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Abstract 

Automated Methods for Analysis of Stem Cell-derived 

Cardiomyocytes At the Single-Cell level With a Label-Free Digital 

Holographic Microscope 

 

 

 
 

By: Ezat Ahmadzadeh  

Advisor: Shin Seokjoo 

Department of Computer Engineering 

Graduate School of Chosun University 

Digital holographic microscopy (DHM) providing quantitative phase images (QPIs), is 

a promising tool in the field of label-free biological sample analysis. The QPIs obtained from 

DHM made it possible to study micrometer-sized living cells. The cell’s dry mass can be 

monitored by DHM which provides a label-free QPI of living cells. Cardiomyocytes (CMs) 

are the main contractile elements of the heart leading to pump the blood to the entire body 

through the vessels by spontaneous contraction–relaxation cycle in a synchronized manner 

by electrical stimuli generated by pacemaker cells. Human-induced pluripotent stem cell-

derived cardiomyocytes (hiPSC-CMs) are elastic elements used for human disease 

modeling, cardiotoxicity screening in vitro. The hiPSC-CMs are also been utilized for 

myocardium therapy due to the limitations of the heart cells for regeneration. There are 

crucial issues regarding stem cell therapy with the transfer and survival of the implanted 

stem cells in the myocardium. While CM spontaneous contraction-relaxation beating 

activity, the cell tissue frequently shortens and lengthens. The CM’s proper functionality 

depends on fiber flexibility. While cardiac cell’s beating activity, dry mass redistribution can 

be monitored with DHM. 

In this dissertation, we report on different automated methods that allow us to study 
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single cardiomyocytes in a noninvasive manner. DHM is perfectly suited for single cardiac 

cell characterization by providing a quantitative time-lapse phase image. We have proposed 

several approaches for studying and analyzing single cardiomyocytes. Cardiomyocyte’s 

nucleus section can efficiently reflect the beating pattern of single cells. Therefore, our single 

CM characterization approaches mainly performed using the cell’s nucleus section. To this 

end, we extracted a single cardiomyocyte which mainly includes the nucleus section, and 

afterward, I proposed different computational algorithms for single CM motion 

characterization and the effects of pharmacological substances on single CM motion speed 

and different temporal parameters extraction. Furthermore, I proposed a method based on 

FCN and optical flow for Single CM contractile kinetics and force generation of a cardiac 

muscle cell using the ability of DHM in measuring single cells dry mass. 

 

 

 

[KEYWORDS]: Human Cardiomyocytes analysis, Digital Holographic Microscopy, 

Single Cardiomyocytes Characterization, High content screening 
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초록.….. 

정량적 위상 이미지 (QPI)를 제공하는 디지털 홀로그램 현미경 (DHM)은 

라벨이없는 생물학적 샘플 분석 분야에서 유망한 도구입니다. DHM에서 얻은 

QPI를 통해 마이크로 미터 크기의 살아있는 세포를 연구 할 수있었습니다. 

세포의 건조 질량은 DHM에 의해 모니터링 될 수 있으며, 이는 살아있는 

세포의 라벨이없는 QPI를 제공합니다. 심근 세포 (CM)는 심장 박동기 세포에 

의해 생성 된 전기 자극에 의해 동기화 된 방식으로 자발적 수축-이완 

사이클에 의해 혈관을 통해 혈관을 통해 전신으로 혈액을 펌핑하게하는 심장의 

주요 수축성 요소이다. 인간-유도 다 능성 줄기 세포-유래 심근 세포 (hiPSC-

CM)는 인간 질병 모델링, 시험 관내 심독성 스크리닝에 사용되는 탄성 

요소이다. hiPSC-CM은 또한 재생을위한 심장 세포의 한계로 인해 심근 치료에 

이용된다. 심근에서 이식 된 줄기 세포의 전달 및 생존에 관한 줄기 세포 

치료에 관한 중요한 문제가있다. CM 자연 수축 이완 박동 활동 동안, 세포 

조직은 종종 단축되고 연장된다. CM의 적절한 기능은 섬유 유연성에 달려 

있습니다. 심장 세포의 박동 활동 동안 DHM을 사용하여 건조 대량 재분배를 

모니터링 할 수 있습니다. 

이 논문에서, 우리는 비 침습적 인 방식으로 단일 심근 세포를 연구 할 수 

있도록하는 다른 자동화 된 방법에 대해보고합니다. DHM은 정량적 시간 경과 

위상 이미지를 제공함으로써 단일 심장 세포 특성화에 완벽하게 적합합니다. 

우리는 단일 심근 세포를 연구하고 분석하기위한 여러 가지 접근법을 

제안했습니다. 심근 세포의 핵 섹션은 단일 세포의 박동 패턴을 효과적으로 

반영 할 수 있습니다. 따라서 우리의 단일 CM 특성화 방법은 주로 세포의 핵 

섹션을 사용하여 수행됩니다. 이를 위해, 우리는 주로 핵 섹션을 포함하는 단일 

심근 세포를 추출한 후, 단일 CM 모션 특성화 및 단일 CM 모션 속도 및 다른 

시간적 파라미터 추출에 대한 약리학 적 물질의 효과에 대한 상이한 계산 
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알고리즘을 제안 하였다. 또한, 단일 세포 건조 질량 측정을 측정하기위한 

DHM의 능력을 사용하여 단일 CM 수축 운동학 및 심장 근육 세포의 힘 

생성을위한 FCN 및 광학 흐름에 기초한 방법을 제안했습니다
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1 Introduction  

The main contractile elements of the human heart consist of cardiomyocytes (CMs) muscle 

cells that pump the blood to the body by spontaneous contraction–relaxation cycle in a 

coordinated manner [1]. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-

CMs) are used for modeling human disease, cardiotoxicity, and therapy in vitro and stem cell 

therapy [2]. In the case of stem cell therapy, there are some issues including the transfer and 

survival of the implanted stem cells in the myocardium [3]. DHM has the capability of 

monitoring cell dry mass redistribution while spontaneous beating activity.  

New drug development deals with many crucial issues most importantly it’s adverse effects 

on the cardiovascular system. Therefore the drug's adverse effects on the cardiovascular system 

need to be investigated before releasing it to the market. Different methods have been proposed 

for CM characterization in vitro to reduce drug development costs with cardiotoxicity application 

including patch clamping [4, 5], calcium imaging [6, 7], and image processing-based contraction-

relaxation studies [8, 9]. The mechanics-based methods are also extensively applied for CM 

characterization [10] which requires more expertise and costly equipment. Besides, the above-

mentioned methods reported multiple CMs characterization methods while single CM 

characterization, not an easy undertaking. Therefore, it is crucial to need to conduct high 

throughput and reliable in vitro methods for single CM characterization. The hiPSC-CMs can be 

efficiently characterized solely by the nucleus section redistribution monitoring which provides 

less noisy and more informative rhythmic beating patterns for subsequent characterization. 

Therefore I proposed to divide the entire QPI image further into ROI (nucleus) and non-ROI 

which includes surrounding cytoplasm and membrane. CMs have different shapes, sizes, and 

orientations [11]. A deep learning-based method can extract discriminative features from the ROI 

considering sufficient training samples [12, 13]. Deep fully convolutional neural network (FCN)-

based architectures have been successfully applied for the medical image segmentation field. 
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However, conventional deep learning-based methods cannot extract discriminative features 

when the target object and the other objects in the image are similar in terms of intensity, location, 

shape, and size. This phenomenon leads to the poor performance of the U-Net architecture one 

of the most popular deep learning models for medical image segmentation. Single CM 

characterization can be very helpful for cardiotoxicity screening and drug adverse effects on 

single cardiac cells.   

The adverse effect of the drug on cardiac cells can cause a disturbance in cardiac cell's 

motion behavior. In the second study, we discuss the method for single cardiomyocyte's motion 

characterization. It has become increasingly important to develop high throughput, low-cost, and 

fully automated solutions to characterize hiPSC-CMs motion at a single-cell level without the 

need for manually tuning software parameters or physical or biochemical alternation in long-

term monitoring. Finally, to simplify low-cost real-time monitoring of the hiPSC-CMs at the 

single-cell level, the algorithm must be fast without the need for parallel implementation. The 

state-of-the-art methods have mainly discussed cardiomyocytes motion tracking based on the 

block–matching methods. 

Another problem CM motion characterization methods are that they are mainly based on 

image segmentation or block-matching technique that performs tracking by the search for the 

specific attributes of a moving group of pixels called macroblock including corners, edges. While 

a single cardiac cell’s beating activity, cell shape undergoes large deformation which makes 

tracking a challenging task to find the best-matched block in the next video sequence frame. The 

Farneback dense optical flow method performs tracking by measuring the displacement of each 

pixel on the image [14,15] Furthermore, using the non-invasive property of DHM and optical 

flow-based analysis, cells remain intact for long-term monitoring. Using motion waveforms 

generated from the cell’s contractile motion speed measurement, the cell’s dynamic parameters 

including the contraction period, relaxation period, and resting period can be automatically 

quantified. Generally, video-based cardiomyocytes motion characterization methods have 
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several advantages over traditional methods for studying cell’s functionality including the need 

for little training for personnel, no external hardware except the microscope while revealing 

information about actual biomechanical timing.  

In the second study, we present a new and fully automated platform that performs real-time 

contractile motion characterization of CMs at the single-cell level using Farneback dense optical 

flow method and time-lapse QPI imaging. The proposed method overcomes the limitations of 

the current state-of-the-art methods. In our proposed schema first, we perform real-time motion 

tracking at the single-cell level using a Farneback dense optical flow method to measure 

contractile motion speed with individual pixel motion sensitivity. In this way, the cell’s motion 

waveform is generated from dry mass redistribution during the autonomous cardiac activity. 

Then, we implemented a computational algorithm, to further characterize the dynamic nature of 

the cardiac contractile motions. The proposed method can detect high-resolution contractile 

centers. Since our assessment method is at the single-cell level, the CMs synchronization can be 

qualitatively assessed. To further demonstrate the power of the proposed method, we also applied 

several whole slides QPI of multiple cardiomyocytes for motion characterization and the 

generated motion waveform is quantified. The validation of the proposed CM characterization 

method is performed by the speed measurement of the fixed cardiomyocytes versus live 

cardiomyocytes. Besides, the impact of camera image accusation speed on the cardiac cell’s 

motion speed estimation is assessed and the resulting beating profile for each camera frame rate 

is investigated. Furthermore, the noise sensitivity of the proposed method was examined by 

artificially adding different levels of noise to the image stacks and the impact on the resulting 

beating profile was quantified. We demonstrate the application of the proposed method for 

cardiotoxicity screening by analyzing the pharmacological effects of isoprenaline (166 nM) and 

E-4031 (500 µM) on the response of a single CM’s contractile speed in comparison to control 

conditions. The platform was validated by speed measurements of fixed cardiomyocytes versus 

live cardiomyocytes, single-CM synchronization testing, and a noise sensitivity analysis. 



 

4 

 

The third study subject discusses the developing method to alleviate the major concerns in 

the drug development process which is cardiotoxicity and the potential effect of candidate 

compounds on the cardiovascular function and precis risk measurement. The quantitative phase 

digital holographic microscopy (QP-DHM) provides high acquisition speed quantitative phase 

images of cell structure and dynamics in a label-free manner. DHM can provide accurate 

quantitative visualization of human cardiomyocytes derived from induced pluripotent stem cells 

(hiPSC-CMs) dynamics which are transparent or semi-transparent microscopic objects [15–23]. 

Hence, DHM is particularly effective to study CM’s dynamics. As a result, significantly valuable 

information regarding the cell’s dynamics of dry mass redistribution can be obtained in a label-

free manner [24]. Drug attrition is one of the main contributors to the high expense of drug 

development. The Human induced pluripotent stem cell (hiPSC-CMs) technology, showed to be 

an alternative model for in vitro cardiotoxicity screening for new compounds human disease 

modeling, cardiotoxicity, and therapy in vitro [25, 26]. Due to the presence of different ion 

channels in cardiomyocytes, the sole reliance on cell line models, puts human lives at risk. Drugs 

that cause cardiac arrhythmia manifest by alternation in CMs physiological behaviors (dry mass 

redistribution) such as changes in the contraction-relaxation motion speed, beat frequency, 

contraction period, relaxation period and motion patterns of cardiomyocytes. Therefore, high 

throughput preclinical cardio-safety assessment methods for CM characterization in cardiotoxic 

screening are crucially in demand. Many authors have reported methods for CM characterizing 

for the whole slide of multiple cardiomyocytes analysis [4-10]. The proposed methods require 

expensive equipment or specific expertise which demonstrates the shortcomings of simplifying 

methods for CM motion characterization while they lake of single-cell level analysis. Optical 

flow-based real-time motion characterization methods are low-cost and high throughput methods 

capable of monitoring CM contractile activity without physical touching which maintains the 

sample’s paradigm [27-31]. The above mentioned CM motion analysis methods are mainly based 

block-matching, image registration, and edge detection methods which are not accurate enough 



 

5 

 

for single CM motion characterization. The Farneback dense optical flow method performs 

tracking by measuring the displacement of each pixel on the image suitable for CM’s contractile 

kinetic analysis at the single-cell level. Meanwhile, This approach allows evaluating the CM 

motion characterization at the single-cell level and further quantification of several parameters. 

We believe single CM kinetic quantification can provide valuable information about 

interpretation kinetics of single drug-treated CMs.  

In our third study, we characterized single CM kinetics in control and drug-treated 

conditions using various concentrations by combining quantitative phase digital holographic 

microscopy (QP-DHM) with Farneback dense optical flow. The cardiomyocytes QPI was 

obtained using DHM and seven single CMs in the control and drug-treated conditions were 

manually extracted. Afterward, the Farneback dense optical flow method was applied to monitor 

the dynamic, rhythmic beating patterns and biomechanical contractile motion waveform was 

generated. The motion field was shown by motion vectors in a real-time manner. The system was 

able to sensitively and quantitatively detect the cardiac functional behavior treated with E-4031, 

isoprenaline, and sertindole in real-time. Following this, a computational algorithm was 

implemented to characterize the contractile motion of single cardiomyocytes from the motion 

waveform signal and multiple parameters related to the periodicity of CM’s beating activity 

profile were measured. All quantification parameters such as (contraction motion speed, 

relaxation motion speed, contraction period, relaxation period, resting period) and their standard 

deviation were measured at the single-cell level and the population average was computed. Our 

results demonstrated the E-4031 compound declines the contraction-relaxation motion speed 

compared to control condition while isoprenaline increases the contraction-relaxation motion 

speed. The sertindole causes an increase in contraction motion speed while the relaxation motion 

speed is reduced compared to the control condition. Overall, the sensitivity of the proposed 

method to effectively detect the periodicity of the beating profile makes the proposed method 

well suited for the early preclinical safety assessment of cardiotoxic compounds. 
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In my fourth study I present a novel contactless and low cost in vitro platform allowing us 

simultaneous monitoring of the cardiac mechanical beating activity and force generation at the 

single-cell level from digital holographic imaging informatics. Our proposed method is a 

combination of the fully convolutional neural network and optical flow method which can return 

functional parameters for in vitro single CM motion and force generation analysis 

simultaneously. In the first step, we extracted single cardiac cells and removed the unnecessary 

background using a fully convolutional neural network. Secondly, we tracked the spatial-

temporal coordinates x, y of the cell dry mass while beating activity using the Farneback optical 

flow method. This allowed us to monitor contractile force along with multiple parameters related 

to dynamic beating activity of the cell (contractile force, speed, velocity, acceleration , 

contraction period, relaxation period, resting period, beating period). The applicability of CM 

contractile kinetics and force generation of the proposed method was tested to reveal the 

pharmacological effects of two cardiovascular drugs, isoprenaline (166nM, 500nM) and E-4031 

(166 µM, 500µM), on whole slide QPI of multiple cardiomyocytes compared to the control 

condition. Validation of our approach was tested by measuring the contractile force generation 

of live cardiomyocytes versus fixed cardiomyocytes. 

 

A. Motivations 

The cardiomyocytes are transparent or semi-transparent. Therefore the DHM technique is 

suitable to study these cells by providing quantitive 3D visualization of the cardiomyocytes cells 

which cant be provided by conventional 2D microscopy. By using quantitative phase images one 

can monitor dry mass redistribution of the cardiac cells without labeling and destruction of the 

cell structure. Therefore it can be used for real-time monitoring of the cell activity in sensitive 

cells while preserving the shape and structure. The labeling techniques such as labeling can 
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change the nature of the cells and consequently change the results. Besides, the quantitative phase 

images provided by the DHM technique can provide the 3D measurement of cell structure the 

different cells such volume, project surface area, and biological cells. The DHM capability of 

non-invasive visualization of cell structure has been utilized for studying different types of cells 

like (protozoa, bacteria, plant cells, blood cells, nerve cells, or stem cells). 

 Overall, the motivations can be listed as below: 

1- DHM can provide a quantitative phase image to study transparent or semitransparent 

cells.  

2- It is non-invasive thus the cell's original shape will be preserved.  

3- It is label-free thus cells are not treated by a material. 

4- It uses weak leaser source so the original shape of the cell is not changed.  

5- It can provide a 3-dimensional cell structure.  

6- It can provide time-lapses imaging (4D- imaging) suitable for studying cardiomyocytes 

beating activity over time.  

B. Objectives of Research 

The objectives of this researchs are to find automated methods for analyzing stem cells-

derived cardiomyocytes characteristics at the single-cell level. Also, monitoring the functional 

behavior of CMs over time, for example, dynamic and motion characterization of the single 

cardiac cells as a function of time is possible by DHM.  

The objectives can be listed as: 

◦ To study the automated method for single cardiomyocytes characterization.  

◦ To study automated methods for motion characterization of single 

cardiomyocytes. 

◦ To study automated methods for motion characterization of single drug-

treated cardiomyocytes according to the abilities of DHM. 

◦ To study the automated methods to analyze the contractile kinetics and force 

generation of single drug-treated cardiomyocytes according to the DHM’s 
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abilities. 

 

C. Organization of the Research 

The organization of this thesis is as follows. Chapter 2 gives an overview of the digital 

holographic microscopy method for cardiomyocytes study and 4 reports on the automated 

methods for studying the dynamic characterization of the single stem cell-derived using the 

ability of the DHM technique. Chapter 3 provides concluding remarks and future research 

opportunities. Chapter 4 reports on the references used in this research. 
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Figure 1.1: Schematic representation of a Digital Holographic Microscope. 
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2 The study of Stem Cell-derived Cardiomyocytes by 

digital holographic microscopy technique 

The off-axis DHM is used to obtain the phase image of CMs in this research. In the off-axis 

configuration, the laser source is divided into an object and reference beams (see Fig.2 1). The 

microscope objective (MO) magnifies the object wave and CCD camera records the hologram 

generated by the interference of the magnified object wave (O) and the reference wave (R) 

incident at a small angle “θ” to provide the off-axis property. Figure 2.2 (a) shows the recorded 

hologram of CMs, which can be expressed as the sum of four terms: 

 
2 2 * *, ,HI x y R O R O RO                   (1)                              

where 
2

R is the intensity of the reference wave and 
2

O  is that of the object wave. R* 

and O* denote the complex conjugates of the two waves. Since hologram is recorded in off-axis 

configuration, the Fourier transform of the hologram can separately represent bandwidth of real 

image, virtual image, and zero-order noise as shown in (see Fig. 2.2 (b)). To separate the real 

image from the twin image and zero-order noise, a spatial filter in the frequency domain is 

designed. This filter can only preserve the bandwidth of the real image and eliminates the 

unwanted bandwidth (see Fig. 2.2 (c)). Finally, a hologram is reconstructed (see Fig. 2.2 (d)) by 

illuminating it with a replica of the plane reference wave (RD): 

 
2

( , ) exp ,D R x yR k l A i k k x k l y




  
     

  
              (2)                              

where AR is the amplitude of the reference wave, λ is the wavelength of the illumination 

light, Δx and Δy are the sampling intervals in the hologram plane, k, and l are integers and kx and 

ky are wave vectors. The reconstruction in the observation plane is obtained by a numerical 
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calculation of scalar diffraction in the Fresnel approximation, which is expressed as: 
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            (3)                                       

where d is the distance between both planes, k, l, m, and n are integers (-N/2 ≤ k, l, m, n ≤ 

N/2; N×N is the number of pixels in the CCD camera), /d N x    and /d N y     are the 

sampling intervals in the observation plane, FFT is the fast Fourier transform. 
F

HI is the filtered 

hologram, and Φ(m,n) is the digital phase mask to compensate for the phase aberrations caused 

by the MO calculated by: 

 2 2 2 2( , ) exp ,
i

m n m n
D


 



 
     

 
                (4)                                    

A fine adjustment of “D” can be performed in the absence of fringes by removing the 

reconstructed phase distribution in some area of the image where a constant phase is presumed 

[32,33]. “D” must be set to counterbalance the wave-front curvature according to the distance 

between MO and specimen, and MO and the image plane evaluated by: 

              
1 1

1 ,o

i i

d

D d d

 
  

 
                         (5)                                                       

Where di is the distance between MO and image plane and do is the distance between the 

specimen and MO. The phase image (see Figure 2 (e)) is obtained by the argument of: 

 
 

 
1

Im Ψ ,
, tan ,

Re Ψ ,

m n
m n

m n
 

      
    

                     (6)                                          

The resulted phase values are between –π and +π; thus, the result is given by modulo 2π 

and sometimes discontinuities with values near 2π appear. Phase unwrapping operation converts 

file:///C:/Users/COM/AppData/Local/Ludwig/app-1.0.9/resources/app.asar/index.html%23!/s/counterbalance
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the undesired phase values into desired ones by adding or subtracting 2π from the pixel value. 

The optical path difference (OPD) and phase values are exchangeable, and are obtained by the 

following equation: 

 
( , )

( , ) ,
2

x y
OPD x y

 




                      (7) 

 

 

Figure 2. 2 (a) A recorded hologram (a three-dimensional (3D) section of the hologram is shown in the inset). 

(b) the main three bandwidths of the hologram are separated using fourior transform. (c) a spatial filter is used 

to filter out the real image bandwidth and remove the other bandwidths. (d) shows the numerical reconstruction 

of the hologram which gives the amplitude image and (e) phase image after the phase unwarping.  
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A. Automated single cardiomyocyte characterization by nucleus 

extraction from dynamic holographic images using fully 

convolutional neural network 

a. Abstract:  

  The time-lapse quantitative images (QPIs) obtained from digital holographic microscopy 

(DHM) can be validly used for characterizing human-induced pluripotent stem cell-derived 

cardiomyocytes (hiPSC-CMs) beating activity. The CM’s nucleus section can precisely reflect 

the associated rhythmic beating pattern of the CM suitable for subsequent beating pattern 

characterization. In our first study, we describe an automated method to characterize single CMs 

by nucleus extraction from QPIs and subsequent beating pattern reconstruction and 

quantification. However, accurate CM’s nucleus extraction from the QPIs is a challenging task 

due to the variations in shape, size, orientation, and lack of special geometry. In this study, we 

proposed a new fully convolutional neural network (FCN)-based network architecture for 

accurate CM’s nucleus extraction using pixel classification techniques. Afterward, the beating 

activity of every single cell was reconstructed using the extracted nucleus section for subsequent 

characterization. The results show that the beating profile extracted from the CM’s nucleus 

section is less noisy and more informative compared whole image slide. In this way, the CMs 

can be characterized at the single-cell level. Consequently, we extracted multiple single CMs 

from the whole slide QPIs and the beating profile of every single CM was characterized. 

 

 

 

 

 

file:///C:/Users/COM/AppData/Local/Ludwig/app-1.1.6/resources/app.asar/index.html%23!/s/validly
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b. Motivations and introduction: 

 Accurate ROI determination is a crucial task. To this end, we carried out the dynamic 

beating activity comparison between the ROI and non-ROI. Figure 2.3 shows the overall schema 

of the beating profile comparison of the ROI against the non-ROI section. Figure 2.3(a) shows 

the QPI image of multiple CMs obtained from DHM. The beating activity comparison result is 

shown in Fig. 2.3:(b). The QPIs in this study are related to the optical path difference (OPD).  

The beating profile was reconstructed using the spatial variance between two consecutive QPI 

images proposed in [17]. The OPD variance reflects the CMs beating activity of the cell dry mass 

redistribution occurring while the spontaneous contraction-relaxation. Since the OPD value of 

the ROI is much higher than the non-ROI, the OPD variance in the ROI can precisely reflect 

beating activity. No beating activity is observed in the non-ROI section. 

 

Figure 2.3: (a) QPIs of multiple CMs obtained form digital holographic microscopy, (b) beating activity 

comparison of the ROI against Non-ROI. The inset shows the marked with the red line.   
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c. Cardiomyocytes preparations  

Human-induced pluripotent stem (iPS) cell-derived CM obtained from Cellular Dynamics 

Int. (Madison, WI) were cultured and grown according to the manufacturer’s instructions for 14 

days before recording the hologram. Measurements were acquired in a Chamlide WP incubator 

system with a 96-well plate (LCI, South Korea) set at 37º/5% CO2 with high humidity. Images 

were recorded by a commercially available DHM T-1001 from LynceeTec SA (Lausanne, 

Switzerland) equipped with a motorized stage (Märzhäuser Wetzlar GmbH & Co. KG, Wetzlar, 

Germany, ref. S429). Images were obtained using a Leica 20×/0.4NA objective (Leica 

Microsystems GmbH, Wetzlar, Germany, ref. 11566049). The CCD resolution is 1920 ×1200 

pixel (the hologram size is 1024×1024 efficient for FFT computation). The phase stability of 

imaging system is around =0.05, which in studying the biological samples with limited 

reflective index is equivalent to a thickness of several nanometers. The 666nm laser source 

delivered intensity of ~200W/cm2 to the specimen plane, which is nearly six orders of magnitude 

less light, and the required exposure time was only 0.4ms. 540 holograms were recorded at a 

sampling frequency of 10Hz. 
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d. Results and discussions: 

  

Deep learning methods have many applications in medical image analysis especially for 

medical image segmentation [35, 36]. Convolutional neural networks are a type of deep learning 

methods based on the sequential application of the convolutional layer. In CNN consists of a 

sequential application of the convolution layers. Each convolutional layer provides one feature 

hierarchies at a specific level. A convolution filter is formed by shared weights to the same 

output. In CNN's the layer weights and biases are randomly initialized. CNN captures features 

of input data via multiple consecutive convolution kernels followed by max-pooling layers for 

data dimension reduction. CNN mainly comprises three main elements as follows. 1) A set of 

learnable filters namely convolutional layers to extract local and global features from the image. 

2) an activation function and 3) a max-pooling layer that combines the local feature specification 

to reduce the data dimensions. The max-pooling operation used for the down-sampling purpose 

which obtains the maximum value of each filter in the convolution layer. The summation of each 

convolution layer is applied to a nonlinear function named as a rectified linear unit (ReLU) as an 

activation function. The ReLU function is a nonlinear function applied to increase the 

nonlinearity of the CNN feature maps. A fully convolutional neural network (FCN) is a type of 

CNN in which the last layer of the CNN namely fully connected layer is replaced with another 

convolution layer [37].  
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Figure 2.4: The proposed FCN network architecture for cardiac cells nucleus section extraction consists of the 

following elements: Parallel multi-pathway features concatenation (blue box)  consists of different kernel sizes: 

1×1, 3×3, and 5×5.made up of a convolutional layer + batch normalization layer (BN) + rectified linear unit 

(Relu). max-pooling layer size is 2×2 with a stride of two. The dense connection technique is used for efficient 

gradient propagation along with residual connections that are denoted with dotted red arrows. 

 

Proposed network model 

The proposed FCN based method consists of the following elements fo CMs nucleus section 

extraction. The proposed FCN architecture consists of parallel multi-pathways features 

concatenation with dense connection blocks and residual connections [38]. The overall structure 

and building blocks of the proposed network architecture are shown in Figure 2.4. The overall 

network structure leads to a better training performance when compared to the U-Net model 

meanwhile it improves the pixel classification accuracy. The proposed FCN-based network 

model’s building blocks are briefly explained below: 
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 Parallel multi-pathways features concatenation  

In multi-pathways features concatenation technique, different feature maps extracted by 

various kernel sizes are concatenated. The commonly used convolutional kernel size is 3×3. But 

its challenging to determine the best kernel size for the task in hand. Therefore, we have used 

different kernel sizes in parallel with the sizes of 1×1, 3×3, and 5×5 followed by batch 

normalization (BN) and rectified linear unit (ReLU) Followed by feature concatenation at the 

end. Max-pooling layer with the size of (2×2) with a stride of 2 have been utilized to reduce the 

data dimension. 

 Dense connection 

In our proposed method we used dense connection blocks explained in [39]. Within each 

dense block, layers are directly connected with their preceding layers, which is implemented via 

the concatenation of feature maps in subsequent layers. The major advantages of dense 

connection blocks can be mentioned as efficient gradient propagation to prevent vanishing 

gradient occurs in deep networks and reuse of the feature extracted in previous layers instead of 

relying only on the features from the last layer. This technique results in better network 

performance.  
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Residual connection 

 

Residual connection technique is to utilize skip connections, or short-cuts to jump over 

some layers that facilitate the training of deep networks [40, 41]. The shorter connection between 

layers close to the output and input yields better performance, reduces the number of parameters, 

and easier to train. The max-pooling operations in convolutional neural networks may cause to 

lose some crucial spatial information on the image. These skip connections retrieve the lost 

spatial information inside the consecutive spatial information. We proposed to use the skip 

connections in our proposed model. In our proposed schema the output of the standard 3×3 

convolutional layer prior to the pooling operation is connected to the corresponding output in the 

up-sampling section. 

 

Patch extraction 

 

For better training of deep learning-based methods having a large dataset is crucial.  In the 

cased of cardiac cells its crucial to make such a big dataset. To create sufficient samples, we 

proposed to extract patches from the original image. The proposed patch extraction method, 

significantly increase the number of samples to a sufficient level for training of FCN-based deep 

learning models. The sliding window method has been utilized for patch extraction of the QPI 

containing multiple CMs and capturing patches along with corresponding ground truth (manually 

extracted). The extracted patches are with a size of 32 ×32 pixels in a non-overlapping manner. 

Figure 2.5 shows the patch extraction method using the sliding window technique.  
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Figure 2.5: (a) the quantitative phase image of CMs (yellow bar denotes 20µm). (b) a portion of the original 

phase image is magnified to indicate patches. (c) Corresponding ground truth patches with denoted ROI shown 

in yellow color and non-ROI dark blue color portions. 

 

After we manually annotated the ground truth image, we trained the proposed network by 

using the training dataset images (generated by patch extraction method) and their corresponding 

ground truth labels. The total extracted patch was 2500 along with corresponding ground truth. 

The training dataset 80% of the whole dataset (n = 2000) and 20% (n = 500) is used as a test 

dataset.  
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Figure 2.6: Results of the CM’s nucleus extraction using the proposed FCN-based method in comparison with 

the U-Net network model. (a) Original phase image of multiple cardiac cells obtained by DHM. (b) Predicted 

mask using our trained FCN-based model. (c) The results of the U-Net network model. (d) Ground truth mask 

extracted manually. 
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 The experimental result using the test image after training of the proposed network model 

for cardiac cells nucleus extraction containing multiple cardiac cells (see Figure. 2.6(a)). The 

visual evaluation of network performance predicted masks using the proposed network model 

and predicted mask by the U-Net network model are shown in Fig. 2.6 (b), (c), respectively. The 

ground truth mask is shown in Fig. 2.6 (d). The experimental results show that the predicted 

mask by the U-Net is highly over and under segmentation.  

 

Figure 2.7:  the whole-slide QPI of multiple CMs beating profile reconstruction before and after nucleus 

extraction. (a) and (b) QPI multiple CMs before the nucleus extraction and corresponding beating activity profile 

respectively. (c) and (d) the QPI after the nucleus extraction using the proposed method marked with green line 

and corresponding beating activity profile. 
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Single cardiomyocytes beating profile quantification 

Our proposed approach includes two main steps. In the first step of our proposed method, a 

single cardiac cell nucleus section was extracted and the resulting mask image is multiplied by 

each QPI image in the sequence. secondly, in our proposed approach we reconstructed a single 

CM beating profile by calculation of the spatial variance between two consecutive image frames 

explained in [42]. Using our proposed approach, we can reconstruct beating profile using this 

parameter which is sensitive to the redistribution of dry mass within cardiomyocytes to monitor 

the characteristics of the cardio beating over time using the following equation: 

1var[ ],var i iopd opd opd                           (8) 

where opdi and opdi-1 are the ith and i–1th images. Specifically, opdvar (OPD variance) 

reflects the time course of the cell dry mass redistribution while CM beating activity. The opdvar 

signal reflects the beating activity signal of the single CM and yields information about AP 

durations. After a single CM beating activity extraction, we can measure multiple different 

parameters regarding every single CM’s beating profile. Descriptions of quantification 

parameters are explained in Table 2.1.  
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Table 2.1: Description of cardiomyocyte dynamic parameter quantification. 

 Parameters Description 

Contraction Beat rate The total number of contraction peaks 

in one minute (number of red points in 

Fig. 2.8(b)). 

Beating interval AVG 

[see #1 in Fig. 2.8(c)] 

The time between two adjacent 
contraction peaks.  

Contraction period AVG 

[see #2 in Fig. 2.8(c)] 

The average time between the Start-

of-Contraction and End-of-

Contraction points. 

Contraction period STD The standard deviation of the 

contraction beating period. 

Relaxation Relaxation period AVG  

[see #3 in Fig. 2.8(c)] 

The average time between Start-of-

Relaxation to the End-of-Relaxation 

points. 

Relaxation period STD The standard deviation of the 

relaxation beating period. 
Resting Resting period AVG  

[see #4 in Fig. 8(c)] 

The average time between the End-of-
Relaxation to the next Start-of-

Contraction points. 
Resting period STD The standard deviation of the resting 

beating period.  

To evaluate the accuracy of the proposed method for single CM beating activity 

characterization, we extracted six individual cells from the whole slide QPI of cardiomyocyte 

(see Figure 2.8(a)) and the corresponding beating profile was reconstructed using from Eq. (8) 

(see Fig.2.8(b)). Afterward, multiple parameters regarding every single CM’s beating activity 

profile was measured. 
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Sor single CMs beating activity quantification using the nucleus section extraction, we need 

to detect two main peaks of the contraction and relaxation. To this end, we used the Otsu 

thresholding method. In most of the cases, the contraction peak has a higher amplitude value 

than the relaxation peak. Therefore first peaks which in most cases have a larger amplitude value 

stands for contraction and the relaxation peak is the second peak. Afterward, three auxiliary 

points 1) Start-of-Contraction, 2) End-of-Contraction, and 3) End-of-Relaxation shown in Fig 

2.8(c) are defined using contraction and relaxation peaks. Locating the auxiliary points are found 

as follows: the End-of-Contraction point (Start-of-Relaxation) (see Fig 2.8(c) blue color points) 

is obtained by finding the smallest amplitude value between contraction and corresponding 

relaxation peaks. The Start-of-Contraction point and the End-of-Relaxation are detected using a 

search strategy around the contraction and relaxation peaks. Then the time difference between 

End-of-Contraction (Start-of-Relaxation) and End-of-Relaxation is considered a relaxation 

period. The time difference between Start-of-Contraction and corresponding End-of-Contraction 

point specifies the contraction period. The time difference between two consecutive contraction 

peaks determines the beating intervals. The resting period is the time difference between End-

of-Relaxation and the next Start-of-Contraction point. The extracted features of the beating 

profile and the corresponding descriptions are presented in Table 2. 1  

The beating activity profile reconstructed from cells #1, cell #2, cell #3, cells #4, cell #5, and cell 

#6 with detected contraction and relaxation peaks and auxiliary point for precise single CM 

characterization are shown in figure 2:9.  
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Figure 2.8: The quantitative phase image of multiple CMs in which single CMs are marked to be extracted for 

further quantification. (b) the corresponding beating profile of single CMs #1 to #6, (c) details on quantification 

parameters of single CM beating profile. 

 

 

 

Figure 2.9: Single CMs beating profile (#1- #6 ). The sampling frequency was 10Hz. 
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2.10: the beating activity temporal parameter quantification results. 
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 We evaluated the proposed’s method training performance by the learning curve 

evaluation and the corresponding loss compared with the U-Net model (see Figure 2.11(a), (b)). 

As shown in Figure 2.11(c), the classification accuracy rate using the proposed FCN-based 

method 99.76% and 99.28%, respectively while the same evaluation for the U-Net model shows 

93.69% and 91.25% accuracy (see Figure 11(d)). Besides, we evaluated the segmentation 

performance of the proposed method against the U-Net model from the statistics point of view. 

The proposed method’s performance was evaluated for each of the whole slide images separately. 

The Dice similarity coefficient analysis was performed and the experimental results in 

comparison with the U-Net model are shown in Table 2.2. The Dice coefficient is calculated 

using the following equation: 

                                                        

,
2TP

DSC=
FP+2TP+FN

                               (9) 

where TP, FP, and FN denote the numbers of true positive, false positive, and false negative 

respectively.  

 

Table 2.2: The Dice coefficient analysis of the proposed method against the U-Net model. 

 

 

 

 

 

 

 

 

 

 

Samples number  
Dice (%) 

Proposed FCN U-Net model 

Sample #1 96 88 

Sample #2 95 89 

Sample #3 94 88 

Sample #4 96 87 

Sample #5 97 88 
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Figure 2.11: The learning curves and confusion matrix of pixel classification using the proposed FCN-based 

model versus the U-Net model. (a) and (b) the learning curve of the proposed FCN Model in comparison with 

the U-Net model and corresponding loss curves respectively. (c) Confusion matrix for pixel classification of the 

proposed model. (d) Confusion matrix for pixel classification of the U-Net model. 
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 Proposed method validation  

 

To validate whether the segmentation area includes nuclei, one sample is stained with 

Hoechst dye. We applied our segmentation method before and after nuclei staining and ROI and 

non-ROI sections are marked for the visual comparison. As one can see from Figure. 2.12, the 

ROI section mainly includes the nuclei section (nuclei is marked in blue color). 

 

Figure 2.12: the ROI marked with green line on the original QPI before Hoechst nuclear staining, (b) The original 

QPI with nuclei section stained using the Hoechst nuclear staining method overlaid on the segmented image. The 

segmented sections are mostly included nuclei 

 

 

 Discussion 

 

The CM characterization at the single-cell level is crucially important for in vitro drug 

compound testing and cardiotoxicity screening. The single CM’s beating activity can efficiently 
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be characterized solely by the nucleus section redistribution monitoring. In this project, I 

proposed a single CM characterization method using nucleus extraction. In this schema, I 

considered the CM’s nucleus section as the (ROI) surrounding cytoplasm and membrane were 

considered as non-ROI. The beating activity profile of every single CM was reconstructed using 

the OPD variance calculation between the successive QPI frames.  

The experimental results show that the CM beating profile reconstructed from the extracted 

nucleus is less noisy and more informative for further characterization. On the other hand, the 

OPD variance in the non-ROI section leads to create a noisy beating profile with multiple wrong 

peaks causing difficulties for further CM characterization. Due to the specific attributes of the 

nucleus section, we proposed a novel FCN-based method for nucleus extraction combined with 

further analysis which allows cardiac cell characterization at single-cell levels. The proposed 

platform can be integrated into other technologies for precise single CM characterization. The 

proposed FCN-based architecture showed a better segmentation performance when compared to 

the one of the popular deep learning-based biomedical image segmentation U-Net model. To 

further examine the potential of the proposed method, we extracted multiple isolated CMs from 

segmentation results and multiple parameters regarding the beating profile of every single cell 

are measured. 
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e. Conclusion 

In this study, a single CM’s beating activity profile was characterized using nucleus 

extraction. In this schema, I have proposed an automated FCN-based platform for CM’s nucleus 

extraction. After single CM’s nucleus extraction, the beating activity profile of the single CM 

was reconstructed using OPD variance calculation between successive image frames.  

Afterward, a computational algorithm was used to characterize beating activity profile and 

multiple parameters regarding the beating activity profile of every single CM was extracted 

including ( beating period, contraction period, relaxation period, resting period ). The 

experimental results demonstrated that the cardiac cell nucleus section (referred to as ROI) from 

QPI can effectively reflect the beating pattern suitable for CM characterization at the single-cell 

level. We proposed a novel FCN-based method to discriminate CM’s nucleus section from other 

sections of cardiac cells using pixel classification techniques. The predicted mask is used for 

further characterization of dynamic contraction-relaxation of single CM. We evaluated the 

proposed model’s segmentation mask prediction using pixel classification accuracy along with 

network training accuracy and dice similarity coefficient metrics. In the next step, I extracted 

several single CM’s, and the beating activity profile was efficiently characterized. Multiple 

parameters associated with the dynamic beating profile of each cell was measured. The Single 

CM beating profile quantification is precisely performed using contraction-relaxation peak 

detection and multiple auxiliary points.  
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B. Label-free Motion Characterization of Human Cardiomyocytes 

at the Single-cell Level using Holographic Imaging for 

Cardiotoxicity Screening 

a. Motivations and introduction: 

Real-time single CMs motion characterization from QPI sequences can reveal the 

periodicity of contraction and the characteristic changes. Many methods have been reported on 

CM motion characterization. Cell-based biosensors are widely used tools for CM 

characterization. The limitations of these methods include the need for specific high-cost 

hardware, sensors, and trained personnel, as well as cardiomyocytes to be cultured on specialized 

materials. However, it has become increasingly important to develop high throughput, low-cost 

and fully automated solutions to motion characterization iPSC-CMs at a single-cell level without 

manually tuning of software parameters and/or physical or biochemical alternation for long-term 

monitoring. 

optical flow-based real-time motion characterization methods are low-cost and high 

throughput methods capable of monitoring cardiomyocyte contractile activity without physical 

touching which preserves the sample’s originality. The motion vectors generated by the optical 

flow method can reveal valuable information related to the CM’s contractility and health which 

is difficult to acquire using traditional image processing or mechanical investigations techniques 

[43]. Finally, to simplify low-cost real-time monitoring of the hiPSC-CMs at the single-cell level, 

the algorithm must be fast without the need for parallel implementation.  

Many attempts have been made to create such a simplified platform for CM motion 

characterization [44–50]. For example, [50] made a video-management platform using 

segmentation to specify the beating region with a user-defined threshold on the average change 

in signal intensity. The above-mentioned methods require manual tuning of many parameters. 

Another problem with these methods is that they are mainly based on image segmentation or 
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block-matching technique that performs tracking by a search for the specific attributes of a 

moving group of pixels called macroblock including corners and edges. While a single CM’s 

beating activity, cell shape undergoes large deformation which makes tracking a challenging task 

to find the best-matched block in the next video sequence frame. The Farneback dense optical 

flow method performs object tracking by measuring the displacement of each pixel on the image 

[51, 52]. Furthermore, using the non-invasive property of DHM and optical flow-based analysis, 

cells remain intact for long-term monitoring. Using motion waveforms generated from the cell’s 

motion speed measurement, the cell’s dynamic parameters including the contraction period, 

relaxation period, and resting period can be automatically quantified. Generally, video-based CM 

motion characterization methods have several advantages over traditional methods for studying 

cell’s functionality including the need for little training for personnel, no external hardware 

except the microscope while revealing information about actual biomechanical timing.  

In this work, a new and fully automated platform is presented that performs real-time single 

CM’s motion characterization using Farneback dense optical flow method and time-lapse QPI 

imaging. The proposed method overcomes the limitations of the current state-of-the-art methods. 

In our proposed schema first, we perform real-time CM motion tracking at the single-cell level 

using a Farneback dense optical flow method to measure contractile motion speed with 

individual pixel displacement sensitivity. In this way, the cell’s motion waveform was generated 

from dry mass redistribution monitoring during the autonomous CM’s beating activity. 

Afterward, we implemented a computational algorithm to further characterize the dynamic 

nature of the CM’s contractile motions. The proposed method can detect high-resolution 

contractile centers. Since the measurements are at the single-cell level, the CMs synchronization 

can be qualitatively assessed. To further demonstrate the power of the proposed method, we also 

applied several whole slides QPI of multiple cardiomyocytes for motion characterization and the 

generated motion waveform is quantified. The validation of the proposed CM characterization 

method was performed by the speed measurement of the fixed cardiomyocytes versus live 
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cardiomyocytes. Furthermore, the noise sensitivity of the proposed method was examined by 

artificially adding different levels of noise to the image stacks and the impact on the resulting 

beating profile was quantified. We demonstrate the application of the proposed method for 

cardiotoxicity screening by analyzing the pharmacological effects of isoprenaline (166 nM) and 

E-4031 (500 µM) on the response of a single CM’s contractile speed in comparison to control 

conditions. 

b. Cardiac cell motion tracking with Farneback optical flow 

The optical flow is an approach for motion estimation of the moving object between 

consecutive movie frames in the computer vision field. Figure 2.13a shows a schematic 

representation of the optical flow method for pixel displacement estimation in two successive 

image frames where I(x,y,t) denotes the pixel position in the first image frame (reference frame) 

and I(x+dx, y+dy, t+dt) refers to the pixel displacement in the subsequent frame (current frame). 

In the first step of the Farnebak optical flow method, the algorithm generates a hierarchy of image 

resolution levels from the original image using Gaussian pyramids, where each level has a lower 

resolution compared to the previous level (see Figure. 2.13(b)). The tracking process starts with 

the lowest resolution and continues to the highest resolution. Consequently, the displacement of 

two local patches in consecutive image frames is calculated by approximating the neighborhood 

of each pixel with a quadratic polynomial as in the following equation [53].  

          ( ) ,T TI x X Ax b x c                                 (10) 

where A stands for symmetric matrix, b is a vector and c is a scalar. The vector x denotes a 

1×2 vector consisting of x and y variable, and A is a symmetric matrix 2×2 of unknowns that 

containing information about the even parts of the signal and c is unknown scaler. The first 

neighborhood is approximated by the following equation: 

               
1 1 1( ) ,T TI x X A x b x c                             (11) 
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The new neighborhood, affected by displacement d, is calculated as follows: 

2 1 1 1 1

1 1 1 1 1 1

2 2 2

( ) ( ) ( ) ( ) ( )

( 2 )

,

T T

T T T T

T T

I x I x d x d A x d b x d c

x A x b A d x d A d b d c

x A x b x c

       

     

  

                  (12) 

Using the different coefficients from the two polynomials I2(x) and I1(x-d) gives: 2 1,A A

2 1 12 ,b b Ad  and
2 1 1 1,

T Tc d Ad b d c   The distance, d, that is used to approximate the optical 

flow is obtained by the following equation: 

                          1

1 2 1

1
( ),

2
d A b b                             (13) 

The tracking is refined in each resolution level by initializing from the lowest resolution 

level and continuous to the highest resolution. The detected tracking points at each resolution 

level are the base point for the next level. In this way, a large displacement can be detected. 

 

Figure 2.13: (a) representation of the optical flow method for pixel displacement estimation. The black pixels 

correspond to the pixel position at the time (t), and white pixels correspond to the pixel position at the time (t+dt). 

(b) Multi-resolution leveling of the image with three levels. The image resolution at each level is downsized. The 

tracking begins at the lowest level finishes at the highest level. 
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c. Workflow and beating signal extraction 

The workflow of our approach starts with a video recording of beating cardiomyocytes. 

Afterward, ten single cells are manually extracted from different parts of the cardiomyocytes 

QPI (see Figure 2.14). The extracted single CMs are the size of 100×100 pixels (28µm). While 

the cardiac cell’s beating activity, by repeating the optical flow procedure shown in (Figure 2.14) 

for each pixel of QPI image, an array of the motion vectors will be generated which shows the 

CM’s motion direction and the CM’s movement speed is calculated.  

The extracted region was subjected to motion tracking analysis mostly includes the nuclei 

of the cell, assuming that the cell nuclei represent the motion center of single cells. The beating 

activity profile is generated from the CM motion speed calculation during beating activity using 

the following equation: 

                      
2 2

/

( ) ( )
,m s

dx dyDisplacement
Speed

Time Time



                  (14)    

where dx and dy are displacements in x and y directions estimated by Farneback algorithm 

representing CM motion in the x and y direction, and time is considered as the time between two 

consecutive frames. Once the motion speed profile is generated, one can find the contraction and 

relaxation peaks obtained by the automated peak identification method along with multiple 

auxiliary points for CM’s physiological behavior quantification. 
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Figure 2.14. The overview of the workflow for motion tracking of single cardiac cells and beating profile 

visualization using motion speed calculation. 

 

A single cardiac cell with superimposed motion vectors on the image referring to the motion 

directions for different bating statuses is shown in Figure. 2.15.  

The first row of the Figure. 2.15(a),(b),(c) corresponds to the contraction, relaxation, and resting 

status respectively. It can readily be seen that during contraction and relaxation, motion vectors 
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resting status. Optical flow can summarize temporal information about CM’s beating activity 

using heat maps of the magnitude of motion vectors. The maps provide a rapid overview of the 

movement in different parts of the image. The corresponding heat map generated from absolute 

motion for each status is also shown (see the second row of Figure 2.15 (a), (b) and (c)). Heat 

map represents the specific regions of the cells which is a center of contraction. The region in 

which maximum contraction occurs is called the contractile center. 

 

Figure 2.35: Single CM contractile motion characterization using optical flow analysis. A close-up image of a 

single CM with superimposed motion vectors on the cell’s image for (a) contraction, (b) relaxation, and (c) 

resting states respectively (top) and corresponding heat map generated from absolute motion (bottom). The 

contractile center refers to a region from which contractions are maximized, (d) details on quantification 

parameters explained in Table 2.3, (e) a single CM’s beating activity profile. 

 

 

As shown in the second row of Figure 2.15 (a), (b) and (c) (bottom) while cell’s contraction 

status, more contractile centers are observed on the heat map image compared to relaxation 

status. It leads to generate higher motion speed for contraction status and lower motion speed for 

relaxation status. In contrast, the heat map shows almost no contractile centers in resting status 
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which leads to nearly zero value for motion speed. Note that image noise may cause a very small 

contractile center on the heat map in resting status. The single CM’s motion speed monitoring 

can reveal details of the beating activity temporal parameters(See Figure 2.15(e)). To calculate 

the characteristics of the single CM’s activity from the motion speed signal, single beating 

profiles are extracted. It requires two main peaks of contraction and relaxation and three auxiliary 

points 1) Start-of-Contraction, 2) End-of-Contraction and 3) End-of-Relaxation. The 

representation of these points is shown in Figure. 2.15(d)[78].  

 

 

 

Table 2.3: Description of dynamic parameters measured for each extracted single cardiac cell. 

                 Dynamic parameter      Description 

Contraction Maximum contraction speed  [see 

#1 in Fig. 2.15(d)] 

The average amplitude of contraction 

peaks. 

Beating period [see #2 in 2.15 (d)] The time between two adjacent 

contraction peaks. 

Contraction period [see #3 in 2.15 

(d)] 

The average time between the Start-of-

Contraction and End-of-Contraction 

points. 

Relaxation Relaxation period [see #4 in Fig. 

2.15 (d)] 

The average time between Start-of-

Relaxation to the End-of-Relaxation 

points. 

Maximum relaxation speed [see #5 

in Fig. 2.15 (d)] 

The average amplitude of relaxation 

peaks. 

Resting Resting period [see #6 in Fig 2.15 
(d)] 

The average time between the End-of-
Relaxation to the next Start-of-Contraction 

points. 
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d. Results and Discussion 

Heat map analysis of absolute motion is used to monitor the contractile centers for four 

different isolated CM (Figure 2.16 (a), (b), (c) second row) as examples (only four cells are 

shown;). The motion vectors indicate opposite directions to each other during contraction and 

relaxation (Figure 2.16 (a), (b), (c) first row). As shown in Figure. 2.16 (d), motion occurred at 

regular intervals. During the CM resting status, the motion vectors and heat map are too weak 

which specifies the cell is almost immobile. The proposed motion characterization method 

allows us to study the high-resolution contractile centers. Note that there is a cell-to-cell variation 

in the magnitude of speed value, whereas the CM’s beating rate and other characteristics related 

to the physiological aspects of the sample (contraction-relaxation period, etc.) are nearly the 

same. Then the maximum relaxation speed. Figure 2.16 also indicates that the contraction period 

is shorter than the relaxation period due to the presence of different ion channels and transporters 

expressed in cardiomyocytes membrane and the mechanisms by which their activities are 

sequentially orchestrated while cell contract and relax. The average beating rate and average 

beating period are similar for all cells. 
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Figure 2.16: Real-time motion tracking of single CMs with the optical flow and contractility analysis using heat 

maps: (a), (b) and (c) motion vectors superimposed on the single CM image representing the motion direction 

for contraction, relaxation and resting beating cycle, respectively, shown in the first row. The corresponding 

contractility heat map is shown in the second row. The contractile centers are encircled and shown in warmer 

colors on the heat map. (d) The beating activity profile derived from dry mass redistribution motion speed 

calculation by absolute motion in the entire image over time using Eq. (14).  
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Figure 2.17: Results of different parameters of beating profile of the single extracted cells. 

 

Synchronization analysis 

Since our analysis is at the single-cell level, it can provide reliable synchronization 

analysis. Figure 2.18 shows the synchronization investigation for all extracted single CMs. 

As shown in (Figure 2.18(a)) the temporal activity (contraction and relaxation) in different 

periods beat with the same frequency. Cross-correlation analysis can be applied for 

synchronization investigation between single CM’s beating activity signals. Figure 2.18(b) 

shows the cross-correlation evaluation in which the maximal cross-correlation value is on 

the time lag zero. It shows that CM signals are perfectly synched in time. 
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Figure 2.18: Visual and numerical synchronization analysis. (a) 3D representation of single CM’s beating profile 

synchronization. (b) Cross-correlation analysis between different pairs of individual CMs. 

 

Whole slide image motion analysis 

To demonstrate the robustness of the proposed CM motion characterization method, we 

applied the proposed method for motion characterization of the whole slide QPI samples of 

multiple CMs. Figure 2.19(a) shows the whole slide QPI with superimposed motion vectors for 

contraction beating status and the corresponding heat map is shown in Figure 2.19(b). The 

beating activity profile with detected contraction-relaxation peaks and auxiliary points is shown 

in Figure 2.19(c).  
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Figure 2.19: Whole slide QPI of multiple cardiomyocytes motion characterization. The sample is recorded at 

10Hz frequency. (a) Whole slide QPI of multiple CMs with superimposed motion vectors for contraction beating 

status, (b) corresponding heat map, (c) beating activity profile. (Maximum contraction speed: 1.4 [µm/s]; 

Maximum relaxation speed: 0.8 [µm/s]; Contraction period:0.58 [s]; Relaxation period: 0.63 [s]; Beating period: 

2.1 [s]; Resting period: 0.75 [s]). 

 

Verification of motion tracking method 

Fixing cardiomyocyte cells 

We performed verification of the proposed CM motion characterization method by applying 

the proposed method to measure the speed of fixed cardiomyocytes versus live cardiomyocytes 

shown in Figure 2.20(a). Cardiomyocytes were fixed using a 4% formalin solution (Sigma-

Aldrich) incubated for 15 min at room temperature (RT). Subsequently, cells were washed three 

times with phosphate-buffered saline (PBS) for 10 min at RT. 1500 images at 50Hz sampling 
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frequency were acquired before and after cell fixation and motion speed for both samples were 

evaluated.  

 

Figure 2.20: The whole slide QPI Motion speed measurement of fixed cardiomyocytes versus live 

cardiomyocytes.  

Monitoring the pharmacological effects of compounds on cardiomyocytes’ AP 

waveform 

Next, we applied the platform to test the response to pharmacological compounds on single 

CMs’ motion activity. We analyzed the effects of an hERG channel blocker (E-4031) and an 

adrenergic receptor agonist (isoprenaline) on cardiomyocytes’ contractile speed using the 

proposed platform. We treated multiple cardiomyocytes with 166 nM of isoprenaline and 500 

µM of E-4031 and compared the beating activity parameters to those obtained in the control 

conditions.  
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Fig. 2. 21. Cardiomyocytes motion speed analysis in control (Ctrl) and drug-treated conditions in response to 

166 nM of isoprenaline. (a) Whole-slide QPI contractile motion analysis in control and drug-treated conditions, 

(b) single-beat contractile motion comparison in control and drug-treated conditions. (c) Motion waveforms of 

single CMs #1 to #4  extracted in control conditions. (d) Quantification result comparison in the control 

conditions (blue points) versus drug-treated conditions (red points) at the single-cell level. (e) Single CMs #1 to 

#4 extracted after isoprenaline treatment. (f) Average of each quantification parameter for all extracted single 

cells in control (blue bars) versus drug-treated conditions (red bars). All statistical comparisons were carried 

using an unpaired student t-test.  
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Fig. 2.21a shows the contractile speed of the whole-slide QPI of multiple CMs in control 

and drug-treated conditions in response to 166 nM of isoprenaline. Fig. 2.21b demonstrates an 

example of single beat profiles of a whole-slide QPI with a comparison between the control and 

drug-treated conditions. The contraction-relaxation speed increased in drug-treated conditions 

compared to the control conditions. Figs. 2.21(c) and (e) show examples of single-CM beating 

profiles of cells #1 to #4 extracted in control (blue beating profile) and isoprenaline-treated 

conditions (shown in red). Single-cell parameter quantification results are compared in Fig. 

2.21d. A summary of the compound addition effects is presented in Fig. 2.21f.   

The unpaired student's t-test analysis shows that cardiomyocytes responded to isoprenaline 

with a significant increase in relaxation speed during the contraction speed, but it was not 

significantly increased compared to the control condition. The resting period was significantly 

shortened and caused a significant increase in the beating frequency. The bars represent the mean 

and standard deviation (SD) for each quantification parameter.  

 



 

49 

 

 

Fig. 2. 22. cardiomyocytes contractile motion analysis in control (ctrl) and drug-treated conditions in response 

to 500 µM of E-4031. (a) Whole-slide QPI contractile motion analysis in control versus drug-treated conditions 

in response to 500 µM of E-4031. (b) Single beat contractile motion comparison in control versus drug-treated 

conditions. (c) Motion waveforms of single CMs #1 to #4 extracted in the control conditions and (d) 

quantification result comparison at the single-cell level of the control conditions (blue points) versus drug-treated 

conditions (red points). e) Single CMs #1 to #4 extracted after 500-µM E-4031 treatment. (f) Average of each 

quantification parameter for all extracted single cells in the control conditions (blue bars) versus drug-treated 

conditions (red bars). All comparisons were carried out using an unpaired student t-test.  
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the beating profile quantification parameters was performed at the single-cell level, as shown in 

Fig. 2.22(d). We observed a contractile response of a CM to the E-4031 drug, which 

demonstrated that the average AP of all single CMs’ contractile speeds decreased compared to 

the control conditions.  

The average resting period for all extracted single CMs in drug-treated conditions 

demonstrated almost the same value, which shows significant prolongation compared to the 

control conditions. Thus, there was a significant decrease in the beating period. Some single 

CMs’ motion profiles exhibited irregular beating patterns after drug treatment. The average 

results of each quantification parameter for all extracted single cells are shown in Fig. 2.22f. The 

bars represent the mean and SD for each quantification parameter of all extracted single cells.  

 

Discussion 

 

We have proposed a motion characterization platform for single hiPSC-CMs using the 

optical flow method combined with digital holographic imaging for cardiotoxicity application. 

We obtained detailed information about CM functionality from generating the CM beating 

activity profile based on the cell’s speed calculation. Quantification of the beating profile was 

performed for every extracted single cell using our automated peak identification method. 

Validation of the proposed CM characterization method was performed by measuring the 

contractile speed of fixed cardiomyocytes versus live cardiomyocytes and a noise sensitivity 

analysis.  

Based on experimental results, we demonstrated that the proposed method and 

quantification have the potential to be used in high-throughput analysis of hiPSC-CMs in 

compound cardiotoxicity screening. Our results revealed quantification features of the beating 

profile, including the contraction period, relaxation period, and resting period. Also, we 

investigated the beating synchronization of the single CMs using the proposed method. Finally, 
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we validated the applicability of the proposed platform for cardiotoxicity screening at the single-

cell level by monitoring the effects of E-4031 (500 µM) and isoprenaline (166 nM) compounds 

on multiple single cardiomyocytes’ beating activity-related parameters in comparison to control 

conditions. The cardiomyocytes responded to the E-4031 by decreasing their contractile speed 

and prolonging their resting period, thus decreasing their beating frequency. The isoprenaline 

caused an increase in AP speed with a decrease in resting period, thus increasing the beating 

frequency. Finally, we averaged each quantification result for all extracted single CMs (10 single 

CMs) in control conditions and drug-treated conditions. In summary, our results prove that the 

proposed method can be used for synchronization analysis and cardiotoxicity screening. More 

specifically, the Farneback method can perfectly generate motion vectors for single cardiac 

muscle cells. Other advanced tracking algorithms may or may not be able to generate the same 

vectors, but designing a new tracking algorithm is not the purpose of this study. Overall, the 

experimental results demonstrated that the proposed approach can efficiently and accurately 

reveal detailed quantification results about the pharmacological effects of a drug on single 

cardiac cells for cardiotoxicity screening and predictive toxicology. 

e. Conclusions  

In this paper, we have proposed an optical flow-based method for CM contractile motion 

characterization at the single cell-level obtained from quantitative phase images by DHM. The 

system comprises two parts: First, the real-time motion of single cardiac cells is tracked using 

the Dense Farneback optical flow method, which provides a vector field that is used for 

automated, user-independent and robust monitoring of cell motion. Second, the computational 

algorithm quantifies the beating activity profile of every extracted single cell which is derived 

from the cell’s contractile motion speed. This enables multiple parameters related to beating 

activity to be measured. Our study demonstrates that the heat map of the absolute motion field 

can be successfully used to identify the contractile region during cell beating activity, which 
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offers automated, motion tracking and functional monitoring of individual cells. We also 

performed visual and numerical synchronization at the single-cell level. We believe that our 

proposed method can be useful for automated high-content screening of drug-induced 

cardiotoxicity and maturation analysis of CM. 

 

C. Automated Motion Characterization Of Drug-Treated 

Cardiomyocytes At The Single Cell-Level With Digital 

Holographic Imaging 

 

a.  Abstract 

In this study, we combined quantitative phase digital holographic microscopy (QP-DHM) 

imaging informatics with a Franeback dense optical flow method for manipulation-free in vitro 

motion characterization of single human cardiomyocytes (hiPS-CMs) in control and drug-treated 

conditions. We screened the toxicities of three drugs, (E-4031, isoprenaline, and sertindole) with 

various concentrations. While spontaneous contraction-relaxation of single CMs, cellular 

deformation was detected using QP-DHM imaging with motion vector analysis generated by the 

Franeback dense optical flow method, and the cell’s motion waveform was generated which 

quantitatively reflected CM’s functional behaviors. Following this, we developed a 

computational algorithm for further characterizing of the single CM’s functional behaviors and 

several parameters related to the beating profiles were calculated. Several single CMs were 

extracted from the whole slide quantitative phase image (QPI) of multiple CMs and 

quantification parameters were calculated per every single CM. Besides, a population average, 

as well as standard deviations, were computed. In the presence of E-4031, the contraction-
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relaxation motion speed is declined compared to corresponding control condition while the 

contraction-relaxation motion speed is increased in response to isoprenaline. In response to 

sertindole, the contraction motion speed is raised while the relaxation motion speed is reduced 

compared to the control condition with significant prolongation in the relaxation period. High 

concentrations of all drugs showed significant alternation in beating frequency. The outcomes of 

the experimental results offer insights into the interpretation of single CM’s kinetics 

b.  Motivations and introductions: 

One of the major concerns in the drug development process is cardiac toxicity and the 

potential effect of candidate compounds on the cardiovascular function and precise risk 

measurement is challenging. The quantitative phase digital holographic microscopy (QP-DHM) 

provides high acquisition speed quantitative phase images of cell structure and dynamics in a 

label-free manner. DHM can provide accurate quantitative visualization of human 

cardiomyocytes derived from induced pluripotent stem cells (hiPSC-CMs) dynamics which are 

transparent or semi-transparent microscopic objects. Hence, DHM is particularly effective to 

study CM’s dynamics. As a result, significantly valuable information regarding the cell’s 

dynamics of dry mass redistribution can be obtained in a label-free manner. The human 

myocardium contains an estimated 2 to 3 billion of spontaneously beating cardiomyocytes cells 

to pump the blood to the entire body with synchronized beating activity10. Drug attrition is one 

of the main contributors to the high expense of drug development. The hiPSC-CMs technology 

showed to be an alternative model for cardiotoxicity screening, human disease modeling, 

cardiotoxicity, and therapy in vitro. Due to the presence of different ion channels in 

cardiomyocytes, the sole reliance on cell line models, puts human lives at risk. Drugs that cause 

cardiac arrhythmia manifest by alternation in CMs physiological behaviors (dry mass 

redistribution) such as changes in the contraction-relaxation motion speed, beat frequency, 

contraction period, relaxation period and motion patterns of cardiomyocytes. Therefore, high 
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throughput preclinical cardio-safety assessment methods for CM characterization in cardiotoxic 

screening are crucially in demand 

In our current study, we characterized single CM kinetics in control and drug-treated 

conditions using various concentrations by combining quantitative phase digital holographic 

microscopy (QP-DHM) with Farneback dense optical flow. The cardiomyocytes QPI was 

obtained using DHM and seven single CMs in the control and drug-treated conditions were 

manually extracted. Afterward, the Farneback dense optical flow method was applied to monitor 

the dynamic, rhythmic beating patterns and biomechanical contractile motion waveform was 

generated. The motion field was shown by motion vectors in a real-time manner. The system was 

able to sensitively and quantitatively detect the cardiac functional behavior treated with E-4031, 

isoprenaline, and sertindole in real-time. Following this, a computational algorithm was 

implemented to characterize the contractile motion of single cardiomyocytes from the motion 

waveform signal and multiple parameters related to the periodicity of CM’s beating activity 

profile were measured. All quantification parameters such as (contraction motion speed, 

relaxation motion speed, contraction period, relaxation period, resting period) and their standard 

deviation were measured at the single-cell level and the population average was computed. Our 

results demonstrated the E-4031compund declines the contraction-relaxation motion speed 

compared to control condition while isoprenaline increases the contraction-relaxation motion 

speed. The sertindole causes an increase in contraction motion speed while the relaxation motion 

speed is reduced compared to the control condition. Overall, the sensitivity of the proposed 

method to effectively detect the periodicity of the beating profile makes the proposed method 

well suited for the early preclinical safety assessment of cardiotoxic compounds. 
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c. Materials and Methods 

Sample preparation 

Human-induced pluripotent stem (iPS) cell-derived CMs obtained from Cellular Dynamics 

Int. (Madison, WI) were cultured and grown according to the manufacturer’s instructions for 14 

days before recording a hologram. Measurements were acquired in a Chamlide WP incubator 

system with a 96-well plate (LCI, South Korea) at 37C with 5% CO2 and high humidity. Images 

were recorded by a commercially available DHM T-1001 from LynceeTec SA (Lausanne, 

Switzerland) equipped with a motorized stage (Märzhäuser Wetzlar GmbH & Co. KG, Wetzlar, 

Germany, ref. S429). Images were acquired using a Leica 20×/0.4NA objective (Leica 

Microsystems GmbH, Wetzlar, Germany, ref. 11566049). The camera resolution was 1920 ×1200 

pixels (the hologram size was 1024×1024, which is efficient for FFT computation).  

For drug-treated CMs, a sequence was recorded before treatment for the control conditions. 

Then the drug was added, and after 15 minutes of incubation, the images were recorded again. 

Pre-processing 

Median filter: Median filter is a widely used noise removal method from image or signal by 

moving through the entire image and replacing the pixel value by the median value of the 

neighborhood while preserving the edges. In this experiment, we applied a 3D median filter with 

a  window size of 2×2×2 for noise reduction.  

Postprocessing  

Average filter: To remove unwanted peaks on the motion waveform which may negatively affect 

the quantification, we applied a moving average filter with a span of 4 (unweighted mean of 4 
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points of motion waveform). This filtering can efficiently reduce part of the noise that appears 

in the CM’s contractile motion waveform which causes multiple peaks in different beating states.  

 

Figure 2.23: The overview of the workflow for motion tracking of single cardiac cells and beating profile 

visualization using motion speed calculation. (a) cardiomyocytes phase image after numerical reconstruction 

with multiple cardiac cells. (b) single cardiac cell manually extracted with a size of 100×100 pixels. 

Consequently, 3D median filter with the size of 2×2×2 was applied for noise reduction, (c) optical flow procedure 

for cardiac cell’s contractile motion speed measurement,(d)(e),(f) motion vectors supper imposed on cell’s phase 

image for contraction, relaxation, and resting beating activity respectively and corresponding heatmap generated 

from absolute motion shown in the second row (The contractile center shown in warmer color on heat map refers 

to a region from which contractions are maximized),(g) beating activity profile of a single CM generated from 

cell’s motion speed measurement. 

 

We extracted seven single CMs from different parts of the whole slide QPI of multiple CMs 

(see Fig. 2.23(a)). The QPIs with the multiple CMs are a resolution of 800×800 pixels (224µm). 

Single cells are manually extracted with a size of 100×100 pixels (28µm). We assume that CM’s 

nuclei part is the center of motion while contraction-relaxation beating activity. The motion 

waveform is generated from CM’s motion speed calculation while spontaneous contraction-
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relaxation beating activity using the following equation: 

    
2 2

/

( ) ( )
,m s

dx dyDisplacement
Speed

Time Time



                   (15)                                   

where dx and dy are displacements in x and y directions estimated by Farneback algorithm 

representing CM motion in the x and y direction, and time is considered as the time between two 

consecutive image frames. By calculation of the average displacement magnitude of all pixels in 

x and y direction against time, we were able to obtain contractile motion speed. Afterward, we 

extracted several parameters related to the contractile motion profile. Fig 2.23 shows the 

workflow of the proposed method single CMs are formed in different shapes and sizes. Seven 

single CMs are extracted from each QPI of multiple cardiomyocytes. While cell’s spontaneous 

contraction-relaxation, the motion vectors overlayed on the image of single hiPS-CM indicate 

the opposite direction (see Fig 2.23(d,e)). The motion vectors exhibited shorter length 

demonstrating slower motion speed during the relaxation period compared to the contraction 

period. The contractile centers on the corresponding heatmap of contraction status demonstrate 

a broader region is being contracted compared to relaxation status while the heat map shows no 

movement in the resting state. After a beating cycle (one contraction-relaxation) the cell inters 

into the resting state in which the motion vectors show no direction(see Fig 2.23(f)). 
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Figure 2.24: Representation of a single cardiac cell’s motion waveform generated using contractile motion speed 

calculation and the definition of the multi-parameters. The inset shows details of muti-parameters calculated 

from beating activity described in table.2.4 

 Cardiomyocytes dynamic parameter measurement 

It is crucial to use multiple parameters to evaluate the effects of compounds for precise 

capturing the irregularity and dynamics of the beating profile. Fig.5 shows a motion waveform 

of single CM generated from motion speed calculation which consists of a sequence of positive 

peaks for contraction-relaxation and the contractile motion waveform is quantified through 

contraction-relaxation peaks identification [87]. Different methods have been proposed to find 

the QRS complex [54-56]. In our proposed method, We calculated the characteristics of the single 

cardiac cell’s beating activity using two main peaks of contraction-relaxation and three auxiliary 

points 1) Start-of-Contraction, 2) End-of-Contraction and 3) End-of-Relaxation shown in the 

Figure. 2.24. The extracted temporal parameters and the corresponding descriptions are 

explained in Table 2.4 

Time [s]10 20 30

Speed [µm/s]

Time [s]

(4)(3)

(1)

(6)

(5)

(2)

4 5 6 7 8



 

59 

 

Table 2.3: Definition of terms and analysis parameters. 

                 Dynamic parameter      Description 

Contraction 

Maximum contraction speed  

[see #1 in Fig. 2.24 (Inset)]. 

The average amplitude of contraction 

peaks. 

Beating period  

[see #2 in Fig 2.24 (Inset)] 

The time between two adjacent 

contraction peaks. 

Contraction period  

[see #3 in Fig 2.24 (Inset)] 

The average time between the Start-

of-Contraction and End-of-Contraction 

points. 

Relaxation 

Relaxation period  

[see #4 in Fig 2.24 (Inset)] 

The average time between Start-of-

Relaxation to the End-of-Relaxation points. 

Maximum relaxation speed [see 

#5 in Fig. 2.24 (Inset)] 

The average amplitude of relaxation 

peaks. 

Resting 

Resting period  

[see #6 in Fig. 2.24 (Inset)] 

The average time between the End-

of-Relaxation to the next Start-of-

Contraction points. 

 

Statistical analysis 

The average result of the population for every measured parameter is compared to the 

control condition in the unpaired student t-test. Data are presented as means ± SD. The value 

was expressed and compared using the raw values. (*P < 0.05);  (**P < 0.01); (***P < 0.001); 

(****P < 0.0001).  

d.  Results and discussions 

Whole slide QPI analysis 

In evaluating different prospectives of cardiotoxicity assay of different compounds used in 

this experiment, we measured multiple parameters that can distinguish among possible drug 

mechanisms of action. We first tested the compound effect on beat rate frequency changes of the 

waveforms compared in control conditions and treated conditions due to the direct effects of the 

drug on particular ion channels. The beat rate frequency changes were observed in the contractile 

motion patterns of the whole slide QPI of multiple hiPSC-CMs compared to the control condition 

depending on the compound's mechanism of action.  

The drug effect on the motion waveform manifests by changing the beat rate as a direct 
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consequence. The cardiomyocytes responded to isoprenaline with action potential shortening 

upon increases in stimulation frequency by increasing the drug concentration and increase in the 

beating frequency. The High concentration (500[nM]) of isoprenaline markedly increased the 

beating rate. The High concentration of E-4031 and, sertindole similarly demonstrated a 

reduction in beating frequency were 500 [µM] of E-4031 and 200 [nM] of sertindole significantly 

declined the beat frequency similarly. The cardiac cells in control condition share common 

characteristics. We quantified three whole slide QPI of multiple cardiomyocytes samples in the 

control condition as the representative for all control conditions and corresponding quantification 

parameters are demonstrated in table 2.5  

Table 2.4: Quantitative parameters and corresponding description measured from the whole slide QPI 

cardiomyocyte of the control sample. 

Drug effects on contractile motion speed 

To characterize pharmacological effects on CMs contractile motion speed, we carried out the 

comparison of contraction motion speed before and after drug addition. However, the additional 

parameters are also evaluated to precisely evaluate the effect of drugs. We evaluated the 

Parameter Description Values (Mean±STD) 

Maximum contraction speed 
The average amplitude of 

contraction peaks. 
1.5±0.0209 [µm/s] 

Beating period 

 

The time between two 

adjacent contraction peaks. 
1.8±0.0086 [s] 

Contraction period 

 

The average time between the 

Start-of-Contraction and End-of-

Contraction points. 

0.352±0.0158 [s] 

Relaxation period 

 

The average time between 

Start-of-Relaxation to the End-of-

Relaxation points. 

0.532±0.0221 [s] 

Maximum relaxation speed 
The average amplitude of 

relaxation peaks. 
1.1±0.0176 [µm/s] 

Resting period 

 

The average time between the 

End-of-Relaxation to the next Start-

of-Contraction points. 

0.62±0.0203 [s] 
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Sertindole, E-4031, and isoprenaline effects on CM motion speed along with other critical 

parameters and measure the contraction motion speed prior and after drug addition. Sertindole is 

the second generation of antipsychotic medication phenylindole-derived compound that 

functions as an antagonist at a portion of receptor systems [57]. 

 

 

Figure 2.25: Representation of action potential motion speed evaluation of whole slide QPI in the presence of 
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different drugs versus the control condition. The bar charts on the right side show the variation of a critical 

parameter expressed in terms of mean and SD for control and treated conditions. (a)The contractile motion of 

whole slide QPI of multiple CMS in control and drug-treated conditions in response to 200nM sertindole, (b) in 

response to 500µM E-4031, (c) in response to 500nM isoprenaline and their corresponding quantification results. 

 

The left panels of Fig 2.25 show the drug-treated cardiomyocyte motion speed evaluation 

versus control condition and the right panels show cardiomyocyte multi parameters 

measurements results. Figure 6(a) shows the contractile motion speed of the whole slide QPI in 

response to 200nM sertindole and corresponding quantification results. The Sertindole effect 

manifested by an increase in CM contraction motion speed while a decline in relaxation motion 

speed and repolarization being prolonged as a direct consequence. Afterward, we investigated 

the effect of E-4031 on CM’s motion waveform. E-4031 is a potent and selective blocker of the 

inactivating inward rectifying potassium current (HERG channel). It has been previously 

reported that the treatment of cardiac cells with E-4031 significantly slowed the heart rate 

increased myocardial Ca2+ uptake and attenuated the loss of intracellular K+ in cardiac cells. 

Figure 2.23(b) shows the contractile motion of the whole slide QPI of the multiple CMs in control 

and drug-treated conditions in response to 500µM of E-4031, the contraction-relaxation motion 

speed is declined. The comparison of the critical parameters in control and drug-treated 

conditions in the presence of 500µM of E-4031 shows the contraction period is slightly decreased 

while it caused a prolongation in the relaxation period. The corresponding beating period and 

resting period are significantly raised thus the beating rate is declined. Finally, we carried out a 

similar experiment to evaluate the effects of the Isoprenaline. The isoprenaline compound is a 

beta-1 and beta-2 adrenergic receptor agonist that exert their effects through a G-alpha 

stimulatory second messenger system. Beta-1 adrenergic receptors primarily concentrate on the 

heart. The terminal effects of activation of beta-1/or 2 adrenergic receptors are an increase in 

intracellular calcium. By increasing the slope of phase 4, cardiac cells reach the threshold at a 

faster rate, resulting in the characteristic increased heart rate and higher contractility [58]. Figure 
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2.25 (c) shows the contractile motion waveform of the whole slide QPI of the hiPS-CM in control 

and drug-treated conditions in response to 500nM isoprenaline and corresponding quantification 

results. As can be seen from Fig. 2.23(c), contraction-relaxation motion speed is raised compared 

to the control condition in response to 500nM isoprenaline. The contraction-relaxation period, 

resting period, and beating period are declined. 

Quantification at the single-cell level 

To quantify the motion waveform related parameter at the single-cell level, First, we 

extracted seven single CMs and motion waveforms were generated using contractile motion 

speed measurement. Secondly, the computational algorithm was applied to extract several 

quantification parameters related to the motion waveform. Quantification parameters are 

measured for every single cell and a population average was computed in control and drug-

treated conditions to represent the motion characteristics in response to each drug concentration. 

Consequently, we can observe changes in critical parameters before and after drug treatment. 

Since our current analysis captures the drug effects on the discrete population of individual cells, 

it is plausible that differences in contractile motion speed observed after averaging the 

population. The graph pad prism 8 software is used to conduct statistical analysis to detect 

significant differences between groups for other critical parameters.  

Effects of sertindole treatment  

The Sertindole effect manifested in CM with repolarization being prolonged as a direct 

consequence. Figure 2.26 shows the quantification of different parameters per each cell.  By 

increasing the drug concentration, the contraction upstroke motion speed is raised while the 

relaxation motion speed is declined compared to the control condition. Also, alternation in 

critical parameters was observed including prolongation in the relaxation period, beating period, 
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resting period.  

 

Figure 2.26 Multiple parameter measurements per each individual extracted cells in response to the sertindole 

with different concentrations. The corresponding effect of the drug by increasing the concentration on each 

cell’s behavior was separately investigated. 

 

Figure 2.27. Effect of sertindole on critical parameters of the average population of single cells.  The graph 

shows a summary of the changes in the mean and standard deviation. The unpaired t-test was performed to detect 
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significant differences between average groups. 

 

As one can see from Figure 2.26, 27 the sertindole treatment exhibited significant 

prolongation of the resting time. As can be seen, Sertindole does not significantly change the 

contraction period while the relaxation period is significantly prolonged. There is variation in 

contractile motion speed between individual single cells while a declining trend was observed in 

averaging the population for relaxation motion speed. The difference level of the other critical 

parameters is evaluated by an unpaired T-test.  

Effects of isoprenaline treatment 

isoprenaline, a b-adrenoceptor agonist, increased the beating rate frequency while 

decreasing the overall duration of each beat.  

 

 

Figure 2.28: Multiple parameter measurements per each extracted cells treated with different concentrations of 

isoprenaline drug. The effect of the drug by increasing the concentration on each cell behavior is investigated. 
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Figure 2.29: Characterization of the Effect of isoprenaline with different concentrations on critical parameters 

of the average population of single cells. The graph shows the changes in the mean and standard deviation of 

each quantification parameters calculated from the average of the single cells population. The unpaired T-test 

was performed. 

 

Figure 2.28,29 shows the contractile motion of individual single cells and average of 

population in control and drug-treated conditions in presence of different concentrations of 

isoprenaline and corresponding quantification results. As can be seen from Fig.2.29 contraction-

relaxation motion speed is raised compared to the control condition. Accordingly, the 

contraction-relaxation period, resting period and, beating period are declined due to the increase 

in beating frequency.  

 

Effects of E-4031 treatment: 

We monitored the effects of E-4031 (a class III antiarrhythmic drug). The E-4031 declined 
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contraction and relaxation motion speed and prolonged the resting period of hiPSC-CMs 

depending on the concentration level which is in line with our previous study. 

 

 

Figure 2.30: Assessment of multiple parameters per each cardiac cells. The effect of the E-4031 different 

concentrations of the drug on each cardiomyocyte is shown. 
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Figure 2.31: Characterization of the effect of E-4031 with different concentrations on critical parameters of the 

average population of single cells. The graph shows a summary of the changes in mean and standard deviation 

calculated from the average of the single cells population. 

 

All drugs have one principle common to share the ability of alternation in the resting period 

and thus in beating frequency as regards their mechanism of action and could often be selected 

based solely on this criterion. However, the degree of changes in beating frequency varies 

significantly between different levels of drug concentrations. 

 

 

Figure 2.32: The average resting period of single cells population in the presence of different drug concentrations 

of E-4031, isoprenaline, and sertindole. 
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Different concentrations of E-4031 the resting duration dramatically changes with the 

increasing of E-4031 concentration and thus results in the beat duration increase .From Fig. 13 

one can see by increasing the concentration of the isoprenaline, the resting period will gradually 

decrease and thus the beating frequency rises. The underlying mechanism sertindole compound 

shows the ability to increase in resting period linearly by increasing the concentration. 

 

Discussion 

 Various shortcomings are found in the state-of-the-art methods for in vitro detection of 

changes in drug-induced cardiac contractility. However, a single cardiomyocytes contractile 

motion characterization is challenging. The present study aimed to evaluate the contractile 

characteristics of single drug-treated cardiomyocytes by measuring changes in beating frequency 

along with other comparable baseline parameters form the quantitative phase images that allow 

measuring hiPSC-CMs kinetic responses of drugs at the single-cell level which cant be identified 

ordinary methods. we present a novel system for contractile motion characterization of single 

cardiomyocytes by a combination of dense Farneback optical flow method and quantitative phase 

images (QPI) that can identify drug-induced cardiac effects at the single-cell level. The effects 

of three drugs (Sertindole, Isoprenaline, and E-4031) in different concentrations are effectively 

analyzed. Our experimental results of E-4031 and Isoprenalie showed good agreement with a 

previous study 25. Isoprenaline exhibited a rise in contraction-relaxation motion speed while 

sertindole cause only increases in contraction motion speed, in contrast, declined the relaxation 

motion speed and significantly prolonged relaxation period. E-4031 showed a decrease in both 

contraction-relaxation motion speed. All drugs cause alternation in the resting period thus 

changed the beating frequency. All drugs investigated in this study also affected other critical 

parameters including (contraction-relaxation period, beating period and resting period). The 

goals of these experiments were to not only monitoring the kinetics of single CMs but also 
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measure other critical parameters regarding the beating activity profile generated using 

contractile motion speed measurement. Measured features from the contractile motion profile at 

the single-cell level are including (Maximum contraction-relaxation motion speed contraction-

relaxation period, beating period, and resting period ). We have shown that the current platform 

can quantitative prediction of the potential cardiotoxicity by single CM kinetics monitoring and 

can be used to promote the maturation of in vitro hiPSC-CMs and reduce animal testing for 

cardiac safety screening.  

e. Conclusions 

In this paper, we used the combination of quantitative phase images obtained from DHM and 

dense Fareneback optical flow methods for motion characterization of single cardiomyocytes in 

control and drug-treated conditions. The motion waveform generated from the proposed method 

further provided complementary information about critical parameters regarding CM’s beating 

activity profile. The effects of three drugs (Sertindole, E-4031, and isoprenaline) were analyzed. 

The system includes two parts: first, we extract multiple single cardiac cells from the whole slide 

of QPI and calculated the contractile motion speed of beating cells using a dense Farenack optical 

flow method. Our experimental results of Sertindole treated CMs exhibited raise in contraction 

motion speed while the decline in relaxation motion speed. Other critical parameters E-4031 

treated cardiomyocytes show that the decrease in contraction-relaxation motion speed while the 

concentration of E-4031 increases the resting duration. We also found out that contraction 

duration is shorter than the relaxation duration. Isoprenaline shows its effect on the sample by 

increasing both contraction-relaxation motion speed and results in to decrease in the resting 

period. our experimental results represent thus a promising label-free approach for drug 

discovery. 
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D. Integrated platform for simultaneously monitoring human 

cardiomyocytes contractile motion and kinetics force generation 

at the single-cell level from holographic imaging informatics 

 

 

a. Abstract 

 We describe a novel platform for in vitro monitoring contractile motion and force generation of 

the human induced pluripotent stem cell-derived cardiomyocytes(hiPS-CM) at the single-cell 

level from digital holographic imaging informatics. We extract single CM dry mass using an 

FCN model. Consequently, the Farneback optical flow method was applied to measure the single 

CM contraction kinetics, force generation using dry mass redistribution monitoring. We 

demonstrate the proposed approach allows multiple analyses of single CM contractility from 

motion waveform including contractile force, speed, acceleration, velocity along with temporal 

parameters including contraction period, relaxation period, resting period, beating period. The 

applicability of the CM force measurement method was tested to reveal the pharmacological 

effects of two cardiovascular drugs, isoprenaline (166nM, 500nM) and E-4031 (166µM, 

500µM), on whole slide QPI in comparison to the control condition. Validation of our approach 

was tested by measuring the contractile force generation of live cardiomyocytes versus fixed 

cardiomyocytes. The experimental results demonstrate that the cardiomyocytes responded to 

isoprenaline by increasing the action potential (AP) contractile force with a decrease in the 

resting period. In the presence of E-4031, the AP contractile force was declined and the resting 

period was prolonged. Accordingly, our CM force measurement method has the potential 

application in the study of cardiac disease, drug discovery, and cardiotoxicity screening. 
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b. Motivations and introductions: 

Heart failure contributes to a major cause of mortality around the world. Cardiomyocytes (CMs) 

muscle cells are the main elements of the human myocardium that produce force to pump the 

blood to the entire body through spontaneous contraction-relaxation mechanical beating activity 

[59]. The main functionality of the cardiac muscle cell is the ability to spontaneous contraction-

relaxation beating activity by dry mass redistribution leading to generate contractile force. The 

quantification of the contractile forces generation and the cardiac motion activity at the single-

cell level allows interpreting the relationship between mechanical and biochemical signaling 

pathways [60]. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are 

elastic elements used for in vitro human disease modeling and cardiotoxicity screening [61]. The 

simultaneously monitoring human cardiomyocytes contractile motion and force generation at the 

single-cell level can provide valuable information about cell functionality and health [62]. Digital 

holographic microscopy (DHM) is a promising tool for real-time monitoring cardiomyocytes dry 

mass redistribution by providing a quantitative phase image (QPI) in a label-free manner [63–

66]. By simultaneously monitoring single CM contractile motion and kinetics force generation, 

one can ensure the muscle cell health and proper behavior [67,68]. To date several different 

methods previously reported for CM force generation assessment using highly specialized 

advanced instrumentation including fluorescent microsphere-based traction force microscopy 

and atomic force microscopy [69–76]. The biosensors are the most widely used tool utilized for 

simultaneously monitoring cardiac cell mechanical beating activity and contractile force [77, 

78]. These need expensive equipment or cardiomyocytes to be cultured into specific materials 

which render the process challenging and may alter the originality of the samples. Yet there is a 

lack of a simplified platform for single CM motion monitoring to provide detailed information 

about contractile motion and force generation at the single-cell level. Optical flow-based 
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methods are low cost, high throughput, contactless, methods able to real-time motion tracking of 

the cardiomyocytes without physical contact which preservers samples originality [77-80]. 

While cardiac cell beating activity, dry mass redistribution occurs which leads to force 

generation. Single CM dry mass size can be precisely measured form QPI images captures using 

DHM [81,82]. The cell's dry mass size has a strong correlation with the amount of the force 

generated by single cardiac cells. Precise measurement of the cells dry mass from QPI  is 

crucially important for subsequent contractile fore measurement. A fully convolutional neural 

network (FCN) method is a promising tool for single CM’s couture extraction from QPI images 

[83–86]. We previously reported an FCN-based method for single CM functional behavior 

characterization using nucleus extraction form QPI images [87]. This rapid dry mass screening 

using DHM can be useful for high-throughput, low-cost monitoring for compound toxicity 

screening. Furthermore, we previously established an optical flow-based method for motion 

characterization of the single cardiac cells. We successfully demonstrated the applicability of the 

optical flow-based method for single CM motion characterization of drug-treated 

cardiomyocytes. The proposed optical flow-based method can yield several temporal and 

dynamic parameters related to the beating activity of single CMs. 

Here we present a novel contactless and low cost in vitro platform allowing us simultaneous 

monitoring of the cardiac mechanical beating activity and force generation at the single-cell level 

combined with digital holographic imaging informatics. Our proposed method is a combination 

of the fully convolutional neural network and optical flow method which can return functional 

parameters for in vitro single CM motion and force generation analysis simultaneously. In the 

first step, we extracted seven single cardiac cells from whole slide QPI of multiple 

cardiomyocytes and removed the unnecessary background to measure the cell dry mass precisely 

using a fully convolutional neural network. Secondly, we tracked the spatial-temporal 

coordinates x, y of the cell dry mass while beating activity using the Farneback optical flow 

method. This allowed us to monitor contractile force along with multiple parameters related to 
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dynamic beating activity of the cell (contractile force, speed, velocity, acceleration ) in addition 

to multiple temporal beating activity-related parameters (contraction period, relaxation period, 

resting period, beating period). The applicability of CM contractile kinetics and force generation 

of the proposed method was tested to reveal the pharmacological effects of two cardiovascular 

drugs, isoprenaline (166nM, 500nM) and E-4031 (166 µM, 500µM), on whole slide QPI of 

multiple cardiomyocytes compared to the control condition. The results demonstrate that the 

cardiomyocytes responded to isoprenaline by increasing the action potential (AP) contractile 

force with a decrease in the resting period. In the presence of E-4031, the AP contractile force 

was declined and the resting period was prolonged. Validation of our approach was tested by 

measuring the contractile force generation of live cardiomyocytes versus fixed cardiomyocytes. 

c. Materials and methods  

Single cardiomyocytes dry mass extraction using fully convolutional neural network 

 

Convolutional neural network (CNN) models are based on the sequential application of the 

convolutional layer, where the output of one convolution layer is the input to the next one. CNN 

captures features of input data via multiple consecutive convolution kernels followed by max-

pooling layers for data dimension reduction. CNN mainly consists of the following elements. 1) 

A set of learnable filters to extract local features. 2) A nonlinear function as an activation function 

and 3) a max-pooling layer that aggregates the local feature specification to reduce the data 

dimensions. However, depending on the different tasks, different network architectures are 

proposed which might be more efficient than simple CNN-based networks [25, 34]. A fully 

convolutional neural network (FCN) is a type of CNN in which the fully connected layer is 

replaced with another convolution layer. We extracted a single CMs region of interest (ROI) from 

whole slide QPI using our proposed FCN Model in [87] (see Fig. 2.33a). The segmented region 

mostly includes the nucleus section (see Fig. 2.33b).  
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Figure 4.33. Steps of single CM dry mass extraction using a fully convolutional neural network. (a) original QPI 

of multiple CMs, (b) single CMs captured using the FCN model marked with the green line, inset shows a single 

CM dry mass denoted with a green line (top), 3D representation of single CM dry mass (bottom). 

 

 

Single CM motion tracking with Farneback optical flow 

 

The Farneback algorithm is a dense optical flow method that performs motion tracking in multi-

resolution levels. The Farneback method uses a polynomial expansion for displacement 

estimation. In the first step, the algorithm generates a hierarchy of resolution levels from the 

original image using Gaussian pyramids, where each level has a lower resolution compared to 

the previous level. The tracking starts from the lowest resolution and continues to the highest 

resolution. Displacement of two local patches in consecutive image frames is calculated by 

approximating the neighborhood of each pixel with a quadratic polynomial [53].  

The tracking is refined in each resolution level by initializing from the lowest resolution level to 

the highest resolution. The detected tracking points at each level are the base point for the next 

level and large displacement can be detected. 
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Figure 2.34 The workflow of single CMs kinematic beating activity signal extraction. Single CM dry mass 

extracted using FCN method with superimposed motion vectors for contraction (a), relaxation (b), resting (c) 

(top) and their corresponding heat map (bottom), (d) Single CM’s contractile force profile, (d) single CM motion 

speed profile (f),  motion acceleration profile, (g) motion velocity profile. 

 

Seven single CMs are extracted using the FCN model from different parts of the cardiomyocytes 

QPI. The extracted cell area mostly includes the nucleus section which is the center of the motion. 

While the cardiac cell’s beating activity, by repeating the optical flow procedure shown in Fig. 

2.34, an array of motion vectors is generated which shows the CM’s motion direction and the 

kinetics waveform is generated .A single cardiac cell with superimposed motion vectors on the 

image referring to the motion directions for different bating statuses for contraction, relaxation, 

and resting beating status respectively (Fig. 2.34(a, b, c) top). The corresponding heat map 

generated from absolute motion for each beating status is shown in (Fig. 2.34(a, b, c) bottom). 

Heat map represents the specific regions of the cells which is a center of contraction. 

Consequently, the single CM’s contractile force profile, motion speed profile,  motion 

acceleration profile, motion velocity profile ((Fig. 2.34(d, e, f, g) respectively)) was generated 

This led us to normalize all force measurements to the cell area to obtain a more accurate 

representation of cellular contractile performance.  
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Single CM dry may measurement  

 

Projected cell area: stands for the cell area size calculated as follow. 

 

2S NP                                    (13)                                                                              

Where N stands for the number of pixels inside the cardiac cells and P denotes the pixel size 

(here is 0.28µm).  

 

Dry mass (DM) denotes the mass of the cardiac cell:  

 

  
10 10

2 2
pg

S

DM ds s
a a

 
   

                         (14)                                                                     

where  is the wavelength of the light source (666 nm), Φ is the average phase value induced 

by the the whole cell, a is known as the specific refraction increment (0.002 m3/Kg) [24]. 

Kinematic parameters quantification 

 

 

Table 2.6 Description of kinematic parameters measured for each extracted single cardiac cell. 

Parameter name Equation Description 

Displacement 2 2( ) ( ) ,mDisplacement dx dy    
The displacement 

between two consecutive 

movie frame 

Speed 
2 2

/

( ) ( )
,m s

dx dy
Speed

Time



  

The motion speed 

between two consecutive 

image frame 

Velocity / ,m s

dx dy
Velocity

Time



  

The cardiac cell 

velocity  between two 

consecutive image frames 

Acceleration 2/
,

m s

Velocity
Acceleration

Time
  

The acceleration 

between two consecutive 
frame 

Force ,NForce Acceleration DM    Single CM kinetics 

force generation 
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where dx and dy are displacements in x and y directions estimated by Farneback optical flow 

method representing CM motion in the x and y direction, and time is considered as the time 

between two consecutive frames.  

 

 

 

 

 

Figure 2.35. Schematic of single cells kinematic signals quantification using contraction-relaxation peak 

identification method. 

 

 

 

 
The CM beating activity quantification was analyzed using an automated contraction-relaxation 

peak identification using the Otus thresholding method along with multiple auxiliary points for 

precise kinetics and temporal parameter quantification method proposed in [87].  
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CM Beating activity temporal parameter quantification. 

 
 

  

Figure 2.36. Details of beating activity related temporal parameters quantification calculated from motion 

speed waveform explained in the table 2.7.  

 

 

Table 2.7 Description of temporal parameters measured for each extracted single cardiac cell. 

Dynamic parameter Description 

Contraction 

Beating period 

[see #1 in Fig. 2.36 inset] 

The time between two adjacent contraction 

peaks 

Contraction period 

[see #2 in Fig. 2.36 inset] 

The average time between the Start-of-

Contraction and End-of-Contraction points 

Relaxation 
Relaxation period 

[see #3 in Fig. 2.36 inset] 

The average time between Start-of-Relaxation 

to the End-of-Relaxation points 

Resting 
Resting period 

[see #4 in Fig. 2.36 inset] 

The average time between the End-of-

Relaxation to the next Start-of-Contraction points 
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d. Results and discussion 

In this study, we aimed to develop a high throughput method for simultaneous monitoring of 

single human cardiomyocytes contractile motion and kinetics force generation along with 

temporal beating activity-related parameter assessment. The cardiomyocytes kinetic related 

parameters which are related to the cardiac cell’s ability to produce force is its morphology, 

including total cell area and dry mass sizes. The relationship between cell mass area and the 

amount of generated force is important.  Using the FCN we have precisely extracted the cell 

mass area and investigated the correlation between cell size and produced force. Table.3 shows 

the extracted single cells from whole slide QPI of multiple cardiac cells and cells dry mass 

extraction using the proposed FCN based network model. 

 

 

Table 5.8 The single CM quantitative images before and after segmentation for precise cell dry 

mass extraction using a fully convolutional neural network method. 

 

 

Cell area size depends on the cells’ maturation level. The cells' dry mass is precisely extracted 

using the FCN model. 

 

Cell number Cell #1 Cell #2 Cell #3 Cell #4 Cell #5 Cell #6 Cell #7

Original QPI of 
single 

cardiomyocyte

Extracted cell 
dry mass using

FCN
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Figure 2.37 Single CMs (#1 to #3) autonomous mechanics beating activity signals. 

 

Figure 2.37 demonstrates the mechanical beating activity signal of single CMs (#1 to #3). Our 

proposed method can analyze both the direction and magnitude of the vectors which provides 

more detailed information. The single CM study allowed us to study the properties of temporal 

and cell-autonomous mechanics which can be used for the health and function of the single CMs. 

Currently, little is known about single hiPSC-CM kinematics force generation. The maximum 

peak force of contraction and relaxation action potential were extracted using an automated peak 

identification technique. Besides, using motion waveform generated from cell kinematics 

beating activity, we can monitor contraction and relaxation beating activity duration. Single CMs 

produce different amounts of force. The contractile force generation is in direct relation with the 

cell's mass size. To normalize the force generated by variation of different cells with different 

area sizes, the total force was normalized to cell surface area and expressed as (µN/µm2). 
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Figure 2.38. Single CM beating activity-related temporal parameter quantification results. 

 

Figure 2.38 demonstrates the temporal beating activity quantification results. As can be seen, 

there is a small variation in the contraction period between single cells while the relaxation and 

resting beating activity duration show almost similar results for all extracted single cells. The 

beating period shows a similar period for all extracted single cells meaning they are beating at 

regular intervals. This phenomenon demonstrates the synchronization of the single cells in 

beating activity. We have precisely measured the temporal beating activity using the peak 

identification method for every single cell and demonstrated the importance of the temporal 

parameters. Single CMs kinematics analysis is an important functional readout for cardiotoxicity 

screening applications.   
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Figure. 2.39. Single CM kinetic beating activity quantification results. 

 

Figure 2.39 demonstrates the maximum contraction force and speed is larger than the maximum 

relaxation force and speed. Accordingly, the maximum contraction acceleration is larger than the 

relaxation acceleration. 

Quantitative Analysis of CM Function in Response to E-4031 and Isoprenaline 

To evaluate the sensitivity of our methodology in detecting the effects of the pharmacological 

substance on CMs kinetics, force generation, and temporal parameters, we examined the dose-

response of two cardiovascular drugs used widely in cardiovascular research (E-4031, 

isoprenaline).  

Quantitative Analysis of CM in Response to E-4031 

 
E-4031 is a known class III antiarrhythmic drug that blocks the K+ channel and subsequently 

prolongs the AP interval.  
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Figure. 2.40. Cardiomyocytes response to 166 µM, 500 µM of E-4031 drug kinetic force generation, and beating 

activity temporal parameters analysis in control (ctrl) versus drug-treated conditions. (a) whole-slide QPI 

contractile force profile in control versus drug-treated conditions in response 166 µM , 500 µM of E-4031(a ,b), 

(c) quantification results in comparison of the control conditions (blue bars) versus drug-treated conditions (red 

bars).  

 

Figure 2.40 (a,b) demonstrates a whole-slide QPI of multiple CMs contractile force profile in 

control versus drug-treated conditions in response to 166 µM , 500 µM of E-4031.  Analysis of 

E-4031, a K+ channel blocker known to prolong the AP interval was expected to reduce the 

contractile force generation and prolongation of beating activity intervals. The experimental 

analysis demonstrated the cardiomyocytes responded to the E-4031 drug by decreasing the 

contractile force generation and prolongation of the beating period. The cardiomyocytes respond 

to E-4031 drugs were further examined on for temporal beating activity parameters for better 

comprehend analysis and the ability of the force measurement method to differentiate between 

different drug concentrations multiple parameters from waveforms has been pursued. The 
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quantification analysis demonstrated E-4031 prolonged resting period. Besides, the 

cardiomyocytes demonstrated a slight prolongation of the relaxation period.  

 

 Quantitative Analysis of CM in Response to isoprenaline 

 

The proposed cardiomyocytes contractile force generation method was further examined on two 

different concentrations of isoprenaline. 

 

Figure. 2.41. Cardiomyocytes response to 166 nM, 500 nM of isoprenaline drug kinematic force generation and 

beating activity temporal parameters analysis in control (ctrl) versus drug-treated conditions. Whole-slide QPI 

contractile Force profile in control versus drug-treated conditions in response to 166 nM (a),  500 nM (b) of 

isoprenaline, (c) quantification result comparison of the control conditions (blue bars) versus drug-treated 
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conditions (red bars).  

 

We analyzed the cardiomyocyte's response to 166 nM (Fig. 2.41a),  500 nM (Fig. 2.41b) of 

isoprenaline drug kinematic force generation and beating activity temporal parameters analysis 

in control (ctrl) versus drug-treated conditions (Fig. 2.41c). Isoprenaline demonstrated an 

increase in CM contractility. The cardiomyocytes responded to isoprenaline drug by increasing 

the contractile force generation. For a better understanding of the isoprenaline drug effect on 

temporal beating activity properties, we analyzed multiple temporal parameters related to the 

beating activity. The experimental result demonstrated the cardiomyocytes responded to 

isoprenaline drug by a reduction in beating activity intervals along with a decrease in resting 

period thus raised the beating frequency. Besides, the relaxation period demonstrated a reduction.  

Verification of the proposed method  

Afterward, We validated this quantitative analysis of beating frequency (BPM) correlation with 

contractile force generation using Pearson’s correlation coefficients. We found Pearson’s 

correlation coefficients of above 0.91 for isoprenaline treated cardiomyocytes (see Fig.2.42a). 

Pearson’s correlation analysis for E-4031 demonstrated a moderate coefficient (0.32) between 

contractile force generation and beating frequency (see Fig.2.42 b). 
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Figure. 2.42. Pearson’s correlation analysis (Pearson’s r) between beating frequency and contractile force 

generation. (a) Isoprenaline, (b) E-4031, (c) Contractile force measurement of fixed cardiomyocytes versus live 

cardiomyocytes.  

 

The method was verified by measuring the contractile force generation of fixed cardiomyocytes 

versus live cardiomyocytes (Fig. 2.42b). The amplitude of the contractile force of fixed cells 

fluctuates around zero. The amplitude is much smaller than both contraction-relaxation peaks 

and similar to the amplitude of the resting state. 

 
 The advent of human-induced pluripotent stem cell-derived cardiomyocytes has opened new 

prospects for cardiotoxicity screening and disease modeling. The major obstruction in lengthy 

and costly drug discovery processes is the lack of high throughput, a user-independent method 

for identifying understanding cardiotoxicity potential of pharmacological substance on single 

cardiomyocytes. Single CM contractile kinetics, and force generation characteristics is a 
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challenging task. The traction force microscopy (TFM) approaches is the most widely used 

method for the measurement of the contractile force of CMs require the use of fluorescent 

microspheres. This study describes an advanced label-free method for single CM kinetics of 

force generation analysis using a combination of a fully convolutional neural network and dense 

Farneback optical flow method form holographic images. In the first step, the single CM’s dry 

mass was precisely extracted using the FCN model. We then applied Dense Farneback optical 

flow to monitor CM’s dry mass redistribution form video microscopy and measured several 

kinetic related parameters per every single CM. We demonstrate our approach allows the 

assessment of contractile kinetics and force generation in a fully automated user-independent 

manner. We quantified the following parameters from a single CM. (1) Contractile force. (2) 

motion speed, (3) motion velocity, (4) motion acceleration. Furthermore, several temporal 

beating activity-related parameters (contraction period, relaxation period, resting period, and 

beating period) were measured from a single CM motion waveform. An automated peak 

identification algorithm marked the contraction and maximum relaxation peaks for all 

contraction kinetics and marked them for visual quality control. The proposed computational 

algorithm for peak identification method allows robust measurements of contraction kinetics. 

Therefore, the proposed automated system is well suited for monitoring the effects of the 

pharmacological substance on CM kinetics. The proposed method was validated by contractile 

force measurement of live cardiomyocytes versus fixed cardiomyocytes.  The applicability of 

the proposed method was tested to reveal the pharmacological effects of two drugs commonly 

used in cardiovascular research, isoprenaline (166nM, 500nM) and E-4031 (166µM, 500µM), 

on whole slide QPI of multiple cardiomyocytes in comparison to the control condition. The 

results demonstrate that the cardiomyocytes responded to isoprenaline by increasing the AP 

contractile force with a decrease in the resting period. The cardiomyocytes responded to  E-

4031, with the AP contractile force decline and the resting period was prolonged. 
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e. Conclusion 

 

In this article, we proposed an integrated platform for simultaneously monitoring human 

cardiomyocytes contractile kinetics, force generation at the single-cell level using a combination 

of FCN and optical flow from holographic imaging informatics. Several single CM were 

manually extracted from the QPI video sequence of multiple cardiomyocytes and dry mass was 

extracted using the FCN method. Subsequently, kinetics related parameters including force, 

speed, velocity, acceleration were calculated using dense Farneback optical flow method. To 

quantify single CM kinetics force generation and temporal related parameters, a computational 

algorithm was proposed for amplitude peak identification and contraction-relaxation beating 

activity was marked for visual quality control. Average values for kinetics parameters were 

calculated and represented as bar graphs with SD. The applicability of force measurement of the 

proposed method was tested to reveal the pharmacological effects of two cardiovascular drugs, 

isoprenaline (166nM, 500 nM) and E-4031 (166 µM ,500µM), on whole slide QPI of multiple 

cardiomyocytes were quantified and compared to the control condition. The results demonstrate 

that the cardiomyocytes responded to isoprenaline by increasing the action potential (AP) 

contractile force with a decrease in the resting period. In the presence of E-4031, the AP 

contractile force was declined and the resting period was prolonged.  



 

90 

 

3 Conclusion and Future Research Opportunities 

 This dissertation aimed to show the application of the holographic imaging method for 

cardiac cell analysis. Cardiac cells derived from stem cells are transparent or semi-transparent 

micro object which is used for human disease modeling and cardiotoxicity screening application.   

Despite that many researchers reported different ways of cardiac cell analysis, yet little is known 

about the single cardiac cell. In this desertion, we demonstrated four different research conducted 

to show the different analyses of the cardiac cells at the single-cell level. In our new experiment, 

we would like to see the difference in the kinematic parameter in time dependant cardiac cells at 

the drug-treated cardiac cells. In a new experiment, we would like to propose a method for the 

automatic classification of single drug-treated cardiac cells.  In the presence of the different 

drugs, The beating activity profile of different cardiac cells will change the shape. Also, different 

temporal parameters will dramatically change. This parameter can be used for the automatic 

classification of drug-treated cardiomyocytes at the single-cell level. The studying of drug-

treated single cells contractile force generation changes during time is another study of our 

interest. The beating profile of cardiac cells dramatically changes the shape and temporal 

parameters in the presence of different drugs. We would like to investigate the feasibility of the 

single cardiomyocytes classification based on the beating activity profile. 
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