creative
commons

C O M O N § D

OI2Xt= otele =2HE 2= R0l 8ot 7S

o Ol == SH, HHE, 85, Al SH L 58 = U
o OIXH MAEESE HdE = UsLICH
Ol HHES del SR 0|8 = AsU T

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

o 7lot=, Ol M& =2 MOISO0ILE HHEZ2l H<, 0l A =0l HE= 0125
S Bt LIEHLHO10F B LICH
o MNAEAXNZRE EE2 3IIE &2 0lE ZHE2 HEL X ZSLICH

AEAH OHE 082 dele f12 W20l 26t gets 2 X ZSLICH

01X 2 0l Ed = 772 (Legal Code)S OloiotIl &Ml kst 23 LI CY.

Disclaimer |:|._'|

Collection

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

[UCI]1804: 24011- 200000332796

August 2020
Master’s Degree Thesis

A Parallel Approach to Perform
Threshold Value Analysis and
Verification of Genetic Logic Circuit
Models

Graduate School of Chosun University

Department of Computer Engineering

Sanaullah

A Parallel Approach to Perform
Threshold Value Analysis and
Verification of Genetic Logic Circuit
Models

S A7 H2Y e B WY BEH §E A2
o7

August 28, 2020

Graduate School of Chosun University

Department of Computer Engineering

Sanaullah

Collection @ chosun

A Parallel Approach to Perform
Threshold Value Analysis and
Verification of Genetic Logic Circuit
Models

Advisor: Prof. Jeong A. lee
Co-Advisor: Dr. Hasan Baig

A thesis submitted in partial fulfillment of the
requirements for a Master’s degree

May, 2020

Graduate School of Chosun University

Department of Computer Engineering

Sanaullah

Collection @ chosun

R a

<+
E

E
ol

T
K1

.

KO
oFJ
oF

<F
OH
N0

S+
E

E
ol

0l 30t

ol

2020¢ 063

oFJ
ol

E
ol

g
K

(“ICollection @ chosun

Table of Contents

List of Abbreviations and Acronyms iii

Abstract vi

o= 9 oF viii

L. Introduction 1

A. AnOverview of GDATools 1

B. Motivation 3

1. Challenges 3

2. Standards 5

3. Dynamic Virtual Analyzer and Simulator Tool 6

4. Threshold Value and Timing Analysis 7

5. SBML Models 7

C. Thesis Contributions 8

D. ThesisLayout 8
II. Threshold Value Analysis and Verification of Genetic Logic

Circuit Models 10

A. Threshold Value and Timing Analysis 10

B. Algorithm Explanation 12

1. Possible Threshold Value 14

2. Threshold Value Verification 16

III. A Parallel Threshold Value Analysis Algorithm 18

A. Proposed Algorithmo 18

Collection @ chosun

1. Results and Analysis
2. Threshold Value Analysis of n-input Genetic Circuits . .
3. Experimental Results

IV. Conclusion

Publications
A. Journals . .

B. Conferences
References

Acknowledgement

Collection @ chosun

i

37

38
38
38

39

43

List of Abbreviations and Acronyms

DNA
RNAs
GFP

YFP
SBOL
SBML
GDA

CAD

EDA

D —VASim
LabVIEW
ODE

SSA

kd
OCputH

OCpLTH
PT

OCg

T

Oc

Cinc

St

Ip
in—vitro
Sp

1/0 Species
EM
DRM
FRM

Deoxyribonucleic Acid
Ribonucleic Acids

Green Fluorescent Protein

Yellow Fluorescent Protein

System Biology Open Language
Systems Biology Markup Language
Genetic Design Automation
Computer-Aided Design

Electronic Design Automation

Dynamic Virtual Analyzer and Simulator
Laboratory Virtual Instrument Engineering Workbench

Ordinary Differential Equation
Stochastic Simulation Algorithm
Degradation Rate

User Define Upper Threshold Value
User Define Lower Threshold Value
Possible Threshold Value

Output Consistency

Estimate Time Delay

Output Concentration

Input Concentration Level

Settling Time

Assumed Time Delay

Laboratory Experiments

Species Input

Output/Output Species

External Modifiers

Direct Reaction Method

First Reaction Method

il

Collection @ chosun

List of Figures

1 Transcriptional regulation of lac operon. 2
2 SBOLvrepresentation 3
3 D-VASimbasicflow 7
4 ORgenetic logiccircuit, 11
5 Timescaleplots 15
6 Threshold value verification algorithm data-flow 20
7 Threshold value analysis algorithm data-flow 21
8 Simulation results comparison 25
9 Cktl - NOT Gate SimulationData 28
10 Ckt2 - NAND Gate Simulation Data 28
11 Ckt3 - AND Gate SimulationData 29
12 Ckt4 - NOR Gate SimulationData 29
13 Ckt5 - OR Gate Simulation Data 30
14 Cello - Ox70 Circuit SimulationData 30
15 Cello - OxCS8 Circuit Simulation Data 31
16 Cello - OxE Circuit Simulation Data 31
17 4-input schematic circuitdiagram 32
18 6-input schematic circuitdiagram 32
19 8-input schematic circuit diagram 33
20 4-input circuit behavior and Boolean expression 34
21 6-input circuit behavior and Boolean expression 35
22 8-input circuit behavior and Boolean expression 36
v

Collection @ chosun

List of Tables

1 Sample values for threshold value analysis

2 Threshold Value Analysis

Collection @ chosun

Abstract

A Parallel Approach to Perform Threshold Value Analysis and
Verification of Genetic Logic Circuit Models

Sanaullah
Advisor: Prof. Lee, Jeong — A, Ph.D.
Department of Computer Engineering
Graduate School of Chosun University
Co-Advisor: Dr. Hasan Baig, Ph.D.
Center for Quantitative Medicine

University of Connecticut Health, USA

Synthetic biology is an area of research where researchers in engineering
and biology are synergetically working to create biological parts, systems, and
devices. At the heart of a synthetic biological system exist genetic logic circuits.
Such circuits seek to implement desired logic functions inside a biological cell.
The design of gene circuits commonly requires simulating their mathematical
models and to identify whether or not the circuit is reacting appropriately.
Compared to electronic circuits, genetic circuits show a non-deterministic
behavior and are therefore much harder to characterize. Normally, genetic circuits
are designed and experimented with in-vitro. This process is characterized by a
very tedious design-flow including careful handling of the apparatus. To which
end, several approaches have been designed to enable modeling, simulation, and
testing of gene circuits in-silico. The computational tools accelerate the design

process and help reduce human error in the process. It is obviously useful to have

Vi

Collection @ chosun

a computational tool that enables all of the above in addition to providing a lab-
like dynamic circuit a simulation where specie concentrations could be modified
and their effect observed on run-time. D-VASim is the first tool to provide this
functionality where users can change the input protein concentrations during
the simulation. This enables faster prototyping of the circuit design and further
accelerates the circuit design process. A fundamental step before the simulation
of a genetic circuit is its threshold value estimation. D-VASim implements an
algorithm for threshold value and timing analyses of genetic circuits. However,
a parallel implementation of the algorithm can reduce the computation time of
D-VASim which becomes even more necessary when it is known that D-VASim
can still take up to hours for processing complex genetic circuits.

In this thesis, we propose a parallel approach for faster threshold value
analysis and verification of genetic logic circuits. We also modify the algorithm
to reduce inconsistencies in the output species concentration. The estimated
threshold value is now more accurate which can be seen from experimentation
for long simulation runtimes. We introduce further modifications to reduce the
deviation in the algorithm runtimes across multiple simulations runs at the same
parameter settings. Overall, with the proposed modifications to D-VASim, its
usability has considerably improved and the threshold value and timing analysis
algorithm are now significantly faster as in the case of NOT gate by up to 16

times.

vil

Collection @ chosun

she wElges Tt A B2 o] Al dirH o R O59f oA
RellS Algd ol detal $] 27} oof] whet A sHA vhgsh=A] o -5 A}
= ASR, AR 2o vl 4307 22 wE 24 Pe= HolM 5
717} A4 o Pk A% Fl2 = A49] A (in-vitro) 0 2 AA =1 AF Ak,
ol g2 Addd 71FE A ot F = 5 ¢ A3 AA 55l Aol
ol AR, AFEH BYs L8 FAA 2= B, AlgHo]d § H|
LES s¥ots B 7HA] AN A o] skt Xﬂohﬂ oAt 7“151 R o) Akt
EE A ZRAAE THEEShAL Al o) oS Eole Hl Eaol ®H o

oA 8 wot7bAl, 71 el A oA A2 /‘l Aol Tol FA=E 54

viii

Collection @ chosun

ZF dl
=

BA

=A

I

A €]

=

, 1§ 583 Zo]th. D-VASImS A8 217} A B3| 0]
yS|

tol, 2=
R EEto| o] 7hHe st AT A Bl 2] AL 242 Algd el Ayt

o] 7|24l DA ZA, D-VASim #3174t 2| 29] A

= 10
— —

7%= gkobA], D-VASim & §27 52 9]

Aot ol &5
o3| &

Ll

ot
_(1)4

53
ox

2417} 9

b

ife]

54

R

Ife]

il d

=

—

577 2129 ¢l
of WAy} 168

T

o
i)

Fed,

woll A AA

=

=
=
-

R

2 =EolAE, D-VASime] 1144]
12Tt NOT 1=2]3] 2 9]

°

%

I~
T

2 D.VASimo] 714

ol el gt 7Y

T

__OL

N AA

alg
i
)

H,

0|
B

Ife]

]_

T2 3

A
il

X

tol, o]]

°

SHA|

o]

[}

7V

=

128

A
Collection @ chosun

I. Introduction

A. An Overview of GDA Tools

Biologists and engineers are working together on genetic devices to improve
their reliability and accuracy [1]. Researcher have worked on the development of
genetic design automation (GDA) tools [2] for the use of design, test, verification
and synthesis processes of genetic circuits. One of the main research focus is the
GDA tools’ role in reducing laboratory experimentation by offloading most of
the design process to computer analysis . Computational techniques in genetic
circuit design involve ordinary differential equations and stochastic simulations.
Standardized computerized format is a must in order to realize genetic circuits.
The two widely used standards to represent the behavior and the structure of a
genetic model are the Systems Biology Markup Language (SBML) [3], and the
Synthetic Biology Open Language (SBOL) respectively. SBML allow users to
define the behavior of a circuit and SBOL, on the other hand, is used to illustrate
genetic designs graphically.

The understanding of a biological system of any living organism includes, for
example, genes, which contain all the information related to biological organism
(like height, hair color, blood group and so on). Furthermore, each gene is a
part of DNA which produces a specific protein through the processes called
transcription followed by the processes of translation [5]. There are two types
of gene expressions, constitutive and regulated. The gene is explicitly constant in
constitutive gene expression and is dependent on regulate gene expression. Lac
Operon is one of the standardized example of transcription processes and it was
the first gene regulatory network to be explored correctly and clearly [6]. The

experiment results in Figure 1, of lac operon show that no transcription process

1

Collection @ chosun

RMA Polymerase

L Permease
Activator - Operator

Binding Site

L | 3

Y T !
Regulatory Promoter :" B-galactosidase Galactoside
Gene F] Transacetylase
! Fi J
I’ l
MRNA o e o Log Dpseon
ra
¥
- il

Lac Repressor
Protein {al

Transcription Transcription
ption Lactose X p v Lactose +

X

Vaw &
| oo GV o i o uw]
Afolsciome ¢
] RN
S
alactosidase Galacbmide
{b] tc Permegse FanEcEtfase
Gl ¢ Glucose X Eycle Glucose
AMP .I. AMP
Catabaite V] e Cataboite b [4
Actitor Y Transcription weim L) Transcription
Protein r,' _——}'f Protein i’a“ r' # ____}x

| ua o

Lagh Laci Lacy

L]
'L ik
[rgabctosidase Galkctnside
{dl Permease T1rGacelylisz te]

Figure 1: Transcriptional regulation of lac operon. (a) Structure of Lac operon. No
transcription when (b) lactose is absent and (e) glucose is present. Transcription begins
when (c) lactose is present and (d) glucose is absent. (Image courtesy Hasan Baig, PhD
Thesis - Methods and Tools for the analysis, verification and synthesis of genetic logic
circuits.) [4]

{“/Collection @ chosun

M lacZ lacY lacA

Figure 2: SBOL visual representation (or SBOLv) of lac operon genetic system. (Image
courtesy Hasan Baig, PhD Thesis - Methods and Tools for the analysis, verification and
synthesis of genetic logic circuits.)[4]

occurs when lactose is absent and glucose is present. Transcriptions begins when
lactose is present and glucose is absent. The genetic logic in lac operon can be
extracted but it gives a low-level detail of how lac operon works [4],

SBOL is the standard way to represent the high-level diagrams of genetic
systems [4]. In Figure 2, the SBOL visual (or SBOLvV) diagram of the genetic
system for lac operon would be something similar to the genetic logic diagram of
lac operon in Figure 1. And, in this thesis we focus the use of SBML models of

these genetic logic circuits to test the tools and method [7], [8].

B. Motivation
1. Challenges

Biologists are not only working on biological systems but they are also
constructing an artificial complex system of biological components, in a similar
way as electronic circuits have been designed and constructed [9], [10]. However,

in comparison to electronic circuits which have same physical quantity as input

Collection @ chosun

and output signals, genetic circuits have different quantities at their inputs and
outputs [11]. Additionally, electronic engineer develops different logic gates
(such as, AND, NAND and NOT gate) to control the function of cells. The
current methodology to design genetic circuits is trial and error laboratory
experimentation. In this method (trial and error) thousands of circuits are tested
but only few of them actually work. For this reason, the current genetic circuit
design process is costly and time consuming. To this end, a methodology
which allow users to capture and analyze the stochastic behavior of biological
systems dynamically in-silicon is necessary. Successful computer simulations
can increase the chance that the model will work as expected in living organisms
[12]. Thus, there are several challenges related to the field of GDA. Successfully
solving these issues will not only increase designer productivity but will also
increase the reliability and robustness of genetic circuit models designed. These

challenges are,

1. Virtual experimentation; it would be very helpful for biologists or design
engineers to have a tool which allows them to digitally perform laboratory

experiments.

2. Timing and Threshold Analysis: Unfortunately, no GDA tools allow users
to perform timing and threshold values analysis but in contrast with EDA

tools, users can perform timing analysis.

3. Effortless circuit designing: simple and straightforward mechanism should

be developed for biologist and designer engineer.

4. Automatic logic Validation: Automatic compilation is possible with the

validation. This automated approach is very helpful for analyzing the

4

Collection @ chosun

genetic logic circuits.

2. Standards

SBML and SBOL [7], [8] are two major standards to represent a genetic model’s
behavior and structure respectively. SBML standard is independent of any other
specific software language which is why it can be used to exchange necessary
information of a biological model among the different software tools. However,
the different SBML-synthesis tools may have their own icons to represent a
standard and which is why the same processes are represented differently in
different tools. In order to solve this problem and consistently represent biological
models, the SBOL standard developed a document for all genetic models. SBOL
standards generate the same XML document for each tool in order to use by other
software tools.

Several GDA tools have been developed to assist users in the design of genetic
devices [13]. These tools use different standards and codes. There are about
290 tools which support the SBML Standard for construction and simulation of
genetic logic circuits. About 30 of them are GDA tools which support sequence
editing, design composition, optimization and technology mapping. Of these
tools, some serve as toolboxes or plugins for commercial applications including
Oracle, MATLAB, and Mathematica while some are application programming
interfaces, and others are independent tools for model construction or simulation
such as iBioSim [14], CellDesigner [15], or COPASI [16]. However, none of

them allows users to interact with the model during runtime.

Collection @ chosun

3. Dynamic Virtual Analyzer and Simulator Tool

Dynamic Virtual Analyzer and Simulator or D-VASim [17] is developed
on the Laboratory Virtual Instrument Engineering Workbench (LabVIEW)
programming platform, which is a graphical programming language commonly
used for rapid project development and prototyping (www.ni.com). The basic
data flow of D-VASim virtual simulation and analysis environment tools is
shown in Figure 3. D-VASim [17] is an interactive virtual laboratory environment
for the simulation and analysis of genetic logic circuit models represented
in System Biology Markup Language or SBML [7]. D-VASim applies both
deterministic and stochastic analyses to extract and validate Boolean logic
from the SBML model. D-VASim helps replace the time-consuming in-vitro
experiments (laboratory experiments) needed to analyze and design genetic
circuits [7]. The input to D-VASim is genetic circuit model where D-VASim
allows the user to interact with the model, observe its behavior, and make direct
changes in the concentration of input protein(s) at run-time. D-VASim is capable
of estimating the threshold value for a genetic circuit model [18]. The threshold
value refers to the minimum input protein(s) concentration that causes the average
output protein(s) concentration to cross the input protein(s) concentration. The
Boolean function of a genetic logic circuit can be verified by extracting the
logic behavior from the simulation data [19]. Thus threshold value and timing
analysis are used to verify a genetic logic circuit’s intended boolean function.
This methodology is useful in helping the user extract the Boolean logic of the

bio-models without any prior knowledge of the expected behavior of the model.

Collection @ chosun

I ; ; " o .
Tool | Threshold Value Analysisi Experimentation and Simulation in | Analysis and
| | Virtual Instrument I Verification
| . | ;.M \‘/«wr\ua\ Laboratory Instrument for Stochastic Simulations et DAVASIM @ |
i Threshold Value Settings " [~
| | - |
SBML | | -
| 2 Start at Increment of sm at | ‘
| 2 -8 92 | - l Traces
Assumed Time Delay Setting Time g
| & asm |]
v ¥
| No. of iterations Name of Output | |
. | ' 6P | |
D-VASim : — | |
g1 | | Verification By
| % Acceptance of consistene I I N a
[o e | ' Logic Extraction
| 3% ’)i
| Lad | |
I
| | |

Figure 3: The basic flow of D-VASim. The tool takes user-specified parameters in
threshold concentration analysis prior to circuit simulation. The boolean logic is extracted
and verified from the simulation data.

4. Threshold Value and Timing Analysis

D-VASim is the first synthetic biology tool which is capable of estimating the
threshold value for a genetic logic circuit model automatically [18]. D-VASim
helps replace the time-consuming in-vitro (laboratory) experiments needed to
analyze and verify the genetic logic circuit models [7]. D-VASim can take up
to few hours in estimating and verification of the threshold values for complex
genetic logic circuit models owing to its serial execution necessitated by data
dependency. Such analysis and verification times are still acceptable as compared
to the laboratory experiments where number of days are required to spend only
for a single input combination and specific parameter set. However, there is

potential for much faster approaches to genetic circuit simulation.

5. SBML Models

D-VASim applies the both deterministic and stochastic analyses to obtain and

validate SBML Model Boolean logic [17]. D-VASim is the only bio-simulation

Collection @ chosun

tool available that provides a dynamic simulation environment. The main
drawback of D-VASim is its current lack of support for genetic circuits with

inputs larger than 3 [19].

C. Thesis Contributions

The aim of this research is to enhance the advancement of GDA tools for
threshold value and timing analysis, verification, and Boolean logic extraction
of genetic logic circuits. The thesis targets are the development of the following

methods and algorithms to address the aforementioned challenges.

1. We introduce a fast approach to verify the possible threshold value that a

parallelized procedure. The updated algorithm is used by D-VASim v1.3.

2. We propose a parallel-implemented algorithm significantly faster by upto
16 times in comparison to the algorithm previously employed in D-
VASim. We also optimize the algorithm for consistent run-times across
multiple simulation runs at the same parameter settings reducing the worst-
case standard deviation in run-times from 6.637 to 1.841. The proposed
algorithm also estimates the threshold value more accurately as compared

to previous algorithm.

3. We enhance D-VASim to be able to process n-input genetic logic circuits.

D. Thesis Layout

The thesis is structured as follows. In Chapter II, we discuss previous work related

to the proposed threshold value analysis and verification of genetic logic circuit

Collection @ chosun

models. We then introduce a fast and robust threshold value and timing analysis
approach in Chapter III and describe the D-VASim’s input limitation followed
by the n-input methodlogy. Furhtermore, experimental results on case study have

been presented. Finally, we conclude the thesis in Chapter I'V.

Collection @ chosun

IL. Threshold Value Analysis and Verification of
Genetic Logic Circuit Models

A. Threshold Value and Timing Analysis

In the wet lab, biologists are either provided with the ready-made biological
model available in a test tube or are given a specification or recipe from which
to prepare the model in the lab. Their duty is to analyze the model and verify its
functional behavior. This analysis is done interactively, among other things, by
increasing the molecular concentration of input species at any instant of time and
observing the effects.

As mentioned in Chapter 1, Dynamic virtual analyzer and simulator or
D-VASim [17] is the first interactive virtual-laboratory environment for the
simulation and analysis of genetic logic circuit models. In the context of genetic
logic circuits, the threshold value is defined as the minimum input protein(s)
concentration that causes the average output protein(s) concentration to cross
the input protein(s) concentration [18]. Each circuit has a different threshold
value, which needs to be estimated. The threshold value and timing analyses are
used to verify the Boolean function of a genetic logic circuit by extracting the
observed logic behavior from the simulation results. To be able to determine the
Boolean functionality of a genetic circuit is useful in two ways: first, it allows
a user to verify more complex genetic logic circuits, built by cascading several
genetic logic gates; second, it helps the user to extract the Boolean logic of a
bio-model even when the user does not have any prior knowledge about the
expected behavior of the model. Next, the knowledge of Boolean logic helps the

user design a circuit for some practical application, for example, a gene circuit

10

Collection @ chosun

l

\4

A T S
P1 P2 P3

Inputs Output

Figure 4: An example OR genetic logic circuit. Lacl and TetR are input proteins while
GFP is the output protein.

that can identify and attack a particular type of cancer by triggering the immune
system.

A 2-input genetic OR gate is shown in Figure 1 with the promoter proteins
Lacl and TetR as the inputs and green fluorescent protein (GFP) as the output.
These two input proteins may have different threshold concentrations. For
example, Lacl may trigger the output when its concentration is 5 molecules and
TetR may trigger the output at 10 molecules. Setting the upper input threshold
to 10 would provide the correct answer, i.e., for the molecular counts (Lacl,
TetR = 4,7), the gate remains off, whereas for (Lacl, TetR = 7,4), Lacl may
trigger the output, but the output may not be considered logic 1 until the output
concentration increases beyond 10 molecules. Simulation results indicate that the
triggered output in such cases is highly unstable, i.e., it oscillates between logic
0 and logic 1 [20]; therefore, such states are considered transitory or undefined
states.

In the previous example, instead of estimating the threshold values of
each input protein separately, the algorithm in D-VASim estimates the global
upper and lower threshold values for all inputs and provides a single threshold

concentration of 10 molecules for the entire circuit. D-VASim treats the entire

11

Collection @ chosun

circuit as a black box such that individual threshold values and intermediate
circuit components do not matter. D-VASim obtains the threshold concentration
that is sufficient to trigger each circuit component from the inputs to the final
output. However, the individual threshold concentrations of all the intermediate

circuit components can also be analyzed in D-VASim.

B. Algorithm Explanation

D-VASim uses Gillespie’s direct stochastic simulation algorithm [21], [22] to
simulate the stochastic nature of the biological models, and it supports ten
different continuous solvers for deterministic simulations. The algorithm used in
D-VASim for threshold value and propagation delay analysis of genetic circuits
is shown in Algorithm 1.

The propagation delay is the time from when the input concentration reaches
its threshold value until the corresponding output concentration crosses the
same threshold value [18]. The algorithm requires some user-defined parameters:
Ci, is the value of input protein(s) concentration at which the tool begins the
threshold value analysis. The input concentration is increased by Inc in each
iteration to observe if the resulting concentration affects the output concentration,
whereas Cj,g specifies the input concentration at which the analysis should stop.
The algorithm also needs an initial assumption of the propagation delay, Tp.
It is necessary to wait until this time has elapsed before changing the input
combination for extracting the correct logic behavior of a circuit. The tool starts
with this assumed value of Tp and continues to improve toward the approximate
value. For simulation, if no node in the genetic circuit is initialized, then some

outputs exhibit unstable behavior for a certain amount of time. The parameter St

12

Collection @ chosun

Algorithm 1 Threshold value analysis

1: procedure BEGIN
INITIALIZE (Cin, Inc, Cing, Tp, St, i, Os, Vr,
OCputh, OCprTh)

Cip = Initial input concentration at which the analysis should start from

Inc = Increment Value: Value added to the previous concentration level until the concentration level reaches Cipr
CinE = End concentration of input at which the analysis should stop

Tp = Assumed time delay

St = Settling time

Os = Name of output specie

i = Number of iterations to verify the consistency of results

Vr = Amount of time to verify a model for each iteration i

OCpyrh and OCp 1), = user-defined percentage acceptance of output consistency for upper and lower threshold

values respectively

2: for1all possible input combinations do
3: if (Cinc ==0) then /" C;,¢ = current input concentration level
4: Determine initial output concentration (Coinir)
5: else
6: whilel (Cipc <= Cipg) do
7 while2 (T¢y <= Tp) do Tc = current time |
8: Execute Simulation
9: if (Cos > Cinc) then /" Cs = output concentration of selected specie
10: PT =Cinc PT = Possible Threshold Value
11: Verification process
12: for2 number of iterations i do
13: while3 (Tcy <= Vr) do Tco = current time 2
14: Execute Simulation
15: if (Tcy >= St) then
16: Trigger the input to the value of PT
17: Store the output concentration data in array
18: end
19: Take running average of all output i arrays
20: end
21 Estimate time delay (Tg) and consistency (OCE)
22: Terminate loop2
23: end
24: if (Cos > Cinc) do
25: if (OCg > OCpyrp) then
26: Consider lower threshold value = 0 if not found already
27: Return the results and terminate all loops
28: else if (OCg < OCpprh)
29: Save lower threshold level and resume analysis
30: else
31: Resume analysis
32: Cinc = Cinc + Inc
33: Tei=Tep =0
34: end
35: end
36: end
37: end

(settling time) helps approximately specify the amount of time during which the
circuit outputs are expected to become stable before triggering the circuit inputs

for a correct threshold value estimation. Subsequently, the algorithm verifies the

13

Collection @ chosun

obtained threshold value for a predefined i (number of iterations). The algorithm
obtains the average propagation delay by running the model for the length of time
defined by V7 (number of time to verify each iteration i) in each i*” iteration and
also identifies the extent to which the average output for the estimated threshold
value is consistent. This is demonstrated using the sample parameter values

shown in Table 1.

Parameters Values
Input concentration Cin 0
Incremental value Inc 2.75
End concentration Cink 15
Assumed time delay Tp 800
Settling time St 200
Number of iterations i 10
Amount of time to verify each iteration (i) Vr 1000
User defined upper threshold value percentage | OCpy7), | 90
User defined lower threshold value percentage | OCp;7;, | 30

Table 1: Sample values of the user-defined parameters for threshold value analysis

1. Possible Threshold Value

Consider the time-scale plots drawn for the sample values from Table 1 shown
in Figure 5. The algorithm triggers the input concentration to certain levels after
a specific time delay and observes the output behavior of the circuits. It requires
a specific input combination to determine the threshold value, which indicates
that all the input combinations need to be checked one by one until the one that
triggers the output concentration is found. For some circuits such as OR, NOR,
AND, and NAND, the output transition can be observed by triggering both of the

inputs to the same concentration level at the same time. The algorithm, therefore,

14

Collection @ chosun

®
N
[

Input 1

(=
=]
g H
£ ss 3 Input 2
g '
3 e itpu
©275 :
it1
800 1600 :
dime : Settling Time
(a) 825 |l i inconsistency
5.5 4 p— ZANS
] e w g
2.75
: 2 3
{50 2do i 1000

’E Propagation E‘
Delay

i<_ Run 10x —>|
(b)

Figure 5: Sample time scale plots of the genetic AND gate.(Image courtesy Hasan Baig
and Jan Madsen - Simulation Approach for Timing Analysis of Genetic Logic Circuits)
[18].

triggers both the inputs combinations from 00 to 11 first, instead of following the
traditional pattern of 00 — 01 — 10 — 11. Because of this, the estimation process
is relatively faster for some circuits, - for example, an AND gate [18].

For a genetic AND gate, the case of the input combination “11” is shown
in Figure 5. To determine whether the output concentration crosses the input
concentration, we need the initial output protein concentration for the input
logic combination “00”. Therefore, both the inputs are maintained at zero
concentration for the first 800 time units (7p), and the average initial output
concentration is obtained. After the specified time (7p) has passed, the input
concentration is incremented to the next level as indicated by line 32 in
Algorithm 1. Notably, the algorithm also operates for the case where the average
initial output concentration is high - for example, a NOT gate - by iteratively
incrementing the input concentration until the output concentration falls below

the input concentration level.

15

Collection @ chosun

2. Threshold Value Verification

The point #; (time 1) in Figure 5a is where the output protein concentration
crosses that of the input. This is the possible threshold value of 5.5 molecules
for the given example. Subsequently, the value for which the algorithm initiates
a separate loop and simulates the circuit model for a defined number of iterations
i, which is 10 in this case, needs to be verified. This loop is defined in lines
13 — 21 in Algorithm 1. The input protein must only be triggered after the
initial concentration of output is settled as shown in Figure 5b to measure the
propagation delay correctly. At this time, the algorithm allows the user to specify
a period of time called the settling time (S7), as mentioned before, after which
the initial output is expected to become stable. Only after ST amount of time
has elapsed does the algorithm trigger the inputs. The propagation delay may be
incorrectly estimated if a small value of St is chosen; therefore, depending upon
the complexity of the given circuit, the user should carefully select this value.
In the example shown in Figure 5b, if instead of 200, a value of 50 time units
is chosen for S7, the algorithm would estimate the propagation delay to be zero.
This is because, at 50 time units, the output concentration would already be above
the threshold level.

The output data from all i iterations (10 in this case) were averaged to obtain
the average estimated propagation delay and the inconsistency present in the
sample time-scale plot for the estimated threshold values. Inconsistency means
the fall of output concentration down to the level of input concentration or below
after it has crossed the input concentration. The concept is illustrated in Figure
5b. Inconsistency is calculated by averaging the output data that are less than the

input concentration after the output crosses the input concentration for the first

16

Collection @ chosun

time. Thus, in Figure 5b, the consistency is estimated between the two points 7,
and 73 and this time duration is specified by the parameter V7 in Table 1, which is
the amount of time to verify the model in each iteration i.

The algorithm accepts the estimated threshold value based on the user-defined
parameter, % acceptance of consistency, shown as OCpyry, (for upper threshold
level) and OCpy 1y, (for lower threshold level) in Table 1. The results are accepted
if the estimated consistency is greater (for upper threshold) and less (for lower
threshold) than the user-defined values, OCpy 7y, and OCpy 1y, respectively. This
is shown in the lines 26 — 31 of Algorithm 1. The results are otherwise discarded
and the algorithm resumes the analysis from point #;, shown in Figure 5a. The

percentage output consistency is calculated using Equation 1.

Opn_3—D
90 out put consistency = 227 T 4100 (1)
12—13

where O;>_;3 is the average output data between 2 and ¢3, and D (deviation)
which defines the number of times the output data is found to be deviated from
the expected (greater or less than the) threshold value. This deviation is defined
differently for the two cases. When the initial input concentration is low, D is
the number of times the output is observed to be less than the possible threshold
value as shown in Figure 5b and vice versa. If the user-defined output consistency
threshold cannot be satisfied, the current results are discarded and the analysis is

resumed from point ¢;.

17

Collection @ chosun

I11. A Parallel Threshold Value Analysis
Algorithm

As mentioned in Chapter 1, there are opportunities to improve and optimize
the threshold value and timing analysis algorithm which is currently used in D-
VASim tool which can be used to simulate a large and complex genetic circuits
in a feasible time. Our contribution lies in vectorizing the whole algorithm along
verification procedure with modifications for analyzing the threshold value more

robust, accurately and consistently for long enough time.

A. Proposed Algorithm

In Algorithm 1, the main forl loop simulate the possible threshold value between
from line 2 — 37 and the for2 loop verified the possible threshold value from line
12 — 20 have been parallelized by taking care of data dependencies minimizing
the time complexity from O(N?) to O(N) where n is the number of input
combinations of the given circuit model. The previous serial algorithm pursue a
pre defined pattern in checking all the possible input combinations to estimate
that 1-input combination can be used for estimation of threshold value. As
mentioned in previous Chapter 2, instead of the old pattern 00 — 01 — 10 — 11,
the proposed algorithm followed 00 — 11 to stimulate the evaluation process
for some genetic circuit models like the AND logic gate for which the output
concentration can be analyzed to triggering the both inputs at the same time to
high. In the same way, to ensure this accelerated and robusted estimation, the
proposed algorithm must also follow a pre-defined pattern for genetic circuit
models with more than 2-inputs. There are some internal data dependencies

between the different input combinations. We absorb the algorithm and carefully

18

Collection @ chosun

removed those such data dependencies by maintaining any problematic to local
as global variables and applied some other programming techniques which have
eliminated a pattern the need to carefully define. In our proposed algorithm,
instead of analyzing the input combinations one-by-one in finding the specific
input combinations, all the possible input combinations are checked in parallel
pattern given the required computation cost. Thus, it is possible to fully
parallelize forl to obtain reduced computation time.

The for2 loop in Algorithm 1 which is the main execution in the verification
method to runs for user-defined i number of iterations. In each ith iteration,
the Gillespie stochastic algorithm [21], [22] is called which execute an array
of numbers from which a number selected randomly and then the two internal
Next Reaction Value and Next Reaction Time parameters are calculated. After
this, in the end of each ith iterations, the stored simulation data is calculated
an average. In proposed algorithm, the Gillespie algorithm calls only once time,
and select i numbers randomly to calculates i number of Next Reaction Time
and Next Reaction Value, which are assigned to ith iteration. After this, the
verification process can be execute in parallel pattern and the execution data
can be averaged afterwards. The speed-up achieved from parallelization, more
minimization in computation time is accomplished by replacing all the repeated
call of the Gillespie’s algorithm with a single call only. Also, all the calls of
memory to the accumulated average which is necessary as an operand to estimate
a runing average in Algorithm 1, the 19 line is no longer required in the proposed
algorithm. This can be shown in Figure 6 where task flow of previous algorithm
and the proposed algorithm are displaying. It should be noticed that few of
the tasks have been omitted in Figure6 due to the focus only on those process

which have been optimized. Parallelization of forl and for2 result in a massive

19

Collection @ chosun

Start

max. 3-input
circuits

W current input conc.

is less than the user-

specifed end input
conc.

Gillespie's stochastic
simulation algorithm
(DRM)

Estimate output
concentration

Possible
threshold value

Verification process
Gillespie’s stochastic
simulation algorithm
(DRM)

for1
for2

Take average of
each iteration

Estimate consistency and
propagation delay

It upper threshold
value found

Estimate
upper-lower threshold

Gillespie’s stochastic
simulation algorithm
(FRM)

Estimate output
concentration

Possible
threshold value

whilet
W current input conc. i less than the

user-specified end input conc.

| Next reaction look-ahead

Execute selected
reaction value

Next reaction
state

) Estimate initial output
. concentration

Gillespie’s stochastic
simulation algorithm
(FRM)

_.Verification process

Filter Take average
|
|

parallel for2

Estimate consistency and
propagation delay

Estimate
upper-lower threshold

Filter for lower threshold
value

Save lower threshold value and
update required parameters

1 upper threshold val
found

parallel for1

(B)

Figure 6: Task flow of (A) previous algorithm [18] and (B) the proposed algorithm

minimization of the execution time taken by the previous to proposed algorithm

by upto 16 times in our test cases.

1.

Results and Analysis

The speed-up results are shown in Figure 7 for five two inputs genetic logic

circuit models are taken from [12] and [13]. The description of these genetic

Collection @ chosun

20

Ckt1 OR Ckt2 NOT

B »
» 22016 2186 2237 2218 214 2238 | 2219 218 2198 214 208.94
e e
H H
8= 8o
9 9
Eu Ew
El 3% 37 36 36 34 358 E)
14 12 14 12 1 1268
. HN n N | N , B= - - - -
Ri R2 R R RS Average Rl R2 R3 R RS Average
uPrevious = Proposed uPrevious = Proposed
(@ (b)
Ckt3 NOR Cktd4 NAND
n 1] 218 25 216 218 2196
= 214 218 219 214 26 2182
e
Tw T
g £
H 8
a® [
o 2w
£ £
E™ £
9 £l 39 378 40 “ 40 39.56
14 15 15 15 14 1456
. - - - - - - .
Ri R2 R3 R RS Average R R2 R3 Re RS Average
uPrevious = Proposed uPrevious ®Proposed
© (d)
Ckt5 AND Cello 0x70
1) 214 2079 199 208 208.98 2 an
3 .
- 32
N g 319
§= E— . : :
8 E 318
Yo e
E £ 317
£ Ew
B 08) 3 39 3 39.76 s I
B BN BN EN HEN
¢ R R R Rt RS Average
Ri R2 R3 R RS Average
mPrevious Proposed " Proposed
(e) (]
Cello 0xC8 Cello 0x0E
aas 7
431
a 6 68 67
K o R 66
£° anm 42 229 8" | | 59
3 ' 2u 625
£ H i
Ems ™ Eiz 6.1
Fu £
- I I
58
@
s 5
A R [A [Average Rt R [[[Average
uProposed uProposed
(@ (b)

Figure 7: (a e) Times taken in threshold value analysis by the previous algorithm and
proposed algorithm for five test cases along with standard deviation error bars. (f h)
Results for the circuits from [7] along with the standard deviation error bars.

21

(*!Collection @ chosun

circuit models is available in the aforementioned references. The genetic circuits
components and their kinetic reactions or interactions are defined as SBML
models form and we used those models on D-VASim for execution and performed
the threshold value and timing analysis. The threshold value of all genetic circuits
was analyzed five times each circuit at the same user-defined parameters for the
previous serial algorithm and our proposed parallel algorithm. The time taken
by each of the the five simulated results of all circuits runs and its average are
shown in Figure 7. for each genetic circuit in separate plots. It can be shown from
the presented results in Figure 7 that the parallelized algorithm implementation
has minimized the computation time required to obtain the threshold value and
timing analysis manyfold thereby adding to the utility of the virtual laboratory
environment. It can be seen that the maximum speed-up is not more than 16
times (Ckt2 NOT) and no less than 5 execution times in the shown test cases.
The circuits from 4 named 0x70, 0xC8, OxOE are circuits with inputs greater than
2 and therefore cannot be run using the previous algorithm. They are thus only
tested and verified using the parallel algorithm.

The reason behind this because the whole process of obtaining the threshold
value include simulated stochastic computations. If possible threshold value is
obtain incorrect, the verification execution method fails and the whole execution
has to be repeated again by increasing the input value in Cj,. Therefore, the
expanse of deviation time is notably high in the different execution. It is clear
that, an increase in the number of inputs results in an exponential increase in the
number of input cases to be evaluated. This should result in an exponential rise
in computational resources and/or time taken. In the context of how the proposed
algorithm’s performance scales as input complexity increases, we have tested 2-,

4-, 6- and up to 8-input circuits. Their respective runtimes obtained were: 31 sec

22

Collection @ chosun

(NAND Gate), 2.14 minutes (custom 4-input circuit), 3.12 minutes (custom
6-input circuit) and 9 minutes (for a custom-designed 8-input circuit). The
parallel algorithm can theoretically process all input cases in parallel, however, in
practice, the time taken would depend upon the computational resources at hand.
The times obtained above do present an exponential trend; but, the comparison
between circuits with different inputs in terms of the time taken also largely
depends upon the number of levels of the circuit. Consider Fig. 7 for example,
where results for different 3-input Cello circuits are presented. We can see that
the threshold value estimation for Cello 0x70 (2 gates) takes 3.19 minutes on
average while for Cello OxOE (4 gates), it takes 6.49 minutes on average [7].

The previous serial execution algorithm uses the Direct Method (DM) [21],
[22] approach of Gillepsie’s stochastic algorithm. DM used the time at any
reaction happens in whole procedure and complete that reaction type later. The
algorithm normally took that time at which any reaction happens next. In our
proposed algorithm we used the other approach which is the First Reaction
Method(FRM) [21], [22], which estimate the Next Reaction Time for each
reaction first and then uses the only one with the smallest value of time (i.e., the
next one). Both algorithms (DM and FRM) basically uses the same principles.
These two Gillepsie’s algorithms produce the same results; the only difference
in their method of execution. Moreover, FRM is based on reaction-oriented
nature that has been noted to be more appropriate parallel computation than
DM [23]. Due to this enhancement, the proposed parallel implementation in the
algorithm has been observed to obtain the threshold value in more consistent
run-times across multiple execution runs with the same user-defined parameter
settings. In Figure 7 (Standard Deviation error bars in each Graph), we present

the standard deviation in the runtime calculated from five simulation runs for five

23

Collection @ chosun

(a e) of the aforementioned 2-input genetic circuits with the serial algorithm
and the proposed algorithm. The worst case of standard deviation runs of the
serial algorithm is 6.637, whereas that in parallel proposed algorithm is 1.841.
It is proved from these executions results that proposed algorithm is much more
consistent in the multiple run-time.

The % (percentage) output consistency estimation is already described in
Equation 1. It uses the output average data O;;_;3 between the time ¢2 and 3
points shown in Figure 5. The previous algorithm uses concentration values of
all the output stored in between the time 2 and ¢3 to estimate the O;_;3. Then,
the threshold value estimated the output consistency based does not produce the
consistent output. When the simulation execute the runs long enough, the output
concentration at some points, falls below the concentration of input as you can
seen in Figure 8(a) which is an erroneous behavior. What is correct output is that
the data of output below the concentration of input must be filtered out while
estimating the output consistency where Filter is aforementioned filter as shown
in Figure 6(b).

The other enhancement in proposed parallel algorithm is to be treated
this problem of inconsistent output estimation is what we call the next state
look ahead. Lets suppose, the pre-defined algorithm parameters are, initial
concentration value Cj, = 5 and the increment value Inc = 10. Lets assume also,
the final output-concentration increases the initial-input concentrations when
triggered at C;, = 5 molecules units. The previous serial algorithm will used to
treat it as a possible threshold value and start to execute the verification procedure.
If it verified, then it will output as the obtained threshold value. Again, for long
enough simulation run-time, the output concentration will be inconsistent and

start to falls below the input concentration level. With this the proposed next-

24

Collection @ chosun

o N zd = N N
a G B W (Bl A -]

100
Threshold Value Al
Manual) Auto
Modifier Degradation L]
Simulate SBML Events [

Threshold Value Anayss
Varusl G Auto
Modifier Degradsion L]
Simuate SBMLEvents L]

)
[y e e e

n_ A i
: 3000 350 o0 50 X 5500 0 700 70 9500 o s 10

0 50 1000 1500 200 200 500
Tim

(b)

Figure 8: (a) Threshold value falling below the input concentration when the simulation
is run for a sufficiently long time. (b) Threshold value consistently remaining above the
input concentration after the proposed changes

state method look-ahead, the parallel algorithm will not be picked Cj, = 5 as the
possible threshold value. Rather, it also checks state of next-reaction between the
current value C;, = 5 and Cj, = 15 (incremented by Inc) values. Lets consider,
the value of next reactions obtain at Cj;, = 8; 10; 11; 13. The algorithm will

verify first whether the value of output concentration increases the value of input

25

Collection @ chosun

concentration at any of these obtain states. We have also implemented in the
proposed modification this next-state look-ahead approach in a parallel fashion.
Then it estimates the success-ratio or at what % (percentage) of C;, initial input
values of the output concentrations increased the input concentrations. If the
success-ratio is tunable more than 70%, it used C;, = 5 values for verification
process. Otherwise, it does not move forward to the verification of C;, = 5 value,
rather, it used to increments C;, value by the defined /nc parameter value to Cj,
= 15 and need to repeats the process again. In this approach, the value which
is finally used to verified as the possible threshold value is more accurate and
the values of output concentrations are stable for long enough simulation run-
times remains consistently stable above the values of input concentration. The
comparative results is shown in Figure 8 where the value of output concentration
of the previous serial algorithm is start to falling below to the value of input
concentration at some points (present in Figure 8(a)) whereas the value of output
concentration based on the proposed algorithm estimated threshold value never
falls below the value of input concentration during the whole 10;000 unit time

simulation runs (shown in Figure 8(b)).

2. Threshold Value Analysis of n-input Genetic Circuits

The main drawback of D-VASim is its current lack of support for genetic
circuits with inputs larger than 2. With parallelization, the algorithm now
supports processing of n-input circuits. The serial algorithm uses static pre-
defined input combinations. Now, we first dynamically generate all possible input
combinations using the specie information before the main algorithm execution.

To test the performance of the parallelized algorithm on circuits with inputs larger

26

Collection @ chosun

Threshold Value Analysis

Genetic Logic || b I; Iy I5 Average
Circuit (min.) | (min.) | (min.) | (min.) | (min.) | (min.)
4-input Circuit || 2.13 | 2.03 | 2.31 2.12 | 2.11 2.14
6-input Circuit || 3.09 | 3.03 | 3.15 3.21 3.13 3.122
8-input Circuit || 3.95 383 | 4.1 3.91 4.27 | 4.012

Table 2: Proposed Threshold Value Analysis Algorithm Results

than 2, we designed a reasonably complex 8-input circuit in iBioSim shown in
Simulation section. For the circuit shown, the simulation was run five times using
the parameters defined before and the time taken in all five runs is presented in
Table 2. Clearly, the 8-input circuit takes 9:178 minutes on average. Thus, we
have successfully managed to introduce support for processing n-input circuits in

feasible time.

3. Experimental Results

The algorithm was tested on the standard SBML models [8] which are the first 5
circuits in Table 2. These are all only 1— and 2—input genetic circuits. However,

the 4—,6—, and 8—inputs genetic circuits 3 were manually designed using the

iBioSim tool [24].

27

Collection @ chosun

Ckt 1 - NOT Gate The simulation results of a genetic NOT gate circuit

E2d Thresheld Analysis Results

Results of Threshold Value Analysis

Estimated Threshold Values
Th-High Output Consistency (%)

ie 100 Lacl GFP
Th-Lew —

5 15.1

Estimated Propagation Delay

200.00 (+89.35)

(b)

(b)
Figure 9

Ckt 2 - NAND Gate The simulation results of a genetic NAND gate circuit:

Hed Thresholc Analysis Results

Results of Threshold Value Analysis

Estimated Threshold Values
Th-High Output Consistency (%) Lacl
15 100

GFP
Th-Low I
2 1.2 TetR

Estimated Propagation Delay
244.00 -2.71)

(b)

@

(a)

(b)
Figure 10

28

Collection @ chosun

Ckt 3 - AND Gate The simulation results of a genetic AND gate circuit:

Hd Threshold Analysis Results
Results of Threshold Value Analysis ‘
Estimated Threshold Values
Th-High ‘Output Consistancy (%) Lacl
) cl GFP
Th-Low —_— —_
5 0
Estimated Propagation Delay TetR
744.00 (258.69)
(b)
(a)
(a)
5 =
A
A A}
nh f P
I W'Y AN T,
| abedS I S al Y
[[1 [=1 = e o A s T =

(b)
Figure 11

Ckt 4 - NOR Gate The simulation results of a genetic NOR gate circuit:

E2d Threshold Analysis Results

Results of Threshold Value Analysis

Estimated Threshold Valu.es Lacl
Th-High Output Consistency (%)
o W GFP
Th-Low =
. = TetR
Estimated Propagation Delay
165.00 (£5.00) (b)
@
(@)
= s N s I} =1 [za] —)
Ty
Y
l\
[AN T T o
i = I i i

(b)
Figure 12

29

Collection @ chosun

Ckt S - OR Gate The simulation results of a genetic OR gate circuit:

Fid Theesheld Analysis Results

Restlts of Threshold Value Analysis

Estimated Threshold Values Lacl
Th-High Output Consistency (%)

10 100 _\A
Th-Low

GFP
3.2
§ § TetR Cro
Estimated Propagation Delay —
170.00 (+59.64)
(b)
(a)

(eiitin

Figure 13

Cello - Ox70 Circuit The simulation results of a genetic Ox70 circuit:

e Threshold Anaysis Results

Resuts of Threshoid Value Analysis

A
Estimated Threshold Values
Th-High Output Consistency (%) B
10 100
Th-Low
5 15.2 c

Estimated Propagation Delay
467.00 (:03.39)

(b)
(a)

PO o =0 = er e e =)
HE =
& I P N '
) ; = fJ mi
P = AR AN NN
S —s S) —ri =) W
|7 i = — = e i t i —

(b)
Figure 14

30

Collection @ chosun

Cello - OxC8 Circuit The simulation results of a genetic OxCS8 circuit:

Hid Threshold Analysis Results

Resuits of Threshokt Vaue Ansiysis A

Estimated Threshald Values
Th-High P i [£5) B

10 lsa9 | X
Th-Low
5 10,9
Estimated Propagation Delay
147.00 €957 c

@ (b)

gl

Oncetation

et =~ W"' I i R

(b)
Figure 15

Cello - OxE Circuit The simulation results of a genetic OxE circuit:

He Threskold Aralysis Results

Results of Threshold Value Analysis A

Estimated Threshold Values
Th-High Output Consistency (%)

|15 100
Th-Low
5 10.99

Estimated Propagation Delay
1647.00 (:3.67)

I
(L
1
Py
)
e
L"ﬁ'_

I P, _ B i 0 i
] o S ANNGi File! -
: | -—+ o S LN | | 2y
et [=) [[l 27 i fr | N
i i T 1 e i e v I I

Figure 16

31

Collection @ chosun

4-input Circuit The schematic circuit diagram and SBOL representation of the

genetic circuit, 4-input are shown below,

Py |
o o
(@)
Po Pom O aFP -
(b)
Figure 17

6-input Circuit The schematic circuit diagram and SBOL representation of the

genetic circuit, 6-input are shown below,

D1y
w o
(a)
Q
IS PR J
P ani TR e
L, '\ > ! L
Cre e S R I e DG ol R Ty T ° ¢
Potc Powrt gy Prem Prac spr PEUPRG g PBO PSR o Pla ogygry PO Po pup Pser Pewmi g
(b)
Figure 18
32

Collection @ chosun

8-input Circuit The schematic circuit diagram and SBOL representation of the

genetic circuit, 8-input are shown below,

A
8-input Circuit
a1
B 92
92
919
c g o e
2o . : 9.178
b Eon
- 9.16 9.16
F 6
) l .
k. 215
F 914
Rt R2 R Re RS Averag

#Proposed

(b)

(a)
T i s T

PHIIR P AmtR

Ll O

PN Sl it T ST e LI it LINE § s LIE o i "L i i

Patc Peetiz pppp P Bez PTac Amtpz P SwR1 Peta Bett P AMR2PPhIF2 cl P Beti2 P Peetl R T Plaa BM3R2

(b)
Figure 19

33

{“ICollection @ chosun

4-input Circuit The experimental results of the genetic 4-input circuit are

shown in the Figures a and b, respectively.

%4 Boolean Logic Results

Logic Expression Simulation Data
- , Time |GFP |GFP |Llacl |Lacl |BAD |BAD |a
tR.Tac+Lacl.BAD" TetR.Tac+Lacl. | Analog | Digitial | Analog | Digitial | Analog | Digitial fJ
Fitness = 98.65 % g E :
164 (] [0 [0
Estimation Time (s) 2 EE 0 IE IE x|
12545 < ' o

kolog i
A~
~d
e
|~
BN Ladl
|~
A~
R Promote
I Promote
.~ K
B s
B

2 Digtl
|y
Eoc
_rufed
[P
L
e
Ui
I Promoter C b
Promoter C
okl er 1
.Ul
I e
_rURG

| | | I ! ' | ' ' ! ! | ! T ! ' | ' ! ! | ' T ! ! | ' !
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4500 4800 5000 5200 5400 5600 5800

Time.

(b)

Figure 20: (a) Boolean expression estimated by the logic analysis algorithm, and (b)
Circuit behavior when input is logic 0 and 1.

34

Collection @ chosun

6-input Circuit The experimental results of the genetic 6-input circuit are

shown in the Figures a and b, respectively.

H Boolean Logic Results
Logic Expression Simulation Data

: Time |GFP |GFP |lacdl |Lac |BAD |BAD |
JAD.aTc.TetR.Tac IPTG+Lacl.BAL Analog | Digitial | Analog | Digitial | Analog | Digitial j

Fitness = 90.69 %

Estimation Time (s]

Dgital o
BAD
q a
Cro o
GFP o
I
IRE Lacl i
o wd
P2
] Pl
[Promote €
Promote €| P2
Tac .1 A WA U A N A
e B T T L e e = T
i (o
Tac
EJd
aTe
4] 4

4 1000 2000 3000 400 5000 6000 7000 8000 2000 10000 11000 12000 13000 14000 15000 1600 17000 18000

(b)

Figure 21: (a) Boolean expression estimated by the logic analysis algorithm, and (b)
Circuit behavior when input is logic 0 and 1.

35

Collection @ chosun

8-input Circuit The experimental results of the genetic 8-input circuit are

shown in the Figures a and b, respectively.

&4 Boolean Logic Results

Logic Expression Simulation Data
o : . : Time |GFP |GFP |Lacd |[Lacd |SpR |SpR |4
.BAD'.aTc .TetR"TacIPTG +Lacl"t Analog | Digitial | Analeg | Digitial | Analog | Digitial j

TetRTaclPTG+Lacl . SroR.BM3R
£ >

[SIR=IN=10N=

I
Fitness = 90.65 %
|

Estimation Time ()

>

5 maog [2
BAD 0]
BM3RI 180
a 160-]
Cro £ 140
GFP
PTG

Promots
Promots
s 1

BAD
EEEE |
a
o
o
PTG

Promoter_{
Promoter
R

x|
Toc i
TR [lterCro
e w0 [

0 1000 2000 3000 4000 5000 600D 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 2100 22000 23000 24000 25000 26000 27000 23000 29000
Time.

(b)

Figure 22: (a) Boolean expression estimated by the logic analysis algorithm, and (b)
Circuit behavior when input is logic 0 and 1.

36

Collection @ chosun

IV. Conclusion

D-VASim provides researchers with a laboratory-like dynamic virtual
environment for simulating and analyzing genetic logic circuits. This process
includes the estimation of the threshold value of the given circuit, as the threshold

concentrations are different for different circuits. In this thesis,

1. We presented an approach towards paralellizing the threshold value and
timing analysis and achieved significant reduction in threshold value

analysis latency in all of the test cases.

2. We also modify the algorithm to reduce inconsistencies in the output specie
concentration. The estimated threshold value is now more accurate which

can be seen from experimentation for long simulation runtimes.

3. We introduce further modifications to reduce the deviation in the algorithm

runtimes across multiple simulations runs at the same parameter settings.

4. Overall, with the proposed modifications to D-VASim, its usability
has considerably improved and the threshold value and timing analysis
algorithm is now significantly faster as in the case of NOT gate by up to 16
times with worst-case standard deviation in runtime reduced to 1.841 from

6.637.

37

Collection @ chosun

Publications

A. Journals

Sanaullah, Hasan Baig, Jan Madsen, and Jeong-A Lee, “A Parallel Approach
to Perform Threshold Value and Propagation Delay Analyses of Genetic Logic
Circuit Models”, ACS Synthetic Biology Publications, (Under Review)

B. Conferences

Sanaullah, Hasan Baig, and Jeong A Lee, “Accelerating the Threshold and
Timing Analysis of Genetic Logic Circuit Models”, in [1th International
Workshop on Bio Design Automation (IWBDA), IWBDA 2019, University of
Cambridge, UK, 2019, pp. 64-65.

38

Collection @ chosun

References

[1] Arkin, Adam, “Setting the Standard in Synthetic Biology”, Nature
biotechnology, vol. 26, no. 7, pp. 771-774, 2008.

[2] Marchisio, Mario A and Stelling, Jorg, “Computational Design Tools for
Synthetic Biology”, Current opinion in biotechnology, vol. 20, no. 4,
pp. 479-485, 2009.

[3] Hucka, Michael and Finney, Andrew and Sauro, Herbert M and Bolouri,
Hamid and Doyle, John C and Kitano, Hiroaki and Arkin, Adam P and
Bornstein, Benjamin J and Bray, Dennis and Cornish-Bowden, Athel and
others, “The Systems Biology Markup Language (SBML): A Medium
for Representation and Exchange of Biochemical Network Models”,

Bioinformatics, vol. 19, no. 4, pp. 524-531, 2003.

[4] Hasan Baig, Methods and Tools for the Analysis, Verification and Synthesis
of Genetic Logic Circuits, https : //backend . orbit . dtu.dk/ws/
portalfiles/portal/138073348/phd456_Baig H.pdf.

[5] Crick, Francis, “Central dogma of molecular biology”, Nature, vol. 227,

no. 5258, pp. 561-563, 1970.

[6] Jacob, Francois and Monod, Jacques, “Genetic Regulatory Mechanisms
in the Synthesis of Proteins”, Journal of molecular biology, vol. 3, no. 3,

pp. 318-356, 1961.

[7] Nielsen, Alec AK and Der, Bryan S and Shin, Jonghyeon and
Vaidyanathan, Prashant and Paralanov, Vanya and Strychalski, Elizabeth
A and Ross, David and Densmore, Douglas and Voigt, Christopher

39

Collection @ chosun

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

A, “Genetic Circuit Design Automation”, Science, vol. 352, no. 6281,

aac7341, 2016.
Myers, Chris J, Engineering Genetic Circuits. CRC Press, 2016.

Gardner, Timothy S and Cantor, Charles R and Collins, James J,
“Construction of a Genetic Toggle Switch in Escherichia Coli”, Nature,

vol. 403, no. 6767, pp. 339-342, 2000.

McAdams, Harley H and Shapiro, Lucy, “Circuit Simulation of Genetic
Networks”, Science, vol. 269, no. 5224, pp. 650-656, 1995.

Bernardi, D and DelJong, JT and Montoya, BM and Martinez, BC,
“Bio-bricks: Biologically Cemented Sandstone Bricks”, Construction and

Building Materials, vol. 55, pp. 462-469, 2014.

SBML Software Matrix, http://sbml . org/SBML_Software_Guide/

SBML_Software_Matrix.
SBML Team and others, The SBML Software Guide, 2011.

Myers, Chris J and Barker, Nathan and Jones, Kevin and Kuwahara,
Hiroyuki and Madsen, Curtis and Nguyen, Nam-Phuong D, “iBioSim: A
Tool for the Analysis and Design of Genetic Circuits”, Bioinformatics,

vol. 25, no. 21, pp. 2848-2849, 2009.

Funahashi, Akira and Matsuoka, Yukiko and Jouraku, Akiya and
Morohashi, Mineo and Kikuchi, Norihiro and Kitano, Hiroaki,
“CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks”,
Proceedings of the IEEE, vol. 96, no. 8, pp. 1254-1265, 2008.

40

Collection @ chosun

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Hoops, Stefan and Sahle, Sven and Gauges, Ralph and Lee, Christine and
Pahle, Jiirgen and Simus, Natalia and Singhal, Mudita and Xu, Liang and
Mendes, Pedro and Kummer, Ursula, “COPASIA€” A Complex Pathway
Simulator”, Bioinformatics, vol. 22, no. 24, pp. 3067-3074, 2006.

Baig, Hasan and Madsen, Jan, “D-VASim: An Interactive Virtual
Laboratory Environment for the Simulation and Analysis of Genetic

Circuits”, Bioinformatics, vol. 33, no. 2, pp. 297-299, 2017.

H. Baig and J. Madsen, “Simulation approach for timing analysis of
genetic logic circuits”, ACS synthetic biology, vol. 6,no. 7, pp. 1169-1179,
2017.

Baig, Hasan and Madsen, Jan, “Logic Analysis and Verification of n-
input Genetic Logic Circuits”, in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017, IEEE, 2017, pp. 654-657.

Mark B, Complete Digital Design: A Comprehensive Guide to Digital

Electronic and Computer System Architecture. McGraw-Hill Press, 2003.

Gillespie, Daniel T, “A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions”, Journal of

computational physics, vol. 22, no. 4, pp. 403434, 1976.

D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions”, The journal of physical chemistry, vol. 81, no. 25, pp. 2340-
2361, 1977.

C. Dittamo and D. Cangelosi, “Optimized parallel implementation of

gillespie’s first reaction method on graphics processing units”, in 2009

41

Collection @ chosun

International Conference on Computer Modeling and Simulation, IEEE,

2009, pp. 156-161.

[24] iBioSim, https://github.com/MyersResearchGroup/iBioSim.

42

Collection @ chosun

Acknowledgement

All praise to the Lord of the World alone. This thesis made possible, my heartfelt
appreciation for the constant reassurance and prayer of my parents and words
cannot describe the level of patience with which they persevere my absence.
The exceptional guidance and support from Professor Dr. Jeong-A Lee, my
supervisor during the course of this degree. I am also very grateful to Professor
Dr. Hasan Baig for his constant advice in capcaity of my co-supervisor, insights
and suggestions and I will forever be grateful to him. I also thank my friends and
lab members (too many to list here but you know who you are!) for providing
support and friendship that I needed. I would like to thank Umar Afzal for being
supportive throughout my time and for helping me in each and every part of my
life here. I think of him as a brother.

I dedicate this thesis to my family for their constant support and

unconditional love.

43

Collection @ chosun

	List of Abbreviations and Acronyms
	Abstract
	한글요약
	I. Introduction
	A. An Overview of GDA Tools
	B. Motivation
	1. Challenges
	2. Standards
	3. Dynamic Virtual Analyzer and Simulator Tool
	4. Threshold Value and Timing Analysis
	5. SBML Models

	C. Thesis Contributions
	D. Thesis Layout

	II. Threshold Value Analysis and Verification of Genetic Logic Circuit Models
	A. Threshold Value and Timing Analysis
	B. Algorithm Explanation
	1. Possible Threshold Value
	2. Threshold Value Verification

	III. A Parallel Threshold Value Analysis Algorithm
	A. Proposed Algorithm
	1. Results and Analysis
	2. Threshold Value Analysis of n-input Genetic Circuits
	3. Experimental Results

	IV. Conclusion
	Publications
	A. Journals
	B. Conferences

	References
	Acknowledgement

<startpage>15
List of Abbreviations and Acronyms iii
Abstract vi
한글요약 viii
I. Introduction 1
 A. An Overview of GDA Tools 1
 B. Motivation 3
 1. Challenges 3
 2. Standards 5
 3. Dynamic Virtual Analyzer and Simulator Tool 6
 4. Threshold Value and Timing Analysis 7
 5. SBML Models 7
 C. Thesis Contributions 8
 D. Thesis Layout 8
II. Threshold Value Analysis and Verification of Genetic Logic Circuit Models 10
 A. Threshold Value and Timing Analysis 10
 B. Algorithm Explanation 12
 1. Possible Threshold Value 14
 2. Threshold Value Verification 16
III. A Parallel Threshold Value Analysis Algorithm 18
 A. Proposed Algorithm 18
 1. Results and Analysis 20
 2. Threshold Value Analysis of n-input Genetic Circuits 26
 3. Experimental Results 27
IV. Conclusion 37
Publications 38
 A. Journals 38
 B. Conferences 38
References 39
Acknowledgement 43
</body>

