
 

 

저작자표시 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

l 이차적 저작물을 작성할 수 있습니다.  

l 이 저작물을 영리 목적으로 이용할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/


August 2020 

Master’s Degree Thesis 

A study on coding complexity reduction 

of Low Frequency Non-Separable 

Transform (LFNST) for Versatile Video 

Codec (VVC) 

Graduate School of Chosun University 

Department of Information and Communication 

Engineering 

Ankit Kumar 

[UCI]I804:24011-200000322143[UCI]I804:24011-200000322143



A study on coding complexity reduction 

of Low Frequency Non-Separable 

Transform (LFNST) for Versatile Video 

Codec (VVC) 

 

 

VVC 비디오 코덱의 2차변환 

LFNST의 부호화 복잡도 감소에 관한 

연구 

 
August 28, 2020 

 

Graduate School of Chosun University  

Department of Information and Communication 

Engineering 

 

Ankit Kumar 



A study on coding complexity reduction 

of secondary Low Frequency Non-

Separable Transform (LFNST) for 

Versatile Video Codec (VVC) 

 

 
Advisor: Prof. Bumshik Lee 

 

 

A thesis submitted in partial fulfillment of the 

requirements for a master’s degree in engineering 

 

May 2020 

 

Graduate School of Chosun University 

Department of Information and Communication 

Engineering 

Ankit Kumar 





 

i  

 

 

Table of Contents 

List of Figures ................................................................................... iii 

List of Tables ...................................................................................... v 

Acronyms .......................................................................................... vi 

Abstract ............................................................................................ vii 

요 약 ................................................................................................... ix 

1. Introduction ................................................................................. 1 

1.1 Background ....................................................................................... 1 

1.2 Versatile Video Codec (VVC) .......................................................... 3 

1.2.1 Structure of VVC .......................................................................... 3 

1.2.2 The Overall Structure of Prediction .............................................. 5 

1.2.3 The Overall Structure of the Transform ..................................... 12 

1.3 Objective ........................................................................................ 15 

1.3 Motivation ...................................................................................... 16 

1.4 Thesis Layout ................................................................................. 17 

2. Related Works ........................................................................... 18 

2.1 Introduction to LFNST .................................................................. 18 

2.2 Existing Methods ........................................................................... 21 

2.2.1 A Memory Reduction Approach for LFNST ............................. 21 

2.2.2 A Limiting Coefficients Approach for LFNST .......................... 22 



 

ii  

 

 

2.2.3 A Limiting Coefficients Method and Zeroing Approach ........... 24 

2.3 Problems of Related Works ........................................................... 27 

3. Proposed Method ...................................................................... 28 

3.1 The Key feature of the Proposed Method ...................................... 29 

3.2 Zeroing and Grouping Concept ..................................................... 37 

3.3 Proposed Syntax for VVC Standardization ................................... 41 

4. Experimental Results and Discussion ..................................... 44 

4.1 Experimental Results of the Proposed Method .............................. 44 

4.2 Comparision with state-of-the-art Methods ................................... 48 

5. Conclusions ................................................................................ 52 

References  ....................................................................................... 53 

Acknowledgement ........................................................................... 60 

 

 

  



 

iii  

 

 

List of Figures 

Figure 1-1. A basic block diagram of the video codec ............................................ 1 

Figure 1-2. General block daigram of VVC encoder .............................................. 4 

Figure 1-3. Intra prediction angular and WAIP modes in VVC .............................. 6 

Figure 1-4. ISP horizontal and vertical (2 and 4) partitioning of W × H CU block 8 

Figure 1-5. Design of MIP in VVC for W×H CU block ......................................... 9 

Figure 1-6. Illustration of CCLM_T mode in VVC .............................................. 10 

Figure 1-7. Illustration of straight line between minimum and maximum luma value

 ............................................................................................................ 11 

Figure 1-8. A secondary transform working design model in VVC ..................... 15 

Figure 2-1. Block diagram of forward and inverse secondary transform in VVC. 

 ............................................................................................................ 19 

Figure 2-2. Using the single 16×48 LFNST kernel for 4×4, 8×4, 4×8 and 16×4 

transform block of lower dimensions (left to right).  .......................... 21 

Figure 2-3. The additional zero-out of primary transform coefficients when 4×4 

LFNST is applied  ............................................................................... 23 

Figure 2-4. Additional zeroing out of the primary transform coefficients for the 

when 8×8 LFNST is applied for 8×8 TU block ................................. 23 

Figure 2-5. Applicability of LFNST to the first subblock for 4×N and N×4 TU 

block with N>8 having maximum 16 coefficients. ............................. 26 

Figure 3-1. Pictorial representation of the block diagram of the LFNST computation 

in VVC. ............................................................................................... 30 



 

iv  

 

 

Figure 3-2. Pictorial representation of the additional zeroing of the primary 

transform coefficients ......................................................................... 31 

Figure 3-3. LFNST design for 4×4 TU block with max 8 non-zero bitstream 

coefficients.......................................................................................... 32 

Figure 3-4. LFNST design for 4×8 and 8×4 TU block with max 16 secondary 

transform bitstream coefficients ......................................................... 33 

Figure 3-5. LFNST design for 4×N and N×4 TU block with max 16 secondary 

transform bitstream coefficients ......................................................... 34 

Figure 3-6. LFNST design for 8×8 TU block with max 8 secondary transform 

bitstream coefficients .......................................................................... 35 

Figure 3-7. LFNST design for 16×16 TU block with max 16 secondary transform 

bitstream non-zero coefficients........................................................... 36 

Figure 3-8. 16×16 LFNST sub kernel derivation by zeroing the rightmost part of 

16×48 LFNST kernel elements .......................................................... 37 

Figure 3-9. Sub-sampled 16×16 kernel for LFNST set index=0 and index =0 with 

grouped even and odd rows ................................................................ 40 

Figure 3-10. 16×16 LFNST applied to 4×4 TU block resulting in 8 residual 

coefficients as output .......................................................................... 40 

 

 

 

  



 

v  

 

 

List of Tables 

   Table 1. Number of sub-partitions based on block size ...................................... 7 

   Table 2. MTS transform kernel based on the prediction tool and block size ... 13 

   Table 3. Mapping of LFNST kernel transform set index with the intra prediction 

modes .................................................................................................. 20 

   Table 4. The total number of LFNST kernel used with respect to the transform 

unit (TU) size along with memory requirement ................................. 25 

   Table 5. LFNST kernels used in VTM-5.0.  ..................................................... 28 

   Table 6. Proposed LFNST kernels used in VTM-5.0 ....................................... 28 

   Table 7. Specification of the LFNST kernel set index with the intra prediction 

mode of the TU’s. ............................................................................... 29 

   Table 8. Proposed method simulation results for All Intra configuration ........ 44 

   Table 9. Proposed method simulation results for RA Intra configuration ........ 44 

   Table 10. Simulation results of AI configuration ............................................... 46 

   Table 11. Simulation results of RA configuration .............................................. 47 

   Table 12. Simulation results of proposal in [22] ................................................ 48 

   Table 13. Simulation results of proposal in [21] ................................................ 50 

   Table 14. Simulation results of proposal in [20] ................................................ 51 

 

 



 

vi  

 

 

Acronyms 

 
VVC  Versatile Video Codec 

DCT  Discrete Cosine Transform 

DST  Discrete Sine Transform 

LFNST Low frequency Non-Separable Transform 

CTC  Common Test Conditions 

VTM  VVC Test Model 

EncT  Encoding Time 

DecT  Decoding Time 

AI  All Intra 

RA  Random Access 

LDB  Low Delay B 

QP  Quantization Parameter 

CABAC Context-Adaptive Binary Arithmetic Coding 

AVC   Advanced Video Coding 

HEVC  High Efficiency Video Coding 

HDR  High Dynamic Range 

ROM  Read Only Memory 

TU  Transform Unit 

CU  Coding Unit 

TB  Transform Block 

CB  Coding Block 

  

 



 

vii  

 

 

Abstract 

A study on coding complexity 

reduction of secondary Low 

Frequency Non-Separable Transform 

(LFNST) for Versatile Video Codec 

(VVC) 
 

Ankit Kumar 

Advisor: Prof. Bumshik Lee, 

Department of Information and 

Communication Engineering 

Graduate School of Chosun University 

 

The transform is an essential module of the codec where the 

transformation of the residual block in pixel domain is converted to the 

coefficient block in frequency domain. In the standardization of 

Versatile Video Codec (VVC), the secondary transform is recently 

introduced as Low Frequency Non-Separable Transform (LFNST), to 

achieve better compression efficiency for the highly dynamic images 

with textures and edges in comparison to the primary transform. The 

secondary transform in VVC uses two sets of kernels of size 16×16 and 

16×48 depending on the transform unit (TU) block size and indexing 

based on the intra prediction mode of the TU block. Although the 

secondary transform has a greater impact for the better coding efficiency 

and compression, its implementation is very complex and requires a lot 

of mathematical computations. Also, the storage of the secondary 



 

viii  

 

 

transform kernels is a major concern as it takes 8KB of memory in VVC. 

In this thesis, a novel coding complexity reduction method is proposed 

that uses only 16×48 transform kernel for all TU block size, which 

reduces the overhead of selecting the transform kernel set depending 

upon the TU size and saves 2KB of memory while storing the transform 

kernels. Apparently, the indexing of the kernel based on the intra 

prediction mode is kept same for all TU’s. The proposed method gives 

maximum of 16 non-zero output residue coefficients in the bitstream, by 

zeroing the primary transform coefficients reducing the mathematical 

computation complexity of the LFNST and quantization process. The 

proposed method also provides a novel approach to derive the sub-

sampled kernel from 16×48 kernel to apply for the lower TU blocks of 

dimension 4×N and N×4 (N>=4). The experiments are performed in 

VTM-5.0 reference software under the common test conditions (CTC). 

The results on the Bjontegaard delta bitrate (BDBR) of the proposed 

method show no significant loss for All Intra (AI) and Random Access 

(RA) configuration. However, for AI configuration, it showed a gain of 

0.02% for U-chroma with 94% encoding time and 98% decoding time, 

whereas for RA configuration, a benefit of 0.01% for V-chroma is 

obtained with 97% encoding time. Overall, the proposed method shows 

a substantial reduction by 6% in the encoding time.  

Index terms- VVC, LFNST, BDBR, CTC, coding block, transform 

block 



 

ix  

 

 

요 약 

VVC 비디오 코덱의 2차변환 

LFNST의 부호화 복잡도 감소에 

관한 연구 
                                                          안킷 쿠마르 

  지도교수: 이범식  

               조선대학교대학원,  

                              정보통신공학과             

 

비디오코덱에서 변환은 픽셀 영역의 잔차 신호를 주파수 영역의 

변환계수로 변환시키는 중요 툴 중의 하나이다. VVC (Versatile 

Video Codec) 비디오 표준 코덱에서, 1차 변환 실행 후 1차 변환 

계수에 대해 다시 변환을 수행하는 2차 변환이 채택되었으며, 

2차 변환은 텍스처 및 엣지가있는 동적인 이미지의 압축 효율을 

높이기 위해 저주파 비 분리형 변환 변환 방법 (LFNST)을 

사용한다. VVC의 2 차 변환은 변환 단위 (TU) 블록 크기 및 TU 

블록의 인트라 예측 모드에 따라 다른 커널이 할당되고, 16×16 및 

16×48 크기의 두 커널 조합를 사용하여 비분리 변환과정을 

수행한다. VVC에서 2차 변환은 큰 압축 효율 향상을 가져다 

주었지만 그 복잡도가 크고 많은 계산량을 필요로 하고 변환 

커널이 인트라모드와 변환 크기에 따라 매우 다양하게 정의된 



 

x  

 

 

커널을 사용하므로, 많은 양의 커널 데이터를 저장해야 한다는 

단점이 존재한다. 본 학위 논문에서는 이러한 단점을 해결하기 

위해 모든 TU 블록 크기에 16×48 변환 커널 만 사용하는 새로운 

코딩 복잡도 감소 방법이 제안한다. 제안 방법을 사용하면 인트라 

예측 모드에 기반한 커널의 인덱싱은 모든 TU에 대해 동일하게 

유지하면서 TU 크기에 따라 변환 커널 세트를 선택하는 오버 

헤드를 줄이고 변환을 저장하는 동안 2KB의 메모리를 절약할 수 

있다. 또한 제안된 방법은 1 차 변환 계수를 0으로 처리함으로써 

LFNST 및 양자화 프로세스의 계산 복잡성을 감소시켜 비트 

스트림에서 최대 16 개의 출력 잔차 계수를 제공한다. 제안된 

방법은 크기가 4xN 및 Nx4 (N> = 4) 인 TU 블록에 적용하기 

위해 16x48 커널에서 서브 샘플링 커널을 유도하는 방법도 

포함된다. 제안된 방법은 공통 테스트 조건 (CTC)을 이용하여 

VTM-5.0 참조 소프트웨어에서 수행되었고 복잡도 감소 및 커널 

수의 감소에도 불구하고 BDBR (Bjontegaard delta bitrate) 

결과는 AI (All Intra) 및 RA (Random Access) 조건에서 손실을 

보이지 않았다. AI 경우 인코딩 시간이 94 %이고 디코딩 시간이 

98 % 인 U-chroma의 경우 0.02 %의 이득을 얻었으며, RA의 

경우 97 %의 인코딩 시간을 가지므로 V-chroma의 경우 0.01 

%의 이득을 보여주었다.  

 

 

  



 

1  

 

1. Introduction 

1.1 Background 

Generally, a video codec is a device or software that is used to compress or 

decompress a digital media, such as a video or image. The word “codec” is 

composed of 2 parts: encode and decode. The encoder performs the 

compression (encoding) function, whereas the decoder performs the 

decompression (decoding) function [1]. The basic block diagram of the video 

codec is shown in Fig. 1-1. 

 

Figure 1-1. A basic block of the video codec 

In video coding, initially the video source undergoes through the prediction 

module at the block level. The prediction coding refers to predicting the 

similarity of the picture region in a particular picture or frame. The codec has 

two kinds of prediction i.e., Inter prediction [2] and Intra prediction [3]. If the 

prediction is made from the previously coded block, from the current frame, it 

is said to be intra prediction. Whereas, if the prediction is made from other 

frames that has already been coded, it is referred as inter prediction. Finally, 

subtraction of the prediction from the current block is performed to obtain the 

predicted residual. After that, the transform and quantization process [4] is 



 

2  

 

performed. In transform, basic transform kernels such as DCT-2 [5], DST-7 

[6], DCT-8 [7], DST-4, and DCT-4 [8] are used, where a block with the 

predicted residues is transformed using integer operations [9-10]. As a next 

step, the output of the transform process i.e., the non-zero coefficients are 

quantized, where each coefficient is quantized by quantization step size. The 

quantization reduces the precision of the transform coefficients according to a 

quantization parameter (QP). Higher QP values are likely to make coefficients 

zero, resulting in high compression at the expense of lower image or video 

quality. On the other hand, lower QP values are likely to have more non-zero 

coefficients resulting in better-decoded video or image quality but lower 

compression. After these steps, the encoding process is done where several 

values are encoded to form the compressed bitstream. The values and 

parameter (syntax elements) are converted into binary codes using variable 

length coding [11] and/or arithmetic coding [12-13] and/or Context-Adaptive 

Binary Arithmetic Coding (CABAC) [14-15]. The encoded bitstream can then 

be stored or transmitted. 

After all those encoding procedures, decoding is done from each of the 

syntax elements and extracted the information described above (quantized 

transform coefficients, prediction information, etc.). The inverse process is 

performed on the decoder side for each step mentioned above in the encoder. 

The quantized transform coefficients are re-scaled, where each coefficient is 

multiplied by an integer value to restore its original scale. Similarly, an inverse 

transform is applied to re-create each block of residual data which combined 

to form a residual macroblock. Finally, the decoder adds the prediction to the 

decoded residual to reconstruct a decoded different macroblock, which can 

then be displayed as part of a video frame. 



 

3  

 

In the video coding, various standardization works have been carried out with 

their own specialization in each standardization. Some of the standardizations 

that have been carried out are H.261 [14], H.262 [15], H.263 [16], 

H.264/Advanced Video Coding (AVC) [17], H.265/High Efficiency Video 

Coding (HEVC) [18]. Recently, the Versatile Video Coding (VVC) [19] is 

being standardized,  whose main objective is to provide a significant 

improvement in compression performance over the existing HEVC standard 

[18] and also aid the deployment of higher-quality video services and 

emerging applications such as 360° omnidirectional immersive multimedia 

and HDR video [24]. 

1.2 Versatile Video Codec (VVC) 

1.2.1 Structure of VVC 

VVC is a codec which is designed by the collaborative team of ITU-T and 

ISO/IEC experts known as the Joint Video Experts Team (JVET). The codec 

is a successor to the HEVC and is designed to meet the upcoming need in the 

domain of video conferencing, OTT streaming, mobile telephony, and many 

other fields. The VVC codec is more efficient as it is targeted to provide 

approximately 50% bitrate reduction to the HEVC codec and high efficiency 

for compression. The codec is said to be versatile because it is targeted to 

address all of the video needs from low resolution and low bitrates to high 

resolution and high bitrates. The advantage of VVC over other prior codecs 

can be measured in terms of better bitrate gain, compression efficiency and 

addition of coding tools for different modules describes below. The overall 

block diagram of the encoder is illustrated in Fig. 1-2. 



 

4  

 

 

Figure 1-2. General block diagram of the VVC encoder. 

The overall encoder side of the VVC shows the similar modules and coding 

techniques as the prior standards of codecs. Firstly, the input video is passed 

to the encoder, and the partitioning is performed on the coding units (CUs) 

based on the Multiple Tree Type (MTT) [27] partitioning which also supports 

the binary tree (BT) [1], ternary tree (TT) [1] and quad tree (QT) [1] structure 

for partitioning the block in to multiple CU’s. The CU is a coding block of a 

luma sample and two corresponding coding blocks of chroma samples of a 

picture. The partitioned block is sent for the prediction module which can be 

either intra prediction or inter prediction and the output residual is sent for 

transformation in form of transform unit (TU). The TU is a transform block of 

luma samples and two corresponding transform blocks of chroma samples of 

a picture and syntax structures used to transform the transform block samples. 

The transform module has two sets of transform i.e., primary transform and 

secondary transform. The primary transform uses the kernels like DCT-2 [5], 

DST-7 [6], DCT-8 [7], DST-4, and DCT-4 [8] where a block with predicted 



 

5  

 

residuals is transformed using the integer operations and the output of primary 

transform residuals are sent for the secondary transform. The secondary 

transform commonly known as Low Frequency Non-Separable Transform 

(LFNST) uses the set of transform kernels of dimension 16×16 and 16×48, 

for matrix multiplication with the output residues of primary transform and 

gives the non-zero secondary transform residual coefficients. The output 

residual of secondary transform is sent for quantization. The output bitstreams 

are then entropy encoded and the compressed data is gained which is sent to 

the decoder to follow the reverse order of the modules used at the encoder to 

decode the input video. 

 A lot of new coding tools for the intra prediction and transformation has 

been introduced in VVC. For intra prediction, we use Intra Sub-Partitioning 

(ISP) [2], Matrix Intra Prediction (MIP) [3], Cross Component Linear Model 

(CCLM) [26], whereas the transform module has introduced the secondary 

transform coding tools i.e., Low Frequency Non-Separable Transform 

(LFNST) which is further discussed in the further sections. As, the main goal 

of the VVC is to attain more bitrate gain and compression efficiency than the 

other standard codecs, the standardization work for VVC is still on-going.  

1.2.2 The Overall Structure of Prediction 

In VVC, the decision to whether code a picture area using inter picture or 

intra picture prediction is made at the CU level. The prediction coding refers 

to predicting the similarity of the picture region in a particular picture or frame. 

A prediction unit (PU) partitioning structure has its root at the CU level. 

Depending on the basic prediction type decision, the luma and chroma CB’s 

are further split in different block sizes and predicted from luma and chroma 



 

6  

 

prediction blocks (PBs). VVC uses two kinds of prediction i.e., inter prediction 

and intra prediction. 

1. Intra prediction 

A regular pattern in textures of natural images can be represented by 

geometric models. This feature is used in intra prediction [2] methods in order 

to remove redundancies in the spatial domain. In intra prediction, the 

prediction is made from the previously decoded boundary samples from the 

spatially neighboring TBs are used to form the prediction signal. The 

prediction block (PB) ranges from the dimension 4×4 to 64×64 and there are 

altogether 67 intra modes used for the prediction. Out of the 67 intra modes, 

we have 65 angular modes ranging from 2 to 66, whereas mode 0 and 1 are 

referred as Planar and DC mode, respectively. The DC mode prediction uses 

the average value of reference sample for prediction and the Planar mode 

prediction uses average values of two linear predictions using four corner 

reference samples to prevent discontinuity along the block boundaries.  

 

Figure 1-3. Intra prediction angular and WAIP modes in VVC. 



 

7  

 

All the angular modes reside by the left diagonal line of the square block as 

shown in Fig. 1-3. The concept of Wide Angle Intra Prediction (WAIP) [2] is 

also introduced in VVC, for the angular modes that are calculated beyond the 

left diagonal angles which ranges from mode -2 to -14 to the left reference 

boundary sample and from mode 67 to 80 to the top reference boundary sample 

only for the rectangle CU’s. The objective of the intra prediction is to find the 

best model parameters that maximizes the similarity to the original block. 

Some of the newly added main intra coding tools are described in detail below: 

❖ Intra Sub-Partition (ISP) 

The newly added coding tool for intra prediction in VVC, is ISP [33], where 

the CU is divided into 2 or 4 partitions, either horizontally or vertically 

depending on the block size. It partitions the higher block sizes into smaller 

blocks which are easy for processing and gives efficient coding gain. The 

partitioning of the CU block can be inferred from the Table. 1 and visual 

illustration of the partitioning of W × H CU block in horizontal and vertical 

direction can be seen in Fig. 1-4. 

Table 1. Number of sub-partitions based on block size 

Block size Number of sub-partitions 

4 × 4 Not divided 

4 × 8 and 8 × 4 2 

All other cases 4 

 



 

8  

 

 

 

Figure 1-4. ISP horizontal and vertical (2 and 4) partitioning of W × H CU block. 

❖ Matrix Intra Prediction (MIP) 

MIP [34] is also the newly added intra coding tool in VVC, where the original 

CU block is down sampled into sub-CU (bdryred) by averaging the top and left 

boundary samples, followed by matrix vector multiplication and addition of 

offset given in equation (1). 

               Bdryred = Ak . bdryred + bk  ,                              (1) 



 

9  

 

 The obtained result Bdryred i.e., the result after the matrix vector 

multiplication, is up sampled by linear interpolation first in horizontal 

direction followed by vertical direction. Ak represents the MIP matrix and bk 

represents the offset vector used based on intra mode ‘k’. MIP has three set of 

matrices and offset vectors for the matrix vector multiplication which is 

obtained based on the intra mode of the CU. The set S0 has 18 matrices of 

dimension 16×4 and 18 offset vector of size 16 and is used for CU blocks of 

dimension 4×4. The set S1 has 10 matrices of dimension 16×8 and 10 offset 

vector of size 16 and is used for CU blocks of dimension 8×4 and 4×8. The 

last set S2 has 6 matrices of dimension 64×8 and 6 offset vector of size 64 used 

for all other block’s sizes greater than 4×8 and 8×4 CU block. 

 

Figure 1-5. Design of MIP in VVC for W × H CU block. 

❖ Cross Component Linear Model (CCLM) 



 

10  

 

Another important intra coding tool to calculate the prediction mode of 

chroma block is given by Cross Component Linear Model (CCLM) [26]. 

CCLM predicts the chroma sample values using the co-located reconstructed 

luma samples with a local linear regression model. The CCLM includes 

CCLM_L, CCLM_T and CCLM_TL mode, where the left, top and top-left 

samples are used to determine the chroma prediction mode using the linear 

model based on the linear model parameters 𝛼  and 𝛽 . For example, in the 

CCLM_T mode, only the top template or the top reference sample is used to 

calculate the linear model parameters. To get more reference samples, the 

number of reference sample is taken twice the original size (2W) as shown in 

Fig. 1-6. 

 

Figure 1-6. Illustration of CCLM_T mode in VVC. 

 In the current VVC, a simplified line fitting method is being used for the 

CCLM. Initially, the luma sample is down sampled to corresponding luma and 

chroma sample depending upon either of the CCLM modes as shown in Fig. 

1-6. CCLM uses a six-tap down sampling filter while down sampling the 

original luma sample. This requires two rows of neighbouring luma sample 

above the current block and three columns of neighbouring luma sample left 



 

11  

 

of the current block. Then the model parameters are calculated as shown in 

equation (2)-(3) based on the co-ordinates representing the maximum and 

minimum luma values in Fig. 1-7. 

 

Figure 1-7. Illustration of straight line between minimum and maximum luma 

value. 

The linear model parameters are calculated as - 

        α =
𝑦𝐵−𝑦𝐴

𝑥𝐵−𝑥𝐴
                                                 (2) 

       𝛽 =  𝑦𝐴 − 𝛼𝑥𝐴 ,             (3) 

2. Inter prediction 

The inter prediction [27] performs the prediction to remove the dependencies 

in the temporal domain i.e., the prediction is made based on the previously 

coded picture not same picture frame. The objects and regions of the picture 

taken from the video source approximately contains similar pixels, though 

slightly displaces. The core idea of the inter prediction is to model the 



 

12  

 

displacement of these regions/objects restricted to rectangular blocks. A 

technique known as Motion Estimation (ME) [27] is used for the inter 

prediction which takes two inputs as the original block to model and a 

reference frame shifted in time. Motion estimation finds a motion vector (MV) 

[1] among a set of candidates by maximizing the similarity between the 

original block and the displaces block taken in reference. 

1.2.3 The Overall Structure of the Transform 

VVC uses the transform coding of the prediction error residual in a similar 

manner as in prior codec standards. The residual block is partitioned into 

multiple square or rectangle transform blocks (TBs) and is further computed 

by the core transform i.e., primary transform and further computed by 

secondary transform i.e., LFNST and the output bitstreams are sent for 

quantization. 

The primary two-dimensional transforms are computed by applying one 

dimensional transform in the horizontal and vertical directions. The elements 

of the core transform matrices are derived by approximating the scaled 

Discrete Cosine Transform (DCT) [7] and Discrete Sine Transform (DST) [8] 

basis functions, considering the necessary dynamic range for transform 

computation, maximizing the precision and maintaining the orthogonality of 

the matrices which are specified as integer values [1]. For primary transform, 

basic transform kernels such as DCT-2, DST-7, DCT-8, DST-4, and DCT-4 

are used and are referred as Multiple Transform Set (MTS). These different 

kernels are useful because of their different energy distribution properties, 

although memory storage to store different block size kernel is always one of 



 

13  

 

the major concerns. In VVC, the use of MTS transform kernel based on 

prediction and block size is shown in Table. 2. 

Table 2. MTS transform kernel based on the prediction and block size. 

Prediction Prediction tools Block size MTS transform kernel 

 

Intra 

ISP (Intra Sub-

Partition) 
4×4 up to 

16×16 

DCT-2, DST-7 

MIP (Matrix Intra 

Prediction) 
4×4 up to 

64×64 

DCT-2, DST-7, DCT-8 

Normal Intra 4×4 up to 

64×64 

DST-7, DCT-8 

Inter SBT (Sub-Block 

Transform) 
4×4 up to 

64×64 

DCT-2, DST-7, DCT-8 

(depends on SBT position) 

 

In general, a DCT and DST is a Fourier related transform similar to the 

Discrete Fourier Transform (DFT). DCT is the real part and DST is the 

imaginary part of the DFT. There are eight variants of DCT and DST. The 

most common variant of discrete cosine transform is type-II DCT also known 

as DCT-2. The DCT has a strong energy compaction property with lossy 

compression as the signal information is concentrated in a few low-frequency 

components. It is effective only when there is no difference in the residual after 

prediction that is why DCT-2 is mainly effective for the inter prediction. 

Regarding the usage of DST-7 and DCT-8, it is also regarded as lossy 

compression with strong compaction property as that of DCT-2. They produce 

more coding gains for boundary and intra prediction. DST-4 and DCT-4 can 



 

14  

 

be used as the replacement of the DST-7 and DCT-8 transform kernels as they 

show the similar signal behavior. 

The secondary transform is a higher order transform and is applied between 

forward primary transform and quantization (at encoder) and between de-

quantization and inverse primary transform (at decoder side). The secondary 

transform i.e., LFNST has its own set of transform kernels which is multiplied 

with the output residual coefficients of the primary transform. There are two 

sets of secondary transform kernel of dimension 16×16 and 16×48 which 

takes 8KB of memory storage. The selection of the transform kernel is 

dependent on the intra prediction mode of TB as shown in Table. 3. As shown 

in Fig. 1-8, 4×4 (or 8×8) secondary transform is performed depends on block 

size. For example, 4×4 secondary transform is applied for small blocks (i.e., 

min (width, height) < 8) and 8×8 secondary transform is applied for larger 

blocks (i.e., min (width, height) > 4) per 8×8 block. 



 

15  

 

 

Figure 1-8.  The secondary transform working design model in VVC. 

The major proposed concept of this thesis is to focus on the memory storage 

along with the implementation of the efficient design of the secondary 

transform with reduced complexity. In this thesis, the proposed method 

reduces the computation complexity along with saving of memory by 2KB, as 

the LFNST kernels require 6KB of memory storage instead of 8KB. 

1.3 Objective 

The secondary transform is regarded as the prime component during the 

process of compression and decompression in video coding; the goals and 

ideas for this research set are as following: 

∙ Derive the secondary transform kernels indexed, based on the intra 

prediction mode. 



 

16  

 

∙ Reduce the transform kernel storage from 8KB to 6KB. 

∙ Exhibit the characteristics of different transform block computation 

with respect to the secondary transform kernels based on the intra 

prediction modes 

∙ Use only one secondary transform kernel of size 16×48 for 

transform blocks of order 4×N and N×4 where N>=4 to show the 

efficient reduced complexity of operations. 

1.4 Motivation 

In the standardization of VVC, the non-separable secondary transform is 

widely used as compared to the separable discrete cosine transform (DCT) and 

the separable discrete sine transform (DST) for the video compression. 

Although DCT is an efficient approximation of optimal separable primary 

transform, it is not flexible for the highly dynamic images with textures and 

edges. The secondary transform is only applied to the intra-coded blocks with 

intra and inter slices.  Recently, in the undergoing of the standardization of 

VVC, two secondary transform kernels were used for the VVC Test Model 

(VTM) i.e. 16×16 kernels for 4×4, 4×N, N×4 (N>4) TU and 16×48 kernel 

for 8×8, N×8, 8×N (N>8) TU. Apparently, the selection of this transform 

kernel is based on the indexing of the transform set with respect to the intra 

prediction mode of the transform block, as shown in Table. 3. Also, for the 

4×4 transform blocks, the sub-sampled kernel is derived from the 16×16 

kernel to get the maximum of 8 coefficients in the residue. The prime 

consequence of the existing design is the memory storage of the secondary 

transform kernels, which takes 8KB of memory to store all kernels along with 

the complexity and latency reduction issues. 



 

17  

 

Several proposals were presented to solve the memory and complexity 

reduction issue. These proposals tried to use a single kernel but could not 

reduce the complexity with the mathematical computation of the LFNST 

process. Some proposals tried to only reduce the complexity giving a limiting 

number of output residue coefficients in the bitstream for quantization, still 

keeping the memory storage of the kernel same as 8KB for either 4×4 LFNST 

or 8×8 LFNST design. 

Hence, to overcome the issues, a simpler LFNST design with a single 

secondary transform kernel of 16×48 is used, and sub-sampled kernels are 

used for the smaller transform blocks i.e., 4×4, 4×N, N×4 (N>4) applied with 

4×4 LFNST. For 8×8 LFNST for the higher transform block size i.e., 8×8, 

N×8, 8×N (N>8), the kernel 16×48 remains the same. Also, the proposed 

method reduces the output residue coefficients to a maximum of 16 non-zero 

coefficients, zeroing all the primary transform coefficients in the bitstream, 

which speeds up the encoder reducing the complexity and latency issue in the 

VTM. Since the secondary transform is applied post-primary transform on the 

transform blocks, it totally supports the fast algorithm implementation of 

DCT-2 and DST-7 transform kernels of the primary transform [25]. 

1.5 Thesis Layout 

The rest of the thesis is organized as follows: Section 2 exhibits the related 

work. Section 3 describes the proposed method i.e., the usage of the single 

secondary transform kernel of size 16×48 to calculate the residual of the 

transform blocks of size 4×N and N×4 where N>=4 computed after under-

going primary transform along with zeroing concept. Section 4 provides all the 

experimental results, followed by the conclusion of this thesis in Section 5. 



 

18  

 

2. Related Works 

2.1 Introduction to LFNST 

In the different trends of standardization, the non-separable secondary 

transform has been evolved efficiently along with the primary transform. 

Although DCT is an efficient approximation of optimal separable transform, 

it’s adaptivity with the fixed core is limited for the highly dynamic images 

with textures and arbitrarily detected edges. Hence non-separable transform 

can achieve better compression efficiency over the video/image with 

directional texture patterns. 

 The Low Frequency Non-Separable Transform (LFNST) is currently used 

in the VVC model, which has two sets of transform kernel matrix of 16×16 

and 16×48 dimensions. Memory storage has become one of the major 

problems for the codecs recently while applying the fast algorithm along with 

the less memory storage to transform kernels has become a challenging task to 

be performed. 

The application of a non-separable transform i.e., LFNST is described as 

follows using input as an example. To apply the non-separable transform, for 

the 4×4 input block X which is represented below in equation (4). 

                        𝐗 = [

𝑥00 𝑥01

𝑥10 𝑥11

𝑥02 𝑥03

𝑥12 𝑥13
𝑥20 𝑥21

𝑥30 𝑥31

𝑥22 𝑥23

𝑥32 𝑥33

]                                     (4) 

X is first represented as a one-dimensional vector 𝐗 as (5) 

𝐗 = [𝑥00 𝑥01 𝑥02 𝑥03 𝑥10 𝑥11 𝑥12 𝑥13 𝑥20 𝑥21 𝑥22 𝑥23 𝑥30 𝑥31 𝑥32 𝑥33]𝑇        (5) 

The non-separable secondary transform is calculated by (6) 



 

19  

 

                                                𝐅 = 𝐓𝐗 ,                                                      (6) 

where 𝐅 indicates the transform coefficient vector, and 𝐓 is a 16×16 transform 

matrix. The 16×1 coefficient vector 𝐅 is subsequently re-organized as 4×4 

block using the scanning order for that block (horizontal, vertical, or diagonal). 

The coefficients with a smaller index will be placed with the smaller scanning 

index in the 4×4 coefficient block. The mapping from the intra prediction 

mode to the transform set is pre-defined. For each transform set, the selected 

non-separable secondary transform candidate is further specified by the 

explicitly signaled secondary transform index. The index is signaled in a 

bitstream once per intra coding unit after transform coefficients. The visual 

illustration of the forward and inverse secondary transform is given in Fig. 2-

1. 

 

Figure 2-1. Block diagram of forward and inverse secondary transform in VVC. 

An inverse secondary transform i.e., LFNST which was earlier known as 

Reduced Secondary Transform (RST) [35] is conditionally applied when the 

following two conditions are satisfied: 

1. Block size is greater than or equal to the given threshold (W>=4 && 

H>=4) 

2. The transform skip mode flag is equal to 0. 

Furthermore, LFNST is applied for intra-coded CU in both intra and inter 

slices, and for both luma and chroma. If a dual-tree is enabled, LFNST indices 

for luma and chroma are signaled separately. For inter slice (the dual-tree is 



 

20  

 

disabled), a single LFNST index is signaled and used for both luma and 

chroma. The LFNST is also applied to the TU’s which is a Matrix Intra 

Prediction (MIP) coded block along with the normal intra predicted block with 

general intra prediction and wide-angle modes. Since the secondary transform 

kernel is selected from the transform kernel set, determined by the intra 

prediction modes, the mapping of the intra prediction modes and transform set 

index is shown below in Table. 3. 

Table 3. Mapping of the LFNST kernel set index with the intra prediction mode 

Intra prediction mode LFNST kernel set index 

Intra_pred_mode < 0 1 

0 <= Intra_pred_mode <= 1 0 

2 <= Intra_pred_mode <= 12 1 

13 <= Intra_pred_mode <= 23 2 

24 <= Intra_pred_mode <= 44 3 

45 <= Intra_pred_mode <= 55 2 

56 <= Intra_pred_mode <= 80 1 

81 <= Intra_pred_mode <= 83 0 

 

The mode 81 to 83 determines the CCLM [26] modes. Whenever if any of 

the three CCLM modes is indicated, the index is set to 0, the same as for the 

Planar and DC mode. 

In the stage of standardization, there are few related works for the reduction 

of the complexity for LFNST as standard contributions by some participants 

of the standardization which is mentioned in the next section. 



 

21  

 

2.2 Existing Methods 

2.2.1 A Memory Reduction Approach for LFNST 

This contribution [22] proposes to unify the LFNST calculation and attempts 

to reduce the memory cost by using a single 16×48 kernel for LFNST. For the 

transform blocks of size 4×N and N×4, they considered as part of 8×N, and 

N×8 blocks with only the overlapping part with 16×48 kernel basis is used. 

Currently, in the VTM, two different kernels are used for LFNST i.e., 16×16 

and 16×48 kernels, but this proposal proposes to use the later kernel for all 

block sizes. The proposed method provides the following benefits: saving the 

memory storage for the kernels, i.e., 2KB, simplifying the computation of 

LFNST, and the spec text is much simplified. This proposed method gives 

0.05%, 0.01% luma BD-rate changes for All Intra (AI) and Random Access 

(RA) configurations, respectively, with 3% overall encoding time saving for 

AI, with simulations over VTM-5.0 under CTC conditions. 

Eventually, for forward LFNST when we apply 16×48 kernel for 4×N and 

N×4 block, only the overlapping part with basis is used further for the 

secondary transform. The illustration for applying 16×48 LFNST kernel for 

4×4, 4×8, 8×4 and 16×4 transform blocks (TB) are shown in the shaded 

region below in Fig. 2-2. 

 

Figure 2-2. Using the single 16×48 LFNST kernel for 4×4, 8×4, 4×8 and 16×4 

transform block of lower dimensions (left to right). 



 

22  

 

Consecutively, for the inverse LFNST, either 8 or 16 coefficients are given 

as input, and 48 coefficients samples are gained at the output, which forms the 

L-shaped as mentioned above in Fig. 2-2. The coefficients present only inside 

the block region need to be calculated, and the remaining samples are not 

calculated. For 4×4 transform unit, only 8 coefficients from the top left 4×4 

region is calculated along with 16×48 kernel as output. Also, to maintain the 

worst-case multiplication per coefficient intact, they calculate only 8 

coefficients for 4×8 and 8×4 transform units 

2.2.2 A Limiting Coefficients Approach for LFNST 

This contribution [21] proposed several variations to reduce the complexity 

of the LFNST process and the simplification. The contribution was presented 

with four different aspects where each aspect with their individual simulation 

results and detailed analysis is also presented. The aspects were: 

a) A maximum of 16 LFNST coefficients as the output residue is 

targeted to obtain, whereas before 32 LFNST coefficients were 

obtained from the two top left adjacent 4×4 blocks in 4×N or N×4 

TU’s (N>4). 

b) Additional zeroing of the primary transform coefficients to be done 

when LFNST is applied to 4×4 TU block. 



 

23  

 

 

Figure 2-3. The additional zero-out of primary transform coefficients when 4×4 

LFNST is applied. 

c) Additional zeroing of the primary transform coefficients to be done 

when LFNST is applied to 8×8 TU block. 

 

Figure 2-4. Additional zeroing out of the primary transform coefficients for the 

when 8×8 LFNST is applied for 8×8 TU block.  

d) Changing of the region where non-zero residual transform 

coefficients are taken in consideration.   



 

24  

 

 All the above-mentioned aspects were simulated all together in VTM-5.0 

under the CTC condition with 0.6% BD-rate over All Intra (AI) with 90% 

EncT, 0.02% BD-rate over Random Access (RA) with 97% EncT. It is seen 

that zeroing the 8×8 LFNST has more impact on the complexity reduction 

rather than the 4×4 LFNST zeroing. The comparison in the Section 4.2 gives 

more insight about the results of this contribution. This proposal also reduced 

the processing latency in the two sets of transform kernels, which helps for the 

real-time encoder optimization. Although it was still questionable if the 

normative changes made over VTM was beneficial for further standardization. 

2.2.3 A Limiting Coefficients and Zeroing Approach for 

LFNST 

In this proposal [20], they propose to restrict all the coefficients outside the 

first sub-group coefficients to be non-significant. Since the secondary 

transform is applied to the top-left subset of the residual of the primary 

transform, in this proposal the remaining non-significant primary transform 

coefficients are made to be zero when LFNST is applied. The proposal allows 

condition on the signaling of the LFNST index on the last significant position, 

which helps to avoid the extra scanning of the coefficients present in the 

current design, which was needed just to check for the significant coefficients 

at a particular specific position. 

 

 

 



 

25  

 

Table 4. The total number of LFNST kernel used with respect to the transform unit 

(TU) size along with memory requirement. 

Transform blocks LFNST Kernels 

4×4 16×8 

4×N, N×4; N>8 16×16 

8×8 48×8 

M×N; (M, N)>8 48×16 

LFNST candidates 2 

Memory requirement 8KB 

 

The proposal maintains the handling of the worst-case scenario (multiplication 

per pixel) by restricting the secondary transform for 4×4 and 8×8 transform 

blocks to 8×16 and 8×48 transform kernels. Total multiplications per 

coefficient for transform units of M × N with zeroing is given as: 

                   𝑀𝑢𝑙𝑠_𝑝𝑒𝑟_𝑐𝑜𝑒𝑓𝑓𝑑𝑖𝑟𝑒𝑐𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 =
𝑚

𝑀
𝑛 + 𝑚                   (7) 

           𝑀𝑢𝑙𝑠_𝑝𝑒𝑟_𝑐𝑜𝑒𝑓𝑓ℎ𝑎𝑙𝑓𝐵𝑢𝑡𝑡𝑒𝑟𝐹𝑙𝑦 =
𝑚

𝑀
(

𝑛

2
+ log2

𝑛

2
) + (

𝑚

2
+ log2

𝑚

2
) ,  (8) 

where 𝑀𝑢𝑙𝑠_𝑝𝑒𝑟_𝑐𝑜𝑒𝑓𝑓𝑑𝑖𝑟𝑒𝑐𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦  indicates the direct matrix 

multiplication of the entire TU with the entire LFNST kernel, whereas 

𝑀𝑢𝑙𝑠_𝑝𝑒𝑟_𝑐𝑜𝑒𝑓𝑓ℎ𝑎𝑙𝑓𝐵𝑢𝑡𝑡𝑒𝑟𝐹𝑙𝑦  indicates the multiplication of the LFNST 

kernels only to the significant coefficients required by secondary transform 

zeroing out the primary transform coefficient following the half-butterfly 

scanning order. 

For the mentioned block size case, last significant position of the scanning 

must be less than 8, while for other blocks it must be less than 16 when LFNST 



 

26  

 

is applied. For 4×N and N×4 TU with N>8, the proposal restriction exhibits 

the applicability of LFNST only once to the top left 4×4 region as shown in 

Fig. 2-5. 

 

Figure 2-5. Applicability of LFNST to the first subblock for 4×N and N×4 TU 

block with N>8 having a maximum 16 coefficients. 

As seen from the figure mentioned above, all the primary transform 

coefficients present on the right side of the transform block lightly shaded is 

deliberately zeroed out. With this approach, the quantization of the coefficients 

is significantly simplified when LFNST is tested over VTM reference 

software. Also, the rate-distortion optimized quantization is carried out to be 

maximum for the first 16 coefficients, following the scanning order, and 

remaining coefficients are made to be zero. 

Based on the test results, there is a gain for the luma chrominance (U) with 

0.02% with 10% of the reduced encoding time (EncT) for All Intra (AI). 

Similarly, there is 0.01% gain for the chroma component (V) with 3% 

reduction in the encoding time (EncT) for Random Access (RA) over VTM-

5.0. 



 

27  

 

2.3 Problems of the Related Works 

Several proposals were presented to solve the memory and complexity 

reduction issue. These proposals tried to use a single kernel but could not 

reduce the complexity with the mathematical computation of the LFNST 

process. Some proposals tried to only reduce the complexity giving a limiting 

number of output residue coefficients in the bitstream for quantization, still 

keeping the memory storage of the kernel same as 8KB for either 4×4 LFNST 

or 8×8 LFNST design. Since the secondary transform is applied post-primary 

transform on the transform blocks, the related proposals totally supported the 

fast algorithm implementation of DCT-2 and DST-7 transform kernels of the 

primary transform [25], but not for the efficient complexity reduction. Further, 

in thesis an efficient LFNST design is presented in section 3, which targets for 

better coding complexity reduction of the secondary transform. 

All the related works presented above, either dealt with the memory 

reduction saving 2KB of memory or limiting the non-zero coefficients of the 

output residue of the secondary transform i.e., 4×4 LFNST or 8×8 LFNST 

coefficients. The approaches mentioned does not have a combined ground for 

the complexity reduction including both the memory reduction and complexity 

reduction of the LFNST process. Since, optimization of the codec is preferred 

for any coding tools, if a faster and efficient computational LFNST design is 

constructed, the encoder would have more significant impact on the 

compression of the video source. 

 

 

 



 

28  

 

3. Proposed Method 

In this thesis, the complexity reduction of the secondary transform, 

commonly known as LFNST for the VVC is proposed. The secondary 

transform LFNST kernels used in this research are derived from the non-CTC 

images (DIV2K Dataset). Earlier, in the VTM-5.0 the reference software of 

the VVC, two sets of LFNST kernels i.e., 16×16 and 16×48 matrices were 

used for different transform units as shown in Table. 5 below, but this research 

proposes to use only a single 16×48 transform kernel for all TU’s as shown in 

Table. 6, which also saves the 2KB of the storage memory of the kernel 

matrices. 

Table 5. LFNST kernels used in VTM-5.0 

 

Table 6. Proposed LFNST kernel for VTM-5.0 

LFNST kernel size Applicable TU size Memory cost 

16×48 4×N and N×4, N>=4 6KB 

 

The LFNST transform kernel, is selected from the set of kernels based on the 

intra prediction mode of the CU of the block predicted during the intra-

prediction, a step before the transformations of the TU’s. The 16×48 LFNST 

kernel has different sub-sets of kernels of same size which is selected by 

indexing the intra prediction modes. The indexing of the intra prediction 

LFNST kernel size Applicable TU size Memory cost 

16×16 4×N and N×4, N>=4 2KB 

16×48 8×N and N×8, N>=8 6KB 



 

29  

 

modes with the LFNST kernel sets is kept unchanged and is shown in the 

Table. 7 below: 

Table 7. Specification of the LFNST kernel set index with the intra prediction 

mode of the TU’s. 

Intra prediction mode LFNST kernel set index 

Intra_pred_mode < 0 1 

0 <= Intra_pred_mode <= 1 0 

2 <= Intra_pred_mode <= 12 1 

13 <= Intra_pred_mode <= 23 2 

24 <= Intra_pred_mode <= 44 3 

45 <= Intra_pred_mode <= 55 2 

56 <= Intra_pred_mode <= 80 1 

81 <= Intra_pred_mode <= 83 0 

 

The ‘Intra_pred_mode’ mentioned in the Table. 7 indicates the intra 

prediction mode of the coding units, which includes the following specified 

modes: 

∙ Mode 0: Planar mode 

∙ Mode 1: DC mode 

∙ Mode 2-66: Directional modes 

∙ Mode 67-80: Wide Angle Intra Prediction (WAIP) [54] modes 

∙ Mode 81-83: Cross-Component Linear Model (CCLM) [51] modes 

3.1 The Key Feature of the Proposed Method 

The representation of the proposed method in this research can be looked 

more vividly with the overall block diagram of the operation of the secondary 

transform i.e., LFNST in the VVC as: 



 

30  

 

 

Figure 3-1. Pictorial representation of the block diagram of the LFNST 

computation in VVC. 

The Fig. 3-1 describes the computation of the proposed LFNST in the codec, 

where the TU of dimension M × N, post prediction stage is passed through the 

two dimensional forward primary transformation part, and the residue of the 

primary transform is passed through for the computation of the secondary 

transform using the single 16×48 matrix kernel irrespective of the block size 

i.e., 4×N to N×4 for N>=4. The computation of the secondary transform for a 

TU block resulting in the 16 secondary transform coefficients located at the 

top left part of the residual TU block is computed as: 

• For 16×16 TU block, 

    [16 × 48  𝐿𝐹𝑁𝑆𝑇 𝑘𝑒𝑟𝑛𝑒𝑙] × [48 × 1  𝑝𝑟𝑖𝑚 𝑐𝑜𝑒𝑓𝑓] = [16 × 1  sec. 𝑐𝑜𝑒𝑓𝑓]        (9) 

The TU block size (16×16) is divided into three 4×4 block size at the top-

left position. Later, three 4×4 (one dimensional 48×1 matrix) block is 



 

31  

 

multiplied by the 16×48 secondary transform kernel and the resulting 16×1  

secondary transformed coefficients can be obtained which is placed at the top 

left portion of the resulting TU and remaining adjacent 4×4 TU blocks with 

16 coefficients each at the right and bottom of the top left block is made to be 

zeroed. The remaining (M-8) × 8 top right TU block, (M-8) × (N-8) bottom 

right TU block and 8 × (N-8) bottom left TU block remains unchanged having 

the primary transform coefficients. 

 

Figure 3-2. Pictorial representation of the additional zeroing of the primary 

transform coefficients. 

In this research, we additionally zero out the remaining TU’s having the 

primary transform coefficients so that only the top left secondary transform 

residue is taken into account for the further quantization process. Since the 

coefficients located in the top left part of the TU is more homogeneous, it more 

efficient to take those coefficients into account for the further coding process. 

The secondary forward transform i.e., LFNST is applied to only the intra 

coded transform block (TB), which has both inter slice and intra slice coded in 

intra prediction. For the encoder, the primary forward transform is performed 

first, then followed by the secondary transform followed by quantization and 

CABAC bit coding. Whereas, for the decoder, CABAC bit decoding and 



 

32  

 

inverse quantization is first followed by a secondary inverse transform then 

primary inverse transform at last. The design specification for the encoder side 

for different sets of TU blocks is shown below: 

1. Case 1: TU of 4×4 block 

 

Figure 3-3. LFNST design for 4×4 TU block with max 8 non-zero 

bitstream coefficients. 

Fig. 3-3 illustrates the proposed secondary transform for 4×4 TU block. 

Firstly, the TU is computed with forward primary transform, resulting in the 

primary transform residue, then it is multiplied with the forward secondary 

transform i.e., LFNST derived 16×16 kernel from 16×48 original kernel as 

explained in section 3.2.  The resulting 16×1  matrix in  equation (10), gives 

the secondary transform residue, and the right half of the resulting coefficients 

are zeroed out to give 8×1 coefficients. Thus, maximum 8 non-zero bitstream 

coefficients placed in the upper half of the TU.  

[16 × 16  𝐿𝐹𝑁𝑆𝑇 𝑘𝑒𝑟𝑛𝑒𝑙] × [16 × 1  𝑝𝑟𝑖𝑚 𝑐𝑜𝑒𝑓𝑓] = [16 × 1  sec 𝑐𝑜𝑒𝑓𝑓]         (10) 

 

2. Case 2: TU of 4×8 and 8×4 block 



 

33  

 

 

Figure 3-4. LFNST design for 4×8 and 8×4 TU block with max 16 

secondary transform bitstream coefficients. 

Fig. 3-4 illustrates the proposed secondary transform for 8×4 and 4×8 TU 

blocks. The TU block size 8×4 (is divided into two 4×4 block size. For first 

4×4 (one dimensional 16×1 matrix) block is multiplied by the 16×16 

secondary transform kernel derived from the 16×48 kernel as shown in 

Section 3.2 and the resulting 16×1 secondary transformed coefficients can be 

obtained as shown in equation (11). The obtained coefficients are placed in the 

right part of the 4×4 matrix, and the second pair 4×4 block with primary 

transform coefficients is zeroed out. Similar process is done for the first 4×8 

transform block, both resulting in maximum 16 non-zero coefficients in the 

bitstream. 

  [16 × 16  𝐿𝐹𝑁𝑆𝑇 𝑘𝑒𝑟𝑛𝑒𝑙] × [16 × 1  𝑝𝑟𝑖𝑚 𝑐𝑜𝑒𝑓𝑓] = [16 × 1  sec 𝑐𝑜𝑒𝑓𝑓]       (11) 

 

3.  Case 3: TU of 4×N and N×4 (with N>=16) block 



 

34  

 

 

Figure 3-5. LFNST design for 4×N and N×4 TU block with max 16 

secondary transform bitstream coefficients. 

Fig. 3-5 illustrates the proposed secondary transform for TU blocks of N×4 

and 4×N. For example, we take TU block size (16×4), which is divided into 

two 4×4 block size and remaining 8×4 block size. For first 4×4 (one 

dimensional 16×1 matrix) block is multiplied by the 16×16 secondary 

transform kernel derived from the 16×48 kernel as mentioned in Section 3.2 

and the resulting 16×1 secondary transformed coefficients can be obtained as 

shown in equation (12) - (13). The obtained coefficients are placed in the 

leftmost part of the 4×4 matrix. A similar computation is done for the second 

first 4×4 residual block size, and after obtaining the secondary transform 

residual coefficients, we zero out the second 4×4 block along with the 

remaining primary transform coefficient in the rightmost 8×4 TU block. For 

the 16×4 TU residual block, a similar process is done for both first and second 

4×4 residual block size along with zeroing of the primary transform 

coefficients. This design results in a maximum of 16 non-zero coefficients in 

the bitstream. 



 

35  

 

[16 × 16  𝐿𝐹𝑁𝑆𝑇 𝑘𝑒𝑟𝑛𝑒𝑙] × [16 × 1  𝑝𝑟𝑖𝑚 𝑐𝑜𝑒𝑓𝑓1] = [16 × 1  sec 𝑐𝑜𝑒𝑓𝑓1] (12) 

[16 × 16  𝐿𝐹𝑁𝑆𝑇 𝑘𝑒𝑟𝑛𝑒𝑙] × [16 × 1  𝑝𝑟𝑖𝑚 𝑐𝑜𝑒𝑓𝑓2] = [16 × 1  sec 𝑐𝑜𝑒𝑓𝑓2] (13) 

 

4. Case 4: TU of 8×8 block 

 

Figure 3-6. LFNST design for 8×8 TU block with max 8 secondary 

transform bitstream coefficients 

Fig. 3-6 illustrates the proposed secondary transform for 8×8 TU blocks. The 

given TU block is divided into four 4×4 blocks. The top left, top right and 

bottom left 4×4  block (one dimensional 48×1 matrix) is multiplied by the 

8×48 secondary transform kernel and the resulting 8×1 secondary 

transformed coefficients can be obtained as shown in equation (14). The 

obtained coefficients are placed in the top left, top right, and bottom left part 

of the TU block. The 8×8 TU block is the exceptional case where only eight 

non-zero coefficients are taken in bitstreams, and all remaining secondary and 

primary transform coefficients are zeroed out. 

[16 × 48  𝐿𝐹𝑁𝑆𝑇 𝑘𝑒𝑟𝑛𝑒𝑙] × [48 × 1  𝑝𝑟𝑖𝑚 𝑐𝑜𝑒𝑓𝑓] = [16 × 1  sec 𝑐𝑜𝑒𝑓𝑓]     (14) 

 

5. Case 5: TU= 8×16, 16×8 and N×N (with N>=16) blocks 



 

36  

 

 

Figure 3-7. LFNST design for 16×16 TU block with max 16 secondary 

transform bitstream non-zero coefficients. 

Fig. 3-7 illustrates the proposed secondary transform for 16×16 TU block.  

The given TU block is divided into four 8×8 blocks after the primary transform 

is applied. Further, the top left 8×8 block is further divided into four 4×4 

blocks. The top left, top right and bottom left 8×8 block (one dimensional 

48×1 matrix) is multiplied by the 8×48 secondary transform kernel and the 

resulting 16×1 secondary transformed coefficients can be obtained as shown 

in equation (15). The obtained coefficients are placed in the top left part of the 

TU block. Total 16 non-zero coefficients are taken in bitstreams, and all 

remaining secondary and primary transform blocks zeroed out later. 

  [16 × 48  𝐿𝐹𝑁𝑆𝑇 𝑘𝑒𝑟𝑛𝑒𝑙] × [48 × 1  𝑝𝑟𝑖𝑚 𝑐𝑜𝑒𝑓𝑓] = [16 × 1  sec 𝑐𝑜𝑒𝑓𝑓]    (15) 

 



 

37  

 

3.2 Zeroing and Grouping Concept 

Since, it is proposed to use a single 16×48 LFNST kernel for all block size 

i.e., 4×N and N×4 (with N>=4), the computation of the matrix multiplication 

is not possible for the TU blocks less than 8×8 block size because [16×1 prim 

coeff] cannot be multiplied with [16×48 LFNST kernel] to give [8×1 sec 

coeff]. To deal with this problem, the zeroing concept has been introduced, 

where for the smaller transform unit blocks, a sub-kernel is derived zeroing 

some of the 16×48 kernel matrix elements, in order to make it compatible for 

the matrix multiplication for the secondary transform process.  

Firstly, the 16×48 LFNST kernel is zeroed out for the rightmost part of the 

kernel, leaving the non-zero 16×16 kernel present in the left part of the original 

kernel as the resultant, illustrated in Fig. 3-8. 

 

Figure 3-8. 16×16 LFNST sub kernel derivation by zeroing the rightmost part of 

16×48 LFNST kernel elements. 

Secondly, after analyzing the obtained kernel, the desired sub-sampled 

16×16 kernel is derived by grouping the even and odd rows of the resultant 



 

38  

 

non-zero 16×16 kernel derived above from Fig. 3-8. It is also seen that for the 

particular LFNST candidate kernel set index i.e., 0, 1, 2 and 3 from Table. 3, 

which individually has further two indexed kernels (0 and 1), we can group 

the even and odd rows of particular index kernel and interchange amongst each 

other for the individual set index kernel i.e., the grouping of the odd and even 

rows of 16×48 kernel with set index 0 and index 0 i.e., [𝑅𝑖,𝑗]
0,0

 is computed to 

derive the 16×16 sub-sampled kernel having set index 0 with index 1 i.e., 

[𝑅′𝑖,𝑗]
0,1

 as shown in equation (17) and vice versa. Similarly, the sub-sampled 

16×16 LFNST kernel with set index 1, 2 and 3 is derived by grouping the odd 

and even rows, and interchanging amongst the indexed kernel of particular set 

index of the non-zero resultant 16×16 kernel derived by zeroing the 16×48 

LFNST kernel as shown in Fig. 3-8. 

For grouping, the sign change of the kernel elements at the particular column 

index of the respective even and odd rows to obtain the sub-sampled 16×16 

kernel to be applied for the lower TU blocks i.e. 4×N or N×4 (N>=4). To 

derive the even rows, we pick the even indexed rows of the resultant non-zero 

16×16 kernel and multiply with -1 to the row elements of the particular 

indexed columns whose column index is divisible by 2 or is the 9th column 

element. The derivation of the sub-sampled 16×16 LFNST kernel is obtained 

from (16) - (23). 

      [𝑅′𝑖,𝑗]0,0 = [𝑅𝑖,𝑗]0,1                   (16) 

       [𝑅′𝑖,𝑗]0,1 = [𝑅𝑖,𝑗]0,0                  (17) 

      [𝑅′𝑖,𝑗]2,0 = [𝑅𝑖,𝑗]2,1                  (18) 

      [𝑅′𝑖,𝑗]2,1 = [𝑅𝑖,𝑗]2,0                  (19) 



 

39  

 

     [𝑅′𝑖,𝑗]2,0 = [𝑅𝑖,𝑗]2,1                   (20)
 

     [𝑅′𝑖,𝑗]2,1 = [𝑅𝑖,𝑗]2,0                       (21) 

     [𝑅′𝑖,𝑗]3,0 = [𝑅𝑖,𝑗]3,1             (22)
 

     [𝑅′𝑖,𝑗]3,1 = [𝑅𝑖,𝑗]3,0 ,            (23) 

where, 𝑅′𝑖,𝑗 is the sub-sampled 16×16 kernel, 𝑅𝑖,𝑗  is the non-zero resultant 

16×16 kernel obtained after zeroing 16×48 LFNST kernel, ‘i’ is the even row 

index (0, 2, 4, ..14) and ‘j’ is the column index of the kernel, respectively. The 

derivation of the 𝑅𝑖,𝑗 negating the column indexed element for the even rows 

is mathematically derived by (24). 

              𝑅𝑖,𝑗 = {
(−1)× 𝑅𝑖,𝑗, if  𝑗%2 = 0 || 𝑗 = 9,

𝑅𝑖,𝑗, otherwise,
                       (24) 

Similarly, the grouping of the odd row elements of the sub-sampled 16×16 

kernel is derived from the non-zero resultant 16×16 kernel which is obtained 

by zeroing the 16×48 kernel using the equations (16) – (23), where the value 

of 𝑅𝑖,𝑗 is calculated by changing the sign of the 4th, 6th, 8th, 11th, 13th and 15th 

column indexed kernel elements by multiplying with -1, for the individual odd 

indexed row kernel element respectively. The mathematical derivation of 

𝑅𝑖,𝑗  is obtained from equation (25). 

                        𝑅𝑖,𝑗 = {
(−1)× 𝑅𝑖,𝑗, if  𝑗 € {4,6,8,11,13,15},

𝑅𝑖,𝑗, otherwise.
                (25) 

The sub-sampled 16×16 LFNST kernel with grouped even and odd rows is 

illustrated in Fig. 3-9, where the highlighted kernel elements refers to the 

element applied with negation as per the equation (24) and (25).  



 

40  

 

 

Figure 3-9. Sub-sampled 16×16 kernel for LFNST set index=0 and index =0 with 

grouped even and odd rows. 

For the 4×4 TU block, it requires a 16×16 LFNST kernel for the computation 

of the secondary transform, resulting in maximum 8 non-zero secondary 

transform residue coefficients in the bitstreams as shown in equation (10). The 

16×16 sub-sampled kernel from the 16×48 kernel is derived, as shown in Fig. 

3-10. 

 

Figure 3-10. 16×16 LFNST applied to 4×4 TU block resulting in 8 residual 

coefficients as output. 

For 4×N and N×4 (with N>=4) TU block, the same 16×16 sub-sampled 

kernel is derived from the 16×48 kernel as derived for the 4×4 block in Fig. 

3-8, for the matrix multiplication of the TU and kernel, which results in the 

maximum of max 16 non-zero secondary transform residue coefficients in the 



 

41  

 

bitstream, zeroing out the remaining secondary and primary transform 

coefficients except for the top left corner as shown in Fig. 3-3. Another 

possibility is to derive the 16×32 sub kernel from the 16×48 kernel, but that 

would increase the complexity of the operation with increased multiplications 

and additional zeroing of the secondary transform residue coefficients to make 

it a maximum of 16 coefficients in the bitstream. 

3.3 Proposed syntax for VVC standardization 

As, we know the secondary transform LFNST is applied after the TU block 

undergo the primary transformation. Eventually, after the intra prediction 

process, the transformation process starts with the primary transform along 

with the initialization of the parameters of secondary transform. The following 

parsing steps are performed to initialize the parameters during the general 

transformation process for the scaled transform coefficients. 

• General transformation process: 

Input: 

– A luma location (xTby, yTbY) specifying top left sample of current 

luma block 

– nTbW: width of current TU 

– nTbH:  height of current TU 

– cIdx: color component of current block 

– d[x][y]: an array of dimension nTbW× nTbH, where x=0 to nTbW-

1, y= 0 to nTbH-1  

Design process: 



 

42  

 

– Check if LFNST index i.e. lfnst_idx[xTby][ yTby] is TRUE and 

(nTbW, nTbH) >= 4 

o Fetch the intra prediction mode (predModeintra) of TU block. 

o Determine output coefficients size (nLfnstoutSize) to 48 if 

(width,height) >= 8 else 16. 

o Determine total number of 4×4 blocks taken in consideration 

for LFSNT (log2LfnstSize): (width, height)>=8) ? 3 :2 

o Calculate the nLfnstSize by 1  <<  log2LfnstSize 

o Calculate the total output non zero ecoefficents of secondary 

transform (nonZeroSize) by : ( (width,width) == 4 || 

(width,width) == 8 ) ? 8 : 16 

Output: 

– An array r[x][y] with (nTbW) × (nTbH) elements of primary 

transform residual samples with ‘x’ rnages from 0 to nTbW-1 and ‘y’ 

ranges from 0 to nTbH-1. 

 

• LFNST transformation process: 

Input: 

- The variable nonZeroSize calculated in the general transform process. 

- nTrS: transform output length 

- A matrix x[i] with a list of scaled non-zero transform coefficients where 

‘i’ ranges between 0 to nonZeroSize-1 

- The intra prediction mode (predModeIntra) of TU determined above to 

select the transform set. 



 

43  

 

- lfnstIdx: determines the LFNST index for transform selection in the 

selected LFNST set. 

Design process: 

- The LFNST kernel matrix is fetched after referring the look-up table 

where mapping of the intra prediction mode(predModeintra) and LFNST 

transform set index is done as shown in Table 5. 

o After the mapping of the index is done, the LFNST transform set 

index (lfnstTrSetIdx) is set which is used to fetch the kernel 

matrix 

o The low frequency transformation kernel matrix is fetched based 

on the lfnstTrSetIdx, and and nTrS derived above from the pool 

of secondary kernel with dimension of [nTrS]×[nonZeroSize] 

which is either 16×16 or 16×48 kernel matrix. 

- The output secondary transform residue coefficient is mathematically 

computed as given in equation (26), 

𝑦[𝑖] =

Clip3 (CoefMin, Coeffmax, ((∑ lowFreqTransMatrix[i][j] ×nonZeroSize−1
j=0

x[j] + 64) ≫ 7 ) )                  (26) 

Where, matrix ‘y[i]’ represents the output residue of secondary transform 

- Zero out the remaining primary transform coefficients in the final 

residue. 

Output: 

- The matrix y[i] with output of non-zero secondary transform coefficients 

where ‘i’ ranges from 0 to nTrS (transform output length), which is sent 

to the bitstream.  



 

44  

 

4. Experimental Results and Discussions 

4.1 Experimental Results of the Proposed Method 

The simulation of the proposed method is conducted on the VVC reference 

software VTM-5.0 [23] under the CTC conditions [24]. The PC for the 

simulation has Centos 7 Linux operating system with intel ®Xeon ®Silver 

4114 CPU @ 2.20 GHz processor with 220 cores and 156 GB of RAM. The 

simulation results are shown in Table. 8-9. 

Table 8. Proposed method simulation result for All Intra configuration  

Sequences 
All Intra Main 10 over VTM5.0 

Y U V EncT DecT 

Class A1 0.01% 0.03% 0.04% 94% 101% 

Class A2 0.01% 0.02% -0.03% 93% 100% 

Class B 0.04% -0.05% -0.01% 93% 99% 

Class C 0.03% -0.04% 0.04% 95% 95% 

Class E 0.06% -0.04% 0.02% 94% 96% 

Overall  0.03% -0.02% 0.01% 94% 98% 

Class D 0.00% 0.05% 0.09% 94% 101% 

Class F 0.01% -0.02% 0.02% 96% 97% 

 

 Table 9. Proposed method simulation result for Random Access configuration 

Sequences 
Random Access Main 10 over VTM5.0 

Y U V EncT DecT 

Class A1 0.03% 0.04% 0.08% 97% 100% 

Class A2 -0.01% 0.08% 0.05% 98% 100% 

Class B 0.03% 0.03% -0.13% 98% 98% 

Class C 0.03% -0.09% 0.03% 98% 99% 

Overall  0.02% 0.01% -0.01% 97% 99% 

Class D 0.06% 0.23% 0.11% 98% 102% 

Class F 0.06% 0.10% 0.05% 97% 101% 

 



 

45  

 

Table. 8 shows the simulation result for the proposed method on VTM-5.0 

anchor under CTC condition for AI configuration. There is a gain of 0.2% for 

U-chroma, whereas negligible loss for the Y-luma and V-chroma component. 

The gain for the classes B-F is substantial for the chrominance (U). There is a 

substantial reduction in encoding time by 6% and by 2% in the decoding time. 

The overall result has a gain of 0.02% gain for chrominance with 94% 

encoding time and 98% 

   Table. 9 illustrates the simulation result for the proposed method for the 

RA configuration. There is a gain of 0.01% for the chrominance (V) with a 

maximum gain of 0.13% for class B. the performance for the luminance is 

good for the higher-class resolution images i.e., Class A1 and A2. There is also 

a 3% reduction in the encoding time. The overall result for the RA 

configuration is a gain of 0.01% for chrominance and loss of 0.02% for 

luminance with 97% encoding time and 99% decoding time. 

The detailed experimental result for the different test sequences are as 

following: 

 

 

 

 

 

 

 



 

46  

 

Table 10. Simulation results of AI configuration 

  

 Test Sequences 
BD-rate (piecewise cubic) 

 Y U V 

Class A1 (4K) 

Tango2 -0.01% -0.04% 0.17% 

FoodMarket4 0.01% 0.09% -0.03% 

Campfire 0.01% 0.05% -0.01% 
 

CatRobot1 0.02% 0.02% -0.05% 

Class A2 (4K) DaylightRoad2 0.00% 0.02% -0.03% 
 

ParkRunning3 0.00% 0.03% -0.01% 
 

MarketPlace 0.01% -0.02% -0.16% 
 

RitualDance 0.01% -0.19% -0.04% 

Class B (1080p) Cactus 0.03% -0.05% -0.06% 
 

BasketballDrive 0.06% -0.18% 0.06% 
 

BQTerrace 0.09% 0.19% 0.19% 
 

BasketballDrill 0.09% -0.17% -0.08% 

Class C BQMall 0.04% -0.04% 0.10% 

(WVGA) PartyScene 0.00% 0.03% 0.05% 
 

RaceHorses 0.00% 0.01% 0.08% 
 

BasketballPass -0.03% 0.11% -0.06% 

Class D BQSquare 0.00% 0.17% -0.08% 

(WQVGA) BlowingBubbles 0.03% -0.12% 0.10% 
 

RaceHorses -0.01% 0.05% 0.39% 
 

FourPeople -0.01% -0.08% -0.03% 

Class E (720p) Johny 0.20% -0.02% 0.17% 

 KristenAndSara -0.01% -0.01% -0.09% 

Average Class A1 0.01% 0.03% 0.04% 

Average Class A2 0.01% 0.02% -0.03% 

Average Class B 0.04% -0.05% -0.01% 

Average Class C 0.03% -0.04% 0.04% 

Average Class D 0.00% 0.05% 0.09% 

Average Class E 0.06% -0.04% 0.02% 

Overall Average 0.03% -0.02% 0.01% 



 

47  

 

 Based on Table. 10, no significant loss in found in AI for higher resolution 

classes for luminance, but some gain can be observed in Class A1, A2, and B 

for the chrominance (V) and some observatory gain for class B and C for 

chrominance (U). 

Table 11. Simulation result of RA configuration 

 

 Test Sequences 
BD-rate (piecewise cubic) 

 Y U V 

Class A1 (4K) 

Tango2 0.01% -0.21% -0.01% 

FoodMarket4 0.02% 0.05% 0.30% 

Campfire 0.06% 0.28% -0.05% 

 CatRobot1 -0.03% -0.03% 0.01% 

Class A2 (4K) DaylightRoad2 0.02% 0.21% 0.10% 

 ParkRunning3 -0.02% 0.06% -0.04% 

 MarketPlace -0.02% 0.11% 0.00% 

 RitualDance 0.00% -0.15% -0.24% 

Class B (1080p) Cactus -0.01% 0.19% -0.30% 

 BasketballDrive 0.03% -0.17% 0.02% 

 BQTerrace 0.14% 0.18% -0.14% 

 BasketballDrill 0.08% -0.25% 0.09% 

Class C  BQMall 0.03% -0.15% 0.04% 

(WVGA) PartyScene 0.02% -0.01% -0.09% 

 RaceHorses -0.01% 0.05% -0.28% 

 BasketballPass 0.04% -0.27% -0.13% 

Class D  BQSquare 0.12% 0.10% -0.31% 

(WQVGA) BlowingBubbles 0.08% 0.10% 0.10% 

 RaceHorses 0.00% 0.20% 0.19% 

Average Class A1 0.03% 0.04% 0.08% 

Average Class A2 -0.01% 0.08% 0.05% 

Average Class B 0.03% 0.03% -0.13% 

Average Class C 0.03% -0.09% 0.03% 

Average Class D 0.06% 0.23% 0.11% 

Overall Average 0.02% 0.01% -0.01% 



 

48  

 

   Based on Table. 11, no significant loss is found for the luminance for the 

higher resolution classes A1 and A2, whereas some substantial gain is found 

for both chrominance U and V for some lower resolution test sequences of 

class B, C and D. From the above results, we have seen the gain for AI 

configuration is 0.02% and 0.01% for RA configuration with a significant 

reduction of encoding time of 6% and 3% for respective configurations. 

4.2 Comparison with the state-of-the-art Methods 

While comparing the proposed obtained simulation result with the memory 

reduction method of related work, the simulation result of contribution in [22] 

is shown in Table. 12. Analyzing the results, the bit rate of our proposed 

method is better along with the encoding time, although proposal in [22] also 

reduces the encoding time by 3%. Although the luminance BD rate for RA 

configuration is better in their proposal, they use the entire 16×48 kernel 

matrix-forming L-shaped output residue during the LFNST matrix 

multiplication operation, which doesn’t help to get a substantial reduction in 

the encoding time as achieved by our proposal. 

Table 12. Simulation results of proposal in [22]. 

Sequences 
All Intra Main 10 over VTM5.0 

Y U V EncT DecT 

Class A1 -0.02% 0.14% 0.02% 98% 101% 

Class A2 -0.01% 0.16% 0.15% 97% 100% 

Class B 0.06% 0.01% 0.03% 97% 99% 

Class C 0.08% 0.07% 0.12% 96% 95% 

Class E 0.14% -0.14% -0.13% 98% 97% 

Overall  0.05% 0.04% 0.04% 97% 98% 

Class D 0.12% 0.05% 0.24% 97% 101% 

Class F 0.01% -0.02% 0.27% 98% 98% 

 

 



 

49  

 

 

Sequences 
Random Access Main 10 over VTM5.0 

Y U V EncT DecT 

Class A1 -0.01% 0.03% -0.05% 99% 100% 

Class A2 0.00% 0.15% 0.05% 99% 100% 

Class B 0.01% 0.08% -0.01% 99% 98% 

Class C 0.01% 0.16% 0.01% 100% 99% 

Overall  0.01% 0.11% 0.00% 99% 99% 

Class D 0.07% 0.36% 0.13% 100% 102% 

Class F 0.00% 0.28% 0.10% 100% 101% 

 

The simulation result of the limiting coefficients method in [21] shows a 

significant reduction in the encoding time as they target more for the 

complexity reduction based on the zeroing of the primary transform for the 

4×4 LFNST and 8×8 LFNST.  As mentioned in section 2.2, they proposed the 

tests in four parts, and the significant gain was given by allowing maximum of 

16 non-zero coefficients in the residual and zeroing of primary transform 

coefficients for 8×8 LFNST. Although the encoding time for this proposal is 

high and the proposed method in this thesis, but the optimal BD loss for the 

luminance (Y) and chrominance (V) is more in our proposal. Also, the loss for 

the higher-class resolution test sequences in Class A1 and A2 is higher in their 

proposal for AI configuration. 

 

 

 

 

 



 

50  

 

 

Table 13. Simulation results of proposal in [21]. 

Sequences 
All Intra Main 10 over VTM5.0 

Y U V EncT DecT 

Class A1 0.00% 0.11% 0.01% 91% 97% 

Class A2 0.00% 0.10% 0.11% 88% 99% 

Class B 0.08% -0.06% 0.04% 90% 100% 

Class C 0.10% -0.12% 0.05% 88% 100% 

Class E 0.10% -0.06% 0.03% 91% 101% 

Overall  0.06% -0.02% 0.05% 90% 99% 

Class D 0.10% 0.14% -0.12% 89% 101% 

Class F 0.02% 0.09% 0.09% 94% 99% 

 

Sequences 
Random Access Main 10 over VTM5.0 

Y U V EncT DecT 

Class A1 0.00% -0.17% 0.12% 97% 98% 

Class A2 0.07% 0.16% 0.05% 98% 98% 

Class B 0.04% -0.15% -0.17% 99% 100% 

Class C -0.03% -0.30% -0.29% 100% 103% 

Overall  0.02% -0.13% -0.10% 99% 100% 

Class D 0.03% 0.07% 0.04% 100% 101% 

Class F -0.01% -0.08% 0.00% 99% 101% 

 

Analyzing the results based on Table. 14, the gain for the chrominance (U) 

is same as the proposed method. Although the proposal in [20] have significant 

10% reduction in the encoding time, but it still uses two sets of LFNST kernel 

with no memory reduction. The gain for the RA configuration is like the 

proposed method with 2% reduction in the proposed method. Also, the losses 

for the higher resolution test sequences can be found for the Class A1 and A2. 

The overall result based on Table. 12, is showing less significant loss for the 

RA configuration with 0.02% for luma, 0.01% for U-chroma and gain of 

0.01% for V-chroma, respectively. 



 

51  

 

 

Table 14. Simulation of proposal in [20]. 

Sequences 
All Intra Main 10 over VTM5.0 

Y U V EncT DecT 

Class A1 0.00% 0.11% 0.01% 91% 97% 

Class A2 0.00% 0.10% 0.11% 88% 99% 

Class B 0.08% -0.06% 0.04% 90% 100% 

Class C 0.10% -0.12% 0.05% 88% 100% 

Class E 0.10% -0.06% 0.03% 91% 101% 

Overall  0.06% -0.02% 0.05% 90% 99% 

Class D 0.10% 0.14% -0.12% 89% 101% 

Class F 0.02% 0.09% 0.09% 94% 99% 

 

Sequences 
Random Access Main 10 over VTM5.0 

Y U V EncT DecT 

Class A1 0.03% 0.04% 0.08% 97% 100% 

Class A2 -0.01% 0.08% 0.05% 98% 98% 

Class B 0.03% 0.03% -0.13% 98% 102% 

Class C 0.03% -0.09% 0.03% 98% 99% 

Overall  0.02% 0.01% -0.01% 97% 100% 

Class D 0.06% 0.23% 0.11% 98% 101% 

Class F 0.06% 0.10% 0.05% 97% 100% 

 

 

 

 

 

 

 



 

52  

 

5. Conclusions 

In this thesis, the reduction in the complexity of the secondary transform i.e., 

LFNST is proposed. Since the memory consumption to store the transform 

kernels is always a major issue in video coding standardization of the VVC, 

this thesis deals with the usage of less memory to store the secondary transform 

kernels along with reducing the computational complexity. The proposed 

method uses a single 16×48 secondary transform kernel for the LFNST 

computation which requires only 6KB of memory instead of two kernels that 

required 8KB of storage. For the smaller blocks of size 4×4, N×4 and 4×N 

(N>4), a sub-sampled kernel is derived using the 16×48 kernel from the 

zeroing and grouping concept. For the remaining larger block sizes 8×8, N×8, 

8×N (N>8), the entire 16×48 kernel is used. Also, the zeroing of the primary 

transform coefficients to obtain max 16 non-zero secondary transform residue 

coefficients in the bitstream reduces the complexity of the encoder by reducing 

the encoder runtime substantially. The proposed method in this thesis gives 

comparable results with the VTM-5.0 anchor with negligible loss and reduced 

encoding time by 6%, which signifies that the proposed LFNST design is of 

significant use in the VVC model.  



 

53  

 

References 

[1] Thomas Wiegand, Gary J. Sullivan, Senior Member, IEEE, Gisle 

Bjøntegaard, and Ajay Luthra, Senior Member, IEEE, “Overview of the 

H.264/AVC Video Coding Standard,” IEEE Transactions on Circuits and 

Systems for Video Technology, vol. 13, July 2003. 

[2] Kai Zhang, Li Zhang, Wei-Jung Chien, Marta Karczewicz, “Intra-

Prediction Mode Propagation for Video Coding,” IEEE Journal on 

Emerging and Selected Topics in Circuits and Systems, vol. 9, Mar. 2019. 

[3] Jean Bégaint, “Towards novel inter-prediction methods for image and 

video compression,” Ph.D. thesis, University of Rennes 1, Comue 

University Britian Loire, Research unit: INRIA Rennes - Brittany 

Atlantic and Technicolor R&I, November 29, 2018.  

[4]    V. K. Goyal, “Theoretical foundations of transform coding,” IEEE Signal 

Processing Magazine, vol. 18, no. 5, pp. 9-21, Sept. 2001.  

[5] Abedi, M. Sun, B.  Zheng, “A Sinusoidal-Hyperbolic Family of 

Transforms with Potential Applications in Compressive Sensing,” IEEE 

Transactions on Image Processing. 28 (7): 3571–3583, Jul. 2019. 

[6] Anil K. Jain, “A Sinusoidal Family of Unitary Transforms,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-

1, pp. 356-365, Oct. 1979.  

[7] WK Cham, PhD, “Development of Integer Cosine Transforms by the 

Principle of Dyadic Symmetry,” Proc. Inst. Elect. Eng., pt. 1, vol. 136, 

no. 4, pp. 276-282, Aug. 1989. 

[8] G. Strang, “The Discrete Cosine Transform,” SIAM Review, vol. 41 no. 

1, pp. 135- 147, Mar. 1999. 

[9] Iain Richardson, “White Paper: 4x4 Transform and Quantization in 

H.264/AVC,” 2010. 

[10] Sadiqullah Khan and Gulistan Raja. (2004), “Integer cosine transform 

and Its application in Image/Video Compression,” ICSEA, Conference 

proceeding Islamabad, pp.189-193.   

[11] Richardson I.E. G . (2002), “White Paper H.264/MPEG-4 Part 10: 

Variable Length Coding”. 



 

54  

 

[12] Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). 

“Section 22.6. Arithmetic Coding”. Numerical Recipes: The Art of 

Scientific Computing (3rd ed.). New York: Cambridge University Press. 

ISBN 978-0-521-88068-8.  

[13] J.J. Rissanen, G.G. Langdon (March 1979), “Arithmetic coding” (PDF) 

IBM Journal of Research and Development. 23 (2): 149–162. 

doi:10.1147/rd.232.0149. 

[14] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based Adaptive 

Binary Arithmetic Coding in the H.264/AVC Video Compression 

Standard,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 

13, No. 7, pp. 620–636, July 2003.  

[15] “Context-Based Adaptive Binary Arithmetic Coding (CABAC),” 

Fraunhofer Heinrich Hertz Institute. Retrieved 13 July 2019. 

[16] S. Vetrivel, K. Suba, G.A. Thisha, “An Overview of H.26x Series And 

its Applications,” International Journal of Engineering Science and 

Technology, Vol. 2(9), 2010, 4622-4631.  

[17] T. Wiegand, G.J. Sullivan, G. Bjontegaard, A. Luthra, “Overview of the 

H.264/AVC video coding standard,” IEEE Transactions on Circuits and 

Systems for Video Technology, vol. 13, No. 7. (2003), pp. 560-576. 

[18] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand, 

“Overview of the High Efficiency Video Coding (HEVC) Standard,” 

IEEE, pp. 1649–1668, Sep. 2012. 

[19] J. Chen and Y. Ye, S. H. Kim, “Algorithm description for Versatile Video 

Coding and Test Model 5 (VTM 5), [JVET-N1002],” JVET of ITU-T SG 

16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 14th Meeting: Geneva, CH, 

Mar. 2019. 

[20] M. Siekmann, H. Schwarz, D. Marpe, “CE6-2.1: Simplification of Low 

Frequency Non-Separable Transform,” JVET of ITU-T SG 16 WP 3 and 

ISO/IEC JTC 1/SC 29/WG 11, 15th Meeting: Gothenburg, SE, July 

2019. 

[21] M. Koo, J. Nam, J. Lim, “Non-CE6: LFNST simplification based on the 

methods proposed in CE6-2.1a,” JVET of ITU-T SG 16 WP 3 and 

ISO/IEC JTC 1/SC 29/WG 11, 15th Meeting: Gothenburg, SE, July 

2019. 



 

55  

 

[22] X. Zhao, X. Li, S. Liu, “CE6-related: Unified LFNST using block size 

independent kernel,” JVET of ITU-T SG 16 WP 3 and ISO/IEC JTC 

1/SC 29/WG 11, 15th Meeting: Gothenburg, SE, July 2019. 

[23] JVET VTM software — JVET. https://vcgit.hhi.fraunhofer.de/jvet/ 

VVCSoftware_VTM/tree/VTM-5.0. 

[24] P. Hanhart, J. Boyce, K. Choi, J.-L. Lin, “JVET common test conditions 

and evaluation procedures for 360° video,” Joint Video Exploration 

Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 

12th Meeting: Macau, CN, Oct. 2018. 

[25] Xin Zhao, Xiang Li, Yi Luo, Shan Liu, “CE6: Fast DST-7/DCT-8 with 

dual implementation support JVET-M0497,” Joint Video Experts Team 

(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 13th 

Meeting: Marrakech, MA, Jan. 2019. 

[26] Z. Zhang, R. Yu, “Non-CE6: On LFNST transform set selection for a 

CCLM coded block,” Joint Video Experts Team (JVET) of ITU-T SG 16 

WP 3 and ISO/IEC JTC 1/SC 29/WG 11 15th Meeting: Gothenburg, SE, 

3-12 July 2019. 

[27] S. Park, Je-won. Kang, “Fast Affine Motion Estimation for Versatile 

Video Codec (VVC) Encoding,” IEEE Access, volume 7, 2019. 

[28] D. Ruiz, G. Fernandez-Escribano, J. Luis Martinez, P Cuenca, “A unified 

architecture for fast HEVC intra-prediction coding,” Journal of Real-

Time Image Processing, 2017. 

[29] J. Nilson, “Inter-Picture Prediction for Video Compression using Low 

Pass and High Pass Filters,” Uppsala University, September 2017. 

[30] H. Yang, L. Shen, X. Dong, Q. Ding, P. An, G. Jiang, “Low Complexity 

CTU Partition Structure Decision and Fast Intra Mode Decision for 

Versatile Video Codec,” IEEE Transactions on Circuits and Systems for 

Video Technology, 2019. 

[31] J. Kang, C. Kim, “On DCT Coefficient Distribution in Video coding 

Using Quad-tree Structured Partition,” Proceedings of 2014 APSIPA 

Annual Summit and Conference, Siem Reap, city of Angkor Wat, 

Cambodia, December 9-12, 2014.  

[32] F. Racape, “CE3-related: Wide-angle intra prediction for non-square 

blocks,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and 



 

56  

 

ISO/IEC JTC 1/SC 29/WG 11 JVET-K500 15th Meeting: Gothenburg, 

SE, 10-18 July 2018. 

[33] Santiago De-Luxan-Hernandez, “CE3: Intra Sub-Partitions Coding 

modes,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and 

ISO/IEC JTC 1/SC 29/WG 11 JVET-M0102 13th Meeting: Marrakech, 

MA, 9-18 Jan. 2019. 

[34] J. Pfaff, B. Stallenberger, M. Schafer, P. Merkle, P. Helle, T. Hinz, H. 

Schwarz, D. Marpe, T. Wiegand, “CE3: Affine linear weighted intra 

prediction (CE3-4.1, CE3-4.2),” Joint Video Experts Team (JVET) of 

ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-N0217, 

14th Meeting: Geneva, SW, 19-27 March 2019. 

[35] A. Said, X. Zhao, “Description of core Experiment 6 (CE6): Transform 

and transform signalling,” Joint Video Experts Team (JVET) of ITU-T 

SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-K1026, 11th 

Meeting: Ljubljana, SI, 11-18 July 2018. 

[36] H. Samet, “The quadtree and related hierarchical data structures,” 

Computer Survey, vol. 16, no. 2, pp. 187-260, Jun 1984. 

[37] S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and 

System for Video Technology, vol. 13, no. 7, pp. 645-656, Jul. 2003. 

[38] K.McCann, “Summary of Evaluation of TMuC Tools in TEI2,” ITU-

T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) 

document JCTVC-C225, Oct. 2010. 

[39] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and 

implementation analysis,” IEEE Transactions on Circuits and System for 

Video Technology, vol. 22, no. 12, pp. 1684-1695, Dec. 2012. 

[40] J. -R Ohm, G. J. Sullivan, H.  Schwarz, T. K. Tan, T. Wiegand, 

“Comparison of the coding efficiency of video coding standards - 

Including High Efficiency Video Coding (HEVC),” IEEE Transactions 

on Circuits and System for Video Technology, vol. 22, no. 12, pp. 1668-

1683, Dec. 2012. 

[41] G. J. Sullivan, R. L. Baker, “Rate-distortion optimized motion 

compensation for video compression using fixed or variable size blocks,” 

in Proc. GLOBECOM', Dec. 1991, pp. 85-90. 



 

57  

 

[42] T. Wiegand, M. Lightstone, D. Mukherjee, T. G. Campbell, and S. K. 

Mitra, “Rate-distortion optimized mode selection for very low bitrate 

video coding and emerging H.263 standard,” IEEE Transactions on 

Circuits and System for Video Technology, vol. 6, no. 4,pp. 182-190, 

Apr. 1996. 

[43] S. De-Luxan-Hernandez, H. Schwarz, D. Marpe, and T. Wiegand, “Line-

Based Intra Prediction for Next Generation Video Coding,” 25th IEEE 

International Conference on Image Processing (ICIP), Oct. 2018, pp. 

221–225. 

[44] S. De-Luxan-Hernandez, H. Schwarz, D. Marpe, and T. Wiegand, “Fast 

Line-Based Intra Prediction for Video Coding,” IEEE International 

Symposium on Multimedia (ISM), Dec. 2018, pp. 135–138. 

[45] S. De-Luxan-Hernandez, V. George, J. Ma, T. Nguyen, H. Schwarz, D. 

Marpe, and T. Wiegand, “An Intra Subpartition Coding Mode For VVC,” 

in 2019 26th IEEE International Conference on Image Processing (ICIP), 

Oct. 2019, pp. 1203–1207. 

[46] F. Racape, G. Rath, F. Urban, L. Zhao, S. Liu, X. Zhao, X. Li, A. 

Filippov, V. Rufitsky, and J. Chen, “CE3- related: Wide-angle intra 

prediction for non-square blocks,” Document JVET-K0500 of JVET, 

Ljubljana, SI, July 2018. 

[47] Y. Lin, M. Mao, S. Song, J. Zheng, J. An, and C. Zhu, “Prediction 

dependent transform for intra and inter frame coding,” Document JVET-

J0064, San Diego, US, April 2018. 

[48] B. Bross, J. Chen, and S. Liu (Editors), “Versatile Video Coding (Draft 

3),” Document JVET-L1001, Macao, CN, Oct. 2018. 

[49] Xiaoran Cao, Changcai Lai, Yunfei Wang, Lingzhi Liu, Jianhua Zheng, 

and Yun He, “Short Distance Intra Coding Scheme for High Efficiency 

Video Coding,” IEEE Transactions on Image Processing, vol. 22, no. 2, 

pp. 790–801, Feb. 2013. 

[50] X. Ma, H. Yang, and J. Chen, “CE3: Tests of cross-component linear 

model in BMS,” Joint Video Exploration Team (JVET) of ITU-T SG 16 

WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-K0190, Ljubljana, SL, 

July 2018. 

[51] G. Laroche, J. Taquet, C. Gisquet, and P. Onno, “CE3-5.1: On cross-

component linear model simplification,” Joint Video Exploration Team 



 

58  

 

(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-

L0191, Macau, CN, Oct. 2018. 

[52] J. Lainema, “CE3: Wide-angle intra prediction,” Joint Video Exploration 

Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 

JVET-K0046, Ljubljana, SL, Jul. 2018. 

[53] L. Zhao, X. Zhao, S. Liu, and X. Li, “CE3-related: Unification of angular 

intra prediction for square and non-square blocks,” Joint Video 

Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 

29/WG 11, JVET-L0279, Macau, CN, Oct. 2018. 

[54] A. Kumar, S. Shrestha, B. Lee,  Y. Lee and J. Park, “Non-CE3: WAIP 

restriction for square sub-CU blocks partitioned by ISP,” Joint Video 

Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 

29/WG 11, 15th Meeting, JVET-O0632, Gothenburg, SE, 3-12 July 

2019. 

[55] N. Choi, Y. Piao, K. Choi, and C. Kim “CE3.3 related: Intra 67 modes 

coding with 3MPM,” Joint Video Exploration Team (JVET) of ITU-T 

SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-K0529, Ljubljana, 

SL, Jul. 2018. 

[56] X. Zhao, V. Seregin, A. Said, K. Zhang, H. E. Egilmez, and M. 

Karczewicz, “Low Complexity Intra Prediction Refinements for Video 

Coding,” in IEEE Picture Coding Symposium (PCS), pp. 139–143, San 

Fransisco, USA, Jun. 2018. 

[57] L. Li, J. Heo, J. Choi, J. Choi, S. Yoo, S. Kim, and J. Lim, “CE3-6.2.1: 

Extended MPM list,” Joint Video Exploration Team (JVET) of ITU-T 

SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-L0165, Macao, 

CN, Oct. 2018. 

[58] A. Filippov, V. Rufitskiy, J. Chen, G. Van der Auwera, A. K. 

Ramasubramonian, V. Seregin, T. Hsieh and M. Karczewicz, “CE3: A 

combination of tests 3.1.2 and 3.1.4 for intra reference sample 

interpolation filter,” Joint Video Exploration Team (JVET) of ITU-T SG 

16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-L0628, Macao, CN, 

Oct. 2018. 

[59] S. H. Park, T. Dong, and E. S. Jang, ‘‘Low complexity reference frame 

selection in QTBT structure for JVET future video coding,’’ in Proc. 

IWAIT, Chiang Mai, Thailand, Jan. 2018, pp. 1–4. 



 

59  

 

[60] Ultra Video Group. Laboratory of Pervasive Computing at Tampere 

University of Technology. Accessed: Nov. 9, 2018. [Online]. Available: 

http://ultravideo.cs.tut.fi/ 

[61] S. Shrestha, A. Kumar, B. Lee,  Y. Lee and J. Park, “Non-CE6: Reducing 

secondary transform kernel for specific residual block size,” Joint Video 

Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 

29/WG 11, 15th Meeting, JVET-O0642, Gothenburg, SE, 3-12 July 

2019. 

[62] S. Shrestha, A. Kumar, B. Lee,  Y. Lee and J. Park, “Non-CE6: 

Simplification of LFNST LUT,” Joint Video Exploration Team (JVET) 

of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 16th Meeting, 

JVET-P0313, Geneva, SW, Sept. 2019. 

[63] S. Shrestha, A. Kumar, B. Lee,  Y. Lee and J. Park, “Non-CE3: 

Simplification of harmonization of LFNST and MIP,” Joint Video 

Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 

29/WG 11, 16th Meeting, JVET-P0503, Geneva, SW, Sept. 2019. 

[64] A. Kumar, S. Shrestha, B. Lee,  Y. Lee and J. Park, “Non-CE3: LFNST 

restriction based on MIP,” Joint Video Exploration Team (JVET) of ITU-

T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 16th Meeting, JVET-

P0313, Geneva, SW, Sept. 2019. 

[65] J. Han, A. Saxena, V. Melkote, and K. Rose, “Jointly optimized spatial 

prediction and block transform for video and image coding,” IEEE 

Transactions on Image Processing, vol. 21, no. 4, pp. 1874-1884, Apr. 

2012. 

 

 

 

 

 

 



 

60  

 

Acknowledgement 

 

I would like to express my deepest gratitude to my advisor Prof. Bumshik 

Lee for his invaluable support, suggestions, encouragement, and precious 

guidance throughout my research work. I am very fortunate to have a 

supervisor who constantly encouraged and monitored my work and responded 

to my queries so promptly during my graduate studies. I am thankful to all 

professors of Information and Communication Engineering department for 

providing a suitable platform to make this research success. 

I would like to extend my gratitude to the committee members, Prof. Dong-

you Choi and Prof. Jae-Young Pyun, for their insightful guidance and 

suggestions.  

I would like to show my appreciation to all my fellow lab mates of 

Multimedia Information Processing Lab, for their extensive professional and 

personal guidance and their valuable suggestions regarding thesis work. 

As ever, I would like to express my profound gratitude to the role model of 

my life, my parents and family, whose love and guidance are always with me 

in whatever I pursue. I shall be grateful forever for your constant love and 

support. 

 

 

 

   


	1. Introduction 
	1.1 Background
	1.2 Versatile Video Codec (VVC)
	1.3 Objective
	1.3 Motivation
	1.4 Thesis Layout 

	2. Related Works
	2.1 Introduction to LFNST
	2.2 Existing Methods
	2.3 Problems of Related Works

	3. Proposed Method 
	3.1 The Key feature of the Proposed Method
	3.2 Zeroing and Grouping Concept
	3.3 Proposed Syntax for VVC Standardization

	4. Experimental Results and Discussion
	4.1 Experimental Results of the Proposed Method
	4.2 Comparision with state-of-the-art Methods

	5. Conclusions
	References
	Acknowledgement


<startpage>16
1. Introduction  1
 1.1 Background 1
 1.2 Versatile Video Codec (VVC) 3
 1.3 Objective 15
 1.3 Motivation 16
 1.4 Thesis Layout  17
2. Related Works 18
 2.1 Introduction to LFNST 18
 2.2 Existing Methods 21
 2.3 Problems of Related Works 27
3. Proposed Method  28
 3.1 The Key feature of the Proposed Method 29
 3.2 Zeroing and Grouping Concept 37
 3.3 Proposed Syntax for VVC Standardization 41
4. Experimental Results and Discussion 44
 4.1 Experimental Results of the Proposed Method 44
 4.2 Comparision with state-of-the-art Methods 48
5. Conclusions 52
References 53
Acknowledgement 60
</body>

