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ABSTRACT

Implementation Implementation Implementation Implementation of of of of Inverse Inverse Inverse Inverse Algorithm Algorithm Algorithm Algorithm in in in in Finite Finite Finite Finite Fields Fields Fields Fields using using using using 

Composite Composite Composite Composite FieldsFieldsFieldsFields

SHIN,Ja-young
Advisor:Prof.RHEE,KangHyeon,Ph.D.
MajorinElectricity,ElectronicsandCommunicationEducation
GraduateSchoolofEducation,ChosunUniversity

유한체(FinitefieldorGaloisfield)는 스위칭 이론,디지털 신호처리 및 화상처리,
디지털 통신의 암호화 및 해독화를 요하는 보안 통신 등에서 많이 응용되고 있다.
특히 오류정정부호 중 BCH 부호나 Reed-Solomon부호와 같은 블록부호는 유한
체 상에서 정의되며,CD(CompactDisc),DAT(DigitalAudioTape),타원곡선 알
고리즘 등의 부호화 및 복호화에 의 산술연산이 적용되어진다.현재 많은
응용분야에서 유한체 연산의 실시간 처리를 요하므로 유한체 연산을 위한 전용 하
드웨어 설계가 필요하게 되었고 이에 대한 많은 연구가 행하여지고 있다.
유한체는 사칙연산이 정의되는 유한개의 연소를 갖는 필드이며 모든 소수 P와
양수 에 대해서 개의 원소를 갖는 하나의 필드만이 존재한다.이 필드를 유한
체 필드라고 부르며 으로 나타낸다.유한체 상에서의 연산은 가ㆍ감산과 승
산,그리고 제산이 있으나 디지털 시스템은 유한체의 개수가 2의 승수인 에
서 이루어진다.유한체의 역원의 계산은 크게 유한체 제산기를 이용하는 방법과 승
산기를 이용하는 방법으로 나누어진다.제산기를 이용하는 방법은 빠른 동작 속도
를 가지나 하드웨어의 면적이 커지며,승산기를 이용한 방법은 하드웨어의 면적은
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작아지나 계산에 많은 시간이 소모된다.본 논문에서는 합성체(CompositeFields)
를 이용하여 의 유한체의 역원을 계산할 수 있는 알고리즘을 제시하고 이
를 하드웨어로 구현하여 현재 사용되어지는 'ItohandTsujii'하드웨어 구조와 하
드웨어 면적 및 계산 속도의 성능을 비교 하였다.또한 AES의 SubBytes블록에
이를 삽입하여 AlteraFLEX10K FPGA 에뮬레이터 보드에 구현하여 제시된 알고
리즘의 회로가 정상적으로 동작함을 확인하였다.
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Finitefields(orGaloisfields)areappliedfrequentlyinsecuritycommunication
needing digitalcommunication coding and interpretation such as switching
theorem,digitalsignalprocessingandimageprocessing.
Especially,blockcodessuch asBCH codeandReed-Solomon codeamong
errorcorrecting codesaredefined with finitefields.Arithmeticoperation of

is used for the encoding and decoding of CD (compact disc),
DAT(digitalaudiotape),andellipticalcurvecryptography.Inapplicationfields,
manyresearchesareunderwayfordesigninghardwaresforusingfinitefield
operationisneededsinceprocessing finitefieldoperation isneededinreal
time[1,2].
A finite field is a field having a finite numberofelements with four
fundamentalrules ofarithmetics and exists in the field having only
elementsforprimenumber andpositivenumber ofallelements.This
finitefieldisexpressedas .Operationsonafinitefieldincludeaddition,
subtraction,multiplicationanddivision. However,adigitalsystem isachieved
at where the number offinite fields is 2,i.e.,within multiplier.
Calculationofmultiplicativeinverseoffinitefieldisdividedlargelyintotwo
methods,i.e.,themethodusingafinitefielddividerandthemethodusinga
multiplier.Theformermethodisfastbutneedsalargeareaofhardware.The
lattermethodneedsasmallerareaofhardwarebutneedsmuchtime.Inthis
paper,weproposed an algorithm thatcould calculate multiplicative
inverseoffinitefieldusingcompositefields,implementedthisalgorithm ina
hardware,andcomparethishardwarewiththecurrentlyused'ItohandTsujii'
hardwareinrespecttostructure,areaandcomputationtime.Furthermore,this
hardware was inserted into the AES SubBytes block to show on FPGA
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emulatorboardtoconfirm thatthecircuitofproposedalgorithm wasnormally
functioning. Inthispaper,thecalculationofalgorithm multiplicativeinverseis
examinedinChapter3andthecalculationofalgorithm multiplicativeinverse
wasimplementedusingtheproposedcompositefieldinChapter4.InChapter5,
wecomparethecircuitimplementation,activity characteristic,and 'Itoh and
Tsujii'function.TheconclusionisdrawninChapter6.
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Finitefieldsarethegeneralstarting pointfortheconstructionsofmany
combinatorialstructures.It willbe important to know the fundamentals
concerning these fields in orderto investigate combinatorialstructures and
relatedareasofcombinatorialinterest.Unfortunately,theareaoffieldtheoryis
ratherlargeanditwouldbeimpossibleforustocoveritindetailandstill
havetimetoworkwiththeresults.Intheinterestofconservingtime,wewill
presenttheelementsofgeneralfield theory withoutproofsand only prove
statementswhenweturnourattentionspecificallytofinitefields.
Itwillbeassumedthatyouarefamiliarwiththedefinitionofafield,the
definitionandbasicpropertiesofvectorspacesandthefactthattheintegers
moduloaprime form afield(afiniteone),whichwewilldenoteby
(standingfortheGaloisFieldoforder ).

Let beafieldcontaining asubset ,whichisitselfafieldunderthe
operationsinheritedfrom .Then iscalledan extension of ,and a
subfieldof .Every fieldhasasmallestsubfield,calledtheprimesubfield,
whichisisomorphictoeitherthefieldofrationals ,inwhichcasewesay
thatithascharacteristiczero,ortoa forsomeprime ,inwhichcase
wesaythatithascharacteristic .Weshalldenotethecharacteristicofan
arbitraryfield bychar .
If isanextensionof (denoted ),and isanelementof butnot
an elementof ,then thesmallestfield containing both and willbe
denotedby andisasubfieldof .Similarly,thesmallestfieldcontaining
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andtheelements in willbewrittenas
.Anyextensionfield of canbeviewedasavectorspaceover and

thedimensionofthisvectorspaceiscalledthedegreeof over ,andis
denotedby .Ifthevectorspaceisfinitedimensionalwesaythat isa
finiteextension of .If isa finiteextension of and isa finite
extensionof ,then .
Denoteby theringofpolynomialsover inthevariable . isa
principalidealdomain(anidealisasubringthatisclosedundermultiplication,
aprincipalidealisanidealgeneratedbyasingleelement,andaprincipalideal
domainisacommutativeringwithunityallofwhoseidealsareprincipal).A
polynomialin issaidtobemonicifthecoefficientofthehighestpower
in is unity.Itis irreducible ifitis notthe productoftwo nonscalar
polynomialsin .If isanirreduciblepolynomialin ,thenanyzero
(i.e.,root)of isnotin andsothereisasmallestextensionfield of
thatcontainsit.Furthermore, isisomorphictothequotientfield ,
where denotestheprincipalidealof generated by .Ifthe
irreduciblepolynomial isofdegree ,then .Furthermore,if is
thezeroof inquestion,then andtheelements
form abasisof over .
Beforewecontinue,letusillustratetheseideaswithawell-knownexample.
Thefield ofcomplex numbersisusually describedin oneoftwoways,
eitherasthesetofnumbers whereaandbarerealnumbersand
    orifyouprefernottomentiontheimaginarynumber , canbe
describedasthesetofallpairs ofrealnumberswhereadditionoftwo
pairsistheusualcomponentwiseadditionandmultiplicationoftwopairsis
definedby .Thesecondversionisofcourse
viewing asavectorspaceofdimension2overtherealnumbers .Letus
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seehow wewouldconstruct startingwiththesubfield .Now and
is the ring ofallpolynomials with realcoefficients.The polynomial

   ismonicsincethecoefficientof is anditisirreducibleover
sinceitcannotbefactoredintopolynomialswithonly realcoefficients.The
principalideal consistsofallpolynomialsthathave   asafactor.
The quotient field structure, is obtained by taking each
polynomialin anddividingitby   .Thepolynomialsthathavethe
sameremainderafterdivisionform equivalenceclasses,whicharetheelements
ofthequotientfield.Thedifferentpossibleremaindersarethepolynomials
  ,where in ,andweidentifytheequivalenceclasseswiththese
remainders.Theassociation    iff   clearlyshowsthatthequotient
fieldand areisomorphic.Now,let beazeroof  ,i.e.    ,so
      whichisnotanelementof . formsabasisfor over
sinceeveryelementof canbewrittenas        with in and
and areeasily seen tobelinearly independent.Using thisbasis,wecan
identifytheelementsof withtheircoefficientvectors,i.e.   iff to
getthesecondrepresentation asavectorspaceofdimension 2(noticethe
highestpowerof intheirreduciblepolynomial).

Fields are abstractions offamiliarnumbersystems (such as the rational
numbers ,the realnumbers ,and the complex numbers )and their
essentialproperties.They consistofa set togetherwith two operations,
addition(denotedby+)andmultiplication(denotedby·),thatsatisfytheusual
arithmeticproperties:
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(i)(,+)isanabeliangroupwith(additive)identitydenotedby .
(ii)( ,·)isanabeliangroupwith(multiplicative)identitydenotedby .
(iii)Thedistributivelaw holds:   ⋅  ⋅ ⋅ forall ∊

Iftheset isfinite,thenthefieldissaidtobefinite.
Thissectionpresentsbasicfactsaboutfinitefields.Otherpropertieswillbe
presentedthroughoutthebookasneeded.

A field is equipped with two operations,addition and multiplication.
Subtraction offield elementsisdefined in termsofaddition:for   ∊ ,
         where istheuniqueelementin suchthat
( iscalledthenegativeof .)Similarly,divisionoffieldelementsisdefined
intermsofmultiplication:for  ∊  with ≠    ⋅ where  is

theuniqueelementin suchthat⋅  .( iscalledtheinverseof .)

Theorderofafinitefieldisthenumberofelementsinthefield.Thereexists
afinitefield oforder ifandonlyif isaprimepower,i.e.,   where
isaprimenumbercalledthecharacteristicof ,andm isapositiveinteger.

If ,then iscalledaprimefield.If ≥ ,then iscalled an
extensionfield.Foranyprimepower ,thereisessentiallyonlyonefinitefield
oforder informally,thismeansthatany twofinitefieldsoforder are
structurally the same exceptthatthe labeling used to representthe field
elementsmaybedifferent.Wesaythatanytwofinitefieldsoforder are
isomorphicanddenotesuchafieldby .
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Let beaprimenumber.Theintegersmodulo ,consistingoftheintegers
        with addition andmultiplication performedmodulo ,isa
finitefieldoforder .Weshalldenotethisfieldby  andcallpthemodulus
of.Foranyinteger , shalldenotetheuniqueintegerremainder ,
≤ ≤ ,obtainedupondividing by thisoperationiscalledreduction

modulo .

Finitefieldsoforder  arecalledbinaryfieldsorcharacteristic-twofinite
fields.Onewaytoconstruct istouseapolynomialbasisrepresentation.

Here,the elements of  are the binary polynomials (polynomials whose
coefficientsareinthefield )ofdegreeatmost :

  
 

⋯ 
      ∊   

An irreducible binary polynomial of degree m is chosen (such a
polynomialexistsforanym andcanbeefficientlyfound).Irreducibilityof
meansthat cannotbefactoredasaproductofbinarypolynomialseachof
degree less than .Addition offield elements is the usualaddition of
polynomials,with coefficientarithmeticperformed modulo2.Multiplication of
field elements is performed modulo the reduction polynomial .Forany
binary polynomial , shalldenote the unique remainder
polynomial ofdegreelessthan obtaineduponlongdivisionof by

thisoperationiscalledreductionmodulo .
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Thepolynomialbasisrepresentationforbinaryfieldscanbegeneralizedtoall
extensionfieldsasfollows.Let beaprimeand ≥ .Let   denotethe
setofallpolynomialsinthevariable withcoefficientsfrom .Let ,the

reductionpolynomial,beanirreduciblepolynomialofdegreem in   -sucha
polynomialexistsforany and andcanbeefficientlyfound.Irreducibilityof

meansthat cannotbefactoredasaproductofpolynomialsin   

eachofdegreelessthan .Theelementsof arethepolynomialsin   

ofdegreeatmost :

  
 

⋯ 
      ∊ 

Additionoffieldelementsistheusualadditionofpolynomials,withcoefficient
arithmeticperformedin .Multiplicationoffieldelementsisperformedmodulo
thepolynomial .

A subset ofafield isasubfieldof ifkisitselfafieldwithrespect
totheoperationsof .Inthisinstance, issaidtobeanextensionfieldof .
Thesubfieldsofafinitefieldcanbeeasilycharacterized.A finitefield  has

preciselyonesubfieldoforder foreachpositivedivisor ofm theelements

ofthissubfieldaretheelements  ∊  satisfying 


 .Conversely,every

subfieldof hasorder forsomepositivedivisor of .
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Thefinitefield  canbeviewedasavectorspaceoveritssubfield .

Here,vectorsareelementsof,scalarsareelementsof,vectoradditionis

theadditionoperationin ,andscalarmultiplicationisthemultiplicationin 

of-elementswith -elements.Thevectorspacehasdimension andhas
manybases.
If    ⋯  isabasis,then  ∊  canbeuniquelyrepresentedby

an -tuple   ⋯   of-elementswhere    ⋯ .For
example,in the polynomialbasis representation ofthe field Fpm described
above, isan -dimensionalvectorspaceover and  ⋯  

isabasisfor over.

Thenonzeroelementsofafinitefield ,denoted ,form acyclicgroup

undermultiplication.Hencethereexistelements  ∊  calledgeneratorssuch
that:

  
   ≤  ≤   

Theorderof ∊  isthesmallestpositiveinteger suchthat  .Since

 isacyclicgroup,itfollowsthat isadivisorof .
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Thissectionpresentsalgorithmsforperformingarithmeticintheprimefield
.Algorithmsforarbitraryprimes arepresented.Thereductionstepcanbe
accelerated considerably when the modulus has a specialform.Efficient
reductionalgorithmsfortheNISTprime.
Thealgorithmspresentedherearewellsuitedforsoftwareimplementation.
Weassumethattheimplementationplatform hasa -bitarchitecturewhere
is a multiple of8.Workstations are commonly 64 or32-bitarchitectures.
Low-powerorinexpensivecomponentsmayhavesmaller ,forexample,some
embeddedsystemsare16-bitandsmartcardsmayhave =8.Thebitsofa
-bitword arenumberedfrom to ,withtherightmostbitof

designatedasbit .
Theelementsof aretheintegersfrom to .Let    bethe
bitlengthof ,and beitswordlength.Fig.1illustratesthecase
wherethebinary representation ofafield elementaisstored in an array
                 of -bitwords,wheretherightmostbit
of istheleastsignificantbit.

Fig.1Representationof ∊  asanarray of -bitwords.

Hardwarecharacteristicsmayfavourapproachesdifferentfrom thoseofthe
algorithmsandfieldelementrepresentationpresentedhere.

A[t-1] … A[2] A[1] A[0]
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Algorithms for field addition and subtraction are given in terms of
corresponding algorithmsformulti-wordintegers.Thefollowing notationand
terminologyisused.Anassignmentoftheform "  ←"foraninteger is
understoodtomean

←,and
←   ∊     ←

If      for  ∊   and ∊    then      and 
iscalledthecarrybitfrom single-wordaddition(with    ifandonly if
     .

Fieldmultiplicationof   ∊  canbeaccomplishedbyfirstmultiplying
and asintegers,and then reducing theresultmodulo .Algorithmsare
elementary integer multiplication routines which illustrate basic operand
scanningandproductscanningmethods,respectively.Inbothalgorithms,( )
denotesa( )-bitquantityobtainedbyconcatenationof -bitwords and
.
The calculation         ⋅     is called the inner product
operation.Sincetheoperandsare -bitvalues,theinnerproductisboundedby
              andcanberepresentedby( ).

Formodulo thatarenotofspecialform,thereduction mod canbean
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expensivepartofmodularmultiplication.Sincetheperformanceofellipticcurve
schemes depends heavily on the speed of field multiplication, there is
considerableincentivetoselectmodulo,suchastheNIST-recommendedprimes,
thatpermitfastreduction.Inthissection,wepresentonlythereductionmethod
ofBarrettandanoverview ofMontgomerymultiplication.
The methods ofBarrettand Montgomery are similar in thatexpensive
divisions in classical reduction methods are replaced by less-expensive
operations.Barrettreduction can be regarded as a directreplacementfor
classicalmethods;however,an expensive modulus-dependentcalculation is
required,and hence the method is applicable when many reductions are
performedwith asinglemodulus.Montgomery'smethod,on theotherhand,
requirestransformationsofthedata.Thetechniquecanbeeffectivewhenthe
costofthe inputand outputconversions is offsetby savings in many
intermediatemultiplications,asoccursinmodularexponent.
Note that some modular operations are typically required in a larger
frameworksuchasthesignatureschemes,andthemoduloinvolvedneednotbe
ofspecialform.

Wewillillustratetheabovematerialby actually constructing somefinite
fields.

Since   ,the prime field mustbe whose elements we will
representby and ,andwhereadditionandmultiplicationaredonemodulo
.Weseekanextensionofdegree overtheprimefield,soourfirsttaskis
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tofindamonicirreduciblepolynomialofdegree in .Forlargefield
thiscanbeadifficultassignment,butforsmallfieldsitisnottoobad.While
therearesometheoremsthatmayhelp,thebruteforceprocedureiseffectiveif
theprimefieldissmall.Wecaninfacteasilylistallofthemonicquadratics
inthisring,theyare:



 

 

 

   

   

 

   

   

Now theproblem istofind theirreducibleonesin thislist.Clearly,any
polynomialwithoutaconstantterm isfactorable( isafactor),sothefirst,
fourth and seventh can immediately becrossed out.Fortheremaining six
polynomials,wemayoptforoneoftwoprocedures.Wecouldtakeeachin
turnandsubstituteallthefieldelementsfor ,ifnoneofthesesubstitutions
evaluatestozero,thepolynomialisirreducible(i.e.,ithasnorootinthefield).
So,forexample,substitutingin   givesthevalues    ,   

and    ,thus   factors,in fact          .On the

otherhand,thesameprocedurefor   gives    ,    and
    andso   isirreducible.Thesecondpossibleprocedureisto
takeallthelinearfactors(inthiscase,becausewewantquadraticproducts)
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and multiply them in allpossible pairs to geta listofallthe factorable
quadratics,removingthesefrom ourlistleavesalltheirreduciblequadratics.
So,

           

         

           

Implying that, ,    and     aretheonly irreducible
monicquadraticpolynomialsin .Wecouldnow chooseanyoneof
theseletting beazeroofthechosenpolynomialandwriteouttheelements
of initsvectorform representationusingthebasis .Thishowever
doesnotgiveusthemostusefulrepresentationofthefield.Rather,wewill
usethefactthatthemultiplicativegroupofthefieldiscyclic,soifwecan
findaprimitiveelement(i.e.,ageneratorofthecyclicgroup)wewillhavea
handy representationoftheelements.Now theprimitiveelementsaretobe
foundamongtherootsoftheirreduciblepolynomials(theycannotbeelements
oftheprimefield).Thecyclicgroupweareafterhasorder ,sonotevery
rootneed be primitive.For example,letting be a rootof  ,i.e.,
   ,so   ,wecanwriteoutthepowersof .

                     

Andso hasorder anddoesnotgeneratethecyclicgroupoforder ,i.e.,
isnotaprimitiveelement.On theotherhand,consider arootofthe

polynomial   ,sothat      or    .Now thepowers
of giveus:
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so isaprimitiveelementandsowehaverepresentedtheelementsof
asthe powersof togetherwith .Noticealsothattheboldedtermsonthe
rightareallthepossibletermsthatcanbewrittenaslinearcombinationsof
thebasis{ over .Whenworkingwithfinitefieldsitisconvenientto
havebothoftheaboverepresentations,sincethetermsontheleftareeasyto
multiplyandthetermsontherightareeasytoadd.Soforinstance,ifwe
wanted to calculate       , we would do so in this way,
           andso                   

Since   ,the prime field is and we need to find a monic
irreduciblecubicpolynomialoverthatfield.Sincethecoefficientscanonlybe
and ,thelistofirreduciblecandidatesiseasilyobtained.
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Now substituting gives inallcases,andsubstituting willgive onlyif
there are an odd numberof terms,so the irreducible cubics are just
    and   .Now themultiplicativegroup ofthisfield isa
cyclicgroupoforder andsoeverynonidentityelementisagenerator.Letting
bearootofthefirstpolynomial,wehave      ,or    ,so

thepowersof are:

  

  

    

   

     

   

  

Now supposewehadchosenarootofthesecondpolynomial,say, .We
wouldthenhave    andtherepresentationwouldbegivenby
  

  

   

     

    

   

  

Weknow thatthesetworepresentationsmustbeisomorphic,show thatthe
isomorphism isinducedby   .
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Typicalmethods ofcalculating inverses in finite fields include the Fermat
theorem,themethodusing extended Euclid algorithms,andthemethod using
finitefieldmultipliers[3,4].Thereisalsothemethodofusingcompositefieldsas
proposedinthisstudy.

TheFermattheorem isexpressedastheEquation(1)whentherandom numbersa
andphaverelationofrelativelyprime.




      ∊   
    

  
    (1)

WhenaninverseiscalculatedwithFermattheorem,themultiplicationof time
andsquareof timesareneededforoperationon .

Equation(2)showstheprocessofcalculatingthegreatestcommondividers
oftwopolynomials,i.e.,   and   ,         usingEuclid
algorithm.
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⋮ ⋮

            

(2)

whenGCD isinEquation(2),theEquation(3)resultsaccordingtoextendedEuclid
algorithm.

              

           (3)

In addition,   and    in Equation (3)can becalculated astherepetitive
calculationasinEquation(4).

         

         

                  ≤  ≤    

               

(4)

   inEquation(4)iscalculatedwithEquation(2).   calculatedrepeatedly
until   inEquation(2)reaches  ,becomes  ,and    becomes

  .
Here,Equation(3)isrewrittentobecome

           (5)

Atthistime,since   isanirreduciblepolynomial,itisalways    .
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Thus,theresultbecomes

        

   

  

  
(6)

Whenthefinitefiledelement isinputtedinthe field,theinverseof
isachievedasinEquation(7).


    

  ⋅  
(7)

Wecomparedthecircuitareaandcomputationtimeofproposedalgorithm with
'ItohandTsujii'circuitappliedinEquation(7).

Usingthesecondcompositefield,thealgorithm calculatingthemultiplicative
inverseoffinitefieldwasprovedbyCristofPaar[5].Whentwofinitefields ζ 

and δ have δ=ζ-1relationship,wecouldcalculatethemultiplicativeinverseof
finitefieldaccordingtoEquation(8).
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(8)

Weimplementedtheinversealgorithm infinitefieldusingEquation(8).For
hardwaredesign,themultiplicativeinversesofChristofPaar[1]werereferred
and multiplicativeinversesweredesigned.RefereeingtotheMastrovito
structure[6],finitefieldmultiplierwasdesigned.
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in finitefieldscan be or .In thisstudy,
wasusedasthecompositefieldof [7,8].

Equation(9)canebeusedwhen  ∊   .

     (9)

Here, istherootoftheirreduciblepolynomial of andsatisfies
⋅∊  

 .Equation(10)istheirreduciblepolynomial .

        (10)

From Equations(9)and(10), canbedrivenasEquation(11).

      

⋅    
     

         

(11)

Equations(12)and (13)show theprocessofcalculating themultiplicative
inversesoffinitefields,i.e., and anddrivenfrom Equation(11).
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    (12)

    

   

     


  

   

  



 


   


   

(13)

Asaresult,thecomputationofmultiplicativeinversesinfinitefieldsusing
compositefieldsisdrivenasEquation(14).

  ⋅
     ⋅



      

 


(14)

From Equation (14),thecomputation algorithm ofmultiplicativeinverseof
finitefieldwasimplementedasinFig.2.Here,theirreduciblepolynomialof
compute field used was        .  is calculated to be
    .
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S

Squarer

Inverter R

14141414{1001}ββββ

Adder Multiplier

Fig.2.Circuitdesignforinversecalculationusingcompositefields

InFig.2, blockisthearrangeblockchangingtheinputextensionfieldinto
compositefield. blockisthearrangeblockchangingthecompositefieldinto
theextensionfield.inwhich [8].Fig.3showsthevaluesof and
blocks.

 







       
       
       
       
       
       
       
       

 







       
       
       
       
       
       
       
       

Fig.3.BlockcoefficientofSandR

Whentheresultsdrivenwerecodedusing VHDL,theoutputvalueswere
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normal.Comparisonwiththeresultantvalueswasdoneusingtheinverseof
finitefieldmultiplierexplainedintheinversetableofAESS-boxandChapter.
Fig.4show thesimulationresult,showingthesameinversevalue.

Fig.4.Valuesfrom simulation

Fig.5isthegatelevelcircuitsynthesizedusing core_slow.dbin Synopsys.
Theoverallcellareawas4593.87.



- 25 -

Fig.5.Gatelevelcircuit

The inverse computation algorithm proposed in this study and ‘Itoh and
Tsujii'algorithm arecomparedinTable1.

Design
Architecture CellArea DataArriver

Time
'ItohandTsujii' 12030.64 19.960[ns]

ProposedDesign 4593.87 15.155[ns]

Table1.Resultsofcircuitsynthesisandcomparisonoffunction

Whenthefunctionwascompared,thedesignproposedinthisstudyshoweda
decreaseof61.6% incellareaandanincreaseof24.97% incomputationtime
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comparedwith'ItohandTsujii'design.
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Theinversealgorithm proposedinChapter4wasimplementedonAltera
FLEX10K.Activityofimplementedalgorithm wasconfirmedbyimplementing
FPGA circuitratherthantherom tablebydesigningAESSubBytesTransform
circuit.ThecircuitdesignisshowninFig.6.

Fig.6.FPGA Circuitdesign
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Fig.7showsthepictureactuallyrealizedonFPGA emulatorboard.

Fig.7.FLEX10K FPGA verificationcircuit

In Fig.7,the outputdata in the ouputdata portion is outputted in 7
segmentsandthecircuitinitializesthroughtheRESET Key.TheINVERSE
Keyisthecontrolpreventingthecircuitfrom inversetransformation.
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Weproposedanoptimalalgorithm tocalculatethemultiplicativeinverseofa
finitefieldusingcompositefieldsandimplementtheresultonAlteraFLEX10K
FPGA board.Inthispaper,wecouldimplementthecircuitwithANDandXOR
gate.The resultofcircuitsynthesis showed thatcellarea was 4593.87,
showing adecreaseof 61.8% incellareacomparedwith'ItohandTsujii'
algorithm,whichusesmultipliersoffinitefields,andthecomputationtimewas
15.155[ns],which improved by 24.07%.Furthermore,in order to confirm
whetherthe multiplicative inverse offinite field was functioning normally,
normalfunction wasconfirmedusing AES SubBytesTransform designedto
substituteforROM tableusedforinversecalculation.
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