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Differential Equations on Riemannian

Warped Product Manifolds

I. INTRODUCTION

In a recent study [13,14], Leung studied the problem of scalar curvature
functions on Riemannian warped product manifolds and obtained partial
results about the existence and nonexistence of Riemannian warped metric
with some prescribed scalar curvature function. In this paper, we study also
the existence and nonexistence of special Riemannian warped product
manifolds.
By the results of Kazdan and Warner [10-12], if N is a compact
Riemannian n-manifold without boundary, n >3, then N belong to one of
following three categories:

(A) A smooth function on N 1is the scalar curvature of some
Reimannian metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some
Reimannian metric on N if and only if the function is either identically zero
or strictly negative somewhere.

(C) Any smooth function on N is the scalar curvature of some

Reimannian metric on N.

This completely answers the question of which smooth functions are scalar
curvatures of Riemannian metrics on a compact manifold N.
In [10-12], Kazdan and Warner also showed that there exists some

obstruction of a Riemannian metric with positive scalar curvature (or zero
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scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have been
done on the question of how to determine which smooth functions are
scalar curvature of complete Riemannian metrics on an open manifold.
Results of Gromov and Lawson[9] show that some open manifolds cannot
carry complete Riemannian of positive scalar curvature, for example,
weakly enlargeable manifolds. Furthermore, they show that some open
manifolds cannot even admit complete Riemannian metrics with scalar
curvatures uniformly positive outside a compact set and with Ricci
curvatures bounded [9,15,p.322].

On the other hand, it is well known that each open manifold of dimension
bigger than 2 admits a complete Riemannian metric of constant negative
scalar curvature [7]. It follows from the results of Aviles and McOwen [3]
that any bounded negative function on an open manifold of dimension
bigger than 2 is the scalar curvature of a complete Riemannian metric.

In [13,14], Leung considered the scalar curvature of some Riemannian
warped product and its conformal deformation of warped product metric.
And also in [8], Ehrlich et al. considered the existence of a nonconstant
warping function on a Lorentzian warped product manifold such that the
resulting warped product metric produces the constant scalar curvature
when the fiber manifold has the constant scalar curvature.

In this paper, compared the Lorentzian results in [8], the Riemannian
version is considered. That is, when N is a compact Riemannian manifold,
we discuss the method of using warped products to construct Riemannian
metrics on M = [a, o) X ; N with specific scalar curvatures, where a is a
positive constant. By making use of the boundary, we can construct warped

products at the end of M. It is shown that if the fiber manifold N belong



to class (A), (B) or (C), then, wusing a nonconstant warping function, we
obtain a Riemannian warped product metric on M admitting a constant

scalar curvature.



. Preliminaries on a warped product manifold

In this section, we briefly recall some results on warped product

manifolds. Complete details may be found in [4], [6], or [16].

DEFINITION 2.1 (Riemannian connection) A Riemannian connection is a

bilinear map D of T(M)xTI,(M) into T(M) such that
(@) D(X,,Y)=Dy (Y)ET(M) where X,& Tp(M).
(b) If f is a differentiable function,

Dy (fY)=Xp(f) Y+ f(p)Dyx (Y).

P

(¢) If X and Y belong to I, X is of class ¢ and Y of class C" "',
then DyY is of class C".

(d D is torsion free, i.e., T(X,Y)=DyY—D,X—[X,Y]=0.
(e) D is compatible with metric, i.e., Dyg,; =0 for all 4,5,k ([2]).

DEFINITION 2.2 (Curvature) The curvature of the connection is the

2-form with value in Hom(I',,I';) defined by:

R(X,Y)=DxDy— DyDx — Dix y].



one verifies that R(X,Y)Z at p depends only upon the values of X,Y, and

Z at p ([2]).

In a local chart, denote by Rkl,J the Ith  component of

0

d , L
9 :Eg‘lek{U?([l]) which is called the curvature tensor,
x

oz 9’

0

a fEk

R( )

and
It follows that

L+ I, T — T, Ty

im* jk Jjm* ik

Rkl:ij: ai[{jk;_ aj
DEFINITION 2.3 From the curvature tensor, only one nonzero tensor (or
its negative) is obtained by contraction. It is called the Ricci tensor. Its
components are Rij:ZZleRk’ The Ricci tensor is symmetric and its

ikj *

contraction R=X7,_,R;g” is called the scalar curvature ([2]).

DEFINITION 2.4 (Laplacian) The Laplacian in a local chart can be written

as follows:

Np=V,(g"V )
= 0,090 ) +¢" 0 ol

1

Ap= |g|7Ea i[gij\/majcp]



because I'j, = 0 Jogv/I ¢l ([2,17]).

On a Riemannian product manifold BX F, let # and o be the projections of

Bx F onto B and F, repectively, and let f> 0 be a smooth function on B.

DEFINITION 2.5 The warped product manifold M= BXx;F 1s the product

manifold M= BxF furnished with metric tensor

g=n(gp)+(fen)ic (gp),

where g, and g, are metric tensors of B and F, respectively. In other

words, If v is tangent to M at (p,q), then

g wv)= g pldn(v),dr )+ f*(P) g p(do(v),do(v)).

Here B i1s called the base of M and F the fiber. We denote the metric g
by <, >. In view of Remark 2.6-(1) and Lemma 2.7, we may also denote

the metric g, by <, >. The metric g, will be denote by ( , ).

REMARK 2.6 Some well known elementary properties of the warped

product manifold M= BX F are as follows.

(1) For each ¢=F, the map T|y-1() is an isometry onto B

= BXgq

(2) For each peB, the map ol 1) 1S a positive homothetic

=pxXF

map onto F with homothetic factor 1/f(p).



(3) For each (p,q)€ M, the horizontal leaf Bxg¢ and the vertical
fiber px F are orthogonal at (p,q).

(4) The horizontal leaf o '(¢)=Bxgq is a totally umbilic submanifold

(5) If ¢ is an isometry of F, then 1x¢ is an isometry of M. And if

v 1s an isometry of B such that f=f o ¢, then ¥ X1 is an isometry of M.

Recall that vector tangent to leaves are called horizontal and vectors
tangent to fibers are called vertical. From now on, we will often use a
natural identification T, (BX F) =T, ,(BXF)=T,BxT,F. The
decomposition of vector field on B, we define X at (p,q) by setting

T((p,q):(Xp,Oq).‘Then X is r-related to X and o-related to the zero
vector field on F. Similarly, if Y is a vector field on F, Y is defined by

Y(p,q)=1(0,,Y,).

LEMMA 2.7 If h has a smooth function on B, then the gradient of the lift

h o m of h to M of gradient of h on B.

PROOF. See Lemma 7.34 in [16].

In view of Lemma 2.3, we simplify the notation by writing h for h - # and
grad(h) for grad(h o 7). For a covariant tensor A on B, its lift A to M is
just its pullback 7 (4) under the projection 7w:M — B. That is, if A4 is a
(1,s)-tensor, and if v,,---v' €T, M, then Ay ,v,)=Aldn(v)), ,dx(v,))
€7T,(B). Hence if v, is vertical, then A=0"on B. For example, if f is a

smooth function on B, the lift to M of the Hessian of f is also denoted by



H'. This agrees with the Hessian of the lift fo 7 generally only on
horizontal vectors. For detailed computations, see Lemma 5.1 in [5].

Now we recall the formula for the Ricci curvature tensor Ric of the
warped product manifold M= BxF. We write Ric? for the pullback by 7 of

the Ricci curvature of B and similarly for Rict.

LEMMA 2.8 On a warped product manifold M= Bx F with n=dimF>1,

let X, Y be horizontal and V, W vertical. Then

(1) Ric(X,Y)= Ric®(X,Y)— ?Hf (X,Y)

(2) Rie(X,V)=0
(3) Ric(V,W)=Ric"(V,W)—< V,W> f*,

A df, d
Tij(n_l)<gm fogm f>

where f* =

, and Af is the Laplacian on B.

PROOF. See Corollary 7.43 in [17].

On the given warped product manifold M=BX,F, we also write S? for

the pullback by n of the scalar curvature S, of B and similarly for §*.

From now on, we denote grad(f) by Vv f.

COROLLARY 2.9 If S is the scalar curvature of M= BX,F with

n=dimF > 1, then



=581 5 9, AL ) SVLVE>

= ; FI (2.1)

where A is the Laplacian on B.

PROOF. For each (p,q) EM=BxF, let {¢;} be an orthonormal basis for
T,B. Then by the natural isomorphism {e,= (e;,0)} is an orthonormal set in

T, M. We can choose {d;} on T,F such that {e;,d;} forms an orthonormal

basis for T{,, M. Then

1=< Ejazj> f(p)Q(djadj): (f(p)djaf(p)dj)y

which implies that {f(p)d;} forms an orthonormal basis for T,F.

By Lemma 2.8 (1) and (3), for each i and j,

Rz‘c(e_,;,e_»:Rz'cB(e_,;,e_,J—E,;?Hf(e?,ei),

and

Ric(;.d)) = Ric" (4,.4,)~ f*(d;.d)) ATf+<n—1><W;—’ff>

Hence for ¢,= g (e,,e,),



S(p,q)=X,¢e, R

= Y& Ric(e;,e;)+ ¥je; Ric(d;, d;)
F
A
- SB<p,q>+%—2an_n<n_ 1><w;7yf>,

which is a nonlinear partial differential equation on BXxgq for each ¢=F.

Now we may pose the following question: if Sp(¢) =c (constant) on F, can
we find a warping function f>0 on B such that the warped metric g has
constant scalar curvature S(p,q)=k on M=BxF ? If S(p,q) =k for all

(p.q) € M, then equation (2.1) is the pullback by = of the following equation:

k= SB(p)ﬂLf—CQ—QnATf—n(n_ 1)<V];,72Vf>’

or equivalently,

Af+%(k—53)f_ 2;f n n;1 < Vf}vf> _

0. (2.2)

_10_



OI. Main Results

In this section we restrict our result to the case that B=(a,b) is an open
connected subset of R with the positive definite metric +dt* and
—c <a<b< +c. Recalling that Af=+f"(t) and < Vf,Vf>=+(f'(t))? and
making the change of variable f(t)= v(t), we have following equation

from equation (2.2),

(n—3) ' ()P
4 v(t)

v () + +£v(t)—£:0 (3.1)
n n

where we assume that F is a Riemannian manifold with constant scalar
curvature ¢ and dimF=n>1 (cf. equation (2.16) in [4,p78]).

Now we consider the following problem:

Problem I: Given a fiber F with constant scalar curvature ¢, can we find
a warping function f>0 on B=(a,b) such that for any real number k, the
warped metric g admits k£ as the constant scalar curvature on

M= (a,b) % ;F ?

We consider several cases according to the dimension of F and the value

of the given ec.

THEOREM 3.1 If dimF=n=3, then for any real number k the following

warping function v(¢) produced constant scalar curvature k on (M, g ):

_11_



. . k k c
i) k>0, v(t)—clsm(“gt)chQcos(“gt)sz,

i) k=0, v(@t)= %t2+clt+02,

i) k<0, v(t)—clexp(“—g t)+chxp(— “—% t)+%,

where ¢, and ¢, are suitable constants chosen (if possible) so that wv(t) is

positive on B= (a,b).
PROOF. If n=3, then we have a simple differential equation.

v (t)+ ﬁv(t)—

3 =0

w|o

k

Putting h(t) =— %’U(t)+ it follows that h"(t)+§h(t):0. Hence, according

<
3 ’
to sign oh k, the above solutions follow directly from elementary method

for ordinary differential equations.

REMARK 3.2 The difficulty in applying Theorem 3.1 1s simply to insure
that ¢, ¢, may be chosen, depending on ¢, k, and the interval B=(a,b) such
that v(¢) is positive for all t<(a,b). The strongest statement that may be

made independent of choice of (a,b) is the following.

COROLLARY 3.3. For dimF=3 and (a,b) arbitrary.

_12_



i) for k>0, Problem I may be solved affirmatively for all ¢> 0,
ii) for k=0, Problem I may be solved affirmatively for all ¢> 0
iii) for k<0, Problem I may be solved affirmatively for all c.

REMARK 3.4 If k=0, ¢<0 and B=(a,b)=(—c0,+ ), then no value of
c,co may be chosen which will produce a warping function positive on all
of (—oco,+0c0). Similarly, if £>0,c<0 and B=(a,b)=(—co,+ ), then no

values of ¢,¢, will produce v(t) >0 on all of (—oco,4+ ).

THEOREM 3.5 If dimF=n=3 and c¢=0, then for any real number k the

warping function v(¢) produces constant scalar curvature k¥ on (M, g):

4

i) k>0, v(t)—(clcos( %yt)jLCQ(Sin(\/(nan)k t)))nﬂ

4
ii) k=0, v(t)=(c,t+ecy)" ",

4
n+1
i) k<0, v(t)= (clexp( - nz:nl)k t)+ CQGXp(— \/— W t)) ,

where ¢, and ¢, are suitable constants chosen (if possible) so that wv(t) is

positive.

PROOF. In this case, equation (3.1) is changed into the simple form,

_13_



Putting v(t)=w()""', then w(t) satisfies the equations,

4

’ 4 71—71 ’
v(t):n+1w(t) 1 w(t)
and
4 4
vy —4n—3) 172 e 4 nrl Lo
v (t) = 1) w w(t)+n+1w w”(t).
Hence w”(t) = #kw(t) and our solutions follow.

REMARK 3.6 (1) If k<0 and (a,b) is arbitrary, taking ¢, =c,=1 in

Theorem 3.5 provides an affirmative solution to Problem 1.

(2) If k=0 and B=(—o0,+ ), only a constant warping function v(¢) with

c; =0,¢c, >0 will satisfy v(t) >0 on all of B.

(3) If k>0 and B=(—oco,+ ), then i) reveals that Problem I may not
be solved on all of B. In the case that B is a finite interval, evidently i)

reveals that a positive warping function v(¢) may be constructed.

THEOREM 3.7 If dimF=n= 1,3 and c¢= 0, then for any real number k the

warping function v(¢t) produces constant scalar curvature k¥ on (M, g):

_14_



. n+1 c 9 k 1
= — + —

1) k>0, v(t) — k[tan (+ it 1) t+cl) 1],

.. o o c 2 TL(TL_I) 2

i) k=0, v(@t)= n(n—l)t +cit+ cly

i) k<0, v(t)= [clexp(— n(;+k1) t)+ Zii 4kcc1 exp(\/%t)r

where ¢, is a suitable constant chosen (if possible) so that v(t) is positive.

PROOF. Suppose v(t) is a solution of equation (3.1). If v(¢) is a constant,

then v(t):%, which is defined only when ¢k>0. If v(¢) is nonconstant,

4
putting v(t) =w(t)"" !, then w(t) satisfies the equations,

L

v (t) = w(t)mi w (t)

and
4 4
” _4(TL_3) n+172 ’ 2 4 71+171 ”
=—ly" ——w" t).

v (t) (1) w w'(t) +n+1w w” (t)
Hence

” 7’L+1 o 7’L+1 n+1

w" () + n kw(t) in cw =0

_15_



Putting dw—(t)—y and d

= =w"(t),

t

and

Here we have three following cases:

TL+1 n+1
/ dw o n+1 \/ k+ e
1 ;
w\/—k+ n+1cw nl
n—1
7”L+1 ,,+1
4
nt1
— V=%
n+1 \/
4\/ k __4
\/ n+1+\/_—k

_16_

k>0
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k<0



Hence our results follow easily. For example, if k<0, then

—4k
__4 (1+01 exp(“ ))
\/—k+ 7’L+1cw n+l _ 7’L+1
n—1 — 4k
clexp n+1 t

for some constant ¢;. Thus

- il el

which implies the first, replacing c~1: u%
n—1 (—4kc)

REMARK 3.8 (1) If k>0 and B=(—o,+ ), then i) of Theorem 3.7
reveals that no warping function »(¢) may be found which is positive on all

of B.

(2) If k<0, then iii) of Theorem 3.7 reveals that Problem I may be

solved affirmatively for any B provided that ¢ > 0.

(3) If k=0, then ii) of Theorem 3.7 reveals that problem I may be solved

affirmatively for a finite interval B provided that ¢ > 0.

_17_
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