q), then

g(v,v) = gp(dn(v), dr(v)) + f*(p)gr(do(v), do(v)).

Here B is called the base of M and F' the fiber ([17]).
10



We denote the metric g by ( , ). In view of Remark 2.13 (1) and
Lemma 2.14, we may also denote the metric gg by ( , ). The metric gg

will be denoted by ( , ).

Remark 2.6. Some well known elementary properties of the warped prod-
uct manifold M = B xy F are as follows :

(1) For each q € F, the map 7 |,-1(q)=pxq 15 an isometry onto B.

(2) For each p € B, the map o |—1(p)=pxr is a positive homothetic map
onto F' with homothetic factor ﬁ.

(3) For each (p,q) € M, the horizontal leaf B x q and the vertical fiber
p X F are orthogonal at (p,q).

(4) The horizontal leaf o= 1(q) = B x q is a totally geodesic submanifold
of M and the vertical fiber =1 (p) = p x F is a totally umbilic submanifold
of M.

(5) If ¢ is an isometry of F', then 1 X ¢ is an isometry of M, and if ¢ is

an isometry of B such that f = f o1, then ¢ x 1 is an isometry of M.

Recall that vectors tangent to leaves are called horizontal and vector
tangent to fibers are called vertical. From now on, we will often use a
natural identification

Tip,g)(B X F) =T (B x F)2T,B xT,F.
11



The decomposition of vectors into horizontal and vertical parts plays a
role in our proofs. If X is a vector field on B, we define X at (p,q) by
setting X (p,q) = (X,,0,). Then X is m-related to X and o-related to the

zero vector field on F. Similarly, if Y is a vector field of F, Y is defined by

?(p, q) = (Opqu)-

Lemma 2.7. If h is a smooth function on B, then the gradient of the lift

hom of h to M 1is the lift to M of gradient of h on B.

Proof. We must show that grad(hom) is horizonal and m-related to grad(h)

on B. If v is vertical tangent vector to M, then
(grad(hom),v) =v(hom)=dmr(v)h =0, since dm(v)=0.
Thus grad(h o ) is horizonal. If z is horizonal,
(dr(grad(hom),dn(x)) = (grad(how),x) = x(how) = dn(x)h
= (grad(h),dr(zx)).

Hence at each point, dr(grad(hom)) = grad(h). [

In view of Lemma 2.14, we simplify the notations by writing h for ho =

and grad(h) for grad(h o w). For a covariant tensor A on B, its lift A to
12



M is just its pullback 7*(A) under the projection 7 : M — B. That is,
if Ais a (1,s)-tensor, and if vy, vs,...,v5 € T(p g M, then A(vy, .y vs) =
A(dr(vy), ..., dm(vs)) € T,(B). Hence if vy, is vertical, then A = 0 on B. For
example, if f is a smooth function on B, the lift to M of the Hessian of f is
also denoted by HY. This agrees with the Hessian of the lift f o7 generally

only on horizontal vectors. For detailed computations, see Lemma 5.1 in

[5]-

Now we recall the formula for the Ricci curvature tensor Ric on the
warped product manifold M = B x s F. We write Ric? for the pullback by

7 of the Ricci curvature of B and similarly for Rict".

Lemma 2.8. On a warped product manifold M = B x ; F' withn = dimF >
1, let X,Y be horizontal and V, W wertical.

Then

(1) Ric(X,Y) = Ric®(X,Y) — H/ (X, Y),

(2) Ric(X,V) =0,

(3) Ric(V,W) = Ric"(V,W) — (V,W) f*,

where f* = af +(n—1) <gmd(f)];2grad(f>>

f

the Laplacian on B.

and Af = trace(H') is

13



Proof. See Corollary 7.43 in [17]. |

On the given warped product manifold M = B x; F, we also write S¥
for the pullback by 7 of the scalar curvature Sp of B and similarly for S¥.

From now on, we denote grad(f) by Vf.

Lemma 2.9. IfS is the scalar curvature of M = Bx s F' withn = dimF > 1,

then

(2.1) S:SB+§—Z—2n%—n(n—l)

v Vi)
f2

where A is the Laplacian on B.

Proof. For each (p,q) € M = B x4 F, let {e;} be an orthonormal basis for
T,B. Then by the natural isomorphism {e; = (e;,0)} is an orthonormal
set in T(, M. We can choose {d;} on T,F such that {e;,d;} forms an

orthonormal basis for T(p7q)M . Then

1= (d;, d;) = [(p)*(dj,dy) = (f(p)dj, f(p)dy)

which implies that { f(p)d;} forms an orthonormal basis for T, F'. By Lemma

2.8 (1) and (3), for each i and j

Ric(e, ) = Ric” (&,8) ~ ) TH'(7.%),

14



and

S S A
Ric(dj, d;) = Rict'(dj,d;) — f2(p)gr(d;, d;) <Tf +(n—1) <VJ;22W>) :
Hence, for €, = g(€q, €a)
S(p,q) = ZeaRaa
= Zeszc €,6)+ ZGJRZC d_ d_
= SB(p,q) + f“_j — 2n% —n(n—1) (foQVf>

which is a nonlinear partial differential equation on B x ¢ for each ¢ € F.

15



3. MAIN RESULTS

Let (N, g) be a Riemannian manifold of dimension n and let f : [a, 00) —
R™ be a smooth function, where a is a positive number. A Riemannian
warped product of N and [a, 00) with warping function f defined to be the

product manifold ([a,00) x ¢ N, g') with
(3.1) g =di* + f2(t)g.

Let R(g) be the scalar curvature of (IV,g). Then the scalar curvature

R(t,z) of g is given by the equation

(32)  R(.2) = g R)@) ~ 2050 (1) = ntn = DIf O]

for t € [a,00) and x € N (For details, [7] or [9]).

If we denote

then equation (3.2) can be changed into

in_ (t) + R(t, 2)u(t) — R(g)(z)u(t)" == = 0.

(3:3) n+1

In this paper, we assume that the fiber manifold N is nonempty, con-

nected and a compact Riemannian n—manifold without boundary.
16



If N admits a Riemannian metric of negative or zero scalar curvature,

then we let u(t) =t in (3.3), where o > 1 is a constant. We have

4n
n+1

a(l —oz)l

R(t,z) < =

<0, t>a.

Then, by Theorem 3.1, Theorem 3.5 and Theorem 3.7 in [8], we have the

following theorem.

Theorem 3.1. Forn > 3, let M = [a,00) X s N be the Riemannian warped
product (n + 1)-manifold with N compact n-manifold. Suppose that N is in
class (A) or (B), then on M there is a geodesically complete Riemannian

metric of negative scalar curvature outside a compact set.

Here the following lemma plays an important role in this paper, whose

proof is similar to that of Lemma 1.8 in [15].

Lemma 3.2. On [a,00), there does not exist a positive solution u(t) such

that
(3.4) 124" (£) + Eu(t) <0 for t>to,

where ¢ > 1 and ty > a are constants.

17



Proof. Assume that u(t) satisfies
124" (t) + gu(t) <0 for t>t,

with ¢ > 1. Let

u(t) = t(t), t>tg

where a > 0 is a constant and v(t) > 0 is a smooth function. Then we have
u'(t) = ala — 1)t 20(t) + 2t W (1) + 0 (b).

And we obtain
(3.5) 1o (t) [a(a 1)+ ﬂ + 20ty (£) + 192" (1) < 0.

c—1
Let 0 be a positive constant such that 62 = ) Then we have

c 1\?> ¢—1
oz(a—l)—kzz(oz——) + > 52,

Then § is a constant independent on «. Equation (3.5) gives
(3.6) 20t (t) + 120" () < —62v(t).

Let 8 = 2a and we choose o > 0 such that § < 1, that is, a < % Then

equation (3.6) becomes




Upon integration we have

’ ’ t 52
(3.7) 80/ () — 780 (1) < —/ s;_(‘;) ds, t>71 >t

Here we have two following cases :
[casel] If v’ (1) < 0 for some 7 > tg, then (3.7) implies that
' (t) < —C

for some positive constant C'. We have

d CSM t
/—s ( - L — —00,

as B < 1. Hence v(t) < 0 for some ¢, contradicting that v(t) > 0 for all

t > to.

[case2] We have v’ () > 0 for all 7 > ty. Equation (3.7) implies that

T’BUI(T)—/ & ()d > ()

52

for all t > 7 > to. As v (t) > 0 for all t > t,, we have

Tﬂv/(T)ZU(T)/T Sf ﬁds—v( )[S%ﬁ[—ld_ﬁ]] t




Or after changing the parameter we have

v (t) 10
o(t) T t1-p

t > tg.

Choose a < % close to % so that 3 < 1 is close to 1. Using the fact that

0 is independent on « or (3, we have

for a big integer N > 2. This gives
v(t) > CtY,  t>tg

where C' is a positive constant. The inequality (3.7) implies that

t (152 N
/ / cé
tﬁv(t)<751)(7')—/ 2—_Sﬁds—>—oo as t— oo.
s

-

Thus v/(t) < 0 for ¢ large, which is also a contradiction. Hence there is

no solution to equation (3.4). |

From now on, we assume that R(t,x) is the function of only t-variable.

Then we have the following theorems.

20



Theorem 3.3. If N belongs to class (A) or (B), that is, R(g) < 0, then
there is no positive solution to equation (3.3) with

4n c¢1

R(t) >
()_n—i-l 12

fO?" tZtOJ

e |

where ¢ > 1 and ty > a are constants.

Proof. Assume that

1
R(t) > —-5 for t>to,

with ¢ > 1. Equation (3.3) gives

120 (t) + ziu(t) <.

By Lemma 3.2, we complete the proof. [

If N belongs to (A), then a negative constant function on N is the scalar

curvature of some Riemannian metric. So we can take a Riemannian metric

4n
g1 on N with scalar curvature R(g1) = — n 1k2, where k is a positive
n

constant. Then equation (3.3) becomes

4n " 4n

(3.8) u' () + n—ﬂ/&u(t)l—n% + R(t,z)u(t) = 0.

In order to prove the nonexistence of some warped product metric, we

need the following lemma.

21



Lemma 3.4. Let u(t) be a positive smooth function on [a,00). If u(t)

satisfies

for some constant C' > 0, then there exists tog > a such that for all t > t.
u(t) < Cote

for some positive constant Cy and € > 1.

Proof. Since C' > 0, we can choose € > 1 such that e(e — 1) = C. Then from

the hypothesis, we have

12

tu (t) < e(e — Dt 2u(t).

Upon integration from ¢1 (> a) to t(> t1 > a), and using twice integration

by parts, we obtain

t
tu (8) — et Tu(t) — t5u (t1) + et ulty) + (e — 1)/ s 2u(s)ds
t1

t
< C’/ s 2u(s)ds.
Therefore we have

/7

(3.9) tu (t) — et Tut) < tSu (ty) — et ulty).
22



We consider two following cases :

[Case 1] There exists t; > a such that u/(¢1) < 0. If there is a number

t1 > a such that u'(t1) < 0, then we have

teu/ (t) — et tu(t) < 0.

This gives

(Inu(t))" < e(Int)’.

Hence

u(t) < eqt®

for all ¢ > t1, where c¢; is a positive constant.

[Case 2] There does not exist t; > a such that u/(¢1) < 0.
In other words, if u/(¢) > 0 for all ¢ > a, then u(t) > ¢’ for some positive

constant ¢’. Let cp be a positive constant such that

t5u' (t1) — eti_lu(tl) < cg,

then equation (3.9) gives

tou (t) — et tu(t) < cp
23



for all ¢ > t1. Thus

Integrating from t; to ¢ we have

t t t
In U/( ) S eln (_) + 6—2_1 S eln <Ci) ,
u(ty) 1 (e —1)c't] 131

as € > 1. Here c3 is a positive constant such that Incg >

C2
ele —D)c/ts™

Hence we again obtain the inequality
u(t) < bt€

for some positive constant b and for all ¢ > ¢;.
Thus from two cases we always find ¢y > a and a constant Cy > 0 such
that

u(t) S Cote

for all t > tg.

Using the above lemma, we can prove the following theorem about the
nonexistence of warping function, whose proof is similar to that of Lemma
3.3 in [15].

24



Theorem 3.5. Suppose that N belongs to class (A). Let g be a Riemannian

dn

metric on N of dimension n(> 3). We may assume that R(g) = — 1k
n

where k is a positive constant. On [a,00) x N, there does not exist a Rie-

mannian warped product metric
g =dt’* + f2(t)g

with scalar curvature

n(n—1)
Rty > "D

for all x € N and t > ty > a, where tg and a are positive constants.

Proof. Assume that we can find a Riemannian warped product metric on
[a,00) X N with

n(n—1)
R(t) > ——

for all z € N and t >ty > a. In equation (3.3), we have

and
" (n=1)(n+1)
(3.11) v t) -




: _ n+1
In equation (3.11), we can apply Lemma 3.4 and take ¢ = “5=. Hence

we have ty > a such that

for some positive constants cg and all t > t5. Then

k? ¢
4 > 5
u(t)y=+1 1
where 0 < ¢ < ki is a positive constant. Hence equation (3.10) gives
n+1
€o

u (t) < m+1)(n—1)=9¢
u(t) — 4¢2 ’

where 4c¢’ >4 >0 is a constant. We can choose § > 0 such that

(n+1)(71—1)—5: (n;1_5,) (n;1_5,)

for small positive §. Applying the Lemma 3.4 again, we have t; > a such

that
u(t) < etz O
for some ¢; > 0 and all ¢ > t;. And
k2 12
(3.12) >,
u(t)=1 7€
/7 12 2
where € = 0 and 0 <c¢ < . Thus equation (3.11) and (3.12)
n+1 (=

Cq
give

12 12

u(t)<(n—1)(n+1)_ c
u(t) = 412 t2=e’
26




which implies that

u (t) <0

for ¢ large. Hence u(t) < cot for some constant c; > 0 and large ¢. From

equation (3.10) we have

u’ (1) <z, DD _ e
u(t) tntt 4¢2

for t large enough, as n > 3. Here c3 is a positive constant. Multiplying

u(t) and integrating from ¢ to ¢, we have
t
’ o u\s ’
u(t)—u(t)ﬁ—c;;/ st, t>t.
t S
We consider two following cases :

[Case 1] There exists t > maax{to,t1} such that u (t') < 0.
If u' (') < 0 for some ¢, then u () < —¢4 for some positive constant c.

Hence u(t) < 0 for ¢ large enough, contradicting the fact that wu is positive.

[Case 2] There does not exist t > maa{to, t1} such that u (t') < 0.

In order words, if u’ (t) > 0 for all t large, then u(t) is increasing, hence

t t
/ 1

/ u(s)ds > u(t )/ —ds — 0.
v S t S

Thus v (t) has to be negative for some t large, which is a contradiction

to the hypothesis.
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Therefore there does not exist such warped product metric. [ |

If N belongs to class (C), then by the results of Kazdan and Warner ([11],
[12], [13]), some positive constant function on N is the scalar curvature of
some Riemannian metric. So we can take a Riemannian metric g3 on N

with scalar curvature

4n

R(q1) = n 1k2, where k is a positive constant. Then equation (3.3)
n
becomes
4n ” 4n 2 1— 4
(3.13) e (t) — - 1l<: u(t) " + R(t, x)u(t) = 0.

If R(t,z) = R(t) is the bounded function of only ¢-variable, our first main

theorem is as follows :

4n
n+1

Theorem 3.6. Suppose that R(g) = k* for n > 3 and R(t,r) =
R(t) € C*([a,00)). Assume that for t > to, there exists a positive solution
u(t) of equation (3.13) with 0 > R(t) > —M for some positive constant M.

Then u(t) > t* for large t and all o > 0.

Proof. Suppose u(t) > 0 satisfies equation (3.13), i.e.,

4n " 4n 4

(3.14) — 1k2u(t)1—m.




4n

Since R(t) < 0 and k:2u(t)1_ni+1 > 0, integrating equation (3.14)

n+1

from 7(> a) to t, we have
u(t)—u(r)>0

for all t(> 7).

Here we have two following cases :

[Case 1] There exists 7(> a) such that «'(7) > 0. Then u (t) > 0,
so u(t) is an increasing function. Thus w(t) > u(7) > 0. Therefore from
equation (3.14) we have

12

W () > K2u() T > e
for large t and some positive constant cg. Hence we have
(3.15) u(t) > Et + 1t + ¢

for some constants c1,ce. Again substituting equation (3.15) to equation
(3.14), we have

1 1_%
u (t) > k? <C2—0t2 + et + 02> o

u(t) > 63t2+2(1_%+1)

for some positive constant c3. Reiterating this method, we complete the

theorem.
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[Case 2] There does not exist 7(> a) such that « (r) > 0. In other
words, we have u (t) < 0 for all #(> a). Then u(t) is a decreasing function.
If u(t) > ¢o for some positive constant cg, then by [Case 1] our theorem
holds. Otherwise, since u(t) is a decreasing function, u(t) — +0 as ¢t — oc.
From equation (3.14) R(t) is bounded and 1 — niﬂ > 0,50 u (t) — +0 as
t — oo and v (¢) is an increasing function.

Put u(t) = e 91, Then v (t) = —e 9Mg () < 0, s0 ¢ (t) > 0 and g(¢)

is an increasing function. Thus we have

12

' (8) = e (g (1)* — g (1)) — +0

(g ()2 _ 20(Mg (1) 29 (t)
@g(t) ~ eg(t)g/ (t) o eg(t)

as t — 00, s0 g (t) > 0 because by
L’Hospital’s Theorem.

Therefore from equation (3.14) we have

! " n+1 4
(9'(1)* = 9" (1) = === R(t) + Kemso®).

Since g” (t) > (0 and R(t) < O’ we have
(g (1)? > K2emtro®),

And since g (t) > 0, we have

/7

(3.16) g (t) > kenit9®),
30



Since g(t) is increasing, from equation (3.16) g (t) > ¢o for some positive

constant c¢g. Hence we have
(3.17) g(t) > cot + 1

for some constant ¢;. Again, substituting equation (3.17) to equation (3.16),

we have

/7

g (t) > kewit(cotten)

and, integrating the above equation, we have

2
1

(3.18) g(t) > ajenric?

for some positive constants a; and ¢y. Again plugging equation (3.18) into

equation (3.16), we have

/

g (t) > ke%ﬂaw’%lcot

and, integrating the above equation, we have

_2
(116”+1 cot

g(t) > age%

for some positive constant as. And again, iterating this way, we have

2
— t
2 ..ea18n+lco

g(t) > apemiron-1e™ T :
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which is impossible.

From [Case 1] and [Case 2], we complete the theorem. |

If R(t,x) is also the function of only ¢-variable, our second main theorem

is as follows :

4
Theorem 3.7. Suppose that R(g) = f1k2. Assume that R(t,x) =
n

R(t) € C*([a,o0)) is a function such that

nn—1
—%SR@)<O for t > to,

where tg > a and 1 < C' is a constant. Then equation (3.13) has no positive

solution on [a, 00).

Proof. Assume that for t > t(, there exists a solution u(t) of equation (3.13)
with 0 > R(t) > —M. Then by Theorem 3.6 u(t) is an increasing function

such that u(t) > ¢t for large t and all & > 0. From equation (3.13), we have

12

An w () 4n
n+1 u(t) R(t)+n+1

4

kQU(t)_ n+1 S

T Q

for some constant C' > 1 and large t. Hence the Lemma 3.4 implies that for
all large ¢

u(t) < Cot
32



for some positive constant Cy and ¢ > 1, which is a contradiction to the
fact that u(t) > t* for large t and all a > 0. Therefore equation (3.13) has

no positive solution on [a, c0). |
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