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ABSTRACT

Implementation of Inverse Algorithm in Finite Fields using

Composite Fields

SHIN, Ja-young
Advisor : Prof. RHEE, Kang Hyeon, Ph.D.
Major in Electricity, Electronics and Communication Education

Graduate School of Education, Chosun University
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Chapter 1. Introduction

Finite fields (or Galois fields) are applied frequently in security communication
needing digital communication coding and interpretation such as switching
theorem, digital signal processing and image processing.

Especially, block codes such as BCH code and Reed-Solomon code among
error correcting codes are defined with finite fields. Arithmetic operation of
GFrZ) is used for the encoding and decoding of CD (compact disc),
DAT(digital audio tape), and elliptical curve cryptography. In application fields,
many researches are underway for designing hardwares for using finite field
operation is needed since processing finite field operation is needed in real
time[1,2].

A finite field is a field having a finite number of elements with four
fundamental rules of arithmetics and exists in the field having only Vel
elements for prime number /Z and positive number AV of all elements. This
finite field is expressed as GZ7Z"). Operations on a finite field include addition,
subtraction, multiplication and division. However, a digital system is achieved
at G#r2") where the number of finite fields is 2, ie., within multiplier.
Calculation of multiplicative inverse of finite field is divided largely into two
methods, i.e., the method using a finite field divider and the method using a
multiplier. The former method is fast but needs a large area of hardware. The
latter method needs a smaller area of hardware but needs much time. In this
paper, we proposed an algorithm that could calculate GA7256/ multiplicative
inverse of finite field using composite fields, implemented this algorithm in a
hardware, and compare this hardware with the currently used 'Itoh and Tsujii’
hardware in respect to structure, area and computation time. Furthermore, this

hardware was inserted into the AES SubBytes block to show on FPGA



emulator board to confirm that the circuit of proposed algorithm was normally
functioning. In this paper, the calculation of algorithm multiplicative inverse 1is
examined in Chapter 3 and the calculation of algorithm multiplicative inverse
was implemented using the proposed composite field in Chapter 4. In Chapter 5,
we compare the circuit implementation, activity characteristic, and 'Itoh and

Tsujii’ function. The conclusion is drawn in Chapter 6.



Chapter 2. Theoretical Background

Finite fields are the general starting point for the constructions of many
combinatorial structures. It will be important to know the fundamentals
concerning these fields in order to investigate combinatorial structures and
related areas of combinatorial interest. Unfortunately, the area of field theory is
rather large and it would be impossible for us to cover it in detail and still
have time to work with the results. In the interest of conserving time, we will
present the elements of general field theory without proofs and only prove
statements when we turn our attention specifically to finite fields.

It will be assumed that you are familiar with the definition of a field, the
definition and basic properties of vector spaces and the fact that the integers
modulo a prime p form a field (a finite one), which we will denote by GZ(p/

(standing for the Galois Field of order p).

2.1 General Field Theory

Let Z be a field containing a subset A, which is itself a field under the
operations inherited from Z. Then Z is called an extension of A, and A a
subfield of Z. Every field has a smallest subfield, called the prime subfield,
which is isomorphic to either the field of rationals ¢, in which case we say
that it has characteristic zero, or to a G/Z(p/ for some prime p, in which case
we say that it has characteristic p. We shall denote the characteristic of an
arbitrary field A by char A

If Z is an extension of A (denoted Z > A), and p is an element of Z but not
an element of A, then the smallest field containing both A and p will be

denoted by A7p/ and is a subfield of Z. Similarly, the smallest field containing



A and the elements p/, p2 .. ,pn in L > A will be written as Alp/ 22 .. ,
o). Any extension field Z of A can be viewed as a vector space over A and
the dimension of this vector space is called the degree of Z over A, and is
denoted by /Z. A7/ If the vector space is finite dimensional we say that Z is a
finite extension of A. If Z is a finite extension of A and /A7 is a finite
extension of Z, then /M-A/ = [ML//L-K/

Denote by A7/x/ the ring of polynomials over A in the variable x. A/x/ is a
principal ideal domain (an ideal is a subring that is closed under multiplication,
a principal ideal is an ideal generated by a single element, and a principal ideal
domain is a commutative ring with unity all of whose ideals are principal). A
polynomial in A7x/ is said to be monic if the coefficient of the highest power
in x 1s unity. It is irreducible if it is not the product of two nonscalar
polynomials in AZx/ If ffx/) is an irreducible polynomial in A/x/ then any zero
(i.e., root) of fx/is not in A and so there is a smallest extension field Z of A
that contains it. Furthermore, Z is isomorphic to the quotient field AZx./ <fix/)>,
where <f#x/> denotes the principal ideal of A7/x/ generated by fx/ If the
irreducible polynomial ffx/ is of degree s, then /Z.A/ = n Furthermore, if p is
the zero of f/x/ in question, then Z = A(p/ and the elements 7, p, p2 .., prn-7/
form a basis of Z over A

Before we continue, let us illustrate these ideas with a well-known example.
The field C of complex numbers is usually described in one of two ways,
either as the set of numbers /@ + &7/ where a and b are real numbers and
1= \/——1, or if you prefer not to mention the imaginary number 7 C can be
described as the set of all pairs (@ &/ of real numbers where addition of two
pairs 1s the usual component wise addition and multiplication of two pairs is
defined by (@ b)cd) = (ac - bd, ad + bc) The second version is of course

viewing (' as a vector space of dimension 2 over the real numbers 4. Let us



see how we would construct ¢ starting with the subfield Z Now A = /A and
A/x/ is the ring of all polynomials with real coefficients. The polynomial
2+ 1 is monic since the coefficient of x? is 7 and it is irreducible over Z
since it cannot be factored into polynomials with only real coefficients. The
principal ideal <x2+/7> consists of all polynomials that have 2+ 1 as a factor.
The quotient field structure, Z/x//<x?+/> 1is obtained by taking each
polynomial in Z/x/ and dividing it by 2+ 1. The polynomials that have the
same remainder after division form equivalence classes, which are the elements
of the quotient field. The different possible remainders are the polynomials
a-+bx, where @ 5 in Z, and we identify the equivalence classes with these
remainders. The association a + bx iff a4+ bi clearly shows that the quotient
field and C are isomorphic. Now, let p be a zero of z2+1, jie. p2+1=0, so
p= +v/—1=1 which is not an element of Z /7, 7/ forms a basis for C over Z
since every element of ¢ can be written as a(1)+0b(i) with @ 4 in Z and 7
and 7/ are easily seen to be linearly independent. Using this basis, we can
identify the elements of ¢ with their coefficient vectors, i.e. a +bi iff (@ 5/ to
get the second representation as a vector space of dimension 2 (notice the

highest power of x in the irreducible polynomial).

2.2 Finite Fields

Fields are abstractions of familiar number systems (such as the rational
numbers ¢, the real numbers /7, and the complex numbers ¢) and their
essential properties. They consist of a set /Z together with two operations,
addition (denoted by +) and multiplication (denoted by -), that satisfy the usual

arithmetic properties:



(i) (& +) is an abelian group with (additive) identity denoted by &.
(ii) (#¥0/ -) is an abelian group with (multiplicative) identity denoted by .
(iii) The distributive law holds: (a+b)-c=a-c+b-c for all @ b ¢ € F

If the set /' 1is finite, then the field is said to be finite.
This section presents basic facts about finite fields. Other properties will be

presented throughout the book as needed.

Field operations

A field /' is equipped with two operations, addition and multiplication.
Subtraction of field elements is defined in terms of addition: for a,b € F,
a—b=a+ (—b) where -4 is the unique element in /# such that &+-4/) = 0
(-6 is called the negative of 4.) Similarly, division of field elements is defined

in terms of multiplication: for a,b € F with b# 0,a/b=a b ' where b ' is

the unique element in # such that b+ b '=1. (b"' is called the inverse of 4.

Existence and uniqueness

The order of a finite field is the number of elements in the field. There exists
a finite field # of order ¢ if and only if ¢ is a prime power, ie., ¢ = p" where
p 1s a prime number called the characteristic of /#, and m is a positive integer.
If m = 7, then /Z# is called a prime field. If 7 > 2 then / is called an
extension field. For any prime power ¢, there is essentially only one finite field
of order ¢ informally, this means that any two finite fields of order ¢ are
structurally the same except that the labeling used to represent the field
elements may be different. We say that any two finite fields of order ¢ are

isomorphic and denote such a field by F,.



Prime fields
Let p be a prime number. The integers modulo p, consisting of the integers
{0,1,2,...,p—1} with addition and multiplication performed modulo p, is a

finite field of order p. We shall denote this field by £, and call p the modulus
of F}, For any integer @, @ /mod p shall denote the unique integer remainder 7

0 <r < p-/, obtained upon dividing @ by p this operation is called reduction

modulo p.

Binary fields
Finite fields of order 2™ are called binary fields or characteristic—two finite

fields. One way to construct Fy. is to use a polynomial basis representation.
Here, the elements of Fy. are the binary polynomials (polynomials whose

coefficients are in the field 22 = /0 /7/) of degree at most 72—/

Fp=Aa, 2" "+a, 2"+ a+az+a,:a € {0,1}}

An irreducible binary polynomial /= of degree m is chosen (such a
polynomial exists for any m and can be efficiently found). Irreducibility of =/
means that f=/ cannot be factored as a product of binary polynomials each of
degree less than 2 Addition of field elements is the wusual addition of
polynomials, with coefficient arithmetic performed modulo 2. Multiplication of
field elements is performed modulo the reduction polynomial f=/ For any
binary polynomial a@/z/), alz) mod f (=) shall denote the unique remainder
polynomial 77z’ of degree less than /2 obtained upon long division of @z’ by

J7=/) this operation is called reduction modulo fZ=/.



Extension fields
The polynomial basis representation for binary fields can be generalized to all

extension fields as follows. Let p be a prime and 7z > 2 Let E,[z ] denote the
set of all polynomials in the variable = with coefficients from F,. Let f=/ the
reduction polynomial, be an irreducible polynomial of degree m in F;,[z]fsuch a

polynomial exists for any p and /2 and can be efficiently found. Irreducibility of

/7z) means that £z) cannot be factored as a product of polynomials in £, [z]
each of degree less than .2 The elements of F}, are the polynomials in E,[z]
of degree at most 7-/.

1 2 2
Fn= {a, 12" Fa, 2" T taztaa € F}

Addition of field elements is the usual addition of polynomials, with coefficient

arithmetic performed in Fp Multiplication of field elements is performed modulo

the polynomial f=/.

Subfields of a finite field
A subset £ of a field A is a subfield of A if k is itself a field with respect

to the operations of A. In this instance, A is said to be an extension field of 4

The subfields of a finite field can be easily characterized. A finite field F}, has

precisely one subfield of order pl for each positive divisor / of m the elements
1

of this subfield are the elements a € }2 satisfying a” = a. Conversely, every

subfield of F}, has order pl for some positive divisor 7/ of .



Bases of a finite field
The finite field Fq can be viewed as a vector space over its subfield EI

Here, vectors are elements of Ej scalars are elements of F, vector addition is

o
the addition operation in Ejn, and scalar multiplication is the multiplication in Ej
of Efelements with Ef*elements. The vector space has dimension 7 and has
many bases.

If B={by, by, ---,b,} is a basis, then a € Fq can be uniquely represented by
an 7-tuple (ay, ay, -+ a,) of F,-elements where a = a;b, + asb, +---+ a,b,. For
example, in the polynomial basis representation of the field Fpm described

. . . m—1 _m-—2
above, F}, is an s7-dimensional vector space over F, and {z L2 oz, 1)

is a basis for F;) over F,.

Multiplicative group of a finite field

The nonzero elements of a finite field £, denoted Fz

form a cyclic group
under multiplication. Hence there exist elements b € Fz called generators such

that:

Fz:{bi:OSiéq—Z}

The order of a € FZ is the smallest positive integer ¢ such that a'=1. Since

Fz is a cyclic group, it follows that 7 is a divisor of ¢—/



2.3 Prime Field Arithmetic

This section presents algorithms for performing arithmetic in the prime field

F,. Algorithms for arbitrary primes p are presented. The reduction step can be

accelerated considerably when the modulus p has a special form. Efficient
reduction algorithms for the NIST prime.

The algorithms presented here are well suited for software implementation.
We assume that the implementation platform has a /#/-bit architecture where W
is a multiple of 8. Workstations are commonly 64 or 32-bit architectures.
Low-power or inexpensive components may have smaller /, for example, some
embedded systems are 16-bit and smartcards may have W = 8. The bits of a
W-bit word ¢/ are numbered from ¢ to W-/, with the rightmost bit of 7/
designated as bit 2.

The elements of £} are the integers from ¢ to p-7 Let m = [loggp] be the
bit length of p, and # = »2/W be its wordlength. Fig. 1 illustrates the case
where the binary representation of a field element a is stored in an array
A= (A[t—1],...,A[2],A[1], A[0]) of # W-Dbit words, where the rightmost bit

of A/0/ is the least significant bit.

Alt-1] Al2] All] A[0]

Fig. 1 Representation of a € £, as an array A4 of W~-bit words.

Hardware characteristics may favour approaches different from those of the

algorithms and field element representation presented here.



Addition and subtraction

Algorithms for field addition and subtraction are given in terms of
corresponding algorithms for multi-word integers. The following notation and
terminology is used. An assignment of the form ”(e,z)ew” for an integer w is

understood to mean

z«—wmod2", and

e—0if w € [0,2"), otherwise e<1

fw=xz+y+e for 2,y € [0,2") and € € {0,1}, then w=€2"4 2z and €
is called the carry bit from single-word addition (with € =1 if and only if

Z<$—|—€,).

Integer multiplication

Field multiplication of a,b € F, can be accomplished by first multiplying &
and & as integers, and then reducing the result modulo p. Algorithms are
elementary integer multiplication routines which illustrate basic operand
scanning and product scanning methods, respectively. In both algorithms, (Z/V)
denotes a (ZW)-bit quantity obtained by concatenation of W#~bit words ¢/ and
V.

The calculation C[i+j]+ Ali]- B[j]+ U is called the inner product
operation. Since the operands are W~-bit values, the inner product is bounded by

2(2"—=1)+ (2" —1)*=2""—1 and can be represented by (/).

Reduction

For modulo p that are not of special form, the reduction =z mod p can be an



expensive part of modular multiplication. Since the performance of elliptic curve
schemes depends heavily on the speed of field multiplication, there is
considerable incentive to select modulo, such as the NIST-recommended primes,
that permit fast reduction. In this section, we present only the reduction method
of Barrett and an overview of Montgomery multiplication.

The methods of Barrett and Montgomery are similar in that expensive
divisions in classical reduction methods are replaced by less—expensive
operations. Barrett reduction can be regarded as a direct replacement for
classical methods; however, an expensive modulus—-dependent calculation is
required, and hence the method is applicable when many reductions are
performed with a single modulus. Montgomery's method, on the other hand,
requires transformations of the data. The technique can be effective when the
cost of the input and output conversions is offset by savings in many
intermediate multiplications, as occurs in modular exponent.

Note that some modular operations are typically required in a larger
framework such as the signature schemes, and the modulo involved need not be

of special form.

2.4 Constructing Finite Fields

We will illustrate the above material by actually constructing some finite

fields.

GF(9)
Since 9 = 3% the prime field must be G#737) whose elements we will

represent by ¢ / and 2, and where addition and multiplication are done modulo

S We seek an extension of degree .2 over the prime field, so our first task is



to find a monic irreducible polynomial of degree .2 in GF¢.3/)/x/ For large field
this can be a difficult assignment, but for small fields it is not too bad. While
there are some theorems that may help, the brute force procedure is effective if
the prime field is small. We can in fact easily list all of the monic quadratics
in this ring, they are:

2
T

z* 41
42
4z
'+ z+1
'+ 42
x’ + 22
2?4 2r+1
z* 4 2+ 2

Now the problem is to find the irreducible ones in this list. Clearly, any
polynomial without a constant term is factorable (x is a factor), so the first,
fourth and seventh can immediately be crossed out. For the remaining six
polynomials, we may opt for one of two procedures. We could take each in
turn and substitute all the field elements for ., if none of these substitutions
evaluates to zero, the polynomial is irreducible (i.e., it has no root in the field).
So, for example, substituting in 2+ 2 gives the values 0°+2= 2, 1’+2=0
and 22—|—2:O, thus z°+ 2 factors, in fact x2+2:(a:+1)(x+2). On the

other hand, the same procedure for 2+ 1 gives 0°+1= 1, 1°+1=2 and

224+ 1=2 and so z°+1 is irreducible. The second possible procedure is to

take all the linear factors (in this case, because we want quadratic products)



and multiply them in all possible pairs to get a list of all the factorable
quadratics, removing these from our list leaves all the irreducible quadratics.

So,

(z+1)(z+1)=a"+22+1
(z4+1)z+2)=a"+2
(z+2)z+2)=a*+2z+1

Implying that, a:2+1, 22+ x+2 and 22+ 2x+2 are the only irreducible
monic quadratic polynomials in G/Av3/)/x/. We could now choose any one of
these letting o be a zero of the chosen polynomial and write out the elements
of GFr9) in its vector form representation using the basis /7, o/ This however
does not give us the most useful representation of the field. Rather, we will
use the fact that the multiplicative group of the field is cyclic, so if we can
find a primitive element (i.e., a generator of the cyclic group) we will have a
handy representation of the elements. Now the primitive elements are to be
found among the roots of the irreducible polynomials (they cannot be elements
of the prime field). The cyclic group we are after has order & so not every

root need be primitive. For example, letting » be a root of x2+1, 1e.,

p2 +1=0, so p2 = 2, we can write out the powers of p.

pl=p.p’=2p=2pp'=2pp)=2p"=2(2)=1

And so p has order 4 and does not generate the cyclic group of order &, i.e.,

p 1s not a primitive element. On the other hand, consider # a root of the
polynomial a:2+a:+2, so that W’ +u+2=0 or v’=2u+1. Now the powers

of 4 give us:



u

2u+1
wu+1)=20"+u=2Qu+1)+u=2u+2
2P+ 2u=u—+2+2u=2
2u
2u*
u
U

=u+2
+2u=2u+1+2u=u+1
tu=2u+l+u=1

&, &, & &, & & 8,6 &

so « is a primitive element and so we have represented the elements of G/#79/
as the & powers of x together with . Notice also that the bolded terms on the
right are all the possible terms that can be written as linear combinations of
the basis {7, #/ over GF(5). When working with finite fields it is convenient to
have both of the above representations, since the terms on the left are easy to
multiply and the terms on the right are easy to add. So for instance, if we

wanted to calculate (2u+2)3—|—u—|—2, we would do so in this way,

Qu+2P=0w) =uv"=u and so Qu+2)P+u+2=u+u+2=2u+2="1’

GF(8)
Since 8223, the prime field is GA72) and we need to find a monic

irreducible cubic polynomial over that field. Since the coefficients can only be ¢

and /, the list of irreducible candidates is easily obtained.

+1
P44
2+’ +1
P+t



Now substituting ¢ gives 7 in all cases, and substituting /7 will give ¢ only if
there are an odd number of x terms, so the irreducible cubics are just
24+x+1 and 22+ 2°+ 1. Now the multiplicative group of this field is a
cyclic group of order 7 and so every nonidentity element is a generator. Letting
« be a root of the first polynomial, we have CHu+l= 0, or b =u+ 1, so

the powers of x are:

U =1u

2 2

u =u

3

uw=u-+1

4 2

U =u+u
2

vw=u"t+u+1
2

W=u+1

7

u:

Now suppose we had chosen a root of the second polynomial, say , p. We

would then have p3 = p2 4+ 1 and the representation would be given by

p'=p

2 2
p=p
pP=p"+1
pl=p'+p+1
p=p+1
p’=p"+p
p'=1

We know that these two representations must be isomorphic, show that the

isomorphism is induced by v ——> pﬁ.



Chapter 3. Calculation of multiplicative inverse

in the algorithm

Typical methods of calculating inverses in finite fields include the Fermat
theorem, the method using extended Euclid algorithms, and the method using
finite field multipliers[3,4]. There is also the method of using composite fields as

proposed in this study.
3.1 Fermat theorem

The Fermat theorem is expressed as the Equation (1) when the random numbers a

and p have relation of relatively prime.

-1_ -2 ,p=2" (D

oo /
ad “=a mod 2™

{a”:a mod p,a € GF(p)
a

When an inverse is calculated with Fermat theorem, the multiplication of 72—/ time

and square of /77—/ times are needed for operation on GA7Z")
3.2 Extended Euclid algorithm
Equation (2) shows the process of calculating the greatest common dividers

of two polynomials, ie., a(x) and b(z), {deg(a(z)) < deg(b(x))} using Euclid

algorithm.



ro(z)=0(), rx)=al)
7"—1(95):%(35)7"0@)4‘7”1(35)
To(ﬁ):%(ﬁ)ﬁ(m)“‘?&(l’) (2)

re (@) = g @) @) + 1y (@)

when GCD is in Equation (2), the Equation (3) results according to extended Euclid

algorithm.

In addition, s(z) and t(z) in Equation (3) can be calculated as the repetitive

calculation as in Equation (4).

¢; (x) in Equation (4) is calculated with Equation (2). ¢, (z) calculated repeatedly

until £ (x) in Equation (2) reaches 7.1 = 0, becomes b(x ), and t,_; (x) becomes

a'(z).

Here, Equation (3) is rewritten to become
t(x)a(z)=g(x)modb(z) (5
At this time, since b(x) is an irreducible polynomial, it is always g(xz ) = 1.



Thus, the result becomes

t(z)a(x)=1modb(x)

t(:ﬂ):ﬁmodb(x) ©

3.3 Calculation of the inverse using a multiplier of the GF(2®)

finite field

When the finite filed element » is inputted in the GF(Z) field, the inverse of

y is achieved as in Equation (7).

We compared the circuit area and computation time of proposed algorithm with

'Ttoh and Tsujii’ circuit applied in Equation (7).
3.4 Composite Fields

Using the second composite field, the algorithm calculating the multiplicative
inverse of finite field was proved by Cristof Paar[5]. When two finite fields ¢

and & have 8=U"' relationship, we could calculate the multiplicative inverse of

finite field according to Equation (8).



CZZﬂ"‘I’ZO

(5:DIT+DO
D, = (Z, A+ Z))F! (8)
D = ZF"'

F=Z!B+ ZZ A+ Z;

We implemented the inverse algorithm in finite field using Equation (8). For
hardware design, the multiplicative inverses of Christof Paar[l] were referred
and GF(Z) multiplicative inverses were designed. Refereeing to the Mastrovito

structure[6], finite field multiplier was designed.



Chapter 4. Inverse algorithm using composite field

GF(256) in finite fields can be GA(Z) GF(4) or GF(6). In this study,

GF(16°) was used as the composite field of G#/7"N78].
4.1 Process of calculating finite field inverse

Equation (9) cane be used when ¢ € GF(2*)?).
(= Zyr+ 2 (9)

Here, 7 is the root of the irreducible polynomial Z/x/ of GF(16°) and satisfies

Zy+ Zy € GF(2™). Equation (10) is the irreducible polynomial Z/x/.
Plx)=2*+Az+ B  (10)

From Equations (9) and (10), Cl can be driven as Equation (11).

('=6=Dr+ D,

¢-0=1=D2zr"+ D2+ DZ)r+ DyZ, (1)

P(r)=0, r*=Ar+ B

Equations (12) and (13) show the process of calculating the multiplicative

inverses of finite fields, i.e., I, and L), and driven from Equation (11).



(D Zy+ DyZy + AD Zy )r + (DyZy + BD, Z,)

D\ Zy+ DyZy + AD\Z, = 0
DyZy+ BD\ Z, = 1

D, = DyZ (Z,+ AZ)~* (13)
Dy=DZ " (Zy+ AZ) ") =1

DZ N (Z;+ AZ,Z,+ BZ}) = 1

As a result, the computation of multiplicative inverses in finite fields using

composite fields is driven as Equation (14).

D1:Z1‘F1; DUZ(Z()+AZ1)‘F1
F=Zi+ A% Zy+ BZ} )™

(14)

4.2 Circuit design of the proposed inverse algorithm

From Equation (14), the computation algorithm of multiplicative inverse of

finite field was implemented as in Fig. 2. Here, the irreducible polynomial of
compute field used was Px)=z4+z+3" " is calculated to be

B+1=y"+1.



B%1001} i
/2
X
™ = » Inverter - R |

@ Adder ® Multiplier

Fig. 2. Circuit design for inverse calculation using composite fields

In Fig. 2, .S block is the arrange block changing the input extension field into
composite field. Z block is the arrange block changing the composite field into
the extension field. in which #Z = S7[8]. Fig. 3 shows the values of .S and Z
blocks.

01000101 01111010
00110000 10010000
01001011 10000010
S:OOOO()lOl R:11000010
10011011 00000011
00100010 00100101
01100101 10000110
01101101 00110101
Fig. 3. Block coefficient of S and R

4.3 Simulation

When the results driven were coded using VHDL, the output values were



normal. Comparison with the resultant values was done using the inverse of
finite field multiplier explained in the inverse table of AES S-box and Chapter.

Fig. 4 show the simulation result, showing the same inverse value.

Neme: Valug: 1UUiDns ZDD.IDns EDD.IDns ADD.IDns EDD.IDns EDD.IDns ?UU.‘Uns BDD.‘Dns BDD}Uns [l
= REET

=Y

= CLK

=0 VIN nn Ur N4 \Jr m \uI’ m \J’ i "u" ne \uI’ N U n7 \\f i ‘U’T
Natme: Yalug: 1DDiDns ZDD.IDns BDD.IDns leD.IDns SDDiDns EDDiDns IDD.IDns BDD.IDns QDD.IDns 1
= 13t 1

= in 1

= clk 0

B inpull.0] | HE3 B (o 7 ymyn (e {&F (6 fn 0

Fig. 4. Values from simulation

Fig. 5 is the gatelevel circuit synthesized using core_slow.db in Synopsys.

The overall cell area was 4593.87.
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Fig. 5. Gate level circuit

4.4 Measuring function

The inverse computation algorithm proposed in this study and ‘Itoh and

Tsujii’ algorithm are compared in Table 1.

Table 1. Results of circuit synthesis and comparison of function

Design Data Arriver
. Cell Area :
Architecture Time
'Ttoh and Tsujii’ 12030.64 19.960[ns]
Proposed Design 4593.87 15.155[ns]

When the function was compared, the design proposed in this study showed a

decrease of 61.6% in cell area and an increase of 24.97% in computation time



compared with 'Itoh and Tsujii’ design.



Chapter 5. Circuit implementation using FPGA

The inverse algorithm proposed in Chapter 4 was implemented on Altera
FLEX10K. Activity of implemented algorithm was confirmed by implementing
FPGA circuit rather than the rom table by designing AES SubBytes Transform

circuit. The circuit design is shown in Fig. 6.

CLOCK ]

C T S |
LED_HMUX
LED_INL[6. . 0] i
LED_INZ[&..0] SELL7. . o]
i —CLK QUTDATALG. . €]
—— RESET ;
4, :
SENDER ; ; ToP ;
CLK  PLAIN[Z.. 0] —INL7. . 0]
RESET ; — LK YOUTL?. . 8]
¥ —|RESET
— 1HY
-‘- ................................................. B
R
""" i

CLOCK - Clock division circuit(40.7)
Top - SubByvtes(lnverse SubByvtes) Transform circuit
LED MUX .~ Seven segmernt control switch
LED DE . Seven segment signal decode
SENDER -~ Input signal data
Fig. 6. FPGA Circuit design



Fig. 7 shows the picture actually realized on FPGA emulator board.

Output data

HEBAE

i 2

RESET Key INVERSE Key
Fig. 7. FLEX10K FPGA verification circuit

In Fig. 7, the output data in the ouput data portion is outputted in 7
segments and the circuit initializes through the RESET Key. The INVERSE

Key is the control preventing the circuit from inverse transformation.



Chapter 6. Conclusion

We proposed an optimal algorithm to calculate the multiplicative inverse of a
finite field using composite fields and implement the result on Altera FLEX10K
FPGA board. In this paper, we could implement the circuit with AND and XOR
gate. The result of circuit synthesis showed that cell area was 4593.87,
showing a decrease of 61.8% in cell area compared with 'Itoh and Tsujii’
algorithm, which uses multipliers of finite fields, and the computation time was
15.155[ns], which improved by 24.07%. Furthermore, in order to confirm
whether the multiplicative inverse of finite field was functioning normally,
normal function was confirmed using AES SubBytes Transform designed to

substitute for ROM table used for inverse calculation.
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