creative
commons

C O M O N § D

Ol2XtE= otele =2E 2= R0l 8ot 7S

o Ol == SH, HHE, 85, Al SH L 58 = U
o OIXH MAEESE HdE = UsLICH
Ol HHES del SR 0|8 = AsU T

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

o 7lot=, Ol M& =2 MOISO0ILE HHEZ2l H<, 0l A =0l HE= 0125
S Bt LIEHLHO10F B LICH
o MNAEAXNZRE EE2 3IIE &2 0lE ZHE2 HEL X ZSLICH

AEAYH OHE 0I8XA2 dele f12 W20l 26t gets 2 X ZSLICH

01X 2 0l Ed = 772 (Legal Code)S OloiotIl &Ml kst 23 LI CY.

Disclaimer |:|._'|

Collection

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

[UCI]1804: 24011-200000322143

August 2020
Master’s Degree Thesis

A study on coding complexity reduction
of Low Frequency Non-Separable
Transform (LFNST) for Versatile Video
Codec (VVC)

Graduate School of Chosun University

Department of Information and Communication

Engineering

Ankit Kumar

A study on coding complexity reduction
of Low Frequency Non-Separable
Transform (LFNST) for Versatile Video
Codec (VVC)

August 28, 2020
Graduate School of Chosun University
Department of Information and Communication

Engineering

Ankit Kumar

Collection @ chosun

A study on coding complexity reduction
of secondary Low Frequency Non-
Separable Transform (LFNST) for

Versatile Video Codec (VVC)

Advisor: Prof. Bumshik Lee

A thesis submitted in partial fulfillment of the

requirements for a master’s degree in engineering

May 2020

Graduate School of Chosun University

Department of Information and Communication
Engineering

Ankit Kumar

Collection @ chosun

This 1s to certify that the master’s thesis of
Ankit Kumar

has been approved by examining committee for the
thesis requirement for the master’s degree in

Engineering.

Committee Chairperson Prof. Dong-you Choi

Committee Member Prof. Jae-Young Pyun
Committee Member Prof. Bumshik Lee
June 2020

Graduate School of Chosun University

{“ICollection @ chosun

Table of Contents

LISt OF FIQUIES ..ottt ii
LiSt OF TabDIES ... s %
ACTONYIMS .ottt Vi
ADSEFACT ... vii
B O e ix
L. INErOdUCTION ...t e 1
1.1 BacKground.........ccoveveiiiieiiie ettt 1

1.2 Versatile Video CodeC (VVC)ooviiiiiiicie et 3
1.2.1 Structure 0f VVC......oocviiiiiiicieee e 3
1.2.2 The Overall Structure of PrediCtion............c.ccoveviiniieicinicne 5
1.2.3 The Overall Structure of the Transformc.ccocovvviiiinnnns 12

1.3 OBJECHIVE....eiiiiiteeeee e 15

1.3 MOTIVALION. ...t 16

1.4 TRESIS LAYOUL.....ccuiviriiiieiieiiiicseses et 17

2. Related WOrKS..........cooiiiiiie e 18
2.1 Introduction t0 LENSTccooiiiiiiiieeee s 18

2.2 EXISting MethodScoviiiiiirieieeee e 21
2.2.1 A Memory Reduction Approach for LENSTcccccovvviinnnn. 21
2.2.2 A Limiting Coefficients Approach for LENSTcccccovininnne. 22

i

Collection @ chosun

2.2.3 A Limiting Coefficients Method and Zeroing Approach............ 24

2.3 Problems of Related WOrKSccoviiiiniiiiiicc e 27
3. Proposed Methodccccveiiiieiieii e 28
3.1 The Key feature of the Proposed Method...............ccoooieiiiiiiinnnne 29
3.2 Zeroing and Grouping CONCEPLcccevvreiirreririiiineseeie e 37
3.3 Proposed Syntax for VVC Standardizationc.ccccoeveveiiviienns 41
4. Experimental Results and DiSCUSSIONcccccceverenenenennan. 44
4.1 Experimental Results of the Proposed Method.............cccccovevnnnne. 44
4.2 Comparision with state-of-the-art Methods............ccccooevviiinnne. 48
5. CONCIUSIONS ..ot 52
REFEFENCES ... 53
ACKNOWIEAQEMENT ... 60
i

Collection @ chosun

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.

Figure 1-7.

Figure 1-8.

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Figure 3-1.

List of Figures

A basic block diagram of the video codec..........cccccevvevieviiiivcvcincnenne, 1
General block daigram of VVC encoderccoovviirenencieeieee 4
Intra prediction angular and WAIP modes in VVC.........ccooevvvvinnne. 6

ISP horizontal and vertical (2 and 4) partitioning of W x H CU block 8
Design of MIP in VVC for WxH CU blocK..........cccoooviiiiiiiicn 9
Iustration of CCLM_T mode in VVC ... 10

Illustration of straight line between minimum and maximum luma value

A secondary transform working design model in VVC 15

Block diagram of forward and inverse secondary transform in VVC.

Using the single 16x48 LFNST kernel for 4x4, 8x4, 4x8 and 16x4

transform block of lower dimensions (left to right).cccceevinee 21

The additional zero-out of primary transform coefficients when 4x4
LENST iS @pPliedooviiieiececc e 23

Additional zeroing out of the primary transform coefficients for the
when 8x8 LFNST is applied for 8x8 TU block............cccevvvviiennnne 23

Applicability of LFNST to the first subblock for 4xN and Nx4 TU

block with N>8 having maximum 16 coefficients.............cccccocveeene. 26

Pictorial representation of the block diagram of the LFNST computation

Collection @ chosun

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 3-7.

Figure 3-8.

Figure 3-9.

Figure 3-10.

Pictorial representation of the additional zeroing of the primary

tranSTOrM COBTTICIENESvviiveiiie ittt e rree s 31

LFENST design for 4x4 TU block with max 8 non-zero bitstream
COBTTICIENTS. ...t 32

LFNST design for 4x8 and 8x4 TU block with max 16 secondary

transform bitstream COEFFICIENTScvvveiviieieie et 33

LFENST design for 4xN and Nx4 TU block with max 16 secondary
transform bitstream COEffiCIENtSveevvviiiiiii e, 34

LFNST design for 8x8 TU block with max 8 secondary transform

DItStream COBTFICIENTS. ... veiee ittt 35

LFNST design for 16x16 TU block with max 16 secondary transform

bitstream NON-zZero COBTFICIENTS.vveiirreieeeeeee et 36

16x16 LFNST sub kernel derivation by zeroing the rightmost part of
16x48 LFNST kernel elements.........cccocvvvevviieenie v e 37

Sub-sampled 16x16 kernel for LFNST set index=0 and index =0 with

grouped even and 0dd FOWScccecveieieeicre e 40

16x16 LFNST applied to 4x4 TU block resulting in 8 residual
COETTICIENTS @S OULPULc.eoviiiiiiiite e 40

Collection @ chosun

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

List of Tables

Number of sub-partitions based on block size..........ccccoevviveiiinennnn, 7
MTS transform kernel based on the prediction tool and block size ... 13

Mapping of LFNST kernel transform set index with the intra prediction

The total number of LFNST kernel used with respect to the transform

unit (TU) size along with memory requirementc.ccoeeevvereenrnnnn 25
LFENST kernels used in VTM-5.0.ccccoiiviiiiieniiiie e 28
Proposed LFNST kernels used in VTM-5.0........ccccccevvviiinennnnnnnenne. 28

Specification of the LFNST kernel set index with the intra prediction

MOde O the TU S, .uuiiiiiiiie e 29
Proposed method simulation results for All Intra configuration 44
Proposed method simulation results for RA Intra configuration........ 44
Simulation results of Al configurationccocevvenineneieneiiienns 46
Simulation results of RA configuration.............cccocovveieieiicnc i, 47
Simulation results of proposal in [22]ccccovviiiiniieniiiicee 48
Simulation results of proposal in [21] ..o 50
Simulation results of proposal in [20]ccccoovviiiiiiiicie e, 51
%

Collection @ chosun

Acronyms

VvVVvC Versatile Video Codec
DCT Discrete Cosine Transform
DST Discrete Sine Transform
LENST Low frequency Non-Separable Transform
CTC Common Test Conditions
VTM VVC Test Model
EncT Encoding Time
DecT Decoding Time
Al All Intra
RA Random Access
LDB Low Delay B
QP Quantization Parameter
CABAC Context-Adaptive Binary Arithmetic Coding
AVC Advanced Video Coding
HEVC High Efficiency Video Coding
HDR High Dynamic Range
ROM Read Only Memory
TU Transform Unit
CuU Coding Unit
TB Transform Block
CB Coding Block

Vi

Collection @ chosun

Abstract

A study on coding complexity
reduction of secondary Low
Frequency Non-Separable Transform
(LFNST) for Versatile Video Codec
(VVC)

Ankit Kumar

Advisor: Prof. Bumshik Lee,
Department of Information and
Communication Engineering

Graduate School of Chosun University

The transform is an essential module of the codec where the
transformation of the residual block in pixel domain is converted to the
coefficient block in frequency domain. In the standardization of
Versatile Video Codec (VVC), the secondary transform is recently
introduced as Low Frequency Non-Separable Transform (LFNST), to
achieve better compression efficiency for the highly dynamic images
with textures and edges in comparison to the primary transform. The
secondary transform in VVC uses two sets of kernels of size 1616 and
16x48 depending on the transform unit (TU) block size and indexing
based on the intra prediction mode of the TU block. Although the
secondary transform has a greater impact for the better coding efficiency
and compression, its implementation is very complex and requires a lot

of mathematical computations. Also, the storage of the secondary

vii

Collection @ chosun

transform kernels is a major concern as it takes 8KB of memory in VVC.
In this thesis, a novel coding complexity reduction method is proposed
that uses only 16x48 transform kernel for all TU block size, which
reduces the overhead of selecting the transform kernel set depending
upon the TU size and saves 2KB of memory while storing the transform
kernels. Apparently, the indexing of the kernel based on the intra
prediction mode is kept same for all TU’s. The proposed method gives
maximum of 16 non-zero output residue coefficients in the bitstream, by
zeroing the primary transform coefficients reducing the mathematical
computation complexity of the LFNST and quantization process. The
proposed method also provides a novel approach to derive the sub-
sampled kernel from 16x48 kernel to apply for the lower TU blocks of
dimension 4xN and Nx4 (N>=4). The experiments are performed in
VTM-5.0 reference software under the common test conditions (CTC).
The results on the Bjontegaard delta bitrate (BDBR) of the proposed
method show no significant loss for All Intra (Al) and Random Access
(RA) configuration. However, for Al configuration, it showed a gain of
0.02% for U-chroma with 94% encoding time and 98% decoding time,
whereas for RA configuration, a benefit of 0.01% for V-chroma is
obtained with 97% encoding time. Overall, the proposed method shows

a substantial reduction by 6% in the encoding time.

Index terms- VVC, LFNST, BDBR, CTC, coding block, transform
block

viii

Collection @ chosun

HIC| QA0 Hete T
HS 42 W7l 5 & F9 BHLE0ICH VWC (Versatile
Video Codec) H|C|Q B2 T 0|4, 1 X 3 M8 & 1%} pi3
20 THaH CHA| Ei3He 2aists 2 Xt WBt0| A E| O,
2 @B BAK Ol AX|7HQlE SHO 0|0|X|O| 2% w8
07| Qfeh MFED B 22y W 2t
AFBBHTH WVC 2| 2 X EiBhe Mt Chel (TU) 22 37| 9 TU
S2o|olEa} 0% 2o what T

16x48 37]0] £ 73 XS AIRSO] H|22| HBIHES
4Bt WC Ol 2 X ste 2 ¢t

=]
AR I S 30 B2 AdEs

P et
7{E€0| QlEZtRES Het 37(0f Wl 0f ChstA Fole

Collection @ chosun

HES AH8StE R, B2 ¥l #H2 HIO|HE MEHOof otit=
CHEO| EXfotCt 2 off =&0M= ol2{et HHE S s ASH|
el 2E TUSE 370 16x48 HE 7'd OF ALt MZ2
A ERE ZhA SOl K| QHatCH K| oF B2 AL SHH QI Eg}
o= 2o 7|dtet HEol eIHd2 HE TU O CHAl & LotA|
FXGHHM TU 2700 w2l Het HE NEE MESE 2
S|EE 0|1 HetZ MESt= S0t 2kB Q| HEE|E B +=
UCH Eoh MIOHE 2 1 Xt et A+=E 0 22 N2 M
LFNST % UXtzt Z2AM A9 AM SFEES AAAFAH HE
2EZ0M Z|Oi 16 72| = TR A+=Z HMSTHCh K QHE
HIEH2 37|71 4xN 2 Nx4 (N> = 4) @ TU E20| HE35}7|
s 16x48 HEOAN ME HMEY HEEZ FEsts WHE
ZOHEICH HotE 22 38 HAE = (CTOS 083519
VIM-50 X AZEQOM +=AHEJUD STE 24 A HE
F=o| AAE =T

|0f
|21 BDBR (Bjontegaard delta bitrate)
A= Al (Al Intra) 2 RA (Random Access) Z710{AM &AM S
HOIX| SUALCE Al B2 Q2T A|ZH0] 94 %00 C|ZF A[ZHO]
98 % QI U-chroma 2| A< 0.02 %2| 0|52 YU20, RA 2
B8R 97 %2| Ql2E AlZkE ZHX|E2 V-chroma 2| &% 0.01

%2| 0|52 EO{FRULE.

Collection @ chosun

1. Introduction

1.1 Background

Generally, a video codec is a device or software that is used to compress or
decompress a digital media, such as a video or image. The word “codec” is
composed of 2 parts: encode and decode. The encoder performs the
compression (encoding) function, whereas the decoder performs the
decompression (decoding) function [1]. The basic block diagram of the video

codec is shown in Fig. 1-1.

Video Source—>| Prediction |—>| Transform H Encode }—l

Transmit or store:

éVideo output <—| Reconstruct |4——| Inverse Transform H Decode }‘J

Figure 1-1. A basic block of the video codec

In video coding, initially the video source undergoes through the prediction
module at the block level. The prediction coding refers to predicting the
similarity of the picture region in a particular picture or frame. The codec has
two kinds of prediction i.e., Inter prediction [2] and Intra prediction [3]. If the
prediction is made from the previously coded block, from the current frame, it
is said to be intra prediction. Whereas, if the prediction is made from other
frames that has already been coded, it is referred as inter prediction. Finally,
subtraction of the prediction from the current block is performed to obtain the

predicted residual. After that, the transform and quantization process [4] is

Collection @ chosun

performed. In transform, basic transform kernels such as DCT-2 [5], DST-7
[6], DCT-8 [7], DST-4, and DCT-4 [8] are used, where a block with the
predicted residues is transformed using integer operations [9-10]. As a next
step, the output of the transform process i.e., the non-zero coefficients are
quantized, where each coefficient is quantized by quantization step size. The
quantization reduces the precision of the transform coefficients according to a
quantization parameter (QP). Higher QP values are likely to make coefficients
zero, resulting in high compression at the expense of lower image or video
quality. On the other hand, lower QP values are likely to have more non-zero
coefficients resulting in better-decoded video or image quality but lower
compression. After these steps, the encoding process is done where several
values are encoded to form the compressed bitstream. The values and
parameter (syntax elements) are converted into binary codes using variable
length coding [11] and/or arithmetic coding [12-13] and/or Context-Adaptive
Binary Arithmetic Coding (CABAC) [14-15]. The encoded bitstream can then

be stored or transmitted.

After all those encoding procedures, decoding is done from each of the
syntax elements and extracted the information described above (quantized
transform coefficients, prediction information, etc.). The inverse process is
performed on the decoder side for each step mentioned above in the encoder.
The quantized transform coefficients are re-scaled, where each coefficient is
multiplied by an integer value to restore its original scale. Similarly, an inverse
transform is applied to re-create each block of residual data which combined
to form a residual macroblock. Finally, the decoder adds the prediction to the
decoded residual to reconstruct a decoded different macroblock, which can

then be displayed as part of a video frame.

Collection @ chosun

In the video coding, various standardization works have been carried out with
their own specialization in each standardization. Some of the standardizations
that have been carried out are H.261 [14], H.262 [15], H.263 [16],
H.264/Advanced Video Coding (AVC) [17], H.265/High Efficiency Video
Coding (HEVC) [18]. Recently, the Versatile Video Coding (VVC) [19] is
being standardized, whose main objective is to provide a significant
improvement in compression performance over the existing HEVC standard
[18] and also aid the deployment of higher-quality video services and
emerging applications such as 360° omnidirectional immersive multimedia
and HDR video [24].

1.2 Versatile Video Codec (VVC)

1.2.1 Structure of VVC

VVC is a codec which is designed by the collaborative team of ITU-T and
ISO/IEC experts known as the Joint Video Experts Team (JVET). The codec
is a successor to the HEVC and is designed to meet the upcoming need in the
domain of video conferencing, OTT streaming, mobile telephony, and many
other fields. The VVC codec is more efficient as it is targeted to provide
approximately 50% bitrate reduction to the HEVC codec and high efficiency
for compression. The codec is said to be versatile because it is targeted to
address all of the video needs from low resolution and low bitrates to high
resolution and high bitrates. The advantage of VVVC over other prior codecs
can be measured in terms of better bitrate gain, compression efficiency and
addition of coding tools for different modules describes below. The overall

block diagram of the encoder is illustrated in Fig. 1-2.

Collection @ chosun

quant. transf. coeff.

»

residual

Input video ——> Transform/ AI Entropy Encoding l——'
4

Quantization

Intra prediction Inverse Quant /
Inverse Transform

predictor

Motion Estimation/ J I:
) In-Loop filter

Compensation

Decoded picture
' buffer i

Figure 1-2. General block diagram of the VVC encoder.

The overall encoder side of the VVVC shows the similar modules and coding
techniques as the prior standards of codecs. Firstly, the input video is passed
to the encoder, and the partitioning is performed on the coding units (CUs)
based on the Multiple Tree Type (MTT) [27] partitioning which also supports
the binary tree (BT) [1], ternary tree (TT) [1] and quad tree (QT) [1] structure
for partitioning the block in to multiple CU’s. The CU is a coding block of a
luma sample and two corresponding coding blocks of chroma samples of a
picture. The partitioned block is sent for the prediction module which can be
either intra prediction or inter prediction and the output residual is sent for
transformation in form of transform unit (TU). The TU is a transform block of
luma samples and two corresponding transform blocks of chroma samples of
a picture and syntax structures used to transform the transform block samples.
The transform module has two sets of transform i.e., primary transform and
secondary transform. The primary transform uses the kernels like DCT-2 [5],
DST-7 [6], DCT-8 [7], DST-4, and DCT-4 [8] where a block with predicted

Collection @ chosun

residuals is transformed using the integer operations and the output of primary
transform residuals are sent for the secondary transform. The secondary
transform commonly known as Low Frequency Non-Separable Transform
(LFNST) uses the set of transform kernels of dimension 16x16 and 16x48,
for matrix multiplication with the output residues of primary transform and
gives the non-zero secondary transform residual coefficients. The output
residual of secondary transform is sent for quantization. The output bitstreams
are then entropy encoded and the compressed data is gained which is sent to
the decoder to follow the reverse order of the modules used at the encoder to

decode the input video.

A lot of new coding tools for the intra prediction and transformation has
been introduced in VVC. For intra prediction, we use Intra Sub-Partitioning
(ISP) [2], Matrix Intra Prediction (MIP) [3], Cross Component Linear Model
(CCLM) [26], whereas the transform module has introduced the secondary
transform coding tools i.e., Low Frequency Non-Separable Transform
(LFNST) which is further discussed in the further sections. As, the main goal
of the VVC is to attain more bitrate gain and compression efficiency than the
other standard codecs, the standardization work for VVC is still on-going.

1.2.2 The Overall Structure of Prediction

In VVC, the decision to whether code a picture area using inter picture or
intra picture prediction is made at the CU level. The prediction coding refers
to predicting the similarity of the picture region in a particular picture or frame.
A prediction unit (PU) partitioning structure has its root at the CU level.
Depending on the basic prediction type decision, the luma and chroma CB’s

are further split in different block sizes and predicted from luma and chroma

Collection @ chosun

prediction blocks (PBs). VVC uses two kinds of prediction i.e., inter prediction
and intra prediction.

1. Intra prediction

A regular pattern in textures of natural images can be represented by
geometric models. This feature is used in intra prediction [2] methods in order
to remove redundancies in the spatial domain. In intra prediction, the
prediction is made from the previously decoded boundary samples from the
spatially neighboring TBs are used to form the prediction signal. The
prediction block (PB) ranges from the dimension 4x4 to 64x64 and there are
altogether 67 intra modes used for the prediction. Out of the 67 intra modes,
we have 65 angular modes ranging from 2 to 66, whereas mode 0 and 1 are
referred as Planar and DC mode, respectively. The DC mode prediction uses
the average value of reference sample for prediction and the Planar mode
prediction uses average values of two linear predictions using four corner

reference samples to prevent discontinuity along the block boundaries.

42 50 60 66
36
267
WAIP modes
25
. 80
18+
10
0: Planar mode
; 1: DC mode
2 G ——a
WAIP
modes

Figure 1-3. Intra prediction angular and WAIP modes in VVC.

Collection @ chosun

All the angular modes reside by the left diagonal line of the square block as
shown in Fig. 1-3. The concept of Wide Angle Intra Prediction (WAIP) [2] is
also introduced in VVC, for the angular modes that are calculated beyond the
left diagonal angles which ranges from mode -2 to -14 to the left reference
boundary sample and from mode 67 to 80 to the top reference boundary sample
only for the rectangle CU’s. The objective of the intra prediction is to find the
best model parameters that maximizes the similarity to the original block.

Some of the newly added main intra coding tools are described in detail below:
¢ Intra Sub-Partition (ISP)

The newly added coding tool for intra prediction in VVC, is ISP [33], where
the CU is divided into 2 or 4 partitions, either horizontally or vertically
depending on the block size. It partitions the higher block sizes into smaller
blocks which are easy for processing and gives efficient coding gain. The
partitioning of the CU block can be inferred from the Table. 1 and visual
illustration of the partitioning of W x H CU block in horizontal and vertical

direction can be seen in Fig. 1-4.

Table 1. Number of sub-partitions based on block size

Block size Number of sub-partitions
4x4 Not divided
4x8and8 x4 2
All other cases 4
7

Collection @ chosun

Horizontal H/2
w partition H/?
H w2 w2
Vertical H
partition
74
H/4
Horizontal H/4
w partition H/4
H/4
H W4 w4 W4 W/4

Vertical
partition

Figure 1-4. ISP horizontal and vertical (2 and 4) partitioning of W xH CU block.
% Matrix Intra Prediction (MIP)

MIP [34] is also the newly added intra coding tool in VVC, where the original
CU block is down sampled into sub-CU (bdryred) by averaging the top and left
boundary samples, followed by matrix vector multiplication and addition of
offset given in equation (1).

Bdryred = Ak . bdryred + by , 1)

Collection @ chosun

The obtained result Bdryrd i.e., the result after the matrix vector
multiplication, is up sampled by linear interpolation first in horizontal
direction followed by vertical direction. Ak represents the MIP matrix and bk
represents the offset vector used based on intra mode ‘k’. MIP has three set of
matrices and offset vectors for the matrix vector multiplication which is
obtained based on the intra mode of the CU. The set So has 18 matrices of
dimension 16x4 and 18 offset vector of size 16 and is used for CU blocks of
dimension 4x4. The set S1 has 10 matrices of dimension 16x8 and 10 offset
vector of size 16 and is used for CU blocks of dimension 8x4 and 4x8. The
last set Sz has 6 matrices of dimension 648 and 6 offset vector of size 64 used

for all other block’s sizes greater than 4x8 and 8x4 CU block.

w

bdry,q = Ay - bdry,q + by

Linear
interpolation

Figure 1-5. Design of MIP in VVC for W X H CU block.

¢ Cross Component Linear Model (CCLM)

(“/Collection @ chosun

Another important intra coding tool to calculate the prediction mode of
chroma block is given by Cross Component Linear Model (CCLM) [26].
CCLM predicts the chroma sample values using the co-located reconstructed
luma samples with a local linear regression model. The CCLM includes
CCLM_L, CCLM_T and CCLM_TL mode, where the left, top and top-left
samples are used to determine the chroma prediction mode using the linear
model based on the linear model parameters a and g. For example, in the
CCLM_T mode, only the top template or the top reference sample is used to
calculate the linear model parameters. To get more reference samples, the
number of reference sample is taken twice the original size (2W) as shown in
Fig. 1-6.

. AEREAE

N S e e

o8es

Luma —

— Luma’ — — Chroma —

Figure 1-6. lllustration of CCLM_T mode in VVC.

In the current VVC, a simplified line fitting method is being used for the
CCLM. Initially, the luma sample is down sampled to corresponding luma and
chroma sample depending upon either of the CCLM modes as shown in Fig.
1-6. CCLM uses a six-tap down sampling filter while down sampling the
original luma sample. This requires two rows of neighbouring luma sample

above the current block and three columns of neighbouring luma sample left

10

Collection @ chosun

of the current block. Then the model parameters are calculated as shown in
equation (2)-(3) based on the co-ordinates representing the maximum and

minimum luma values in Fig. 1-7.

1024

Chroma Values

0
Luma values 1024

Figure 1-7. Illustration of straight line between minimum and maximum luma

value.

The linear model parameters are calculated as -

__YB~YA
o= XB—XA (2)
B = ya—axy, (3)

2. Inter prediction

The inter prediction [27] performs the prediction to remove the dependencies
in the temporal domain i.e., the prediction is made based on the previously
coded picture not same picture frame. The objects and regions of the picture
taken from the video source approximately contains similar pixels, though

slightly displaces. The core idea of the inter prediction is to model the

11

Collection @ chosun

displacement of these regions/objects restricted to rectangular blocks. A
technique known as Motion Estimation (ME) [27] is used for the inter
prediction which takes two inputs as the original block to model and a
reference frame shifted in time. Motion estimation finds a motion vector (MV)
[1] among a set of candidates by maximizing the similarity between the
original block and the displaces block taken in reference.

1.2.3 The Overall Structure of the Transform

VVC uses the transform coding of the prediction error residual in a similar
manner as in prior codec standards. The residual block is partitioned into
multiple square or rectangle transform blocks (TBs) and is further computed
by the core transform i.e., primary transform and further computed by
secondary transform i.e., LFNST and the output bitstreams are sent for

quantization.

The primary two-dimensional transforms are computed by applying one
dimensional transform in the horizontal and vertical directions. The elements
of the core transform matrices are derived by approximating the scaled
Discrete Cosine Transform (DCT) [7] and Discrete Sine Transform (DST) [8]
basis functions, considering the necessary dynamic range for transform
computation, maximizing the precision and maintaining the orthogonality of
the matrices which are specified as integer values [1]. For primary transform,
basic transform kernels such as DCT-2, DST-7, DCT-8, DST-4, and DCT-4
are used and are referred as Multiple Transform Set (MTS). These different
kernels are useful because of their different energy distribution properties,

although memory storage to store different block size kernel is always one of

12

Collection @ chosun

the major concerns. In VVC, the use of MTS transform kernel based on

prediction and block size is shown in Table. 2.

Table 2. MTS transform kernel based on the prediction and block size.

Prediction Prediction tools Block size MTS transform Kernel
ISP (Intra Sub- 4x4 up to DCT-2, DST-7
Partition) 16x16
Intra
MIP (Matrix Intra 4x4 up to DCT-2, DST-7, DCT-8
Prediction) 64x64
Normal Intra 4x4 up to DST-7, DCT-8
64x64
Inter SBT (Sub-Block 4x4 up to DCT-2, DST-7, DCT-8
Transform) 64x64 (depends on SBT position)

In general, a DCT and DST is a Fourier related transform similar to the
Discrete Fourier Transform (DFT). DCT is the real part and DST is the
imaginary part of the DFT. There are eight variants of DCT and DST. The
most common variant of discrete cosine transform is type-I11 DCT also known
as DCT-2. The DCT has a strong energy compaction property with lossy
compression as the signal information is concentrated in a few low-frequency
components. It is effective only when there is no difference in the residual after
prediction that is why DCT-2 is mainly effective for the inter prediction.
Regarding the usage of DST-7 and DCT-8, it is also regarded as lossy
compression with strong compaction property as that of DCT-2. They produce

more coding gains for boundary and intra prediction. DST-4 and DCT-4 can

13

Collection @ chosun

be used as the replacement of the DST-7 and DCT-8 transform kernels as they

show the similar signal behavior.

The secondary transform is a higher order transform and is applied between
forward primary transform and quantization (at encoder) and between de-
quantization and inverse primary transform (at decoder side). The secondary
transform i.e., LFNST has its own set of transform kernels which is multiplied
with the output residual coefficients of the primary transform. There are two
sets of secondary transform kernel of dimension 16x16 and 16x48 which
takes 8KB of memory storage. The selection of the transform kernel is
dependent on the intra prediction mode of TB as shown in Table. 3. As shown
in Fig. 1-8, 4x4 (or 8%x8) secondary transform is performed depends on block
size. For example, 4x4 secondary transform is applied for small blocks (i.e.,
min (width, height) < 8) and 8x8 secondary transform is applied for larger
blocks (i.e., min (width, height) > 4) per 8x8 block.

14

Collection @ chosun

16 coefficients for 4 X 4 forward secondary transform
64 coefhicients for 8 x 8 forward secondary transform

Forward Secondary

<=

Transform

Forward

Primary > Quantization
Transform

Forward

Primary < De-Quantization
Transform

Inverse Secondary
Transform

16 (or 8) coefficients for 4 X 4 and 8 X 8 inverse secondary transform

Figure 1-8. The secondary transform working design model in VVC.

The major proposed concept of this thesis is to focus on the memory storage

along with the implementation of the efficient design of the secondary

transform with reduced complexity. In this thesis, the proposed method

reduces the computation complexity along with saving of memory by 2KB, as

the LENST kernels require 6KB of memory storage instead of 8KB.

1.3 Objective

The secondary transform is regarded as the prime component during the

process of compression and decompression in video coding; the goals and

ideas for this research set are as following:

Derive the secondary transform kernels indexed, based on the intra

prediction mode.

Collection @ chosun

15

Reduce the transform kernel storage from 8KB to 6KB.

Exhibit the characteristics of different transform block computation
with respect to the secondary transform kernels based on the intra
prediction modes

Use only one secondary transform kernel of size 16x48 for
transform blocks of order 4xN and Nx4 where N>=4 to show the

efficient reduced complexity of operations.

1.4 Motivation

In the standardization of VVC, the non-separable secondary transform is
widely used as compared to the separable discrete cosine transform (DCT) and
the separable discrete sine transform (DST) for the video compression.
Although DCT is an efficient approximation of optimal separable primary
transform, it is not flexible for the highly dynamic images with textures and
edges. The secondary transform is only applied to the intra-coded blocks with
intra and inter slices. Recently, in the undergoing of the standardization of
VVC, two secondary transform kernels were used for the VVC Test Model
(VTM) i.e. 16x16 kernels for 4x4, 4xN, Nx4 (N>4) TU and 16x48 kernel
for 8x8, Nx8, 8XN (N>8) TU. Apparently, the selection of this transform
kernel is based on the indexing of the transform set with respect to the intra
prediction mode of the transform block, as shown in Table. 3. Also, for the
4x4 transform blocks, the sub-sampled kernel is derived from the 16x16
kernel to get the maximum of 8 coefficients in the residue. The prime
consequence of the existing design is the memory storage of the secondary
transform kernels, which takes 8KB of memory to store all kernels along with

the complexity and latency reduction issues.

16

Collection @ chosun

Several proposals were presented to solve the memory and complexity
reduction issue. These proposals tried to use a single kernel but could not
reduce the complexity with the mathematical computation of the LFNST
process. Some proposals tried to only reduce the complexity giving a limiting
number of output residue coefficients in the bitstream for quantization, still
keeping the memory storage of the kernel same as 8KB for either 4x4 LFNST
or 8x8 LFNST design.

Hence, to overcome the issues, a simpler LFNST design with a single
secondary transform kernel of 16x48 is used, and sub-sampled kernels are
used for the smaller transform blocks i.e., 4x4, 4xN, Nx4 (N>4) applied with
4x4 LFNST. For 8x8 LFNST for the higher transform block size i.e., 8x8,
Nx8, 8XN (N>8), the kernel 16x48 remains the same. Also, the proposed
method reduces the output residue coefficients to a maximum of 16 non-zero
coefficients, zeroing all the primary transform coefficients in the bitstream,
which speeds up the encoder reducing the complexity and latency issue in the
VTM. Since the secondary transform is applied post-primary transform on the
transform blocks, it totally supports the fast algorithm implementation of
DCT-2 and DST-7 transform kernels of the primary transform [25].

1.5 Thesis Layout

The rest of the thesis is organized as follows: Section 2 exhibits the related
work. Section 3 describes the proposed method i.e., the usage of the single
secondary transform kernel of size 16x48 to calculate the residual of the
transform blocks of size 4xN and Nx4 where N>=4 computed after under-
going primary transform along with zeroing concept. Section 4 provides all the
experimental results, followed by the conclusion of this thesis in Section 5.

17

Collection @ chosun

2. Related Works

2.1 Introduction to LFNST

In the different trends of standardization, the non-separable secondary
transform has been evolved efficiently along with the primary transform.
Although DCT is an efficient approximation of optimal separable transform,
it’s adaptivity with the fixed core is limited for the highly dynamic images
with textures and arbitrarily detected edges. Hence non-separable transform
can achieve better compression efficiency over the video/image with

directional texture patterns.

The Low Frequency Non-Separable Transform (LFNST) is currently used
in the VVVC model, which has two sets of transform kernel matrix of 16x16
and 16x48 dimensions. Memory storage has become one of the major
problems for the codecs recently while applying the fast algorithm along with
the less memory storage to transform kernels has become a challenging task to

be performed.

The application of a non-separable transform i.e., LFNST is described as
follows using input as an example. To apply the non-separable transform, for
the 4x4 input block X which is represented below in equation (4).

X00 Xo1 Xo2 Xo3
_ %10 X11 X122 X313
X = X0 X1 X2z X3 (4)
X30 X31 X32 X33
X is first represented as a one-dimensional vector x as (5)

X =[X%0 Xo1 Xoz Xoz X10 X11 X12 X13 X0 X1 Xz X3 Xzp X3q X3z X33]T (5)

The non-separable secondary transform is calculated by (6)

18

Collection @ chosun

F=Tx, (6)

where F indicates the transform coefficient vector, and T is a 1616 transform
matrix. The 16x1 coefficient vector F is subsequently re-organized as 4x4
block using the scanning order for that block (horizontal, vertical, or diagonal).
The coefficients with a smaller index will be placed with the smaller scanning
index in the 4x4 coefficient block. The mapping from the intra prediction
mode to the transform set is pre-defined. For each transform set, the selected
non-separable secondary transform candidate is further specified by the
explicitly signaled secondary transform index. The index is signaled in a
bitstream once per intra coding unit after transform coefficients. The visual
illustration of the forward and inverse secondary transform is given in Fig. 2-
1.

Reduced Inverse
Transform

Residual Cocfficient Coefficient Tt x] Residual

Figure 2-1. Block diagram of forward and inverse secondary transform in VVC.

An inverse secondary transform i.e., LFNST which was earlier known as
Reduced Secondary Transform (RST) [35] is conditionally applied when the

following two conditions are satisfied:

1. Block size is greater than or equal to the given threshold (W>=4 &&
H>=4)

2. The transform skip mode flag is equal to 0.

Furthermore, LFNST is applied for intra-coded CU in both intra and inter
slices, and for both luma and chroma. If a dual-tree is enabled, LFNST indices

for luma and chroma are signaled separately. For inter slice (the dual-tree is

19

Collection @ chosun

disabled), a single LFNST index is signaled and used for both luma and
chroma. The LFNST is also applied to the TU’s which is a Matrix Intra
Prediction (MIP) coded block along with the normal intra predicted block with
general intra prediction and wide-angle modes. Since the secondary transform
kernel is selected from the transform kernel set, determined by the intra
prediction modes, the mapping of the intra prediction modes and transform set

index is shown below in Table. 3.

Table 3. Mapping of the LFNST kernel set index with the intra prediction mode

Intra prediction mode LFNST kernel set index

Intra_pred_mode < 0 1

0 <=Intra_pred_mode <=1 0
2 <= Intra_pred_mode <= 12 1
13 <= Intra_pred_mode <= 23 2
24 <= Intra_pred_mode <= 44 3
45 <= Intra_pred_mode <= 55 2
56 <= Intra_pred_mode <= 80 1
81 <= Intra_pred_mode <= 83 0

The mode 81 to 83 determines the CCLM [26] modes. Whenever if any of
the three CCLM modes is indicated, the index is set to 0, the same as for the

Planar and DC mode.

In the stage of standardization, there are few related works for the reduction
of the complexity for LFNST as standard contributions by some participants

of the standardization which is mentioned in the next section.

20

Collection @ chosun

2.2 Existing Methods

2.2.1 A Memory Reduction Approach for LFNST

This contribution [22] proposes to unify the LFNST calculation and attempts
to reduce the memory cost by using a single 16x48 kernel for LFNST. For the
transform blocks of size 4xN and Nx4, they considered as part of 8xN, and
Nx8 blocks with only the overlapping part with 16x48 kernel basis is used.
Currently, in the VTM, two different kernels are used for LFNST i.e., 16x16
and 16x48 kernels, but this proposal proposes to use the later kernel for all
block sizes. The proposed method provides the following benefits: saving the
memory storage for the kernels, i.e., 2KB, simplifying the computation of
LFNST, and the spec text is much simplified. This proposed method gives
0.05%, 0.01% luma BD-rate changes for All Intra (Al) and Random Access
(RA) configurations, respectively, with 3% overall encoding time saving for
Al, with simulations over VTM-5.0 under CTC conditions.

Eventually, for forward LFNST when we apply 16x48 kernel for 4xN and
Nx4 block, only the overlapping part with basis is used further for the
secondary transform. The illustration for applying 16x48 LFNST kernel for
4x4, 4%8, 8x4 and 16x4 transform blocks (TB) are shown in the shaded

region below in Fig. 2-2.

4

o0
B
W

Figure 2-2. Using the single 16x48 LFNST kernel for 4x4, 8x4, 4x8 and 16x4

transform block of lower dimensions (left to right).

21

Collection @ chosun

Consecutively, for the inverse LFNST, either 8 or 16 coefficients are given
as input, and 48 coefficients samples are gained at the output, which forms the
L-shaped as mentioned above in Fig. 2-2. The coefficients present only inside
the block region need to be calculated, and the remaining samples are not
calculated. For 4x4 transform unit, only 8 coefficients from the top left 4x4
region is calculated along with 16x48 kernel as output. Also, to maintain the
worst-case multiplication per coefficient intact, they calculate only 8

coefficients for 4x8 and 8x4 transform units

2.2.2 A Limiting Coefficients Approach for LENST

This contribution [21] proposed several variations to reduce the complexity
of the LFNST process and the simplification. The contribution was presented
with four different aspects where each aspect with their individual simulation
results and detailed analysis is also presented. The aspects were:

a) A maximum of 16 LFNST coefficients as the output residue is
targeted to obtain, whereas before 32 LFNST coefficients were
obtained from the two top left adjacent 4x4 blocks in 4xN or Nx4
TU’s (N>4).

b) Additional zeroing of the primary transform coefficients to be done
when LFNST is applied to 4x4 TU block.

22

Collection @ chosun

3| — 4 —

oO|o|Oo|O
o|lo|Oo|OC

oo |0 | O
o | |0 | O

o|lc|Oo|C
o|jloco|jo|o
o|lo|Oo|C
o | o |0 | o

Figure 2-3. The additional zero-out of primary transform coefficients when 4x4
LFNST is applied.

c) Additional zeroing of the primary transform coefficients to be done
when LFNST is applied to 8x8 TU block.

le 8 N
[»|

-~

olo|jlo|o|O|O|O|O

ool |0O|O|OC|O|O

o|lo|l0O|lOlO|OC|O | O

ool |o|lO|O|O|O
ool |O|O|O|O

oO|lo|lOoO|loo|lO|OC|O

o|lo|lo|Oo
oO|loo|lOo|OC|O

Figure 2-4. Additional zeroing out of the primary transform coefficients for the
when 8x8 LFNST is applied for 8x8 TU block.

d) Changing of the region where non-zero residual transform
coefficients are taken in consideration.

23

(“/Collection @ chosun

All the above-mentioned aspects were simulated all together in VTM-5.0
under the CTC condition with 0.6% BD-rate over All Intra (Al) with 90%
EncT, 0.02% BD-rate over Random Access (RA) with 97% EncT. It is seen
that zeroing the 8x8 LFNST has more impact on the complexity reduction
rather than the 4x4 LFNST zeroing. The comparison in the Section 4.2 gives
more insight about the results of this contribution. This proposal also reduced
the processing latency in the two sets of transform kernels, which helps for the
real-time encoder optimization. Although it was still questionable if the
normative changes made over VTM was beneficial for further standardization.

2.2.3 A Limiting Coefficients and Zeroing Approach for
LFNST

In this proposal [20], they propose to restrict all the coefficients outside the
first sub-group coefficients to be non-significant. Since the secondary
transform is applied to the top-left subset of the residual of the primary
transform, in this proposal the remaining non-significant primary transform
coefficients are made to be zero when LFNST is applied. The proposal allows
condition on the signaling of the LFNST index on the last significant position,
which helps to avoid the extra scanning of the coefficients present in the
current design, which was needed just to check for the significant coefficients

at a particular specific position.

24

Collection @ chosun

Table 4. The total number of LFNST kernel used with respect to the transform unit

(TU) size along with memory requirement.

Transform blocks LENST Kernels
4x4 16x8
4xN, Nx4; N>8 16x16
8x8 48x8
MxN; (M, N)>8 48x16
LFNST candidates 2
Memory requirement 8KB

The proposal maintains the handling of the worst-case scenario (multiplication
per pixel) by restricting the secondary transform for 4x4 and 8x8 transform
blocks to 8x16 and 8x48 transform kernels. Total multiplications per

coefficient for transform units of M x N with zeroing is given as:
m
Muls_per_coeffdirectMatrixMultiply = En +m (7)

Muls_per_coef fuaifputterrty = 3, G +10827) + (5 +10g27) , (8)

where Muls_per_coef fairectmatrixmuitipty 1Ndicates the direct matrix
multiplication of the entire TU with the entire LFNST kernel, whereas
Muls_per_coef fraifputterri,y indicates the multiplication of the LFNST
kernels only to the significant coefficients required by secondary transform
zeroing out the primary transform coefficient following the half-butterfly

scanning order.

For the mentioned block size case, last significant position of the scanning

must be less than 8, while for other blocks it must be less than 16 when LFNST

25

Collection @ chosun

is applied. For 4xN and Nx4 TU with N>8, the proposal restriction exhibits
the applicability of LFNST only once to the top left 4x4 region as shown in
Fig. 2-5.

— 4 —

)

I
|

Figure 2-5. Applicability of LENST to the first subblock for 4xN and Nx4 TU
block with N>8 having a maximum 16 coefficients.

As seen from the figure mentioned above, all the primary transform
coefficients present on the right side of the transform block lightly shaded is
deliberately zeroed out. With this approach, the quantization of the coefficients
is significantly simplified when LFNST is tested over VTM reference
software. Also, the rate-distortion optimized quantization is carried out to be
maximum for the first 16 coefficients, following the scanning order, and

remaining coefficients are made to be zero.

Based on the test results, there is a gain for the luma chrominance (U) with
0.02% with 10% of the reduced encoding time (EncT) for All Intra (Al).
Similarly, there is 0.01% gain for the chroma component (V) with 3%
reduction in the encoding time (EncT) for Random Access (RA) over VTM-
5.0.

26

Collection @ chosun

2.3 Problems of the Related Works

Several proposals were presented to solve the memory and complexity
reduction issue. These proposals tried to use a single kernel but could not
reduce the complexity with the mathematical computation of the LFNST
process. Some proposals tried to only reduce the complexity giving a limiting
number of output residue coefficients in the bitstream for quantization, still
keeping the memory storage of the kernel same as 8KB for either 4x4 LFNST
or 8x8 LFNST design. Since the secondary transform is applied post-primary
transform on the transform blocks, the related proposals totally supported the
fast algorithm implementation of DCT-2 and DST-7 transform kernels of the
primary transform [25], but not for the efficient complexity reduction. Further,
in thesis an efficient LFNST design is presented in section 3, which targets for

better coding complexity reduction of the secondary transform.

All the related works presented above, either dealt with the memory
reduction saving 2KB of memory or limiting the non-zero coefficients of the
output residue of the secondary transform i.e., 4x4 LFNST or 8x8 LFNST
coefficients. The approaches mentioned does not have a combined ground for
the complexity reduction including both the memory reduction and complexity
reduction of the LFNST process. Since, optimization of the codec is preferred
for any coding tools, if a faster and efficient computational LFNST design is
constructed, the encoder would have more significant impact on the

compression of the video source.

27

Collection @ chosun

3. Proposed Method

In this thesis, the complexity reduction of the secondary transform,
commonly known as LFNST for the VVC is proposed. The secondary
transform LFNST kernels used in this research are derived from the non-CTC
images (DIV2K Dataset). Earlier, in the VTM-5.0 the reference software of
the VVC, two sets of LFNST Kkernels i.e., 16x16 and 16x48 matrices were
used for different transform units as shown in Table. 5 below, but this research
proposes to use only a single 16x48 transform kernel for all TU’s as shown in

Table. 6, which also saves the 2KB of the storage memory of the kernel

matrices.
Table 5. LFNST kernels used in VTM-5.0

LFNST kernel size Applicable TU size Memory cost
16x16 4xN and Nx4, N>=4 2KB
16x48 8xN and Nx8, N>=8 6KB

Table 6. Proposed LFNST kernel for VTM-5.0

LFNST kernel size Applicable TU size Memory cost

16x48 4xN and Nx4, N>=4 6KB

The LENST transform kernel, is selected from the set of kernels based on the
intra prediction mode of the CU of the block predicted during the intra-
prediction, a step before the transformations of the TU’s. The 16x48 LFNST
kernel has different sub-sets of kernels of same size which is selected by
indexing the intra prediction modes. The indexing of the intra prediction

28

Collection @ chosun

modes with the LFENST kernel sets is kept unchanged and is shown in the
Table. 7 below:

Table 7. Specification of the LENST kernel set index with the intra prediction
mode of the TU’s.

Intra prediction mode LFNST kernel set index

Intra_pred_mode < 0 1

0 <= Intra_pred_mode <=1

2 <= Intra_pred_mode <= 12

13 <= Intra_pred_mode <= 23

24 <= Intra_pred_mode <= 44

45 <= Intra_pred_mode <= 55

56 <= Intra_pred_mode <= 80

O, (NN W|IDN|F—|O

81 <= Intra_pred_mode <= 83

The ‘Intra_pred mode’ mentioned in the Table. 7 indicates the intra
prediction mode of the coding units, which includes the following specified

modes:

Mode 0: Planar mode

Mode 1: DC mode

Mode 2-66: Directional modes

Mode 67-80: Wide Angle Intra Prediction (WAIP) [54] modes
Mode 81-83: Cross-Component Linear Model (CCLM) [51] modes

3.1 The Key Feature of the Proposed Method

The representation of the proposed method in this research can be looked
more vividly with the overall block diagram of the operation of the secondary
transform i.e., LFNST in the VVC as:

29

Collection @ chosun

M
4x4
Sec. 0
coefl. (M—S)XS
o top-right
0 prim. prim coeff.
MxN N coeff. N
Transform Unit (TU)
8X(V-8) (M-8)x (V-8)
bottom-left bottom-right
prim coeff. prim coeff.
M
4x4 4x4
2D Forward prim. prim. Forward LENST
Primary coefl. : coeff Using 16x48 kernel

Transform
4x4

prim. MxN
coeff. prim ary
coefficients

N

Figure 3-1. Pictorial representation of the block diagram of the LFNST

computation in VVC.

The Fig. 3-1 describes the computation of the proposed LFNST in the codec,
where the TU of dimension M x N, post prediction stage is passed through the
two dimensional forward primary transformation part, and the residue of the
primary transform is passed through for the computation of the secondary
transform using the single 16x48 matrix kernel irrespective of the block size
I.e., 4xN to Nx4 for N>=4. The computation of the secondary transform for a
TU block resulting in the 16 secondary transform coefficients located at the

top left part of the residual TU block is computed as:

e For 16x16 TU block,

[16 X 48 LENST kernel] X [48 X 1 prim coeff] = [16 X 1 sec.coeff] (€)]

The TU block size (16x16) is divided into three 4x4 block size at the top-

left position. Later, three 4x4 (one dimensional 48x1 matrix) block is

30

Collection @ chosun

multiplied by the 16x48 secondary transform kernel and the resulting 16x1
secondary transformed coefficients can be obtained which is placed at the top
left portion of the resulting TU and remaining adjacent 4x4 TU blocks with
16 coefficients each at the right and bottom of the top left block is made to be
zeroed. The remaining (M-8) x 8 top right TU block, (M-8) x (N-8) bottom
right TU block and 8 x (N-8) bottom left TU block remains unchanged having

the primary transform coefficients.

M M
44 4x4
. 0 se. 0
coeff. (M-8)x8 coeff.
7 top-right 0
x4 .
0 prim. prim coeff. 0 0
coell N emm—t N
8X(N-8) (M-8)X(N-8) Zeroing
bottom-left bottom-right O 0
prim coeff. prim coeff.

Figure 3-2. Pictorial representation of the additional zeroing of the primary

transform coefficients.

In this research, we additionally zero out the remaining TU’s having the
primary transform coefficients so that only the top left secondary transform
residue is taken into account for the further quantization process. Since the
coefficients located in the top left part of the TU is more homogeneous, it more

efficient to take those coefficients into account for the further coding process.

The secondary forward transform i.e., LFNST is applied to only the intra
coded transform block (TB), which has both inter slice and intra slice coded in
intra prediction. For the encoder, the primary forward transform is performed
first, then followed by the secondary transform followed by quantization and
CABAC bit coding. Whereas, for the decoder, CABAC bit decoding and

31

Collection @ chosun

inverse quantization is first followed by a secondary inverse transform then
primary inverse transform at last. The design specification for the encoder side

for different sets of TU blocks is shown below:

1. Case 1: TU of 4x4 block

4 4
4x4 4x4 2
X X
q ’ # sec. coeff
4 Residual prim. 4
Tu 2D Forward coeff. Forward 0
Primary Secondary
Transform Transform

Figure 3-3. LFNST design for 4x4 TU block with max 8 non-zero

bitstream coefficients.

Fig. 3-3 illustrates the proposed secondary transform for 4x4 TU block.
Firstly, the TU is computed with forward primary transform, resulting in the
primary transform residue, then it is multiplied with the forward secondary
transform i.e., LENST derived 16x16 kernel from 16x48 original kernel as
explained in section 3.2. The resulting 16x1 matrix in equation (10), gives
the secondary transform residue, and the right half of the resulting coefficients
are zeroed out to give 8x1 coefficients. Thus, maximum 8 non-zero bitstream

coefficients placed in the upper half of the TU.

[16 X 16 LENST kernel] x [16 X 1 prim coeff] = [16 X 1 seccoeff] (10)

2. Case 2: TU of 4x8 and 8x4 block

32

Collection @ chosun

8 4 4

8x4 8x4 4xd
4 Residual TU # prim. coeff * Sec. 0 4

Coeffl

Forward
D l.fom'ard Secondary
Primary Transform
4 Transform 4
44
Sec. 4
Coeff
g| 4xs | m— | s | —
TU 2D Forward grollnff Forward 0 4
Primary Secondary
Transform Transform

Figure 3-4. LFNST design for 4X8 and 8x4 TU block with max 16

secondary transform bitstream coefficients.

Fig. 3-4 illustrates the proposed secondary transform for 8x4 and 4x8 TU
blocks. The TU block size 8x4 (is divided into two 4x4 block size. For first
4x4 (one dimensional 16x1 matrix) block is multiplied by the 16x16
secondary transform kernel derived from the 16x48 kernel as shown in
Section 3.2 and the resulting 16x1 secondary transformed coefficients can be
obtained as shown in equation (11). The obtained coefficients are placed in the
right part of the 4x4 matrix, and the second pair 4x4 block with primary
transform coefficients is zeroed out. Similar process is done for the first 4x8
transform block, both resulting in maximum 16 non-zero coefficients in the

bitstream.

[16 X 16 LENST kernel] X [16 X 1 prim coeff] = [16 X 1 seccoeff] (11)

3. Case 3: TU of 4xN and Nx4 (with N>=16) block

33

Collection @ chosun

N 4 4 N8

2D Forward L
4 N_X 4 Primary 4 Sec. 0 0
Residual Transform coeft
4 N-8
4 Forward
Secondary
4 . N4 Transform
Primary; Coeff.
4 4 4
4x4 4x4
prim. 4 SEC. 4
coeff coeff
4x4 I
4xN : : 0
N , prim. 4 Forward 4
TU 2D meard .coefl] Secondary
Primary Transform
Transform 0 N-8
N-8

Figure 3-5. LFNST design for 4XN and Nx4 TU block with max 16

secondary transform bitstream coefficients.

Fig. 3-5 illustrates the proposed secondary transform for TU blocks of Nx4
and 4xN. For example, we take TU block size (16x4), which is divided into
two 4x4 block size and remaining 8x4 block size. For first 4x4 (one
dimensional 16x1 matrix) block is multiplied by the 16x16 secondary
transform kernel derived from the 16x48 kernel as mentioned in Section 3.2
and the resulting 16x1 secondary transformed coefficients can be obtained as
shown in equation (12) - (13). The obtained coefficients are placed in the
leftmost part of the 4x4 matrix. A similar computation is done for the second
first 4x4 residual block size, and after obtaining the secondary transform
residual coefficients, we zero out the second 4x4 block along with the
remaining primary transform coefficient in the rightmost 8x4 TU block. For
the 16x4 TU residual block, a similar process is done for both first and second
4x4 residual block size along with zeroing of the primary transform
coefficients. This design results in a maximum of 16 non-zero coefficients in

the bitstream.

34

Collection @ chosun

[16 X 16 LENST kernel] x [16 X 1 prim coeff1] = [16 X 1 seccoeff1] (12)

[16 X 16 LENST kernel] x [16 X 1 prim coeff2] = [16 X 1 seccoeff2] (13)

4. Case 4: TU of 8x8 block

8
2D Forward SIZ‘;:Y:;? 4% 2 sec. E
Primary Y

. coeff. &
8% 8 Transform 88 Transform fesssamssss - 0

. . 0

8| Residual |e——fp primary & |e— el L

TU coefficients 0 0

Figure 3-6. LFNST design for 8x8 TU block with max 8 secondary

transform bitstream coefficients

Fig. 3-6 illustrates the proposed secondary transform for 8x8 TU blocks. The
given TU block is divided into four 4x4 blocks. The top left, top right and
bottom left 4x4 block (one dimensional 48x1 matrix) is multiplied by the
8x48 secondary transform kernel and the resulting 8x1 secondary
transformed coefficients can be obtained as shown in equation (14). The
obtained coefficients are placed in the top left, top right, and bottom left part
of the TU block. The 8x8 TU block is the exceptional case where only eight
non-zero coefficients are taken in bitstreams, and all remaining secondary and

primary transform coefficients are zeroed out.

[16 X 48 LENST kernel] X [48 X 1 prim coeff] = [16 X 1 seccoeff] (14)

5. Case 5: TU=8x16, 16x8 and NxN (with N>=16) blocks

35

Collection @ chosun

16

16x16
Residual TU

2D Forward Primary
Transform

Figure 3-7. LFNST design for 1616 TU block with max 16 secondary

Forward

Secondary
TTHHSV
8

8
4x4 4x4
prim. prim, 8
coefl. coeff.
4x4 4x4
prim. prim. 8
coeff, coeff.

4x4
sec.
LO£fT.

Bitstream
contains max
16 non-zero
coefficients

transform bitstream non-zero coefficients.

Fig. 3-7 illustrates the proposed secondary transform for 16x16 TU block.
The given TU block is divided into four 8x8 blocks after the primary transform
is applied. Further, the top left 8x8 block is further divided into four 4x4
blocks. The top left, top right and bottom left 8x8 block (one dimensional
48x1 matrix) is multiplied by the 8x48 secondary transform kernel and the
resulting 16x1 secondary transformed coefficients can be obtained as shown
in equation (15). The obtained coefficients are placed in the top left part of the

TU block. Total 16 non-zero coefficients are taken in bitstreams, and all

remaining secondary and primary transform blocks zeroed out later.

[16 X 48 LENST kernel] x [48 X 1 prim coeff] = [16 X 1 seccoeff]

Collection @ chosun

36

3.2 Zeroing and Grouping Concept

Since, it is proposed to use a single 16x48 LFNST kernel for all block size
i.e., 4xN and Nx4 (with N>=4), the computation of the matrix multiplication
is not possible for the TU blocks less than 8x8 block size because [16x1 prim
coeff] cannot be multiplied with [16x48 LFNST kernel] to give [8%x1 sec
coeff]. To deal with this problem, the zeroing concept has been introduced,
where for the smaller transform unit blocks, a sub-kernel is derived zeroing
some of the 1648 kernel matrix elements, in order to make it compatible for

the matrix multiplication for the secondary transform process.

Firstly, the 16x48 LFNST kernel is zeroed out for the rightmost part of the
kernel, leaving the non-zero 1616 kernel present in the left part of the original

kernel as the resultant, illustrated in Fig. 3-8.

—16———— 30—
f
16 0
|
I 48 .
16
16

[16 x 16 LENST kernel]

Figure 3-8. 1616 LFNST sub kernel derivation by zeroing the rightmost part of
16Xx48 LFNST kernel elements.

Secondly, after analyzing the obtained kernel, the desired sub-sampled

16x16 kernel is derived by grouping the even and odd rows of the resultant

37

Collection @ chosun

non-zero 16x16 kernel derived above from Fig. 3-8. It is also seen that for the
particular LENST candidate kernel set index i.e., 0, 1, 2 and 3 from Table. 3,
which individually has further two indexed kernels (0 and 1), we can group
the even and odd rows of particular index kernel and interchange amongst each
other for the individual set index kernel i.e., the grouping of the odd and even
rows of 16x48 kernel with set index 0 and index O i.e., [R; ;], , is computed to
derive the 16x16 sub-sampled kernel having set index O with index 1 i.e.,
[Ri], as shown in equation (17) and vice versa. Similarly, the sub-sampled
16x16 LFNST kernel with set index 1, 2 and 3 is derived by grouping the odd
and even rows, and interchanging amongst the indexed kernel of particular set
index of the non-zero resultant 1616 kernel derived by zeroing the 16x48
LFNST kernel as shown in Fig. 3-8.

For grouping, the sign change of the kernel elements at the particular column
index of the respective even and odd rows to obtain the sub-sampled 16x16
kernel to be applied for the lower TU blocks i.e. 4xN or Nx4 (N>=4). To
derive the even rows, we pick the even indexed rows of the resultant non-zero
16x16 kernel and multiply with -1 to the row elements of the particular
indexed columns whose column index is divisible by 2 or is the 9™ column
element. The derivation of the sub-sampled 16x16 LFNST kernel is obtained
from (16) - (23).

[Rijloo = [Rijlo1 (16)

[Rijlo1 = [Rijloo (17)

[R'ijl,0 = [Rijlz1 (18)

[Rli,j]2,1 = [Ri,j]z,o (19)
38

Collection @ chosun

[Rijl50 = [Rijloq (20)

[R’i,j]z,l = [Ri,j]z,o (21)
[R ’i,j]3,o = [Ri,j]3_1 (22)
[R ’i,j]3,1 = [Ri,j]3_0, (23)

where, R'; j is the sub-sampled 16x16 kernel, R; ; is the non-zero resultant
16x16 kernel obtained after zeroing 16 x48 LFNST kernel, ‘i’ is the even row
index (0, 2, 4, ..14) and ‘j’ is the column index of the kernel, respectively. The
derivation of the R; ; negating the column indexed element for the even rows

is mathematically derived by (24).

-1 XR;;, if j%2=0|]j=09,
Ri,j:{() i,j J70 ”] (24)

R;;j, otherwise,

Similarly, the grouping of the odd row elements of the sub-sampled 16x16
kernel is derived from the non-zero resultant 1616 kernel which is obtained
by zeroing the 1648 kernel using the equations (16) — (23), where the value
of R; ; is calculated by changing the sign of the 4™, 6™, 8", 11™, 13™ and 15"
column indexed kernel elements by multiplying with -1, for the individual odd
indexed row kernel element respectively. The mathematical derivation of

R; j is obtained from equation (25).

(25)

R

o _[CDX Ry, if j€(468111315)
L~ otherwise.

i,jr
The sub-sampled 16x16 LFNST kernel with grouped even and odd rows is

illustrated in Fig. 3-9, where the highlighted kernel elements refers to the

element applied with negation as per the equation (24) and (25).

39

Collection @ chosun

Row 0 10315-447- 20-1“
Row | HEI2E) @ 3 1
Row2 |5 -31 [N 7 [16 [1 [Refl 14- 7 0 o]
Row3 51 |5 16 6] 8 [5 4 [2

Figure 3-9. Sub-sampled 16x16 kernel for LFNST set index=0 and index =0 with
grouped even and odd rows.

Forthe 4x4 TU block, it requires a 1616 LFNST kernel for the computation
of the secondary transform, resulting in maximum 8 non-zero secondary
transform residue coefficients in the bitstreams as shown in equation (10). The

16x16 sub-sampled kernel from the 16x48 kernel is derived, as shown in Fig.

3-10.
f—16——32—
s 0
l
fe 48 »|
16 l
16 X [16 % 1 prim coeff]

[16 % 16 LFNST kernel]
[16 x 1 sec coeff]

Zeroing the lower half

[8 % 1 sec coeff]

Figure 3-10. 16x16 LFNST applied to 4x4 TU block resulting in 8 residual
coefficients as output.

For 4xN and Nx4 (with N>=4) TU block, the same 16x16 sub-sampled
kernel is derived from the 16x48 kernel as derived for the 4x4 block in Fig.
3-8, for the matrix multiplication of the TU and kernel, which results in the

maximum of max 16 non-zero secondary transform residue coefficients in the

40

Collection @ chosun

bitstream, zeroing out the remaining secondary and primary transform
coefficients except for the top left corner as shown in Fig. 3-3. Another
possibility is to derive the 16x32 sub kernel from the 16x48 kernel, but that
would increase the complexity of the operation with increased multiplications
and additional zeroing of the secondary transform residue coefficients to make

it a maximum of 16 coefficients in the bitstream.

3.3 Proposed syntax for VVC standardization

As, we know the secondary transform LFNST is applied after the TU block
undergo the primary transformation. Eventually, after the intra prediction
process, the transformation process starts with the primary transform along
with the initialization of the parameters of secondary transform. The following
parsing steps are performed to initialize the parameters during the general

transformation process for the scaled transform coefficients.
e General transformation process:
Input:

— A luma location (XThy, yTbY) specifying top left sample of current
luma block

— nTbW: width of current TU

— nTbH: height of current TU

— cldx: color component of current block

— d[x][y]: an array of dimension nTbWx nTbH, where x=0 to nTbW-
1,y=0tonTbH-1

Design process:

41

Collection @ chosun

— Check

if LFNST index i.e. Ifnst_idx[xTby][yThy] is TRUE and

(nTbW, nThH) >=4

©)

©)

Output:

Fetch the intra prediction mode (predModeintra) of TU block.
Determine output coefficients size (nLfnstoutSize) to 48 if
(width,height) >= 8 else 16.

Determine total number of 4x4 blocks taken in consideration
for LFSNT (log2LfnstSize): (width, height)>=8) ? 3 :2
Calculate the nLfnstSize by 1 << log2LfnstSize

Calculate the total output non zero ecoefficents of secondary
transform (nonZeroSize) by : ((width,width) == 4 ||
(width,width) ==8) ?8: 16

— An array r[x][y] with (nTbW) x (nTbH) elements of primary

transform residual samples with ‘X’ rnages from 0 to nTbW-1 and ‘y’

ranges from 0 to nTbH-1.

e LFNST transformation process:

Input:

The variable nonZeroSize calculated in the general transform process.

- nTrS: transform output length

- A matrix x[i] with a list of scaled non-zero transform coefficients where

‘1’ ranges between 0 to nonZeroSize-1

- The intra prediction mode (predModelntra) of TU determined above to

select the transform set.

Collection @ chosun

42

- Ifnstldx: determines the LFNST index for transform selection in the
selected LFNST set.

Design process:

- The LFNST kernel matrix is fetched after referring the look-up table
where mapping of the intra prediction mode(predModeintra) and LFNST
transform set index is done as shown in Table 5.

o After the mapping of the index is done, the LFNST transform set
index (IfnstTrSetldx) is set which is used to fetch the kernel
matrix

o The low frequency transformation kernel matrix is fetched based
on the IfnstTrSetldx, and and nTrS derived above from the pool
of secondary kernel with dimension of [nTrS]x[nonZeroSize]
which is either 16x16 or 16x48 kernel matrix.

- The output secondary transform residue coefficient is mathematically
computed as given in equation (26),
ylil =
Clip3 (CoefMin, Coeffmax, ((Z1%**"°"*¢~ lowFreqTransMatrix[i] [j] X
x[j] + 64) > 7)) (26)
Where, matrix ‘y[i]” represents the output residue of secondary transform

- Zero out the remaining primary transform coefficients in the final

residue.
Output:

- The matrix y[i] with output of non-zero secondary transform coefficients
where ‘i’ ranges from 0 to nTrS (transform output length), which is sent

to the bitstream.

43

Collection @ chosun

4. Experimental Results and Discussions

4.1 Experimental Results of the Proposed Method

The simulation of the proposed method is conducted on the VVC reference
software VTM-5.0 [23] under the CTC conditions [24]. The PC for the
simulation has Centos 7 Linux operating system with intel ®Xeon ®Silver
4114 CPU @ 2.20 GHz processor with 220 cores and 156 GB of RAM. The

simulation results are shown in Table. 8-9.

Table 8. Proposed method simulation result for All Intra configuration

All Intra Main 10 over VTM5.0

Sequences Y U v EncT | DecT
Class Al 0.01% | 0.03% | 0.04% 94% | 101%
Class A2 0.01% | 0.02% | -003% | 93% | 100%
Class B 0.04% | -0.05% | -001% | 93% 99%
Class C 0.03% | -004% | 0.04% 95% 95%

Class E 0.06% | -0.04% | 0.02% 94% 96%
Overall 0.03% | -0.02% | 0.01% 94% 98%
Class D 0.00% | 0.05% | 0.09% 94% | 101%
Class F 0.01% | -0.02% | 0.02% 96% 97%

Table 9. Proposed method simulation result for Random Access configuration

Random Access Main 10 over VTM5.0
Sequences Y U Y, EncT | DecT
Class Al 0.03% 0.04% 0.08% 97% 100%
Class A2 -0.01% 0.08% 0.05% 98% 100%
Class B 0.03% 0.03% -0.13% 98% 98%
Class C 0.03% -0.09% 0.03% 98% 99%
Overall 0.02% 0.01% -0.01% 97% 99%
Class D 0.06% 0.23% 0.11% 98% 102%
Class F 0.06% 0.10% 0.05% 97% 101%
44

Collection @ chosun

Table. 8 shows the simulation result for the proposed method on VTM-5.0
anchor under CTC condition for Al configuration. There is a gain of 0.2% for
U-chroma, whereas negligible loss for the Y-luma and V-chroma component.
The gain for the classes B-F is substantial for the chrominance (U). There is a
substantial reduction in encoding time by 6% and by 2% in the decoding time.
The overall result has a gain of 0.02% gain for chrominance with 94%

encoding time and 98%

Table. 9 illustrates the simulation result for the proposed method for the
RA configuration. There is a gain of 0.01% for the chrominance (V) with a
maximum gain of 0.13% for class B. the performance for the luminance is
good for the higher-class resolution images i.e., Class Al and A2. There is also
a 3% reduction in the encoding time. The overall result for the RA
configuration is a gain of 0.01% for chrominance and loss of 0.02% for

luminance with 97% encoding time and 99% decoding time.

The detailed experimental result for the different test sequences are as
following:

45

Collection @ chosun

Table 10. Simulation results of Al configuration

Test Sequences

BD-rate (piecewise cubic)

Y U \Y
Tango?2 -0.01% | -0.04% 0.17%
Class Al (4K) FoodMarket4 0.01% | 0.09% | -0.03%
Campfire 0.01% 0.05% | -0.01%
CatRobotl 0.02% 0.02% | -0.05%
Class A2 (4K) DaylightRoad?2 0.00% 0.02% | -0.03%
ParkRunning3 0.00% 0.03% -0.01%
MarketPlace 0.01% -0.02% | -0.16%
RitualDance 0.01% | -0.19% | -0.04%
Class B (1080p) Cactus 0.03% | -0.05% | -0.06%
BasketballDrive 0.06% -0.18% 0.06%
BQTerrace 0.09% 0.19% 0.19%
BasketballDrill 0.09% | -0.17% | -0.08%
Class C BQMall 0.04% | -0.04% | 0.10%
(WVGA) PartyScene 0.00% | 0.03% | 0.05%
RaceHorses 0.00% 0.01% 0.08%
BasketballPass -0.03% | 0.11% | -0.06%
Class D BQSquare 0.00% 0.17% | -0.08%
(WQVGA) BlowingBubbles 0.03% | -0.12% | 0.10%
RaceHorses -0.01% 0.05% 0.39%
FourPeople -0.01% | -0.08% | -0.03%
Class E (720p) Johny 0.20% | -0.02% | 0.17%
KristenAndSara -0.01% | -0.01% | -0.09%
Average Class Al 0.01% 0.03% 0.04%
Average Class A2 0.01% 0.02% -0.03%
Average Class B 0.04% | -0.05% | -0.01%
Average Class C 0.03% -0.04% 0.04%
Average Class D 0.00% 0.05% 0.09%
Average Class E 0.06% | -0.04% | 0.02%
Overall Average 0.03% | -0.02% | 0.01%

Collection @ chosun

Based on Table. 10, no significant loss in found in Al for higher resolution
classes for luminance, but some gain can be observed in Class Al, A2, and B
for the chrominance (V) and some observatory gain for class B and C for

chrominance (V).

Table 11. Simulation result of RA configuration

Test Sequences BD-rate (piecewise cubic)

Y U \Y
Tango2 0.01% | -0.21% | -0.01%
Class Al (4K) FoodMarket4 0.02% 0.05% 0.30%
Campfire 0.06% | 0.28% | -0.05%
CatRobot1 -0.03% | -0.03% | 0.01%
Class A2 (4K) DaylightRoad2 0.02% | 0.21% | 0.10%
ParkRunning3 -0.02% | 0.06% | -0.04%
MarketPlace -0.02% | 0.11% | 0.00%
RitualDance 0.00% | -0.15% | -0.24%
Class B (1080p) Cactus -0.01% | 0.19% | -0.30%
BasketballDrive 0.03% -0.17% 0.02%
BQTerrace 0.14% | 0.18% | -0.14%
BasketballDrill 0.08% -0.25% 0.09%
Class C BQMall 0.03% | -0.15% | 0.04%
(WVGA) PartyScene 0.02% | -0.01% | -0.09%
RaceHorses -0.01% | 0.05% | -0.28%
BasketballPass 0.04% | -0.27% | -0.13%
Class D BQSquare 0.12% | 0.10% | -0.31%
(WQVGA) BlowingBubbles 0.08% | 0.10% | 0.10%
RaceHorses 0.00% | 0.20% | 0.19%
Average Class Al 0.03% 0.04% 0.08%
Average Class A2 -0.01% | 0.08% 0.05%
Average Class B 0.03% 0.03% -0.13%
Average Class C 0.03% | -0.09% | 0.03%
Average Class D 0.06% 0.23% 0.11%
Overall Average 0.02% 0.01% -0.01%

47

Collection @ chosun

Based on Table. 11, no significant loss is found for the luminance for the
higher resolution classes Al and A2, whereas some substantial gain is found
for both chrominance U and V for some lower resolution test sequences of
class B, C and D. From the above results, we have seen the gain for Al
configuration is 0.02% and 0.01% for RA configuration with a significant
reduction of encoding time of 6% and 3% for respective configurations.

4.2 Comparison with the state-of-the-art Methods

While comparing the proposed obtained simulation result with the memory
reduction method of related work, the simulation result of contribution in [22]
is shown in Table. 12. Analyzing the results, the bit rate of our proposed
method is better along with the encoding time, although proposal in [22] also
reduces the encoding time by 3%. Although the luminance BD rate for RA
configuration is better in their proposal, they use the entire 16x48 kernel
matrix-forming L-shaped output residue during the LFNST matrix
multiplication operation, which doesn’t help to get a substantial reduction in

the encoding time as achieved by our proposal.

Table 12. Simulation results of proposal in [22].

All Intra Main 10 over VTM5.0
Sequences Y u Vv EncT | DecT
Class Al -0.02% 0.14% 0.02% 98% 101%
Class A2 -0.01% 0.16% 0.15% 97% 100%
Class B 0.06% 0.01% 0.03% 97% 99%
Class C 0.08% 0.07% 0.12% 96% 95%
Class E 0.14% -0.14% -0.13% 98% 97%
Overall 0.05% 0.04% 0.04% 97% 98%
Class D 0.12% 0.05% 0.24% 97% 101%
Class F 0.01% -0.02% 0.27% 98% 98%
48

Collection @ chosun

Random Access Main 10 over VTMb5.0

Sequences Y U Y, EncT | DecT
Class Al -0.01% 0.03% -0.05% 99% 100%
Class A2 0.00% 0.15% 0.05% 99% 100%
Class B 0.01% 0.08% -0.01% 99% 98%
Class C 0.01% 0.16% 0.01% 100% 99%
Overall 0.01% 0.11% 0.00% 99% 99%
Class D 0.07% 0.36% 0.13% 100% 102%
Class F 0.00% 0.28% 0.10% 100% 101%

The simulation result of the limiting coefficients method in [21] shows a
significant reduction in the encoding time as they target more for the
complexity reduction based on the zeroing of the primary transform for the
4x4 LFNST and 8x8 LFNST. As mentioned in section 2.2, they proposed the
tests in four parts, and the significant gain was given by allowing maximum of
16 non-zero coefficients in the residual and zeroing of primary transform
coefficients for 8x8 LFNST. Although the encoding time for this proposal is
high and the proposed method in this thesis, but the optimal BD loss for the
luminance (Y) and chrominance (V) is more in our proposal. Also, the loss for
the higher-class resolution test sequences in Class A1 and A2 is higher in their

proposal for Al configuration.

49

Collection @ chosun

Table 13. Simulation results of proposal in [21].

All Intra Main 10 over VTM5.0

Sequences Y u ; EncT | DecT
Class Al 0.00% | 0.11% | 001% | 91% 97%
Class A2 0.00% | 0.10% | 0.11% | 88% 99%

Class B 0.08% | -0.06% | 0.04% | 90% | 100%
Class C 0.10% | -0.12% | 0.05% | 88% | 100%
Class E 0.10% | -0.06% | 0.03% | 91% | 101%
Overall 0.06% | -0.02% | 0.05% | 90% 99%
Class D 0.10% | 0.14% | -0.12% | 89% | 101%
Class F 0.02% | 0.09% | 0.09% | 94% 99%

Random Access Main 10 over VTM5.0
Y U Vv EncT DecT

Class Al 0.00% | -0.17% 0.12% 97% 98%
Class A2 0.07% 0.16% 0.05% 98% 98%

Sequences

Class B 0.04% | -0.15% -0.17% 99% 100%
Class C -0.03% | -0.30% -0.29% 100% 103%
Overall 0.02% | -0.13% -0.10% 99% 100%
Class D 0.03% 0.07% 0.04% 100% 101%
Class F -0.01% | -0.08% 0.00% 99% 101%

Analyzing the results based on Table. 14, the gain for the chrominance (U)
Is same as the proposed method. Although the proposal in [20] have significant
10% reduction in the encoding time, but it still uses two sets of LFNST kernel
with no memory reduction. The gain for the RA configuration is like the
proposed method with 2% reduction in the proposed method. Also, the losses
for the higher resolution test sequences can be found for the Class Al and A2.
The overall result based on Table. 12, is showing less significant loss for the
RA configuration with 0.02% for luma, 0.01% for U-chroma and gain of

0.01% for V-chroma, respectively.

50

Collection @ chosun

Table 14. Simulation of proposal in [20].

Sequences

All Intra Main 10 over VTM5.0

Y U Vv EncT DecT

Class Al

0.00% 0.11% 0.01% 91% 97%

Class A2

0.00% 0.10% 0.11% 88% 99%

Class B

0.08% | -0.06% 0.04% 90% 100%

Class C

0.10% | -0.12% 0.05% 88% 100%

Class E

0.10% | -0.06% 0.03% 91% 101%

Overall

0.06% | -0.02% 0.05% 90% 99%

Class D

0.10% 0.14% -0.12% 89% 101%

Class F

0.02% 0.09% 0.09% 94% 99%

Sequences

Random Access Main 10 over VTM5.0

Y U \Y EncT DecT

Class Al

0.03% 0.04% 0.08% 97% 100%

Class A2

-0.01% | 0.08% 0.05% 98% 98%

Class B

0.03% 0.03% -0.13% 98% 102%

Class C

0.03% | -0.09% 0.03% 98% 99%

Overall

0.02% 0.01% -0.01% 97% 100%

Class D

0.06% 0.23% 0.11% 98% 101%

Class F

0.06% 0.10% 0.05% 97% 100%

Collection @ chosun

51

5. Conclusions

In this thesis, the reduction in the complexity of the secondary transform i.e.,
LFNST is proposed. Since the memory consumption to store the transform
kernels is always a major issue in video coding standardization of the VVC,
this thesis deals with the usage of less memory to store the secondary transform
kernels along with reducing the computational complexity. The proposed
method uses a single 16x48 secondary transform kernel for the LFNST
computation which requires only 6KB of memory instead of two kernels that
required 8KB of storage. For the smaller blocks of size 4x4, Nx4 and 4xN
(N>4), a sub-sampled kernel is derived using the 16x48 kernel from the
zeroing and grouping concept. For the remaining larger block sizes 8x8, Nx8,
8xN (N>8), the entire 1648 kernel is used. Also, the zeroing of the primary
transform coefficients to obtain max 16 non-zero secondary transform residue
coefficients in the bitstream reduces the complexity of the encoder by reducing
the encoder runtime substantially. The proposed method in this thesis gives
comparable results with the VTM-5.0 anchor with negligible loss and reduced
encoding time by 6%, which signifies that the proposed LFNST design is of

significant use in the VVVC model.

52

Collection @ chosun

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

References

Thomas Wiegand, Gary J. Sullivan, Senior Member, IEEE, Gisle
Bjontegaard, and Ajay Luthra, Senior Member, IEEE, “Overview of the
H.264/AVC Video Coding Standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, July 2003.

Kai Zhang, Li Zhang, Wei-Jung Chien, Marta Karczewicz, “Intra-
Prediction Mode Propagation for Video Coding,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 9, Mar. 2019.

Jean Bégaint, “Towards novel inter-prediction methods for image and
video compression,” Ph.D. thesis, University of Rennes 1, Comue
University Britian Loire, Research unit: INRIA Rennes - Brittany
Atlantic and Technicolor R&I, November 29, 2018.

V. K. Goyal, “Theoretical foundations of transform coding,” IEEE Signal
Processing Magazine, vol. 18, no. 5, pp. 9-21, Sept. 2001.

Abedi, M. Sun, B. Zheng, “A Sinusoidal-Hyperbolic Family of
Transforms with Potential Applications in Compressive Sensing,” IEEE
Transactions on Image Processing. 28 (7): 3571-3583, Jul. 2019.

Anil K. Jain, “A Sinusoidal Family of Unitary Transforms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
1, pp. 356-365, Oct. 1979.

WK Cham, PhD, “Development of Integer Cosine Transforms by the
Principle of Dyadic Symmetry,” Proc. Inst. Elect. Eng., pt. 1, vol. 136,
no. 4, pp. 276-282, Aug. 1989.

G. Strang, “The Discrete Cosine Transform,” SIAM Review, vol. 41 no.
1, pp. 135- 147, Mar. 1999.

lain Richardson, “White Paper: 4x4 Transform and Quantization in
H.264/AVC,” 2010.

Sadiqullah Khan and Gulistan Raja. (2004), “Integer cosine transform
and Its application in Image/Video Compression,” ICSEA, Conference
proceeding Islamabad, pp.189-193.

Richardson I.LE. G . (2002), “White Paper H.264/MPEG-4 Part 10:
Variable Length Coding”.

53

Collection @ chosun

[12] Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007).
“Section 22.6. Arithmetic Coding”. Numerical Recipes: The Art of
Scientific Computing (3rd ed.). New York: Cambridge University Press.
ISBN 978-0-521-88068-8.

[13] J.J. Rissanen, G.G. Langdon (March 1979), “Arithmetic coding” (PDF)
IBM Journal of Research and Development. 23 (2): 149-162.
doi:10.1147/rd.232.0149.

[14] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based Adaptive
Binary Arithmetic Coding in the H.264/AVC Video Compression
Standard,” IEEE Trans. Circuits and Systems for Video Technology, Vol.
13, No. 7, pp. 620-636, July 2003.

[15] “Context-Based Adaptive Binary Arithmetic Coding (CABAC),”
Fraunhofer Heinrich Hertz Institute. Retrieved 13 July 2019.

[16] S. Vetrivel, K. Suba, G.A. Thisha, “An Overview of H.26x Series And
its Applications,” International Journal of Engineering Science and
Technology, Vol. 2(9), 2010, 4622-4631.

[17] T. Wiegand, G.J. Sullivan, G. Bjontegaard, A. Luthra, “Overview of the
H.264/AVC video coding standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, No. 7. (2003), pp. 560-576.

[18] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand,
“Overview of the High Efficiency Video Coding (HEVC) Standard,”
IEEE, pp. 1649-1668, Sep. 2012.

[19] J.Chenand Y. Ye, S. H. Kim, “Algorithm description for Versatile VVideo
Coding and Test Model 5 (VTM 5), [JVET-N1002],” JVET of ITU-T SG
16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 14th Meeting: Geneva, CH,
Mar. 2019.

[20] M. Siekmann, H. Schwarz, D. Marpe, “CE6-2.1: Simplification of Low
Frequency Non-Separable Transform,” JVET of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, 15th Meeting: Gothenburg, SE, July
2019.

[21] M. Koo, J. Nam, J. Lim, “Non-CE6: LFNST simplification based on the
methods proposed in CE6-2.1a,” JVET of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, 15th Meeting: Gothenburg, SE, July
2019.

54

Collection @ chosun

[22] X. Zhao, X. Li, S. Liu, “CE6-related: Unified LFNST using block size
independent kernel,” JVET of ITU-T SG 16 WP 3 and ISO/IEC JTC
1/SC 29/WG 11, 15th Meeting: Gothenburg, SE, July 2019.

[23] JVET VTM software — JVET. https://vcgit.hhi.fraunhofer.de/jvet/
VVCSoftware_VTM/tree/VTM-5.0.

[24] P. Hanhart, J. Boyce, K. Choi, J.-L. Lin, “JVET common test conditions
and evaluation procedures for 360° video,” Joint Video Exploration
Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
12th Meeting: Macau, CN, Oct. 2018.

[25] Xin Zhao, Xiang Li, Yi Luo, Shan Liu, “CE6: Fast DST-7/DCT-8 with
dual implementation support JVET-M0497,” Joint Video Experts Team
(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 13th
Meeting: Marrakech, MA, Jan. 2019.

[26] Z. Zhang, R. Yu, “Non-CE6: On LFNST transform set selection for a
CCLM coded block,” Joint Video Experts Team (JVET) of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11 15th Meeting: Gothenburg, SE,
3-12 July 20109.

[27] S. Park, Je-won. Kang, “Fast Affine Motion Estimation for Versatile
Video Codec (VVC) Encoding,” IEEE Access, volume 7, 2019.

[28] D. Ruiz, G. Fernandez-Escribano, J. Luis Martinez, P Cuenca, “A unified
architecture for fast HEVC intra-prediction coding,” Journal of Real-
Time Image Processing, 2017.

[29] J. Nilson, “Inter-Picture Prediction for Video Compression using Low
Pass and High Pass Filters,” Uppsala University, September 2017.

[30] H. Yang, L. Shen, X. Dong, Q. Ding, P. An, G. Jiang, “Low Complexity
CTU Partition Structure Decision and Fast Intra Mode Decision for
Versatile Video Codec,” IEEE Transactions on Circuits and Systems for
Video Technology, 2019.

[31] J. Kang, C. Kim, “On DCT Coefficient Distribution in Video coding
Using Quad-tree Structured Partition,” Proceedings of 2014 APSIPA
Annual Summit and Conference, Siem Reap, city of Angkor Wat,
Cambodia, December 9-12, 2014.

[32] F. Racape, “CE3-related: Wide-angle intra prediction for non-square
blocks,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and

55

Collection @ chosun

ISO/IEC JTC 1/SC 29/WG 11 JVET-K500 15th Meeting: Gothenburg,
SE, 10-18 July 2018.

[33] Santiago De-Luxan-Hernandez, “CE3: Intra Sub-Partitions Coding
modes,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11 JVET-M0102 13th Meeting: Marrakech,
MA, 9-18 Jan. 2019.

[34] J. Pfaff, B. Stallenberger, M. Schafer, P. Merkle, P. Helle, T. Hinz, H.
Schwarz, D. Marpe, T. Wiegand, “CE3: Affine linear weighted intra
prediction (CE3-4.1, CE3-4.2),” Joint Video Experts Team (JVET) of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-N0217,
14th Meeting: Geneva, SW, 19-27 March 2019.

[35] A. Said, X. Zhao, “Description of core Experiment 6 (CE6): Transform
and transform signalling,” Joint Video Experts Team (JVET) of ITU-T
SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-K1026, 11th
Meeting: Ljubljana, SI, 11-18 July 2018.

[36] H. Samet, “The quadtree and related hierarchical data structures,”
Computer Survey, vol. 16, no. 2, pp. 187-260, Jun 1984.

[37] S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and
System for Video Technology, vol. 13, no. 7, pp. 645-656, Jul. 2003.

[38] K.McCann, “Summary of Evaluation of TMuC Tools in TEI2,” ITU-
T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC)
document JCTVC-C225, Oct. 2010.

[39] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and
implementation analysis,” IEEE Transactions on Circuits and System for
Video Technology, vol. 22, no. 12, pp. 1684-1695, Dec. 2012.

[40] J. -R Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, T. Wiegand,
“Comparison of the coding efficiency of video coding standards -
Including High Efficiency Video Coding (HEVC),” IEEE Transactions
on Circuits and System for Video Technology, vol. 22, no. 12, pp. 1668-
1683, Dec. 2012.

[41] G. J. Sullivan, R. L. Baker, “Rate-distortion optimized motion
compensation for video compression using fixed or variable size blocks,”
in Proc. GLOBECOM', Dec. 1991, pp. 85-90.

56

Collection @ chosun

[42] T. Wiegand, M. Lightstone, D. Mukherjee, T. G. Campbell, and S. K.
Mitra, “Rate-distortion optimized mode selection for very low bitrate
video coding and emerging H.263 standard,” IEEE Transactions on
Circuits and System for Video Technology, vol. 6, no. 4,pp. 182-190,
Apr. 1996.

[43] S. De-Luxan-Hernandez, H. Schwarz, D. Marpe, and T. Wiegand, “Line-
Based Intra Prediction for Next Generation Video Coding,” 25th IEEE
International Conference on Image Processing (ICIP), Oct. 2018, pp.
221-225.

[44] S. De-Luxan-Hernandez, H. Schwarz, D. Marpe, and T. Wiegand, “Fast
Line-Based Intra Prediction for Video Coding,” IEEE International
Symposium on Multimedia (ISM), Dec. 2018, pp. 135-138.

[45] S. De-Luxan-Hernandez, V. George, J. Ma, T. Nguyen, H. Schwarz, D.
Marpe, and T. Wiegand, “An Intra Subpartition Coding Mode For VVC,”
in 2019 26th IEEE International Conference on Image Processing (ICIP),
Oct. 2019, pp. 1203-1207.

[46] F. Racape, G. Rath, F. Urban, L. Zhao, S. Liu, X. Zhao, X. Li, A.
Filippov, V. Rufitsky, and J. Chen, “CE3- related: Wide-angle intra
prediction for non-square blocks,” Document JVET-K0500 of JVET,
Ljubljana, Sl, July 2018.

[47] Y. Lin, M. Mao, S. Song, J. Zheng, J. An, and C. Zhu, “Prediction
dependent transform for intra and inter frame coding,” Document JVET-
J0064, San Diego, US, April 2018.

[48] B. Bross, J. Chen, and S. Liu (Editors), “Versatile Video Coding (Draft
3),” Document JVET-L1001, Macao, CN, Oct. 2018.

[49] Xiaoran Cao, Changcai Lai, Yunfei Wang, Lingzhi Liu, Jianhua Zheng,
and Yun He, “Short Distance Intra Coding Scheme for High Efficiency
Video Coding,” IEEE Transactions on Image Processing, vol. 22, no. 2,
pp. 790-801, Feb. 2013.

[50] X. Ma, H. Yang, and J. Chen, “CE3: Tests of cross-component linear
model in BMS;,” Joint Video Exploration Team (JVET) of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-K0190, Ljubljana, SL,
July 2018.

[51] G. Laroche, J. Taquet, C. Gisquet, and P. Onno, “CE3-5.1: On cross-
component linear model simplification,” Joint Video Exploration Team

57

Collection @ chosun

(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-
L0191, Macau, CN, Oct. 2018.

[52] J. Lainema, “CE3: Wide-angle intra prediction,” Joint Video Exploration
Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,
JVET-K0046, Ljubljana, SL, Jul. 2018.

[53] L. Zhao, X. Zhao, S. Liu, and X. Li, “CE3-related: Unification of angular
intra prediction for square and non-square blocks,” Joint Video
Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, JVET-L0279, Macau, CN, Oct. 2018.

[54] A. Kumar, S. Shrestha, B. Lee, Y. Lee and J. Park, “Non-CE3: WAIP
restriction for square sub-CU blocks partitioned by ISP,” Joint Video
Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 15th Meeting, JVET-00632, Gothenburg, SE, 3-12 July
2019.

[55] N. Choi, Y. Piao, K. Choi, and C. Kim “CE3.3 related: Intra 67 modes
coding with 3MPM,” Joint Video Exploration Team (JVET) of ITU-T
SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-K0529, Ljubljana,
SL, Jul. 2018.

[56] X. Zhao, V. Seregin, A. Said, K. Zhang, H. E. Egilmez, and M.
Karczewicz, “Low Complexity Intra Prediction Refinements for Video
Coding,” in IEEE Picture Coding Symposium (PCS), pp. 139-143, San
Fransisco, USA, Jun. 2018.

[57] L. Li, J. Heo, J. Choi, J. Choi, S. Yoo, S. Kim, and J. Lim, “CE3-6.2.1:
Extended MPM list,” Joint Video Exploration Team (JVET) of ITU-T
SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-L0165, Macao,
CN, Oct. 2018.

[58] A. Filippov, V. Rufitskiy, J. Chen, G. Van der Auwera, A. K.
Ramasubramonian, V. Seregin, T. Hsieh and M. Karczewicz, “CE3: A
combination of tests 3.1.2 and 3.1.4 for intra reference sample
interpolation filter,” Joint Video Exploration Team (JVET) of ITU-T SG
16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-L0628, Macao, CN,
Oct. 2018.

[59] S. H. Park, T. Dong, and E. S. Jang, ‘‘Low complexity reference frame
selection in QTBT structure for JVET future video coding,”’ in Proc.
IWAIT, Chiang Mai, Thailand, Jan. 2018, pp. 1-4.

58

Collection @ chosun

[60] Ultra Video Group. Laboratory of Pervasive Computing at Tampere
University of Technology. Accessed: Nov. 9, 2018. [Online]. Available:
http://ultravideo.cs.tut.fi/

[61] S. Shrestha, A. Kumar, B. Lee, Y. Lee and J. Park, “Non-CE6: Reducing
secondary transform kernel for specific residual block size,” Joint Video
Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 15th Meeting, JVET-00642, Gothenburg, SE, 3-12 July
2019.

[62] S. Shrestha, A. Kumar, B. Lee, Y. Lee and J. Park, “Non-CE6:
Simplification of LENST LUT,” Joint Video Exploration Team (JVET)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 16th Meeting,
JVET-P0313, Geneva, SW, Sept. 2019.

[63] S. Shrestha, A. Kumar, B. Lee, Y. Lee and J. Park, “Non-CE3:
Simplification of harmonization of LFNST and MIP,” Joint Video
Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 16th Meeting, JVET-P0503, Geneva, SW, Sept. 2019.

[64] A. Kumar, S. Shrestha, B. Lee, Y. Lee and J. Park, “Non-CE3: LFNST
restriction based on MIP,” Joint Video Exploration Team (JVET) of ITU-
T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 16th Meeting, JVET-
P0313, Geneva, SW, Sept. 2019.

[65] J. Han, A. Saxena, V. Melkote, and K. Rose, “Jointly optimized spatial
prediction and block transform for video and image coding,” 1EEE
Transactions on Image Processing, vol. 21, no. 4, pp. 1874-1884, Apr.
2012.

59

Collection @ chosun

Acknowledgement

I would like to express my deepest gratitude to my advisor Prof. Bumshik
Lee for his invaluable support, suggestions, encouragement, and precious
guidance throughout my research work. 1 am very fortunate to have a
supervisor who constantly encouraged and monitored my work and responded
to my queries so promptly during my graduate studies. | am thankful to all
professors of Information and Communication Engineering department for

providing a suitable platform to make this research success.

I would like to extend my gratitude to the committee members, Prof. Dong-
you Choi and Prof. Jae-Young Pyun, for their insightful guidance and
suggestions.

I would like to show my appreciation to all my fellow lab mates of
Multimedia Information Processing Lab, for their extensive professional and
personal guidance and their valuable suggestions regarding thesis work.

As ever, | would like to express my profound gratitude to the role model of
my life, my parents and family, whose love and guidance are always with me
in whatever | pursue. | shall be grateful forever for your constant love and

support.

60

Collection @ chosun

	1. Introduction
	1.1 Background
	1.2 Versatile Video Codec (VVC)
	1.3 Objective
	1.3 Motivation
	1.4 Thesis Layout

	2. Related Works
	2.1 Introduction to LFNST
	2.2 Existing Methods
	2.3 Problems of Related Works

	3. Proposed Method
	3.1 The Key feature of the Proposed Method
	3.2 Zeroing and Grouping Concept
	3.3 Proposed Syntax for VVC Standardization

	4. Experimental Results and Discussion
	4.1 Experimental Results of the Proposed Method
	4.2 Comparision with state-of-the-art Methods

	5. Conclusions
	References
	Acknowledgement

<startpage>16
1. Introduction 1
 1.1 Background 1
 1.2 Versatile Video Codec (VVC) 3
 1.3 Objective 15
 1.3 Motivation 16
 1.4 Thesis Layout 17
2. Related Works 18
 2.1 Introduction to LFNST 18
 2.2 Existing Methods 21
 2.3 Problems of Related Works 27
3. Proposed Method 28
 3.1 The Key feature of the Proposed Method 29
 3.2 Zeroing and Grouping Concept 37
 3.3 Proposed Syntax for VVC Standardization 41
4. Experimental Results and Discussion 44
 4.1 Experimental Results of the Proposed Method 44
 4.2 Comparision with state-of-the-art Methods 48
5. Conclusions 52
References 53
Acknowledgement 60
</body>

