

저 시 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

l 저 물 리 목적 할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

August 2020
Master’s Degree Thesis

A Parallel Approach to Perform
Threshold Value Analysis and

Verification of Genetic Logic Circuit
Models

Graduate School of Chosun University

Department of Computer Engineering

Sanaullah

[UCI]I804:24011-200000332796[UCI]I804:24011-200000332796

A Parallel Approach to Perform
Threshold Value Analysis and

Verification of Genetic Logic Circuit
Models

유전자 회로의 문턱값 분석 및 검증의 효율적인 병렬 처리

연구

August 28, 2020

Graduate School of Chosun University

Department of Computer Engineering

Sanaullah

A Parallel Approach to Perform
Threshold Value Analysis and

Verification of Genetic Logic Circuit
Models

Advisor: Prof. Jeong A. lee
Co-Advisor: Dr. Hasan Baig

A thesis submitted in partial fulfillment of the
requirements for a Master’s degree

May, 2020

Graduate School of Chosun University

Department of Computer Engineering

Sanaullah

사나 울라 석사 논문 승인

위원장

위 원

위 원

조선 대학교 교수

조선 대학교 교수

조선 대학교 교수

2020년 06월

김판구

강문수

이정아

조선 대학교 대학원

Table of Contents

List of Abbreviations and Acronyms iii

Abstract vi

한글요약 viii

I. Introduction 1

A. An Overview of GDA Tools 1

B. Motivation . 3

1. Challenges . 3

2. Standards . 5

3. Dynamic Virtual Analyzer and Simulator Tool 6

4. Threshold Value and Timing Analysis 7

5. SBML Models . 7

C. Thesis Contributions . 8

D. Thesis Layout . 8

II. Threshold Value Analysis and Verification of Genetic Logic

Circuit Models 10

A. Threshold Value and Timing Analysis 10

B. Algorithm Explanation . 12

1. Possible Threshold Value 14

2. Threshold Value Verification 16

III. A Parallel Threshold Value Analysis Algorithm 18

A. Proposed Algorithm . 18

i

1. Results and Analysis 20

2. Threshold Value Analysis of n-input Genetic Circuits . . 26

3. Experimental Results 27

IV. Conclusion 37

Publications 38

A. Journals . 38

B. Conferences . 38

References 39

Acknowledgement 43

ii

List of Abbreviations and Acronyms

DNA Deoxyribonucleic Acid
RNAs Ribonucleic Acids
GFP Green Fluorescent Protein
Y FP Yellow Fluorescent Protein
SBOL System Biology Open Language
SBML Systems Biology Markup Language
GDA Genetic Design Automation
CAD Computer-Aided Design
EDA Electronic Design Automation
D−VASim Dynamic Virtual Analyzer and Simulator
LabV IEW Laboratory Virtual Instrument Engineering Workbench
ODE Ordinary Differential Equation
SSA Stochastic Simulation Algorithm
kd Degradation Rate
OCDUT H User Define Upper Threshold Value
OCDLT H User Define Lower Threshold Value
PT Possible Threshold Value
OCE Output Consistency
TE Estimate Time Delay
OC Output Concentration
CinC Input Concentration Level
ST Settling Time
TD Assumed Time Delay
in− vitro Laboratory Experiments
SP Species Input
I/O Species Output/Output Species
EM External Modifiers
DRM Direct Reaction Method
FRM First Reaction Method

iii

List of Figures

1 Transcriptional regulation of lac operon. 2

2 SBOLv representation . 3

3 D-VASim basic flow . 7

4 OR genetic logic circuit . 11

5 Time scale plots . 15

6 Threshold value verification algorithm data-flow 20

7 Threshold value analysis algorithm data-flow 21

8 Simulation results comparison 25

9 Ckt1 - NOT Gate Simulation Data 28

10 Ckt2 - NAND Gate Simulation Data 28

11 Ckt3 - AND Gate Simulation Data 29

12 Ckt4 - NOR Gate Simulation Data 29

13 Ckt5 - OR Gate Simulation Data 30

14 Cello - Ox70 Circuit Simulation Data 30

15 Cello - OxC8 Circuit Simulation Data 31

16 Cello - OxE Circuit Simulation Data 31

17 4-input schematic circuit diagram 32

18 6-input schematic circuit diagram 32

19 8-input schematic circuit diagram 33

20 4-input circuit behavior and Boolean expression 34

21 6-input circuit behavior and Boolean expression 35

22 8-input circuit behavior and Boolean expression 36

iv

List of Tables

1 Sample values for threshold value analysis 14

2 Threshold Value Analysis . 27

v

Abstract

A Parallel Approach to Per f orm T hreshold Value Analysis and
Veri f ication o f Genetic Logic Circuit Models

Sanaullah

Advisor: Prof. Lee, Jeong−A, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

Co-Advisor: Dr. Hasan Baig, Ph.D.

Center for Quantitative Medicine

University of Connecticut Health, USA

Synthetic biology is an area of research where researchers in engineering

and biology are synergetically working to create biological parts, systems, and

devices. At the heart of a synthetic biological system exist genetic logic circuits.

Such circuits seek to implement desired logic functions inside a biological cell.

The design of gene circuits commonly requires simulating their mathematical

models and to identify whether or not the circuit is reacting appropriately.

Compared to electronic circuits, genetic circuits show a non-deterministic

behavior and are therefore much harder to characterize. Normally, genetic circuits

are designed and experimented with in-vitro. This process is characterized by a

very tedious design-flow including careful handling of the apparatus. To which

end, several approaches have been designed to enable modeling, simulation, and

testing of gene circuits in-silico. The computational tools accelerate the design

process and help reduce human error in the process. It is obviously useful to have

vi

a computational tool that enables all of the above in addition to providing a lab-

like dynamic circuit a simulation where specie concentrations could be modified

and their effect observed on run-time. D-VASim is the first tool to provide this

functionality where users can change the input protein concentrations during

the simulation. This enables faster prototyping of the circuit design and further

accelerates the circuit design process. A fundamental step before the simulation

of a genetic circuit is its threshold value estimation. D-VASim implements an

algorithm for threshold value and timing analyses of genetic circuits. However,

a parallel implementation of the algorithm can reduce the computation time of

D-VASim which becomes even more necessary when it is known that D-VASim

can still take up to hours for processing complex genetic circuits.

In this thesis, we propose a parallel approach for faster threshold value

analysis and verification of genetic logic circuits. We also modify the algorithm

to reduce inconsistencies in the output species concentration. The estimated

threshold value is now more accurate which can be seen from experimentation

for long simulation runtimes. We introduce further modifications to reduce the

deviation in the algorithm runtimes across multiple simulations runs at the same

parameter settings. Overall, with the proposed modifications to D-VASim, its

usability has considerably improved and the threshold value and timing analysis

algorithm are now significantly faster as in the case of NOT gate by up to 16

times.

vii

한글요약

유전자회로의문턱값분석및검증의효율적인병렬처리연구

사나울라

지도교수:이정아

컴퓨터공학과

대학원,조선대학교

공동-지도교수:하산바이그

정량의학센터

미국코네티컷대학교

합성생물학은 공학자와 생물학자들이 생물학적 부품, 시스템, 장치를 만들기

위해함께연구하고있는융합연구분야로서,합성생물시스템에서는유전자논

리회로가핵심적역할을한다.유전자논리회로는세포내생체회로에서발생

하는 논리함수를 구현한다. 유전자 회로의 설계는 일반적으로 그들의 수학적

모델을시뮬레이션하고회로가이에따라적절하게반응하는지여부를식별하

는것으로,전자회로에비해유전자회로는비결정론적행동을보여서특징짓

기가 훨씬 어렵다. 유전자 회로는 체외 실험(in-vitro)으로 설계되고 실험된다.

이과정은실험기구를세심하게다루는등매우지루한설계흐름이특징이다.

이러한연유로,컴퓨터모형을활용한유전자회로의모델링,시뮬레이션및테

스트를수행하는몇가지설계방식이그동안제안되었다.컴퓨터모형의계산

도구는설계프로세스를가속화하고사람의실수를줄이는데도움이된다.이

에더나아가서,가상의실험실에서사용자가시밀레이션중에투입되는특정

viii

농도를변경하고이의영향을런타임중에관찰할수있는,동적회로시뮬레이

션을제공할수있다면,매우유용할것이다. D-VASim은사용자가시뮬레이션

중에단백질농도투입을동적으로변경할수있는기능을제공하는첫번째설

계도구이다.이를통하여,회로설계의프로세스를더욱가속화할수있고,보다

빠른프로토타이핑이가능하였다.유전자회로의임계값분석은시뮬레이션과

논리 검증 이전의 기본적인 단계로서, D-VASim은 유전자 회로의 임계값 및

타이밍 분석을 위한 알고리즘을 구현하였지만, 알고리즘의 병렬화를 고려하

지는 않아서, D-VASim 은 유전자 회로의 문턱값(임계값) 분석과 검증 시간이

여전히충분히빠르지못하다는문제가있었다.

본 논문에서는, D-VASim의 고속처리를 위하여, 유전자 회로 문턱값 분석

및검증의병렬처리기법을제시한다.이와더불어,추정된문턱값으로유전자

논리회로 결과값이 유지되고, 안정화될 수 있도록 알고리즘을 수정하였으며,

이를 시밀레이션을 통하여 확인하였다. 또, D-VASim에서 동일한 매개변수를

사용하는경우,시뮬레이션실행시간의편차가감소될수있도록,알고리즘을

수정하였다. NOT 논리회로의 경우, 본 논문에서 제시한, 유전자 회로의 임계

값및타이밍분석을위한알고리즘의병렬처리는기존의방식보다 16배빠른

속도로 처리하였으며, 본 논문에서 제시한 이러한 기법들은 D-VASim의 고속

처리를가능하게하여,이의효용성을크게개선하였다.

ix

I. Introduction

A. An Overview of GDA Tools

Biologists and engineers are working together on genetic devices to improve

their reliability and accuracy [1]. Researcher have worked on the development of

genetic design automation (GDA) tools [2] for the use of design, test, verification

and synthesis processes of genetic circuits. One of the main research focus is the

GDA tools’ role in reducing laboratory experimentation by offloading most of

the design process to computer analysis . Computational techniques in genetic

circuit design involve ordinary differential equations and stochastic simulations.

Standardized computerized format is a must in order to realize genetic circuits.

The two widely used standards to represent the behavior and the structure of a

genetic model are the Systems Biology Markup Language (SBML) [3], and the

Synthetic Biology Open Language (SBOL) respectively. SBML allow users to

define the behavior of a circuit and SBOL, on the other hand, is used to illustrate

genetic designs graphically.

The understanding of a biological system of any living organism includes, for

example, genes, which contain all the information related to biological organism

(like height, hair color, blood group and so on). Furthermore, each gene is a

part of DNA which produces a specific protein through the processes called

transcription followed by the processes of translation [5]. There are two types

of gene expressions, constitutive and regulated. The gene is explicitly constant in

constitutive gene expression and is dependent on regulate gene expression. Lac

Operon is one of the standardized example of transcription processes and it was

the first gene regulatory network to be explored correctly and clearly [6]. The

experiment results in Figure 1, of lac operon show that no transcription process

1

Figure 1: Transcriptional regulation of lac operon. (a) Structure of Lac operon. No
transcription when (b) lactose is absent and (e) glucose is present. Transcription begins
when (c) lactose is present and (d) glucose is absent. (Image courtesy Hasan Baig, PhD
Thesis - Methods and Tools for the analysis, verification and synthesis of genetic logic
circuits.) [4]

2

Figure 2: SBOL visual representation (or SBOLv) of lac operon genetic system. (Image
courtesy Hasan Baig, PhD Thesis - Methods and Tools for the analysis, verification and
synthesis of genetic logic circuits.)[4]

occurs when lactose is absent and glucose is present. Transcriptions begins when

lactose is present and glucose is absent. The genetic logic in lac operon can be

extracted but it gives a low-level detail of how lac operon works [4],

SBOL is the standard way to represent the high-level diagrams of genetic

systems [4]. In Figure 2, the SBOL visual (or SBOLv) diagram of the genetic

system for lac operon would be something similar to the genetic logic diagram of

lac operon in Figure 1. And, in this thesis we focus the use of SBML models of

these genetic logic circuits to test the tools and method [7], [8].

B. Motivation

1. Challenges

Biologists are not only working on biological systems but they are also

constructing an artificial complex system of biological components, in a similar

way as electronic circuits have been designed and constructed [9], [10]. However,

in comparison to electronic circuits which have same physical quantity as input

3

and output signals, genetic circuits have different quantities at their inputs and

outputs [11]. Additionally, electronic engineer develops different logic gates

(such as, AND, NAND and NOT gate) to control the function of cells. The

current methodology to design genetic circuits is trial and error laboratory

experimentation. In this method (trial and error) thousands of circuits are tested

but only few of them actually work. For this reason, the current genetic circuit

design process is costly and time consuming. To this end, a methodology

which allow users to capture and analyze the stochastic behavior of biological

systems dynamically in-silicon is necessary. Successful computer simulations

can increase the chance that the model will work as expected in living organisms

[12]. Thus, there are several challenges related to the field of GDA. Successfully

solving these issues will not only increase designer productivity but will also

increase the reliability and robustness of genetic circuit models designed. These

challenges are,

1. Virtual experimentation; it would be very helpful for biologists or design

engineers to have a tool which allows them to digitally perform laboratory

experiments.

2. Timing and Threshold Analysis: Unfortunately, no GDA tools allow users

to perform timing and threshold values analysis but in contrast with EDA

tools, users can perform timing analysis.

3. Effortless circuit designing: simple and straightforward mechanism should

be developed for biologist and designer engineer.

4. Automatic logic Validation: Automatic compilation is possible with the

validation. This automated approach is very helpful for analyzing the

4

genetic logic circuits.

2. Standards

SBML and SBOL [7], [8] are two major standards to represent a genetic model’s

behavior and structure respectively. SBML standard is independent of any other

specific software language which is why it can be used to exchange necessary

information of a biological model among the different software tools. However,

the different SBML-synthesis tools may have their own icons to represent a

standard and which is why the same processes are represented differently in

different tools. In order to solve this problem and consistently represent biological

models, the SBOL standard developed a document for all genetic models. SBOL

standards generate the same XML document for each tool in order to use by other

software tools.

Several GDA tools have been developed to assist users in the design of genetic

devices [13]. These tools use different standards and codes. There are about

290 tools which support the SBML Standard for construction and simulation of

genetic logic circuits. About 30 of them are GDA tools which support sequence

editing, design composition, optimization and technology mapping. Of these

tools, some serve as toolboxes or plugins for commercial applications including

Oracle, MATLAB, and Mathematica while some are application programming

interfaces, and others are independent tools for model construction or simulation

such as iBioSim [14], CellDesigner [15], or COPASI [16]. However, none of

them allows users to interact with the model during runtime.

5

3. Dynamic Virtual Analyzer and Simulator Tool

Dynamic Virtual Analyzer and Simulator or D-VASim [17] is developed

on the Laboratory Virtual Instrument Engineering Workbench (LabVIEW)

programming platform, which is a graphical programming language commonly

used for rapid project development and prototyping (www.ni.com). The basic

data flow of D-VASim virtual simulation and analysis environment tools is

shown in Figure 3. D-VASim [17] is an interactive virtual laboratory environment

for the simulation and analysis of genetic logic circuit models represented

in System Biology Markup Language or SBML [7]. D-VASim applies both

deterministic and stochastic analyses to extract and validate Boolean logic

from the SBML model. D-VASim helps replace the time-consuming in-vitro

experiments (laboratory experiments) needed to analyze and design genetic

circuits [7]. The input to D-VASim is genetic circuit model where D-VASim

allows the user to interact with the model, observe its behavior, and make direct

changes in the concentration of input protein(s) at run-time. D-VASim is capable

of estimating the threshold value for a genetic circuit model [18]. The threshold

value refers to the minimum input protein(s) concentration that causes the average

output protein(s) concentration to cross the input protein(s) concentration. The

Boolean function of a genetic logic circuit can be verified by extracting the

logic behavior from the simulation data [19]. Thus threshold value and timing

analysis are used to verify a genetic logic circuit’s intended boolean function.

This methodology is useful in helping the user extract the Boolean logic of the

bio-models without any prior knowledge of the expected behavior of the model.

6

Figure 3: The basic flow of D-VASim. The tool takes user-specified parameters in
threshold concentration analysis prior to circuit simulation. The boolean logic is extracted
and verified from the simulation data.

4. Threshold Value and Timing Analysis

D-VASim is the first synthetic biology tool which is capable of estimating the

threshold value for a genetic logic circuit model automatically [18]. D-VASim

helps replace the time-consuming in-vitro (laboratory) experiments needed to

analyze and verify the genetic logic circuit models [7]. D-VASim can take up

to few hours in estimating and verification of the threshold values for complex

genetic logic circuit models owing to its serial execution necessitated by data

dependency. Such analysis and verification times are still acceptable as compared

to the laboratory experiments where number of days are required to spend only

for a single input combination and specific parameter set. However, there is

potential for much faster approaches to genetic circuit simulation.

5. SBML Models

D-VASim applies the both deterministic and stochastic analyses to obtain and

validate SBML Model Boolean logic [17]. D-VASim is the only bio-simulation

7

tool available that provides a dynamic simulation environment. The main

drawback of D-VASim is its current lack of support for genetic circuits with

inputs larger than 3 [19].

C. Thesis Contributions

The aim of this research is to enhance the advancement of GDA tools for

threshold value and timing analysis, verification, and Boolean logic extraction

of genetic logic circuits. The thesis targets are the development of the following

methods and algorithms to address the aforementioned challenges.

1. We introduce a fast approach to verify the possible threshold value that a

parallelized procedure. The updated algorithm is used by D-VASim v1.3.

2. We propose a parallel-implemented algorithm significantly faster by upto

16 times in comparison to the algorithm previously employed in D-

VASim. We also optimize the algorithm for consistent run-times across

multiple simulation runs at the same parameter settings reducing the worst-

case standard deviation in run-times from 6.637 to 1.841. The proposed

algorithm also estimates the threshold value more accurately as compared

to previous algorithm.

3. We enhance D-VASim to be able to process n-input genetic logic circuits.

D. Thesis Layout

The thesis is structured as follows. In Chapter II, we discuss previous work related

to the proposed threshold value analysis and verification of genetic logic circuit

8

models. We then introduce a fast and robust threshold value and timing analysis

approach in Chapter III and describe the D-VASim’s input limitation followed

by the n-input methodlogy. Furhtermore, experimental results on case study have

been presented. Finally, we conclude the thesis in Chapter IV.

9

II. Threshold Value Analysis and Verification of

Genetic Logic Circuit Models

A. Threshold Value and Timing Analysis

In the wet lab, biologists are either provided with the ready-made biological

model available in a test tube or are given a specification or recipe from which

to prepare the model in the lab. Their duty is to analyze the model and verify its

functional behavior. This analysis is done interactively, among other things, by

increasing the molecular concentration of input species at any instant of time and

observing the effects.

As mentioned in Chapter 1, Dynamic virtual analyzer and simulator or

D-VASim [17] is the first interactive virtual-laboratory environment for the

simulation and analysis of genetic logic circuit models. In the context of genetic

logic circuits, the threshold value is defined as the minimum input protein(s)

concentration that causes the average output protein(s) concentration to cross

the input protein(s) concentration [18]. Each circuit has a different threshold

value, which needs to be estimated. The threshold value and timing analyses are

used to verify the Boolean function of a genetic logic circuit by extracting the

observed logic behavior from the simulation results. To be able to determine the

Boolean functionality of a genetic circuit is useful in two ways: first, it allows

a user to verify more complex genetic logic circuits, built by cascading several

genetic logic gates; second, it helps the user to extract the Boolean logic of a

bio-model even when the user does not have any prior knowledge about the

expected behavior of the model. Next, the knowledge of Boolean logic helps the

user design a circuit for some practical application, for example, a gene circuit

10

Trigger GFP

LACI TetR

P1 P2

Inputs Output

P3

Figure 4: An example OR genetic logic circuit. LacI and TetR are input proteins while
GFP is the output protein.

that can identify and attack a particular type of cancer by triggering the immune

system.

A 2-input genetic OR gate is shown in Figure 1 with the promoter proteins

LacI and TetR as the inputs and green fluorescent protein (GFP) as the output.

These two input proteins may have different threshold concentrations. For

example, LacI may trigger the output when its concentration is 5 molecules and

TetR may trigger the output at 10 molecules. Setting the upper input threshold

to 10 would provide the correct answer, i.e., for the molecular counts (LacI,

TetR = 4,7), the gate remains off, whereas for (LacI, TetR = 7,4), LacI may

trigger the output, but the output may not be considered logic 1 until the output

concentration increases beyond 10 molecules. Simulation results indicate that the

triggered output in such cases is highly unstable, i.e., it oscillates between logic

0 and logic 1 [20]; therefore, such states are considered transitory or undefined

states.

In the previous example, instead of estimating the threshold values of

each input protein separately, the algorithm in D-VASim estimates the global

upper and lower threshold values for all inputs and provides a single threshold

concentration of 10 molecules for the entire circuit. D-VASim treats the entire

11

circuit as a black box such that individual threshold values and intermediate

circuit components do not matter. D-VASim obtains the threshold concentration

that is sufficient to trigger each circuit component from the inputs to the final

output. However, the individual threshold concentrations of all the intermediate

circuit components can also be analyzed in D-VASim.

B. Algorithm Explanation

D-VASim uses Gillespie’s direct stochastic simulation algorithm [21], [22] to

simulate the stochastic nature of the biological models, and it supports ten

different continuous solvers for deterministic simulations. The algorithm used in

D-VASim for threshold value and propagation delay analysis of genetic circuits

is shown in Algorithm 1.

The propagation delay is the time from when the input concentration reaches

its threshold value until the corresponding output concentration crosses the

same threshold value [18]. The algorithm requires some user-defined parameters:

Cin is the value of input protein(s) concentration at which the tool begins the

threshold value analysis. The input concentration is increased by Inc in each

iteration to observe if the resulting concentration affects the output concentration,

whereas CinE specifies the input concentration at which the analysis should stop.

The algorithm also needs an initial assumption of the propagation delay, TD.

It is necessary to wait until this time has elapsed before changing the input

combination for extracting the correct logic behavior of a circuit. The tool starts

with this assumed value of TD and continues to improve toward the approximate

value. For simulation, if no node in the genetic circuit is initialized, then some

outputs exhibit unstable behavior for a certain amount of time. The parameter ST

12

IWBDA 2019, July 2019, Cambridge, UK

1 THRESHOLD VALUE ANALYSIS AND VERIFICATION OF GENETIC LOGIC CIRCUIT MODELS
Threshold Value

Algorithm 1 Threshold value analysis
1: procedure begin

INITIALIZE (Cin , Inc , CinE , TD , ST , i , OS , VT ,
OCDUTh , OCDLTh)
/*
Cin = Initial input concentration at which the analysis should start from
Inc = Increment Value: Value added to the previous concentration level until the concentration level reaches CinE
CinE = End concentration of input at which the analysis should stop
TD = Assumed time delay
ST = Settling time
OS = Name of output specie
i = Number of iterations to verify the consistency of results
VT = Amount of time to verify a model for each iteration i
OCDUTh and OCDLTh = user-defined percentage acceptance of output consistency for upper and lower threshold
values respectively
/*

2: for1 all possible input combinations do
3: if (CinC == 0) then /* CinC = current input concentration level*/
4: Determine initial output concentration (COinit)
5: else
6: while1 (CinC <= CinE) do
7: while2 (TC1 <= TD) do /* TC1 = current time l */
8: Execute Simulation
9: if (COS > CinC) then /* COS = output concentration of selected specie*/
10: PT = CinC /* PT = Possible Threshold Value*/
11: /* Verification process*/
12: for2 number of iterations i do
13: while3 (TC2 <= VT) do /* TC2 = current time 2*/
14: Execute Simulation
15: if (TC2 >= ST) then
16: Trigger the input to the value of PT
17: Store the output concentration data in array
18: end
19: Take running average of all output i arrays
20: end
21: Estimate time delay (TE) and consistency (OCE)
22: Terminate loop2
23: end
24: if (COS > CinC) do
25: if (OCE > OCDUTh) then
26: Consider lower threshold value = 0 if not found already
27: Return the results and terminate all loops
28: else if (OCE < OCDLTh)
29: Save lower threshold level and resume analysis
30: else
31: Resume analysis
32: CinC = CinC + Inc
33: TC1 = TC2 = 0
34: end
35: end
36: end
37: end

(settling time) helps approximately specify the amount of time during which the

circuit outputs are expected to become stable before triggering the circuit inputs

for a correct threshold value estimation. Subsequently, the algorithm verifies the

13

obtained threshold value for a predefined i (number of iterations). The algorithm

obtains the average propagation delay by running the model for the length of time

defined by VT (number of time to verify each iteration i) in each ith iteration and

also identifies the extent to which the average output for the estimated threshold

value is consistent. This is demonstrated using the sample parameter values

shown in Table 1.

Parameters Values
Input concentration Cin 0
Incremental value Inc 2.75
End concentration CinE 15
Assumed time delay TD 800
Settling time ST 200
Number of iterations i 10
Amount of time to verify each iteration (i) VT 1000
User defined upper threshold value percentage OCDUT h 90
User defined lower threshold value percentage OCDLT h 30

Table 1: Sample values of the user-defined parameters for threshold value analysis

1. Possible Threshold Value

Consider the time-scale plots drawn for the sample values from Table 1 shown

in Figure 5. The algorithm triggers the input concentration to certain levels after

a specific time delay and observes the output behavior of the circuits. It requires

a specific input combination to determine the threshold value, which indicates

that all the input combinations need to be checked one by one until the one that

triggers the output concentration is found. For some circuits such as OR, NOR,

AND, and NAND, the output transition can be observed by triggering both of the

inputs to the same concentration level at the same time. The algorithm, therefore,

14

Figure 5: Sample time scale plots of the genetic AND gate.(Image courtesy Hasan Baig
and Jan Madsen - Simulation Approach for Timing Analysis of Genetic Logic Circuits)
[18].

triggers both the inputs combinations from 00 to 11 first, instead of following the

traditional pattern of 00→ 01→ 10→ 11. Because of this, the estimation process

is relatively faster for some circuits, - for example, an AND gate [18].

For a genetic AND gate, the case of the input combination “11” is shown

in Figure 5. To determine whether the output concentration crosses the input

concentration, we need the initial output protein concentration for the input

logic combination “00”. Therefore, both the inputs are maintained at zero

concentration for the first 800 time units (TD), and the average initial output

concentration is obtained. After the specified time (TD) has passed, the input

concentration is incremented to the next level as indicated by line 32 in

Algorithm 1. Notably, the algorithm also operates for the case where the average

initial output concentration is high - for example, a NOT gate - by iteratively

incrementing the input concentration until the output concentration falls below

the input concentration level.

15

2. Threshold Value Verification

The point t1 (time 1) in Figure 5a is where the output protein concentration

crosses that of the input. This is the possible threshold value of 5.5 molecules

for the given example. Subsequently, the value for which the algorithm initiates

a separate loop and simulates the circuit model for a defined number of iterations

i, which is 10 in this case, needs to be verified. This loop is defined in lines

13− 21 in Algorithm 1. The input protein must only be triggered after the

initial concentration of output is settled as shown in Figure 5b to measure the

propagation delay correctly. At this time, the algorithm allows the user to specify

a period of time called the settling time (ST), as mentioned before, after which

the initial output is expected to become stable. Only after ST amount of time

has elapsed does the algorithm trigger the inputs. The propagation delay may be

incorrectly estimated if a small value of ST is chosen; therefore, depending upon

the complexity of the given circuit, the user should carefully select this value.

In the example shown in Figure 5b, if instead of 200, a value of 50 time units

is chosen for ST , the algorithm would estimate the propagation delay to be zero.

This is because, at 50 time units, the output concentration would already be above

the threshold level.

The output data from all i iterations (10 in this case) were averaged to obtain

the average estimated propagation delay and the inconsistency present in the

sample time-scale plot for the estimated threshold values. Inconsistency means

the fall of output concentration down to the level of input concentration or below

after it has crossed the input concentration. The concept is illustrated in Figure

5b. Inconsistency is calculated by averaging the output data that are less than the

input concentration after the output crosses the input concentration for the first

16

time. Thus, in Figure 5b, the consistency is estimated between the two points t2

and t3 and this time duration is specified by the parameter VT in Table 1, which is

the amount of time to verify the model in each iteration i.

The algorithm accepts the estimated threshold value based on the user-defined

parameter, % acceptance of consistency, shown as OCDUT h (for upper threshold

level) and OCDLT h (for lower threshold level) in Table 1. The results are accepted

if the estimated consistency is greater (for upper threshold) and less (for lower

threshold) than the user-defined values, OCDUT h, and OCDLT h, respectively. This

is shown in the lines 26−31 of Algorithm 1. The results are otherwise discarded

and the algorithm resumes the analysis from point t1, shown in Figure 5a. The

percentage output consistency is calculated using Equation 1.

% out put consistency =
Ot2−t3−D

Ot2−t3
∗100 (1)

where Ot2−t3 is the average output data between t2 and t3, and D (deviation)

which defines the number of times the output data is found to be deviated from

the expected (greater or less than the) threshold value. This deviation is defined

differently for the two cases. When the initial input concentration is low, D is

the number of times the output is observed to be less than the possible threshold

value as shown in Figure 5b and vice versa. If the user-defined output consistency

threshold cannot be satisfied, the current results are discarded and the analysis is

resumed from point t1.

17

III. A Parallel Threshold Value Analysis

Algorithm

As mentioned in Chapter 1, there are opportunities to improve and optimize

the threshold value and timing analysis algorithm which is currently used in D-

VASim tool which can be used to simulate a large and complex genetic circuits

in a feasible time. Our contribution lies in vectorizing the whole algorithm along

verification procedure with modifications for analyzing the threshold value more

robust, accurately and consistently for long enough time.

A. Proposed Algorithm

In Algorithm 1, the main f or1 loop simulate the possible threshold value between

from line 2−37 and the f or2 loop verified the possible threshold value from line

12− 20 have been parallelized by taking care of data dependencies minimizing

the time complexity from O(N2) to O(N) where n is the number of input

combinations of the given circuit model. The previous serial algorithm pursue a

pre defined pattern in checking all the possible input combinations to estimate

that 1-input combination can be used for estimation of threshold value. As

mentioned in previous Chapter 2, instead of the old pattern 00→ 01→ 10→ 11,

the proposed algorithm followed 00 → 11 to stimulate the evaluation process

for some genetic circuit models like the AND logic gate for which the output

concentration can be analyzed to triggering the both inputs at the same time to

high. In the same way, to ensure this accelerated and robusted estimation, the

proposed algorithm must also follow a pre-defined pattern for genetic circuit

models with more than 2-inputs. There are some internal data dependencies

between the different input combinations. We absorb the algorithm and carefully

18

removed those such data dependencies by maintaining any problematic to local

as global variables and applied some other programming techniques which have

eliminated a pattern the need to carefully define. In our proposed algorithm,

instead of analyzing the input combinations one-by-one in finding the specific

input combinations, all the possible input combinations are checked in parallel

pattern given the required computation cost. Thus, it is possible to fully

parallelize f or1 to obtain reduced computation time.

The f or2 loop in Algorithm 1 which is the main execution in the verification

method to runs for user-defined i number of iterations. In each ith iteration,

the Gillespie stochastic algorithm [21], [22] is called which execute an array

of numbers from which a number selected randomly and then the two internal

Next Reaction Value and Next Reaction Time parameters are calculated. After

this, in the end of each ith iterations, the stored simulation data is calculated

an average. In proposed algorithm, the Gillespie algorithm calls only once time,

and select i numbers randomly to calculates i number of Next Reaction Time

and Next Reaction Value, which are assigned to ith iteration. After this, the

verification process can be execute in parallel pattern and the execution data

can be averaged afterwards. The speed-up achieved from parallelization, more

minimization in computation time is accomplished by replacing all the repeated

call of the Gillespie’s algorithm with a single call only. Also, all the calls of

memory to the accumulated average which is necessary as an operand to estimate

a runing average in Algorithm 1, the 19 line is no longer required in the proposed

algorithm. This can be shown in Figure 6 where task flow of previous algorithm

and the proposed algorithm are displaying. It should be noticed that few of

the tasks have been omitted in Figure6 due to the focus only on those process

which have been optimized. Parallelization of f or1 and f or2 result in a massive

19

while1

max. 3-input
circuits

Possible
threshold value

1

2

N

Take average of
each iteration

Estimate consistency and
propagation delay

 Verification process

Estimate
upper-lower threshold

value
END

Save lower threshold value and
update required parameters

If upper threshold
value found

Else

fo
r2

fo
r1

S
ta
rt

while1

n-input
circuits

Gillespie’s stochastic
simulation algorithm

(FRM)

Estimate output
concentration

Possible
threshold value

Gillespie’s stochastic
simulation algorithm

(FRM)

S
ta
rt

1 Filter Take average

2 Filter Take average

N Filter Take average

Estimate consistency and
propagation delay

Estimate
upper-lower threshold

value
END

If upper threshold value
found

Else

Save lower threshold value and
update required parameters

Filter for lower threshold
value

for1

for2

V
er

ifi
ca

ti
o

n
 p

ro
ce

ss

(A) (B)

END
If current input conc.
is less than the user-
specified end input

conc.

If current input conc. is less than the
user-specified end input conc.

END

parallel

parallel

Execute selected
reaction value

Next reaction
state

Estimate initial output
concentration

Next reaction look-ahead

Gillespie’s stochastic
simulation algorithm

(DRM)

Estimate output
concentration

Gillespie’s stochastic
simulation algorithm

(DRM)

Figure 6: Task flow of (A) previous algorithm [18] and (B) the proposed algorithm

minimization of the execution time taken by the previous to proposed algorithm

by upto 16 times in our test cases.

1. Results and Analysis

The speed-up results are shown in Figure 7 for five two inputs genetic logic

circuit models are taken from [12] and [13]. The description of these genetic

20

“main” — 2020/5/14 — page 3 — #3

short Title 3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Times taken in threshold value analysis by the previous algorithm and our proposed algorithm for five test cases. Vectorization significantly improves the algorithm runtime.

[13]A. A. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A. Strychalski,
D. Ross, D. Densmore, and C. A. Voigt, “Genetic Circuit Design Automation,”
Science, vol. 352, no. 6281, p. aac7341, 2016.

[14]C. Dittamo and D. Cangelosi, “Optimized parallel implementation of gille-
spie’s first reaction method on graphics processing units,” in 2009 International
Conference on Computer Modeling and Simulation, pp. 156–161, IEEE, 2009.

Figure 7: (a e) Times taken in threshold value analysis by the previous algorithm and
proposed algorithm for five test cases along with standard deviation error bars. (f h)
Results for the circuits from [7] along with the standard deviation error bars.

21

circuit models is available in the aforementioned references. The genetic circuits

components and their kinetic reactions or interactions are defined as SBML

models form and we used those models on D-VASim for execution and performed

the threshold value and timing analysis. The threshold value of all genetic circuits

was analyzed five times each circuit at the same user-defined parameters for the

previous serial algorithm and our proposed parallel algorithm. The time taken

by each of the the five simulated results of all circuits runs and its average are

shown in Figure 7. for each genetic circuit in separate plots. It can be shown from

the presented results in Figure 7 that the parallelized algorithm implementation

has minimized the computation time required to obtain the threshold value and

timing analysis manyfold thereby adding to the utility of the virtual laboratory

environment. It can be seen that the maximum speed-up is not more than 16

times (Ckt2 NOT) and no less than 5 execution times in the shown test cases.

The circuits from 4 named 0x70, 0xC8, 0x0E are circuits with inputs greater than

2 and therefore cannot be run using the previous algorithm. They are thus only

tested and verified using the parallel algorithm.

The reason behind this because the whole process of obtaining the threshold

value include simulated stochastic computations. If possible threshold value is

obtain incorrect, the verification execution method fails and the whole execution

has to be repeated again by increasing the input value in Cin. Therefore, the

expanse of deviation time is notably high in the different execution. It is clear

that, an increase in the number of inputs results in an exponential increase in the

number of input cases to be evaluated. This should result in an exponential rise

in computational resources and/or time taken. In the context of how the proposed

algorithm’s performance scales as input complexity increases, we have tested 2-,

4-, 6- and up to 8-input circuits. Their respective runtimes obtained were: 31 sec

22

(NAND Gate), 2.14 minutes (custom 4-input circuit), 3.12 minutes (custom

6-input circuit) and 9 minutes (for a custom-designed 8-input circuit). The

parallel algorithm can theoretically process all input cases in parallel, however, in

practice, the time taken would depend upon the computational resources at hand.

The times obtained above do present an exponential trend; but, the comparison

between circuits with different inputs in terms of the time taken also largely

depends upon the number of levels of the circuit. Consider Fig. 7 for example,

where results for different 3-input Cello circuits are presented. We can see that

the threshold value estimation for Cello 0x70 (2 gates) takes 3.19 minutes on

average while for Cello 0x0E (4 gates), it takes 6.49 minutes on average [7].

The previous serial execution algorithm uses the Direct Method (DM) [21],

[22] approach of Gillepsie’s stochastic algorithm. DM used the time at any

reaction happens in whole procedure and complete that reaction type later. The

algorithm normally took that time at which any reaction happens next. In our

proposed algorithm we used the other approach which is the First Reaction

Method(FRM) [21], [22], which estimate the Next Reaction Time for each

reaction first and then uses the only one with the smallest value of time (i.e., the

next one). Both algorithms (DM and FRM) basically uses the same principles.

These two Gillepsie’s algorithms produce the same results; the only difference

in their method of execution. Moreover, FRM is based on reaction-oriented

nature that has been noted to be more appropriate parallel computation than

DM [23]. Due to this enhancement, the proposed parallel implementation in the

algorithm has been observed to obtain the threshold value in more consistent

run-times across multiple execution runs with the same user-defined parameter

settings. In Figure 7 (Standard Deviation error bars in each Graph), we present

the standard deviation in the runtime calculated from five simulation runs for five

23

(a e) of the aforementioned 2-input genetic circuits with the serial algorithm

and the proposed algorithm. The worst case of standard deviation runs of the

serial algorithm is 6.637, whereas that in parallel proposed algorithm is 1.841.

It is proved from these executions results that proposed algorithm is much more

consistent in the multiple run-time.

The % (percentage) output consistency estimation is already described in

Equation 1. It uses the output average data Ot2−t3 between the time t2 and t3

points shown in Figure 5. The previous algorithm uses concentration values of

all the output stored in between the time t2 and t3 to estimate the Ot2−t3. Then,

the threshold value estimated the output consistency based does not produce the

consistent output. When the simulation execute the runs long enough, the output

concentration at some points, falls below the concentration of input as you can

seen in Figure 8(a) which is an erroneous behavior. What is correct output is that

the data of output below the concentration of input must be filtered out while

estimating the output consistency where Filter is aforementioned filter as shown

in Figure 6(b).

The other enhancement in proposed parallel algorithm is to be treated

this problem of inconsistent output estimation is what we call the next state

look ahead. Lets suppose, the pre-defined algorithm parameters are, initial

concentration value Cin = 5 and the increment value Inc = 10. Lets assume also,

the final output-concentration increases the initial-input concentrations when

triggered at Cin = 5 molecules units. The previous serial algorithm will used to

treat it as a possible threshold value and start to execute the verification procedure.

If it verified, then it will output as the obtained threshold value. Again, for long

enough simulation run-time, the output concentration will be inconsistent and

start to falls below the input concentration level. With this the proposed next-

24

Figure 8: (a) Threshold value falling below the input concentration when the simulation
is run for a sufficiently long time. (b) Threshold value consistently remaining above the
input concentration after the proposed changes

state method look-ahead, the parallel algorithm will not be picked Cin = 5 as the

possible threshold value. Rather, it also checks state of next-reaction between the

current value Cin = 5 and Cin = 15 (incremented by Inc) values. Lets consider,

the value of next reactions obtain at Cin = 8; 10; 11; 13. The algorithm will

verify first whether the value of output concentration increases the value of input

25

concentration at any of these obtain states. We have also implemented in the

proposed modification this next-state look-ahead approach in a parallel fashion.

Then it estimates the success-ratio or at what % (percentage) of Cin initial input

values of the output concentrations increased the input concentrations. If the

success-ratio is tunable more than 70%, it used Cin = 5 values for verification

process. Otherwise, it does not move forward to the verification of Cin = 5 value,

rather, it used to increments Cin value by the defined Inc parameter value to Cin

= 15 and need to repeats the process again. In this approach, the value which

is finally used to verified as the possible threshold value is more accurate and

the values of output concentrations are stable for long enough simulation run-

times remains consistently stable above the values of input concentration. The

comparative results is shown in Figure 8 where the value of output concentration

of the previous serial algorithm is start to falling below to the value of input

concentration at some points (present in Figure 8(a)) whereas the value of output

concentration based on the proposed algorithm estimated threshold value never

falls below the value of input concentration during the whole 10;000 unit time

simulation runs (shown in Figure 8(b)).

2. Threshold Value Analysis of n-input Genetic Circuits

The main drawback of D-VASim is its current lack of support for genetic

circuits with inputs larger than 2. With parallelization, the algorithm now

supports processing of n-input circuits. The serial algorithm uses static pre-

defined input combinations. Now, we first dynamically generate all possible input

combinations using the specie information before the main algorithm execution.

To test the performance of the parallelized algorithm on circuits with inputs larger

26

Threshold Value Analysis

Genetic Logic I1 I2 I3 I4 I5 Average
Circuit (min.) (min.) (min.) (min.) (min.) (min.)

4-input Circuit 2.13 2.03 2.31 2.12 2.11 2.14
6-input Circuit 3.09 3.03 3.15 3.21 3.13 3.122
8-input Circuit 3.95 3.83 4.1 3.91 4.27 4.012

Table 2: Proposed Threshold Value Analysis Algorithm Results

than 2, we designed a reasonably complex 8-input circuit in iBioSim shown in

Simulation section. For the circuit shown, the simulation was run five times using

the parameters defined before and the time taken in all five runs is presented in

Table 2. Clearly, the 8-input circuit takes 9:178 minutes on average. Thus, we

have successfully managed to introduce support for processing n-input circuits in

feasible time.

3. Experimental Results

The algorithm was tested on the standard SBML models [8] which are the first 5

circuits in Table 2. These are all only 1− and 2−input genetic circuits. However,

the 4−,6−, and 8−inputs genetic circuits 3 were manually designed using the

iBioSim tool [24].

27

Ckt 1 - NOT Gate The simulation results of a genetic NOT gate circuit:

(a)

(b)

Figure 9

Ckt 2 - NAND Gate The simulation results of a genetic NAND gate circuit:

(a)

(b)

Figure 10

28

Ckt 3 - AND Gate The simulation results of a genetic AND gate circuit:

(a)

(b)

Figure 11

Ckt 4 - NOR Gate The simulation results of a genetic NOR gate circuit:

(a)

(b)

Figure 12

29

Ckt 5 - OR Gate The simulation results of a genetic OR gate circuit:

(a)

(b)

Figure 13

Cello - Ox70 Circuit The simulation results of a genetic Ox70 circuit:

(a)

(b)

Figure 14

30

Cello - OxC8 Circuit The simulation results of a genetic OxC8 circuit:

(a)

(b)

Figure 15

Cello - OxE Circuit The simulation results of a genetic OxE circuit:

(a)

(b)

Figure 16

31

4-input Circuit The schematic circuit diagram and SBOL representation of the

genetic circuit, 4-input are shown below,

(a)

(b)

Figure 17

6-input Circuit The schematic circuit diagram and SBOL representation of the

genetic circuit, 6-input are shown below,

(a)

(b)

Figure 18

32

8-input Circuit The schematic circuit diagram and SBOL representation of the

genetic circuit, 8-input are shown below,

(a)

(b)

Figure 19

33

4-input Circuit The experimental results of the genetic 4-input circuit are

shown in the Figures a and b, respectively.

(a)

(b)

Figure 20: (a) Boolean expression estimated by the logic analysis algorithm, and (b)
Circuit behavior when input is logic 0 and 1.

34

6-input Circuit The experimental results of the genetic 6-input circuit are

shown in the Figures a and b, respectively.

(a)

(b)

Figure 21: (a) Boolean expression estimated by the logic analysis algorithm, and (b)
Circuit behavior when input is logic 0 and 1.

35

8-input Circuit The experimental results of the genetic 8-input circuit are

shown in the Figures a and b, respectively.

(a)

(b)

Figure 22: (a) Boolean expression estimated by the logic analysis algorithm, and (b)
Circuit behavior when input is logic 0 and 1.

36

IV. Conclusion

D-VASim provides researchers with a laboratory-like dynamic virtual

environment for simulating and analyzing genetic logic circuits. This process

includes the estimation of the threshold value of the given circuit, as the threshold

concentrations are different for different circuits. In this thesis,

1. We presented an approach towards paralellizing the threshold value and

timing analysis and achieved significant reduction in threshold value

analysis latency in all of the test cases.

2. We also modify the algorithm to reduce inconsistencies in the output specie

concentration. The estimated threshold value is now more accurate which

can be seen from experimentation for long simulation runtimes.

3. We introduce further modifications to reduce the deviation in the algorithm

runtimes across multiple simulations runs at the same parameter settings.

4. Overall, with the proposed modifications to D-VASim, its usability

has considerably improved and the threshold value and timing analysis

algorithm is now significantly faster as in the case of NOT gate by up to 16

times with worst-case standard deviation in runtime reduced to 1.841 from

6.637.

37

Publications

A. Journals

Sanaullah, Hasan Baig, Jan Madsen, and Jeong-A Lee, “A Parallel Approach

to Perform Threshold Value and Propagation Delay Analyses of Genetic Logic

Circuit Models”, ACS Synthetic Biology Publications, (Under Review)

B. Conferences

Sanaullah, Hasan Baig, and Jeong A Lee, “Accelerating the Threshold and

Timing Analysis of Genetic Logic Circuit Models”, in 11th International

Workshop on Bio Design Automation (IWBDA), IWBDA 2019, University of

Cambridge, UK, 2019, pp. 64–65.

38

References

[1] Arkin, Adam, “Setting the Standard in Synthetic Biology”, Nature

biotechnology, vol. 26, no. 7, pp. 771–774, 2008.

[2] Marchisio, Mario A and Stelling, Jörg, “Computational Design Tools for

Synthetic Biology”, Current opinion in biotechnology, vol. 20, no. 4,

pp. 479–485, 2009.

[3] Hucka, Michael and Finney, Andrew and Sauro, Herbert M and Bolouri,

Hamid and Doyle, John C and Kitano, Hiroaki and Arkin, Adam P and

Bornstein, Benjamin J and Bray, Dennis and Cornish-Bowden, Athel and

others, “The Systems Biology Markup Language (SBML): A Medium

for Representation and Exchange of Biochemical Network Models”,

Bioinformatics, vol. 19, no. 4, pp. 524–531, 2003.

[4] Hasan Baig, Methods and Tools for the Analysis, Verification and Synthesis

of Genetic Logic Circuits, https://backend.orbit.dtu.dk/ws/

portalfiles/portal/138073348/phd456_Baig_H.pdf.

[5] Crick, Francis, “Central dogma of molecular biology”, Nature, vol. 227,

no. 5258, pp. 561–563, 1970.

[6] Jacob, François and Monod, Jacques, “Genetic Regulatory Mechanisms

in the Synthesis of Proteins”, Journal of molecular biology, vol. 3, no. 3,

pp. 318–356, 1961.

[7] Nielsen, Alec AK and Der, Bryan S and Shin, Jonghyeon and

Vaidyanathan, Prashant and Paralanov, Vanya and Strychalski, Elizabeth

A and Ross, David and Densmore, Douglas and Voigt, Christopher

39

A, “Genetic Circuit Design Automation”, Science, vol. 352, no. 6281,

aac7341, 2016.

[8] Myers, Chris J, Engineering Genetic Circuits. CRC Press, 2016.

[9] Gardner, Timothy S and Cantor, Charles R and Collins, James J,

“Construction of a Genetic Toggle Switch in Escherichia Coli”, Nature,

vol. 403, no. 6767, pp. 339–342, 2000.

[10] McAdams, Harley H and Shapiro, Lucy, “Circuit Simulation of Genetic

Networks”, Science, vol. 269, no. 5224, pp. 650–656, 1995.

[11] Bernardi, D and DeJong, JT and Montoya, BM and Martinez, BC,

“Bio-bricks: Biologically Cemented Sandstone Bricks”, Construction and

Building Materials, vol. 55, pp. 462–469, 2014.

[12] SBML Software Matrix, http://sbml.org/SBML_Software_Guide/

SBML_Software_Matrix.

[13] SBML Team and others, The SBML Software Guide, 2011.

[14] Myers, Chris J and Barker, Nathan and Jones, Kevin and Kuwahara,

Hiroyuki and Madsen, Curtis and Nguyen, Nam-Phuong D, “iBioSim: A

Tool for the Analysis and Design of Genetic Circuits”, Bioinformatics,

vol. 25, no. 21, pp. 2848–2849, 2009.

[15] Funahashi, Akira and Matsuoka, Yukiko and Jouraku, Akiya and

Morohashi, Mineo and Kikuchi, Norihiro and Kitano, Hiroaki,

“CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks”,

Proceedings of the IEEE, vol. 96, no. 8, pp. 1254–1265, 2008.

40

[16] Hoops, Stefan and Sahle, Sven and Gauges, Ralph and Lee, Christine and

Pahle, Jürgen and Simus, Natalia and Singhal, Mudita and Xu, Liang and

Mendes, Pedro and Kummer, Ursula, “COPASIâC” A Complex Pathway

Simulator”, Bioinformatics, vol. 22, no. 24, pp. 3067–3074, 2006.

[17] Baig, Hasan and Madsen, Jan, “D-VASim: An Interactive Virtual

Laboratory Environment for the Simulation and Analysis of Genetic

Circuits”, Bioinformatics, vol. 33, no. 2, pp. 297–299, 2017.

[18] H. Baig and J. Madsen, “Simulation approach for timing analysis of

genetic logic circuits”, ACS synthetic biology, vol. 6, no. 7, pp. 1169–1179,

2017.

[19] Baig, Hasan and Madsen, Jan, “Logic Analysis and Verification of n-

input Genetic Logic Circuits”, in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017, IEEE, 2017, pp. 654–657.

[20] Mark B, Complete Digital Design: A Comprehensive Guide to Digital

Electronic and Computer System Architecture. McGraw-Hill Press, 2003.

[21] Gillespie, Daniel T, “A General Method for Numerically Simulating the

Stochastic Time Evolution of Coupled Chemical Reactions”, Journal of

computational physics, vol. 22, no. 4, pp. 403–434, 1976.

[22] D. T. Gillespie, “Exact stochastic simulation of coupled chemical

reactions”, The journal of physical chemistry, vol. 81, no. 25, pp. 2340–

2361, 1977.

[23] C. Dittamo and D. Cangelosi, “Optimized parallel implementation of

gillespie’s first reaction method on graphics processing units”, in 2009

41

International Conference on Computer Modeling and Simulation, IEEE,

2009, pp. 156–161.

[24] iBioSim, https://github.com/MyersResearchGroup/iBioSim.

42

Acknowledgement

All praise to the Lord of the World alone. This thesis made possible, my heartfelt

appreciation for the constant reassurance and prayer of my parents and words

cannot describe the level of patience with which they persevere my absence.

The exceptional guidance and support from Professor Dr. Jeong-A Lee, my

supervisor during the course of this degree. I am also very grateful to Professor

Dr. Hasan Baig for his constant advice in capcaity of my co-supervisor, insights

and suggestions and I will forever be grateful to him. I also thank my friends and

lab members (too many to list here but you know who you are!) for providing

support and friendship that I needed. I would like to thank Umar Afzal for being

supportive throughout my time and for helping me in each and every part of my

life here. I think of him as a brother.

I dedicate this thesis to my f amily f or their constant support and

unconditional love.

43

	List of Abbreviations and Acronyms
	Abstract
	한글요약
	I. Introduction
	A. An Overview of GDA Tools
	B. Motivation
	1. Challenges
	2. Standards
	3. Dynamic Virtual Analyzer and Simulator Tool
	4. Threshold Value and Timing Analysis
	5. SBML Models

	C. Thesis Contributions
	D. Thesis Layout

	II. Threshold Value Analysis and Verification of Genetic Logic Circuit Models
	A. Threshold Value and Timing Analysis
	B. Algorithm Explanation
	1. Possible Threshold Value
	2. Threshold Value Verification

	III. A Parallel Threshold Value Analysis Algorithm
	A. Proposed Algorithm
	1. Results and Analysis
	2. Threshold Value Analysis of n-input Genetic Circuits
	3. Experimental Results

	IV. Conclusion
	Publications
	A. Journals
	B. Conferences

	References
	Acknowledgement

<startpage>15
List of Abbreviations and Acronyms iii
Abstract vi
한글요약 viii
I. Introduction 1
 A. An Overview of GDA Tools 1
 B. Motivation 3
 1. Challenges 3
 2. Standards 5
 3. Dynamic Virtual Analyzer and Simulator Tool 6
 4. Threshold Value and Timing Analysis 7
 5. SBML Models 7
 C. Thesis Contributions 8
 D. Thesis Layout 8
II. Threshold Value Analysis and Verification of Genetic Logic Circuit Models 10
 A. Threshold Value and Timing Analysis 10
 B. Algorithm Explanation 12
 1. Possible Threshold Value 14
 2. Threshold Value Verification 16
III. A Parallel Threshold Value Analysis Algorithm 18
 A. Proposed Algorithm 18
 1. Results and Analysis 20
 2. Threshold Value Analysis of n-input Genetic Circuits 26
 3. Experimental Results 27
IV. Conclusion 37
Publications 38
 A. Journals 38
 B. Conferences 38
References 39
Acknowledgement 43
</body>

