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Abstract

Multi-modal biomarkers study for
Alzheimer’s disease classification using
Extreme Learning Machine

Uttam Khatri

Advisor: Prof. Goo-Rak Kwon, Ph.D.
Department of Information and Communication
Engineering

Graduate School of Chosun University

Alzheimer’s disease (AD), the most common type of dementia in the world
is expected to rise in the coming years. The treatment of disease is highly
expensive, there is lack of proper understanding of disease development and
precise curative treatment. Early diagnosis of AD and its prodromal stage
(Mild cognitive impairment (MCI) is essential for possible delay on disease
progression, and thus there is large number of attention focused in the
development of new and systematic methods for earlier diagnosis. Structural
changes of the brain are consider to be most sensitive feature of the AD
(noticeable on brain MR image), and one of the important biomarker of the
AD. Yet there is other possible biomarkers for Alzheimer’s disease, more and
more researches are focus on multiple biomarkers which have been shown to
be sensitive to the diagnosis of MCI and AD, but they still lack to identified
the proper biomarkers, most of the multimodal analysis only use the volume

of MRI so in this study we combined and compared multimodal biomarkers
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and the Machine learning technique, and particularly deep learning model
from the machine learning field, which might show potential to learn features
from imaging data such as structural MRI, and so that facilitate automatic
classification of AD. This thesis first give information on Alzheimer’s disease
and its prodromal stage mild cognitive impairment. Then it present some
reviews and summary over the most relevant and important machine learning
research from past few years. Based upon this knowledge, we design and
perform analysis and experiments to examine the possibility of automatic
classification of Alzheimer’s disease from imaging, clinical and biological
biomarkers, using methods of features reduction and alteration in the
parameters of the learning task with individual features set and merging of it,
and performed and analyzed various machine learning technique. We discover
that extreme learning machine trained on a dataset that had been selected via
SVM-RFE algorithm, with learning pattern as a binary classifier between AD
and all other symptomatic groups provided the best results as compare to other
related work. Thus, this thesis mainly focus on the multimodal biomarkers and
extreme learning machine for classification task. | hope that this thesis can
give a jumping off point for further research on this problem. The performance
results of classification of healthy controls (HC), Alzheimer’s disease (AD)
and Mild Cognitive Impairment (MCI) using proposed method is presented
along with its results in early and late MCI classification. Obtained results
validated that the combination of distinct biomarkers perform well with
accuracies 95.15% for AD vs HC, 87.81% for MCI vs HC, 85.93%, for MCI
vs AD and 81.73% for EMCI vs LMCI classifications respectively, when
evaluated using ELM algorithm. Meanwhile, the area under curve (AUC) from
receiver operating characteristic (ROC) curve verified combination of multiple
biomarkers could reach a better classification performance. The proposed

Collection @ chosun



features combination and selection algorithm effectively classify the AD and
MCI patient therefore may assist the accuracy of AD classification in clinical
practice. Furthermore we successfully compare the performance with SVM
classifiers with cross validation method for Alzheimer’s disease neuroimaging

initiative (ADNI) datasets.

Keywords: Alzheimer’s disease, Multi-modal biomarkers, Machine
Learning, SVM-RFE, Pattern Recognition, feature selection Deep Learning,
ELM, Support Vector Machine.
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1. Introduction

Alzheimer’s disease (AD) is progressive, an irreversible neurodegenerative
disorder of the central nervous system and most common form of dementia
characterized by unusual accumulation of amyloid plaques and neurofibrillary
tangles in the central nervous system, affecting the behavior, thinking and
memory patterns of an individual, for which no medication or effective
treatment is currently develop. An estimated 5.7 million Americana are living
with Alzheimer’s disease in 2018. By 2050, this figure is estimated to rise to
approximately 14 million [1], this number is in increasing trend worldwide and
there is a large number of interest in early detection of the disease, as this may
yield the better treatment mechanism. In traditional method diagnosis of
Alzheimer’s disease relied mainly on clinical investigation and cognitive
assessment. Recent studies, however, shows that multiple biomarkers analysis
of neuroimaging scans as well as others biomarkers may assist more reliable
and precise diagnosis. Thus more and more research has been focusing to find
sensitive biomarkers and implementing machine learning approach to perform
automatic early diagnosis of Alzheimer’s disease. A promising number of
ongoing research [2-6] is focus on different biomarkers based techniques, as
an effort to early detection of AD-related changes to characterize prominent
atrophy patterns during the prodromal stages, when mild symptoms are only
evident of the disease. Thus, it is importance to develop a fundamental
strategies for timely treatment and progression delay at early stage detection
of Alzheimer’s disease before clinical manifestation. Which result into the
concept of mild cognitive impairment (MCI). MCI, a transitional stage
between the healthy (normal) control (HC) and AD, is defined to describe

individual who have moderate symptoms of brain deficiency but can able to
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perform everyday tasks. Patients in the stage of MCI have high risk of
progressing to dementia [7-9]. Some MCI patients are progressive to AD after
baseline within a certain time frame, while others remain stable. Repot has
been shown that 10% to 15% MCI patient’s progress to AD per year and 80%
of them will have converted to AD after approximately five-six years of
follow-up [8], [10]. It is crucial to find the biomarkers that classify patients
who have MCI and later progress to AD (converter MCI) from those who do
not converted to AD and healthy control (HC). To identify biomarkers for MCI
and AD various machine learning methods have been applied, which also
improve their prediction and performances. Different biomarkers have been
identified for the detection of mild cognitive impairment (MCI) and AD,
including functional and structural neuroimaging measures as well as
cognitive score, APOE &4 allele status and cerebrospinal fluid (CSF) [11-15].
Recent criteria for AD diagnosis [16] suggest that neuroimaging and biological
measures may play vital role for the early detection of AD and monitor its

prodromal stage.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI), leading research
project in neuroimaging field, has significantly contributed to the further
understanding and analysis of the disease by providing reliable
neuropsychological and clinical dataset for research purposes, including a
labeled dataset of individual patients from various diagnostic groups
consisting of magnetic resonance images, positron emission tomography, CSF,
genetics factor and cognitive performance. Recent research has generated very
good results on multimodal biomarkers from the ADNI dataset using, machine
learning, deep learning methods and artificial neural networks. In the medical

field Artificial Neural Networks and machine learning methods have been
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Collection @ chosun



successfully utilized to diagnostic assistance and Clinical Decision Support
Systems, and there is huge focus in machine learning system for use in
cardiology, radiology, oncology, etc. to develop more reliable, cost-effective
and simple-to-use systems for assisting clinicians. This kind of Computer-
Aided Diagnosis is especially impressive in the context of early diagnosis of
disease, which is very crucial in the case of Alzheimer’s disease. Imaging
modalities seems to be an interesting diagnostic features, as it is consider
important biomarker, widely used, and as there are morphology changes in
brain that are strongly linked with Alzheimer’s disease. A large number of
relevant dataset are exist in standardized form in ADNI dataset. An artificial
neural networks and machine learning technology is well suited particularly
have proven for handling high dimensional data like that of multimodal

classification technique [17-18].

This thesis relates the implementation of various machine learning, and
feature selection technique in multimodal multiple biomarkers to identify the
Alzheimer’s disease, first we obtained the imaging as well as non-imaging
multimodal biomarkers form the ADNI database, second we combined and

compared the different biomarkers to diagnose AD and MCI with HC.

1.1 Overview and Motivation

In diagnostic imaging, Magnetic Resonance Imaging (MRI) is consider as
most powerful imaging modalities for assessing neurological disorders.
Similarly, CSF, genetic factors (APoE4) and cognitive score are others major
non-imaging biomarkers. For Alzheimer’s disease (AD), sMRI imaging was

shown to be able to detect the onset of neurological disorders. Early detection

13
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provides patients with access to therapies that are more effective in the early
stages of the disease. Distinguishing between the different stages of cognitive
impairment  currently depends on clinical history and some
neuropsychological, biological, and molecular genetic examination. SMRI
different patterns of atrophy that might aid differential diagnosis. Imaging by
different modalities such as CT and MRI provides rich anatomical
information. Nevertheless, in the case of AD, SMRI images may also provide
evidence of disease progression. In additional, SMRI1 images include the best-
established structural brain imaging measurements of disease progression (i.e.,
MRI measurements of hippocampal volume) [19]. Therefore, combining
sMRI, and other non-imaging biomarkers (CSF, Genetics and Cognitive score)
provides better discrimination than MRI [20-26]. Different anatomical regions
used in previous works with multi-region approach to classify the subjects.
However, integrated specific anatomical regions detected by previous works
could obtain better accuracy which attracted our attention to focus on certain
offered ROIs in literature which are not tested together. This project focused
on the diagnostic value of multi-biomarkers method, particularly on, MRI and
other non-imaging biomarkers. SMRI has been wused to study
neurodegenerative diseases for over two decades. Indeed, a particular
application for sMRI is recognizing AD because of the sharp contrast in their
atrophy pattern. Therefore, SMRI is a valuable technique for diagnosing AD
and for evaluating the efficacy of drugs that aim at modifying the progression
of AD. Decreased volume, thickness and area reflects metabolic deficits and
neuronal injury [27]. Since the researchers could have more information of
atrophy pattern from sMRI images could discriminate between AD and
different stages of MCI versus NC. In combination with Genetics, CSF and

cognitive score may improve discrimination performance over what they
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achieved with only sMRI images. Thus this thesis aim to test the SMRI with
non-imaging biomarkers to identify the AD. The present work focused on
having a better understanding of the diagnostic accuracy of possible
combination of imaging biomarkers in AD, dependently of other available
modalities such as CSF, Genetics factor and cognitive examinations. Future

work could combine additional information.

1.2 Objectives

This work presented a pipeline using the available image processing tools for
each step (skull-striping and segmentation using Freesurfer) to classify
individual subjects into four different classes (AD, MCls, MClic, and HC). The
main biomarker to do this classification is brain SMRI, and other non- imaging
biomarkers (CSF, Genetics and Cognitive Score). Thesis objectives are the

following:

— To collect and analyze individual cohort data downloaded from a pre-
processed Alzheimer’s disease Neuroimaging Initiative (ADNI) database,

which encompasses patients with CSF, Genetics and structural MRI.

— To classify individual subjects into four classes using different classifiers,

features selection techniques; atrophy pattern analysis on sSMRI and

— To evaluate the results of classifiers and to compare the results of the

multimodal approaches.

15
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1.3 Contributions

The contribution of this work is in atrophy pattern analysis of sMRI and
testing the effectiveness of combination of SMRI with other non- imaging
biomarkers such as CSF, Genetics and Cognitive Score to discriminate
between four classes (AD, EMCI, LMCI, HC) which is not used as a feature
in the literature: [28-30]. First step in this thesis extracted the anatomical
features of the brain by using Freesurfer [31]. Proposed method uses thickness,
volume and area features extracted from Freesurfers pipeline based on desikan
—killiany atlas [32]. Beside that this method used feature selection technique
and compare the performance of different classifiers. Proposed mehtod
additionally attempt the less commonly reported classification task of
separating EMCI from LMCI patients.

The obtained outcome is supportive and reliable towards use of machine
learning method, and can be intended towards medical CAD system
development.

1.4 Thesis Layout

This thesis is composed of seven consecutive section. Following the
introduction, section 2 provides theory and background information and
describes some useful terms for understanding this thesis. Section 3 present
the detail of machine learning and evaluation technique. Section 4 presents a
critical literature review of works with their methods, which are compared or
applied to the current work. The included methods and their results of
classification accuracies are state of the art. Section 5 explains methodology

and proposed pipeline, particularly the two important steps of statistics
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analysis, features extraction and classification result. This paper details the
method of classification of individual subjects and compares the results of
biomarkers combination approaches using sMRI, CSF, Genetics and
Cognitive scores. Section 6 discussed about the finding of result and section 7

concluded the proposed working pipeline.

17
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2. Theory and Background

2.1 Brain MRI and Alzheimer’s disease

Alzheimer’s disease (AD) is a characterized by neurodegeneration that
causes problems with thinking pattern, memory and behavior which is
ultimately fatal. It is the most typical and common form of dementia, it occupy
60 to 80 percent of all dementia case [33]. It is one of the most financially
burdening disease for society of developed countries. Report from 2006
Alzheimer’s affected 26.6 million individual worldwide, and is forecast to
affect 1 in 85 people worldwide by 2050 [34]. The World Alzheimer Report
of 2010 [34] shows that there would be 65.7 million individual living with
dementia by 2030, and this number will increase to 115.4 million by 2050.
The same study also marked out that almost two thirds of individual affected
by dementia live in financially middle- and low- income countries, which are
expected to largest increase in number of affected people in the coming years
[34] as the regions are developing rapidly. This will become challenging for
many reasons, one of the reason is that dementia patients heavily rely on
informal care in these nation , and it will become exceedingly difficult to
maintain the proper treatment and care for such a large number of older
segment of these populations and disease prevalence climbs [34]. Dementia
has an huge societal cost at present, and occupy 1.01% of the total value of
worldwide Gross Products of Nation [34]. It is pointed out that this problem
will become worsen in the coming years, with an predicted 85% worldwide
societal cost increase by 2030 [34], assuming that without possible background
factors (e.g. dementia incidence, macroeconomic factors prevalence of
dementia and availability and effectivity of treatment) change. While some of

its sign can also show up somewhat similar to normal signs of advanced aging,
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it is vital to note that Alzheimer’s (and dementia in general) is no longer a
normal stage of aging. With the progression of disease over time, dementia
symptoms slowly get worse. At present, there is no proper treatment for
Alzheimer’s disease; the aim is rather to slowdown the progression of the
disease, address behavioral problems, improve symptoms and improve life
quality of individual. However, current medication can temporarily slowdown
the development of disease symptoms if the disease is detected an earlier.
While more reliable and effective treatments with ultimately disease
prevention or even a proper medication is a very crucial (long term) goal, even
early diagnosis can become comparatively better treatment for patient. It is
still unknown about the proper cause for Alzheimer’s disease, except for the
few cases of detectable genetic irregularity. Current research shows, however,
that it is strongly associated with neurofibrillary tangles and neuritic plaques
in the brain [35]. While Amyloid beta protein which built the neuritic plaques
on brain, is known to be strongly associate in the development of the
Alzheimer’s, there is still lack of proper understanding whether or not it is a
major factor, as many researcher believe it to be. It is, however, generally this
information is a marker of the disease. In the present the trend are ever-
increasing towards the proper diagnosis of disease and track the progression
earlier before symptom occurs. Past few years’ advancement in research is
increase, most importantly proper identification of biomarkers (importantly
brain imaging techniques) which allow understanding and diagnosis of AD-
related changes months, years and sometimes even decades before appearance
of clinical symptoms. The biomarkers for Alzheimer’s can be categorized into
early biomarkers, which usually measure the amount of amyloid deposition in
the brain cell (e.g. CSF amyloid, PET imaging), and later biomarkers, which
generally measure neuron degeneration (e.g. SMRI, CSF tau, FDG PET). Brain

19
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scans are generally ignore other causes for disease symptoms, but it can be an
important indicator of whether or not Alzheimer’s is present. In 1996 article
[36] states that "In clinical practice, the diagnosis of Alzheimer’s disease is
based on typical features of the disease and exclusion of other conditions
causing dementia". The main way to identified whether individual was
affected by the disease is post-mortem analysis of brain tissue. However, both
neurotic plaques and neurofibrillary tangles seems to play a main role in the
progression of Alzheimer’s disease. Although a large number of research has
been performed on Alzheimer’s disease, there is still an urgency for an earlier

diagnostic system for the Alzheimer’s disease.

2.1.1 Mild Cognitive Impairment

It is consider as the beginning phase of Alzheimer’s disease, individual which
have mild symptom and still shows normal behavior to the everyday life but
the brain morphology start to change. There is still confusion about MCI
whether it is correspond to different diagnostic phase or to a prodromal stage
of Alzheimer’s disease. Individual brain morphology start to change in MCI-
patients, brain shape and pattern have already been going on for quite some
case some time, and syndrome are only just start to appear. It does not (yet)
consequence in complication that are severe enough to interfere individual day
to day task, which would be acknowledge dementia.

20
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2.1.2 Risk Factors

Although there is still lack of exact cause for dementia but certain factors are
strongly associated to the development of Alzheimer’s disease. Which are

briefly discussed below.

2.1.2.1 Age

Age is one of the strongly and clearly associated with Alzheimer’s disease.
Individual above age 65 have double the risk of disease development within
the five years period and similarly the individual above the age 85 have almost
50% percent of disease development [37].

2.1.2.2 Family History

Family history and background is also associated with Alzheimer’s disease
the individual are more likely to develop AD whose close family member have
Alzheimer’s disease. The risk factor will increase with the number of patients
in the individual family. Either hereditary or environmental or both factors

may have a role to diseases development and progression in families [37].

2.1.2.3 Genetics

Genetics factors are consider another important cause for the development of
AD. Generally, two type of genes are responsible for the disease development

and progression in Alzheimer’s:
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* Risk genes (responsible to increase likelihood)
* Deterministic genes (believe to be direct cause of disease)

If the familial AD present (i.e. dominant autosomal form of AD),
development of early symptom of Alzheimer’s (i.e. MCI) indicate the
beginning of Dementia. A huge number of individual are affected by early
onset development of Alzheimer’s Dementia. Development and progression
of MCI to Alzheimer’s dementia in individual are variable. However the study
shows that the individual with one or two &4 alleles in their apolipoprotein E
(APOE) gene is strongly related to the increasing risk factor for late-onset
Alzheimer’s dementia. But in opposite, presence of €2 allele, decrease the risk

factor in individual.

2.1.3 Pathophysiology

The proper and precise cause of Alzheimer’s is still not known well because

of its complex nature and pathogenesis.

2.1.3.1 Biochemistry

Alzheimer’s is happen mainly due to the protein misfolding on brain cell by
excessive accumulation of amyloid beta (B-amyloid) protein. [1], [35].
Amyloid beta which is short peptide and generate as an abnormal byproduct
of protein amyloid precursor protein (APP) in brain cell whose exact function
still unknown are thought to be involve in neuron development. These sticky

amyloid fragments made clump together and generate plaques (known as
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neuritic plaques). These plaques hinder the communication (i.e. signaling)
between brain cells, which ultimately cause the death of the neurons.

Amyloid plaques are "a hallmark feature of a pathological diagnosis of AD"
[7], and which is the only biomarker in Alzheimer’s disease help to proper
detection and quantification of the accumulation of amyloid protein in brain
cell. The content of protein level can be measure directly through individual
plasma and cerebrospinal fluid (CSF). We can also use positron emission
tomography (PET) to measure the protein. The clinical benchmark for mild
cognitive impairment due to Alzheimer’s disease states correlation with the
amyloid: "Current evidence suggests that markers of amyloid pathology (i.e.,
CSF and PET) precede evidence of neuronal injury. This does not prove that
AP is the initiating factor for the disease. However, it does suggest that these
different categories of biomarkers seem to provide different sorts of
information about the progress of disease in the brain" [7]. It is also suggested
that abnormal formation of tau protein, consider as taupathy, a microtubules-
correlated protein present in neurons which actually help to stabilize
microtubules in the cell are also consider as cause of disease. The function of
tau protein is to keep microtubule straight which help molecules pass freely
through it. However in Alzheimer’s protein change into twisted strands (i.e.
collapses in tangles) which cause to obstruction on transportation of nutrition
on brain cell and ultimately leading to the cell death. The change in
phosphorylated-tau and tau could link to the beginning of the Alzheimer’s with
general damage in synapses and neurons. The accumulation of neurofibrillary
tangles and B-amyloid plaques in brain cell ultimately lead to loss of synapses
and neurons (morphological changes of the brain’s structure), which lead to

the "memory impairment and other cognitive problems” [38].
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2.1.3.2 Neuropathology

The major symptom during the Alzheimer’s disease are happen due to the
structural and morphological changes in the brain (i.e. brain abnormality),
which is consider as the sensitive features for the Alzheimer’s. Symptoms
usually appears in the hippocampus part of brain initially in the individual
affected by disease, the pattern can be notice clearly through volumetric
analysis of structural MRI for Alzheimer’s diagnosis [36]. The loss of synapse
and neuron in patient’s brain is clearly noticeable difference, which can be
seen through Figures 2-1. Alzheimer’s is mainly characterized by degradation
of hippocampus and cerebral cortex, which lead to cortical atrophy in parietal,
frontal and temporal areas [39]. Compared with healthy control generally
ventricles are enlarged in Alzheimer’s patient, it is clearly noticeable in Figure
2-1. At the beginning of the disease microscopic alteration is happen in the
brain before the first symptom of memory loss, one resent study shows that
the mediotemporal lesion are present upto 5.6 years before the clinical
diagnosis of disease [40]. The same study shows that there was no atrophy
pattern observed in the frontal lobes, this indicate that at the beginning of the
disease there was no clear sing of atrophy but with the laps of time at which
diagnosis was made it already affected severely. On the series of observation,
authors observed the atrophy of frontal lobes only at the time close to diagnosis
of disease. This finding also support that reduction in volume of the posterior

cingulate cortex may lead to the later progression of the disease.
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Figure 2-1.  Diagram of a normal brain and person with Alzheimer’s disease

Magnetic resonance imaging (MRI) facilitate researchers and clinicians to
figure out the structural damage in brain linked with Alzheimer’s disease.
Other imaging modalities such as Pittsburgh compound B PET (PiB PET)
clearly show the shapes and location of beta amyloid accumulation in the
brain. Even though the technique is more invasive, it need a contrast agent —
such as radioactive sugar — which is absorbable in the patient brain.
Additionally, this technique is recently developed and not as available easily
as like MRI. Study in 1995 [36] observed the specificity of hippocampus
volume among 59 patients including mild to moderate Alzheimer’s Disease, 9
patients with vascular dementia, 12 patients with idiopathic Parkinson’s

disease without dementia, 8 patients with Parkinson’s and dementia, and 34
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elderly control individual using a 1.5-T MR scanner. In their study they point
out the significant decrease of hippocampal volume (both hemisphere) in all
patient groups as compare to control group and they also find out absolute
volume were even lower in the group of subject with Parkinson’s and dementia
as compare to Alzheimer’s group. They hypothesize that "hippocampal
atrophy does not seem to be a specific phenomenon of dementia in AD but
also occurs in vascular dementia and Parkinson’s even when no dementia is
present” [36]. Their study however, actually point out the co-occurrence of
Alzheimer’s pathology in vascular dementia and Parkinson’s patients. From
their finding researchers concluded that one of the sensitive feature in
Alzheimer’s disease is hippocampal atrophy, but specificity of hippocampal

atrophy seems to confine its use in clinical practice.

2.1.3.3 Biomarkers

Alzheimer’s disease is progressive over time, so the biomarker magnitude
gain the unusual stage in particular order (given in Figure 2-2). In the given
Figure 2-2, which shows the Alzheimer’s biomarkers, the curves represents
variation caused by five biomarkers studied [41] (in sequential form):

1) Amyloid beta imaging identify through CSF and PET amyloid imaging.

2) Neuron degradation identify by analyzing CSF tau species and synaptic
malfunction, assessed through FDG-PET.

3) Neuronal loss and brain atrophy obtained through MRI (most noticeable

in caudate nucleus, hippocampus, and medial temporal lobe).

4) Memory loss obtained via cognitive test.
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5) General cognitive performance decline measured by cognitive test.

From the above list, first three biomarkers can be recognized prior to
diagnosis of disease, while the remaining two are "the classic indicators of

dementia diagnosis" [41].
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Figure 2-2.  Biomarkers over the course of Alzheimer’s disease [42]

In order to develop the appropriate and efficient medication, biomarkers
plays the vital role and we must incorporate it within diagnostic framework,
even though biomarkers primarily suggested for research purpose. Among
above mention biomarkers such as tau and beta-amyloid protein (Ap) which
directly indicate the pathology of Alzheimer’s; biomarker which have indirect
or nonspecific indication of Alzheimer’s which track the neuronal injury
somewhat shows the specific regional pattern changes in brain. Some

biomarkers primarily link to Alzheimer’s disease also seen in other brain
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disorders. If both of the biomarkers observed in the same subject, which lead

to the very strong reason to presume Alzheimer’s disease.
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3. Machine Learning

Machine learning one of the popular branch of artificial intelligence which
include algorithm design and learn pattern automatically through experience.
Machine learning algorithm learn to produce intelligent decisions fully based
on their capability of complex patterns recognition, which can be applicable to
recognize handwritten pattern, stock market analysis, image analysis and
medical diagnosis. The main focus of this thesis is medical diagnosis. This is
basically a classification task in which the goal could be, for example, to utilize

neuroimaging data to identify whether a newly given patient has Alzheimer’s.

In this chapter we present the basic overview of machine learning technology
that are relevant with this thesis and suitable to image based classification task.
Section 3.1 firstly present the details of various classification technique,
followed by description of algorithm along with their performance assess in
same section. Finally, related literature review with this thesis work using
machine learning algorithm for image based classification of Alzheimer’s is

provided in Section 4.

3.1 Classification Algorithms

An image made up of B numbers of voxels may be denoted by the B-
dimensional feature vector, let’s sayX = (X1, X3, e cer oo ,Xg). The general
objective of a classification algorithm is to assign an each features vector to
one of their corresponding K discrete classes Ck. In our case we assign K=2,
because we performed the binary classification between the patient groups,
and these two Cy and C classes are considered to be disjoint, such that every

feature vectors belongs to corresponding classes, of the two classes. A function
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Y(X) define the classification algorithm which will returns a corresponding
value and which assigned belonging class for features vectors X. During the
training phase parameters of the function Y (X) are optimized according to the
set of N number of training sample, for which the accurate diagnosis are
known, which is represented as (X;, t;)|X;eRE, t;e{—1,1}}_,. First we train
the classifier and assessed the classification performance by using the new
dataset. In literature, classification algorithm are huge in number, we only

present the detail about the relevant algorithm to this work.

3.1.1 Support Vector Machines

The primary goal of binary support vector machine (SVM) is to construct a
hyperplane so that it will maximizes the margin, it is the measure of distance
between the possible closest points on either side of that boundary. These
points are commonly called as the support vectors, and their main role is to
construct the maximum-marginal hyperplane which is illustrated in Figure 3-
1.
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Figure 3-1. Support Vector Machine

The original SVM algorithm was a linear classifier [43], but some
modification over linear SVM have seen been made to deal with dataset which
are not linearly separable. Provision of soft-margin formulation has been
proposed [44] for mislabeled dataset which allows proper classification,
author in this article [41] used the concept of kernel tricks to create nonlinear
SVM-classifiers [45]. Figure 3-1: 2-D illustration represent the construction of
a maximum-marginal hyperplane in SVM-classifier. The decision surface
indicated by the arrow one either side of margin maximizes the distance
between the support vectors. It is important to scaled both training and testing
data before the application of a SVM classifier so that the features which have

high variance do not dominate over the feature with lower variance [46-47].
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3.1.2 Extreme Learning Machine

Extreme learning machine compose of hidden layer in between an input and
an output layer [48]. Whereas weights and biases are required to adjust by
gradient-based learning algorithms on traditional feedforward neural networks
for all layers, hidden layer biases and input weights are arbitrarily assigns
without iterative process, and output weights are compute by solving single
hidden layer system [49]. Thus as compare to traditional neural network ELM
learn much faster and it is widely use in various regression and classification
task as an efficient and reliable learning algorithm [50-53]. Particularly, for N
training samples {(XY, 10)| XD eRPandIDeRY, and j = 1,2, ... ....., N},
the output in ELM, o; with n, hidden neurons can be represented as shown

below:

0; =X Bla(wl XD + b, = X1 BTh(XD) = h(XD)TB, (D)

i=1F1i i=1Pi

where XU and IV are the j™input and target vectors, respectively. The
parameter p and ¢ are the input and target vector dimension, respectively.
And o0;eR? signifies the output of ELM for the jt training sample,
w;eRPindicates the input weight that link the input nodes to the it*hidden
node, b; represent the bias of the i** hidden node, and a(.) signifies the
activation function for the given hidden layer. B = [B, ... ... cc. ..., B, 7S the
values of output weights between the output neuron and the hidden
layer A(X9)) = [hy (XD, ....... e ., By, (X99)]T s the output vector of the
hidden layer with respect to the jt"training sample X@. h;(X%’) is the output

of the i**hidden layer for the j*training sample.
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To obtained the optimal hidden layer weights, Swith respect to Ntraining

samples which can be considered to solve the following optimization problem:

min A ||HB — LII* + lIBII%, ()
p
where H = [R(XD, ... ... .. R(X™1TandL = [ID, ......... ,TMT

Equation 2 represents the optimization problem, and its optimal solution, 3;

can be analytically obtained as follows:

A -1

f=H"(AI+HHT) L, 3)
where A is a regularization parameter, and Irepresents the identity matrix.

After finding the optimal solution 2, the output of the ELM on test data X s

is determined by
Tyt (1 r\ !
Otest = h(Xtest) H (ZI + HH ) L, (4)

In this proposed method, hidden nodes number was set between 1 and 500,
and we selected a sigmoid as an activation function. Beside, we used grid
search method to tune the ELM parameter on training dataset in order to
achieve optimum cross-validated validation accuracy. Similarly to minimize
the random effects during the weight initializations, each parameters of the
number of hidden nodes was used hundred times and the average performance

was calculated.

33

Collection @ chosun



3.1.3 Classifier Performance

Classification performance measurement are essential to assess the
applicability and reliability of a trained algorithm with independent test data
and important for the optimization of parameters during training process. The
simplest and widely use performance metric is accuracy, which gives the
proportion of dataset that are correctly identified by the classifier. However,
this measurement method does not always gives an appropriate evaluation of
performance, and beside that other relevant metrics are described detailed in
Section 3.1.3.1. The method of cross- validation may be utilized to assess the
classifier’s generalization performance, as there is lack of abundant and
appropriate independent dataset accessible for testing. At single round of
cross-validation dataset are partition in to two subsets, so that it may be trained
and tested using the different subset of dataset. Generally result are reported
as the average over multiple repetition in which different partitions of the
dataset are used. Details of the most commonly used cross-validation

techniques are provided in Section 3.1.3.2.

3.1.3.1 Performance Metrics

The performance evaluation of a binary classifier can be accessed through a
confusion matrix, as present in Table 1. The number of dataset sample
correctly labelled by the classifier are presented along the diagonal. These may
be categorized into true positives TP, which represent correctly detected
patients, and true negatives TN, which represent correctly detected healthy
group. The number of incorrectly labelled dataset by classifier may be

categorized into false negative FN, which represent the patients incorrectly
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identified and classified as healthy, and false positives FP, representing

healthy individual falsely classified as patients.

Table 1. Confusion matrix representing binary classifier.

Predicted Class
True Class
A (patients) B (Healthy)
A (patients) TP FN
B (Healthy) FP TN

The accuracy measure gives the proportion of example which are correctly
identified by a classifier, which is shown in equation 5 below:

(TP +TN)
(TP +TN+ FP+FN)’ ()

Accuracy =

If the class distribution of example dataset is unbalance it may not be a good
performance metric. For example, if class B is much smaller than A, a high
accuracy measure could be achieved by a classifier which identify all examples
as belonging to class A. The sensitivity and specificity are defined by equation

6 and 7 respectively below:

TP
Sensitivity = TP LFN' (6)
e TN
and Specificity = TN+ FP" (7)
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which give a better assessment of the overall performance evaluation of a
classifier. Sensitivity measures the portion of correctly classify patients, and

specificity measures the portion of correctly classify Healthy control.

11 (1,1)
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Figure 3-2.  Illustration of the ROC (AUC) curve evaluation for a binary
classifier. The red solid line represents the relationship between the specificity
and sensitivity as classifier discrimination threshold varied. This can be

compared with the no-discrimination dashed line [54].

Another important classifier evaluation method is AUC. This can be

analyzed by using a receiver operating characteristic (ROC) curve. Which is
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shown in Figure 3-2, a ROC (AUC) curve give the relationship between the
sensitivity (true positive rate) and 1-specificity (false positive rate) as the
discrimination threshold varied for the binary classifier. This curve can be
utilized to select the optimal threshold value for a particular application.
Consider an example, for earliest stage of disease identification of patients, it
may be necessary to define and select a threshold which give a high sensitivity,
at the same time a reduced specificity. Overall, the area under a ROC curve

(AUC) give the aggregated measure of classifier performance evaluation [55].

3.1.3.2 Cross-Validation

The classifier parameters are optimized according to the training dataset.
Therefore an independent test dataset is required for developing a proper
assessment of the applicability for the classifier on new dataset. Cross-
validation provides a better way to evaluate this generalization performance
measure when no availability of such data set. One most commonly used cross-
validation method is k-fold, in which the dataset are partitioned randomly into
k number of subsets. For training purpose a single cross-validation fold (k —
1) subsets are involved to the classifier, and the remaining data subset are
involve for testing. The process is repeated until k times, such that for testing
each of the subsets is used once, and the average of the folds are presented as
a final results. Another alternative for cross-validation method is random
sampling with repetition, in which the dataset is partitioned randomly into
fixed sizes training and testing sets. For example, 70% of the data were
selected on a single round for training, with the remaining 30% data for testing
purpose. Then, this process can be repeated, and the averaged result over the

repetition represent the final result. Repetition of random sampling has the
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advantage because of its independent nature on the proportions of the training
and testing sample on the repetition number. However, some overlap between
test sets may happen, and the Monte Carlo variation is also exhibits by the
method. Which means that repeated use of different partitions of the dataset in
analysis will give the variation on results. If two classes A and B are of
different sizes, the training and testing sets should be selected accordingly such
that both of them contain examples from the each classes in relatively equal
proportions to the whole dataset. Which is known as stratified cross-validation,
and it has been shown to yield results with a comparatively lower variance
than regular cross-validation method [56]. Both the repeated random sampling
and k-fold cross-validation generate distribution of an average performance
values across the repetitions or folds. The statistical significance of result
differences obtained from two classifiers can be measure by performing
unpaired t-tests among these distribution. Similarly, permutation test may be
useful to assess whether the classifiers results are significantly diverse from
chance. Permutation test include cross-validation performance on dataset for
which the diagnostic group have been permuted randomly. Under the null
hypothesis, the result which involve in a distribution of classification results
that the classifier cannot properly predict the clinical group from the dataset.
Permutation test between the distribution of obtained results and unpaired t-
tests represents whether the obtained results are vary significantly from
chance.
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4. Literature Reviews of Alzheimer’s Classification

4.1 Structural MRI

This part of the review discussed the roles and limitations of SMRI for AD.
The two most pathological dementia features are cortical atrophy and vascular
changes [57]. As mentioned earlier, MRI is recommended for distinguishing
vascular lesions and neurodegenerative dementia. Similarly, MRI images
present rich anatomical information, and it is useful to extract some features
which can be identified as a saliency criterion of the image [58]. Structural
MRI has the ability to visualize specific atrophy patterns in the brain; hence,
it is important for the differential diagnosis of AD [59]. From the sSMRI point
of view, brain atrophy and neuronal loss, as common MRI biomarkers in some
special parts of the brain, are key criteria for the diagnosis of AD. Atrophy
starts from the entorhinal area and continues in the hippocampus, amygdala,
and Para hippocampus along with disease progression [60], [27].Other brain
regions, such as the posterior temporal, parietal cortex, and mesial temporal
lobe, are affected by progress of AD [48]. When changes in different
individual brain regions occur, it is possible to assess the degree of atrophy
visually. Volumetric measure is the most common quantitative metric used in
AD [27]. Voxel-based morphometry (VBM) is a validated method to assess
atrophy over the entire 3D sMRI scan [61]. Moreover, VBM has an alternative,
one of which is manual segmentation of ROIs instead of the voxel-based
approach. The research [58] proposed a fully data- driven technique to find the
anatomical structural patterns in 3D images by using feature-based
morphometry (FBM). To classify the subjects based on their image, FBM can
promote an image model which is more related to the most probable class. The

authors used this technique to obtain high accuracy of multiple kernel
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boosting, which is about 95 % accuracy of classification between AD and HC,
and about 72 % between MCI convertible and MCI non-convertible. The
article [62] presented an automatic classification pipeline for AD identification
in structural MRI. Hippocampal area is the ROI in this work. Their proposed
method extract the visual features through structural MRI using the image
signal approximation by Circular Harmonic Functions. In this method the
probabilistic output obtained from classifies on both the amount of CSF and
local features were fused, a late fusion scheme could perform the classification
task of the MRI scans. The research article [63] applied Sparse Logistic
Regression (SLR) to classify 69 AD and 60 HC subjects based on voxel-wise
grey matter volumes derived from structural MRI. Penalized Logistic
Regression (PLR) and Spatially Regularized Sparse Logistic Regression
(SPSLR) are two different formulations of SLR which applied to solve the
problem of having large number of voxels in comparison to the number of
training subjects. The input features in the classifiers for this work were the
standardized grey matter voxel intensities. Their results present about 85 % of
overall classification accuracy for AD and HC [63]. The article [27] compared
the annual change in CSF and MRI biomarkers for their subjects based on
intergroup discrimination, correlation with concurrent cognitive or functional
changes and some other biomarkers. This work didn’t use some common
feature from imaging to discriminate between different classes of ADNI
subjects. Whereas, it compared the Annual change in CSF and MRI
biomarkers across clinical groups for the pairwise discrimination between
groups. The importance of reviewing this work is to investigate clinically
about the ADNI subjects consisting of AD, MCI and HC cohorts with both
baseline and 12-month follow-up. There results of this work presents that the

annual change did not differ by clinical group in pairwise comparisons. From
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the findings, it’s possible to indicate that AP deposition itself is not directly
responsible for clinical symptoms, but rather initiates a pathologic cascade that
later results in clinical symptoms. The article [64] assessed the efficacy of
adding sMRI scans to a memory test to predict the progression of MCI to AD
and found no significant increases in the accuracy of the diagnosis. Therefore,
sMRI does not provide adequate diagnostic insight into the progression of MCI
to AD [64]. In summary, sSMRI is an appropriate biomarker to reflect the
disease stage and intensity, which is extremely useful. It must be noted that it
Is an independent non-invasive measure of neuronal loss and thus provides a
supplementary measure based only on anatomy. Numerous publications show

that SMRI is a stable biomarker of AD progression.

4.2 Multi-Modality

Recent studies have demonstrated that multi-modal contains complementary
information for diagnosis of AD and its classification into different stages with

high accuracy.

However, to obtain more reliable classification results, these multiple
biomarkers need to be combined to provide an accurate diagnosis. In previous
sections, we reviewed some modalities, such as sMRI, CSF, which yielded
satisfactory results. In this section, we studied some research that used multi-
modality to achieve higher results. Some of the publications above had extra
experiments to show the results of combining two multi-modal or combining
more clinical and biological biomarkers. Different biomarkers can expose
different aspects of pathological changes associated with AD. Some biological

biomarkers have been developed for diagnosis of AD. Three CSF biomarkers
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are common in state of the art: total T (T-t), hyper-phosphorylated t (P-t) and
the 42 amino acid isoforms of AP (Ap42) [65]. In this section, we reviewed
the publications in similar domains, and we selected some relevant research to
present here. In these studies, different approaches were applied to prepare the
Images, to extract the features, to select the classifiers, and to use some extra
biomarkers. The results were obtained in several manners, which are studied.
Among all studied work, there are a few studies that pointed to the different
stages of MCI (EMCI and LMCI). The studies that used MRI images only gave
us a good historical review on methods for finding ROIs and different

classifiers.
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5. Different Biomarkers study on AD Classification

5.1 Material and Method
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Figure 5-1. Block diagram of the proposed framework
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5.1.1 Imaging Data

All individuals used in this analysis were obtained from the ADNI database.
The ADNI was initiated in 2003 as public-private partnership, under principal
Investigation of Michael W. Weiner, MD. The primary objective of ADNI has
been to investigate whether imaging modalities such as MRI, PET, others
neuropsychological assessment and clinical and biological markers can be
combined to measure the early detection of AD and progression of its
prodromal state (i.e. MCI). Demographic information, raw neuroimaging data,
CSF  measure, APOE genotype, diagnostic information and
neuropsychological test scores are publically available on the ADNI data
repository (http://adni.loni.usc.edu). Informed consent was obtained for all
individual subjects and the study was confirmed by the related institutional
review Dboard at each data site (for more information, see
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-
v2/documents/policy/ADNI_Acknowledgement_List%205-29-18.pdf).

To prepare this article, we utilized the MRI, CSF and APOE genotype. The
resulting study cohort consisted of subject: patients affected by AD, patients
with MCI and healthy control. Socio-demographical and clinical information

of participants are reported in the Table.1
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Table 2. Baseline clinical and socio-demographical information of the cohort.

Group AD MCI HC EMCI LMCI
[Nos. of Subjects 53 77 57 35 42
Female/male 20/33 34/43 32/25 13/22 21/21
Age 744+78 | 741+72 |75.6+52|739+72(743+7.2
Education 151+32 | 159+£29 |157+2.8]|16.1+29(15.8+29
MMSE 235+1.8 [ 269+1.8129.1+£09(272+1.7]266+1.8
CDR 0.7+0.2 0.5 0 0.5 0.5

The entries for age, gender, education and MMSE denote mean and standard

deviation for each group. MMSE: mini mental state exam.

5.1.2 Freesurfer Analysis of SMRI

We applied the recon all Freesurfer pipeline (version 6.0.0) to the structural
MRI images for cortical reconstruction and volumetric segmentation [31],
This

automatically generated reliable volume and thickness segmentation of white

freely accessible at http://surfer.nmr.mgh.harvard.edu. pipeline
matter, gray matter and subcortical volume. Cortical reconstruction and
subcortical volumetric segmentation include removal of non-brain, Tailarach
transformations, segmentation of subcortical gray matter and white matter
regions, intensity standardization and atlas registration. After these steps,

cortical surface mesh model was generated and finally the 34 cortical regions
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were obtained from the cortical surface parcellation based on sulcal and gyral
landmarks for both hemisphere corresponding to the desikan —killiany atlas
[32]. For purpose of statistical analysis, smoothing was applied using recon-
all with gcache option added. QDEC, a tool within Freesurfer, was utilized to
analyze difference in cortical thickness, surface area and gray matter volume
between HC, MCI and AD. To control for multiple comparison, statistical
significance levels were cluster corrected for both hemispheres using false
discovery rate (FDR), p<0.05.

5.1.3 Machine Learning Based Prediction and Analysis

An overview of prediction framework developed for this study was shown in
Figure 5-1. The framework consist of four major steps: feature extraction,
feature selection, feature combination and classification. We used the two

machine-learning classification algorithm, SVM and ELM.

5.1.4 Feature Selection

In most studies involving neuroimaging analysis, the number of predictor
voxels obtained outnumber the subjects. Thus, a dimensionality reduction
technique was necessary in order to obtain the most optimal and relevant
features set, discard noise and redundant features, and avoid overfitting and
numerical singularities problems, and thus enhancement of the classifier
performance. Solving pattern recognition or classification problems with data

of high dimensionality is a challenging issue, particularly in neuroimaging
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applications with limited samples, and large number of features. The learning
models tend to overfit and become less generalizable if input features are
redundant or irrelevant to classification. Feature selection is usually performed
to identify relevant features, reduce dimensionality of the trained model, and
improve generalization of the model [66]. An efficient feature selection
algorithm is the essential part of a machine learning approach in case of high
dimensional features. We have shown efficiency of the SVM-RFE feature
selection algorithm in identifying the early stage of AD [67]. Importantly,
feature selection was carried out on the training dataset only. Once identified,
the same brain region during training phase were utilized to assess the
classifier performance accuracy [18] on the testing data. In this study, SVM-
RFE was applied in order to obtain ranked features list which could best
differentiated the HC form AD and MCI. As a multivariate wrapper-model-
based feature selection algorithm support vector machine-recursive feature
elimination (SVM-RFE) method efficiently fits the model and removes the
weak features till the specified number of informative features is reached. The
ranking principle of SVM-RFE similar to the SVM model. SVM model is
trained in every single iteration of the RFE. Then, the feature with lower in
rank is removed since it has the no major effect on classification, while the
other top ranked features are kept for next iteration in the SVM model. This
sequence is repeated until all the weakest features set have been eliminated.
Then, the features are graded according to the order of their elimination. The
SVM-RFE algorithm described detailed in a previous paper [68]. In this work,
after the utilization of SVM-RFE, the most reliable training features that help

to maximize cross-validated accuracy were selected for training the classifiers.
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5.1.5 Statistical Analysis
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Figure 5-2. Difference on cortical thickness, area and volume for patients
with different stage of Alzheimer’s disease. The color bar represents the

significance level of clusters. The significant threshold are set at p<0.05.
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The cortical thickness, GM volume and surface area was analyzed using a
surface-based group analysis of Freesurfer’s Qdec (version 1.5). First, the
spatial cortical thickness, GM volume and surface area of the both hemisphere
was smoothed with a circularly symmetric Gaussian kernel of 10 mm full
width half maximum to provide normal distribution of the results. Then, we
employed a general linear model (GLM) analysis with age, gender and
education as the nuisance factors in the design matrix to directly compare the
three parameters in the both hemisphere of the AD vs. HC, HC vs MCI, AD
vs MCI and EMCI vs LMCI groups. The statistical analysis results of cortical
thickness, surface area, and gray matter volume are drawn in Figure 5-2.
Desikan-Killiany atlas divide the human cerebral cortex into 34 cortical
features in each left and right hemisphere. As the number of conflicting
features is much, we only present the several top-ranked features with

significant differences.

Table 3. Cluster difference in cortical thickness, area and volume in AD

patients.
_ Co-ordinate Size
Features Region Vertex| Value
x |y | z (mm2)
AD vs. HC
Thickness left insula -295(17.9| 119 | 3165 |-2.3512| 3619.47
left parahippocampal -31.3(-41.7| -8.7 | 557 |-2.2303|10736.27
left cuneus -47.9(-20.9| 42.8 | 1039 |-2.3188| 2824.28
right rostralmiddleforntal | 38.5 | 43 7 | 1224 |-2.1737| 14.8
right superiortemporal 53.3|-5.2|-52 | 468 |-2.8676| 256.28
ritht parsopercularis 50.3|10.2 | 8.8 | 1242 |-3.6071|58155.25
Area left paracentral -15.8|-35.5| 49.4 | 1197 |-2.2767| 7018.72
left latera orbitoforntal  |-53.3| -2 | 7.5 | 489 |-2.1962| 3218.23
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right paracentral 12,5 |-37.1| 55.4 | 1233 |-2.2555| 42.55

right inferiorparietal 34 |-51.9|37.4 | 1133 |-2.1026| 7213.05

right posteriorcingulate 14 |-30.4| 36.6 | 1201 |-2.0979| 1416.67

right inferiorparietal 39.5 |-44.7| 34.6 7 |-2.0263| 50.76

Volume ::thidalanteriorcingulate -5 118.4(26.4| 2073 |-3.2264| 834.61
left orbitalis -28.7|-60.2| 41.7 | 1103 | 2.3437 | 1202.55

left lateral orbitoforntal |-59.4| -6.9 | 9.4 | 412 |-2.0146| 635.67

right lateralorbitofrontal | 30.4 | 22.9 |-20.3| 631 |[-2.7411| 2025.6

right rostralmiddlefrontal | 34.8 | 51 | 4.7 | 198 | -2.717 | 1098.82

right parsopercularis 46.8 (152 | 8.7 | 136 |-2.717 | 8077.1

AD vs. MCI

Thickness left inferiorparietal -43.6|-61.5| 33 | 939 |2.7022 | 439.37
left fusiform -40 |-53.7|-20.3| 254 | 2.459 | 149.84

left superiortemporal -47.7) -25 | -9.1 | 210 |-2.5577| 328.03

right lateraloccipital 26.1 1-93.9| 3.7 | 363 |3.4944 363

right inferiorparietal 37.7|-71.7| 42.8 | 1129 | 3.3654 | 646.24

right superiortemporal 50.7 |-14.3| -2.4 | 722 |-2.9715| 342.28

Area left superiorparietal 28.4 | -51 |42.7| 1702 [-2.5085| 642.76
left precentral 32.2|-21.8/60.8| 109 |1.8969 | 51.54

left paracentral 14.1 (-36.7|52.4 | 238 |[-1.8959| 79.68

right inferiorparietal -35.2(-87.2|13.7| 50 |[-1.8099| 34.53

right precentral 5421-11 | 71 51 |-1.7244| 21.34

right superiorfrontal 74| 4 |665| 34 |1.6541| 17.86

Volume left superiorparietal -28.5|-58.8| 40 | 540 |3.5868 | 216.1
left superiorfrontal -85141.2(30.3| 48 |[-2.6334| 33.98
::sztjdalanteriorcingulate 49 (1131321 314 | -2549 | 150.07

right entorhinal 215 -8.9 [-29.5| 207 |-3.1433| 55.69

right lateralorbitofrontal | 42.8 | 27.8 |-13.7| 198 |-3.1034| 125.01

right superiorparietal 32,1 |-44.2|141.2 | 115 |-2.5309| 40.29

HC vs. MCI
Thickness left insula -36.4| -9.4 |-11.7| 811 |-3.5988| 309.94
left precuneus -6 |-68.9(41.7| 628 |2.3682 | 322.02
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left lingual -29.3|-445| -6.6 | 612 |-2.7175| 279.16
right insula 35.8 |-10.6| -7.4 | 1154 |-3.1385| 436.62
right parstriangularis 389317 1 372 |-2.1264| 204.87
right inferiorparietal 351 | -72 |409| 285 |-2.7121| 152.2
Area left superiorfrontal -17.8|31.5|49.6 | 237 |1.7293 | 156.88
left postcentral -52.1|-22.7|50.7 | 264 |1.7286 | 122.75
left superiorparietal -32 (-49.3| 473 | 141 |-1.7572| 66.04
right supramarginal 53.4 |-47.4| 35 | 1336 |2.7163 | 676.85
right fusiform 34.7| -12 |-34.1| 551 |2.0892 | 322.84
right precuneus 18.2 |-77.3|27.7 | 482 |1.7491| 313.36
right precentral 20.7 |-30.6(53.9| 328 |-1.9165| 115.45

Volume
left supramarginal 52.1|-46.3|22.6 | 441 |2.7521| 210.23
left cuneus 17.1(-69.5| 16.8 | 628 | 2.611 | 481.74
left precentral 21.2 |-30.7|53.8 | 376 |[-2.1546| 127.02
right parahippocampal -23.8|-36.1|-15.6| 278 |-1.8212| 127.68
right superiorparietal -9.1 |-74.3|46.5| 598 |2.5199 | 303.67
right superiorfrontal -18.1({33.3|139.6| 210 |2.6035| 114.72

EMCI vs. LMCI
Thickness left inferiorparietal -46.3| -60 | 11.1| 2770 |-3.7613| 1427.48
left superiortemporal -455| -0.4 |-20.8| 1067 |-2.6742| 466.24
left parahippocampal -31.7|-40.3|-10.1| 550 |-2.3925| 239.85
right temporalpole 29.2| 9 | -38 | 1449 |-5.5983| 822.82
right superiortemporal 62.3 |-34.7| 15.2 | 1292 |-3.1646| 549.97
right inferiortemporal 51.6 |-56.6| -3.7 | 882 [-3.0694| 507.91
right precentral 488 | -6.5 405 | 858 |-2.8315| 351.93
Area left fusiform -36.4(-29.5| -22 | 659 |[-3.0958| 312.21
left lateraloccipital -19.4] -99 |-15.1| 326 |2.6022 | 250.61
left parahippocampal -18.8|-33.5| -14 | 224 |-2.0347| 97.59
right superiortemporal 48.1 (-32.9| 2.2 | 1515 |-2.5815| 579.8
right superiorparietal 10.6 |-52.7| 65.1 | 1697 |-2.2367| 641.52
right postcentral 33.8|-29 |51.9| 799 |-2.0859| 367.23
Volume left bankssts -57.9(-46.9| -1 | 2196 |-2.6263| 1162.58
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left precentral -36.1| -22 | 51.7 | 2736 |-2.5339| 1073.1

left rostralmiddlefrontal |-22.4|27.9 | 32.8 | 582 |-2.3081| 326.86

right superiortemporal 62.3 |-34.7| 15.2 | 3392 |-4.4677| 1449.96

right precentral 495 -6.2 | 41.1| 4103 |-3.2472| 1813.94

right fusiform 33.9 |-37.8|-22.8| 782 |-3.1822| 425.05

Table. 3 presents the atrophy position and range of clusters involving for the
differences in gray matter volume, cortical thickness, and surface area at each
vertex between HC, MCI and AD by QDEC analysis. In this table, only the
top features which have significant cluster differences for each kind of
parameters are provided. From statistical maps shown in Figure 2 and

statistical Table 2 we can notice that:

1. The cortical thickness of the left insula, left cuneus, paracentral, right
rostralmiddlefrontal, right superiortemporal and right parsopercularis was
thinner in AD compared with HC. For HC vs. MCI the cortical thickness of
the left precuneus, left lingual, left and right insula, right parstriangularis and
right inferiorparietal was thinner. Similarly, for AD vs MCI the cortical
thickness of the left inferiorparietal, right lateraloccipital, and right
inferiorparietal, left and right superiortemporal was shows the major atrophy.
In case of EMCI vs. LMCI the cortical thickness of the left inferiorparietal,
left parahippocampal, right temporalpole and right superiortemporal area

shows the major difference.

2. In case the surface area, AD have lesser areas than HC in the left and right
paracentral, left latera orbitoforntal, right inferiorparietal, right inferiorparietal
right posteriorcingulate and right inferiorparietal.For HC vs. MCI the left
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superiorfrontal, left postcentral, left superiorparietal, right supramarginal, right
fusiform right precuneus and right precentral show the decrease area.
Similarly, for AD vs MCI left superiorpariental,left and right precentral, left
paracentral, right inferiorparietal and right superiorfrontal was shows the
major atrophy in surface area. In case of EMCI vs. LMCI the left fusiform, left
lateraloccipital, left parahippocampal, right superiorparietal and right

postcentral shows the major difference.

3. Compared with HC, the volume of gray matter on the left
caudalanteriorcingulate, left orbitalis, left lateral orbitoforntal, right
lateralorbitofrontal, right rostralmiddlefrontal and right parsopercularis was
lessr in AD. In case of AD vs. MCI left superiorparietal, left superiorfrontal,
left caudalanteriorcingulate, right entorhinal and right superiorparietal shows
the decrease in volume. For HC vs. MCI the left supramarginal, left cuneus,
left precentral, right parahippocampal and right superiorparietal shows the
major volume atrophy. Similarly, for EMCI vs LMCI the left bankssts, left
precentral, left rostralmiddlefrontal, right precentral and right fusiform have

decrease volume.

Moreover, from this analysis we can notice that, thickness area and volume of
the AD decrease significantly as comparison with HC, similarly, there was
significance atrophy between LMCI as comparison with EMCI and there was

little difference on atrophy pattern among AD and MCI patients.
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6. Experimental Results and Discussion

Individual features set is selected by SVM-RFE to identify the different
group and perform the classification. Similarly, we combine all the features
set from different measures and applied the SVM-RFE method on it to select
the optimal features. Multiple measure features set are created by combining
the cortical thickness, area and volume form sMRI, three measure form CSF,
APOE 4, and MMSE score. Proposed features selection with cross-validation
gives the optimal features vector for input to a classifiers. In this proposed
method classification performance was quantified by area under the ROC

curve.
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54

Collection @ chosun



0.80 1 I Number of features selected: 32

0.75 4

0.70 1

CV accuracy

0.65 A

0.60

0.55 A

T T T T
4] 20 40 60 80 100 120
Number of feature selected

b) HC vs. MCI features subset

0.80 A

HEl Number of features selected: 21

0.75 1

0.70 A

0.65 4

CV accuracy

0.60 4

0.55 4

0.50 1

T
0 10 20 30 40 50 60 70
Number of feature selected

¢) HC vs. MCI features subset

55

Collection @ chosun



0.70 4

0.68 4

0.66 A

CV accuracy

0.60 A

0.58 1

0.56 A

0.54

Figure 6-1.
RFE

0.64

0.62 A

Il Number of features selected: 7

T T T T T T T
10 20 30 40 50 60 70
Number of feature selected

d) EMCI vs. LMCI features subset

Feature selection for different class group (a-d) using SVM-

Number of features obtained from the Cross-validated SVM-RFE feature

selection algorithm are present in the Figure 5-3. The peak value on the x-axis

indicate the best number of features for the classification.
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Table 4. 10-fold cross-validated classification performance for AD vs. HC

SVM- SVM-

Features Measure ELM RBF Linear

ACC% | SEN% | SPE% | AUC | ACC% | ACC%

Cortical Thickness 84.72 | 93.28 | 83.43 | 0.83 | 77.56 80.72

Surface Area 81.34 87.13 | 90.45 | 0.87 | 75.86 76.98

Volume 85.81 | 94.73 | 83.78 | 0.85 | 78.32 80.13

CSF 86.73 | 95.33 | 88.38 | 0.90 | 75.40 79.21

APOE+MMSE 88.45 | 94.15 | 87.39 | 0.92 | 82.03 84.16
Concatenation

(All features set) 96.15 | 97.50 | 93.28 | 0.95 | 90.28 92.45

Table 5. 10-fold cross-validated classification performance for AD vs. MCI

Collection @ chosun

SVM- SVM-

Features Measure ELM RBF linear

ACC% | SEN% | SPE% | AUC | ACC% | ACC%

Cortical Thickness 69.52 84.14 | 68.02 | 0.72 63.3 64.15

Surface Area 62.71 68.11 | 81.09 | 0.64 | 60.78 64.37

Volume 65.93 83.24 | 6541 | 0.70 | 60.54 58.05

CSF 66.89 65.78 | 80.59 | 0.71 | 58.35 60.56

APOE+MMSE 82.31 86.53 | 8583 | 0.80 | 71.92 73.97
Concatenation

(All features set) 85.93 93.37 | 87.33 | 0.87 | 80.83 77.98
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Table 6. 10-fold cross-validated classification performance for HC vs. MCI

SVM- SVM-
ELM }
Features Measure RBF Linear
ACC% | SEN% | SPE% | AUC | ACC% | ACC%
Cortical Thickness 76.70 86.15 | 65.23 | 0.81 | 64.17 66.87
Surface Area 73.19 68.5 80.81 | 0.83 | 68.74 65.80
Volume 78.91 8773 | 73.01 | 0.85 | 66.70 71.93
CSF 81.72 75.12 | 86.32 | 0.85 | 72.98 74.90
APOE+MMSE 77.45 94.17 | 70.89 | 0.88 | 69.83 71.30
Concatenation
(All features set) 87.81 93.07 | 96.10 | 0.94 | 83.70 84.70
Table 7. 10-fold cross-validated classification performance for EMCI vs. LMCI
SVM- SVM-
Features Measure ELM RBF Linear
ACC% | SEN% | SPE% | AUC | ACC% | ACC%
Cortical Thickness 64.71 7250 | 59.19 | 0.62 | 58.31 61.12
Surface Area 62.43 72.85 | 7358 | 0.68 | 55.03 54.81
Volume 67.95 81.72 | 8553 | 0.72 | 60.35 61.40
CSF 72.21 80.15 | 71.12 | 0.74 | 63.85 63.25
APOE+MMSE 75.88 89.05 | 75.28 | 0.80 | 64.98 65.57
Concatenation
(Al features_ set) 81.73 92.3 78.73 | 0.88 | 70.93 74.95

To further analyze the effectiveness classification of combining different

measures, we calculated the AUCs for all feature concatenation. Figure 5-4

shows that all features (imaging and non- imaging biomarkers i.e.
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Figure 6-3. Comparison of classifiers performance on all features

concatenation

Thus in this study, first performed the statistical analysis and pattern
classification to differentiate and identified atrophy pattern for four group
(AD, HC, EMCI and LMCI). The individual sSMRI were preprocessed using
Freesurfer tool. After preprocessing the statistical analysis on SMRI, QDEC
was applied and finally, performed the classification task by proposed feature
selection and classification method respectively. For the brain atrophy analysis
proposed method used sMRI cortical metrics namely three kind of measures
(i.e. cortical thickness, surface area, gray matter volume). In case of AD
compared with HC, insula, parsopercularis, parahippoccampal and

superiortemporal are severely affected cortical thickness, surface area and gray
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matter volume. The cortical thickness of the left hemisphere is thinner as
compare to that in the left hemisphere. Similarly, for AD-MCI major atrophy
are notice on left inferiorparietal, right lateraloccipital. For HC-MCI the super
marginal and cuneus show the major atrophy. In case of EMCI-LMCI the
superiotemporal, precentral shows the decrease on thickness volume and area.
From the difference research we can say that major atrophy of cortical
thickness, gray matter volume and surface area mostly appears in the temporal
lobe, frontal lobe, cingulate gyrus, occipital lobe and parietal lobe. This
phenomenon strongly agree with findings related to the atrophy pattern seen
in previous studies [69], [70]. These regions mainly involved in personality
expression, motor execution, complex cognitive behavior and decision making
[50]. In addition, this research work present the less commonly analysis group
EMCI-LMCI. In case of MCI convertible the major atrophy seen on
superiotemporal, bankssts, precentral part, inferiorparietal and insula which

shows potential to recognize the early progression of the Alzheimer’s disease.

At second part, in order to analyze the efficiency of the combination of
imaging and non-imaging features, proposed method adapt the individual
feature form sMRI, CSF separately to carry out the experiment but in case of
genetics and cognitive features proposed method combine them to test the
performance and then to compare the accuracy with the accuracy of all features
combination. For features selection purpose proposed method used SVM-RFE
algorithm and compare the performance of the classifiers on the selected
features set. In this experiment SVM-Linear, SVM-RBF and ELM classifier is
used for classification. The classification results for the compared methods are
presented in Table 4, Table 5, Table 6 and Table 7. As shown in the table, the

performance accuracy of feature fusion is noticeably improved as compared
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with that of individual features set, and there are distinct degrees of elevation
in other indexes, and particularly the specificity index is more noticeable. On
the other hand, the performance accuracy based on the non-imaging features
is almost the same as imaging features in AD diagnosis but much superior in
the MCI diagnosis. For AD-HC: the accuracy obtained by CSF, genetics and
cognitive score showing a less increment but in case of MCI-HC, AD-MCI
and EMCI-LMCI shows the more increment on accuracy. The experimental
result shows the ELM classifier achieves better classification scores compared
to SVM classifier for both single modality features set as well as all features
concatenation. From the result shown in Table, we can see that suggested
method performed better than other methods. For classifying AD and HC,
proposed method achieves a classification accuracy of 96.15%, with a
sensitivity of 97.50 %, a specificity of 93.28% with AUC value of 0.95%. For
classifying MCI and HC, our method achieves a classification accuracy of
87.81%, with a sensitivity of 93.07%, a specificity of 96.10% and AUC value
of 0.94%. For classifying AD from MCI, proposed method obtained a
classification accuracy of 85.93%, with a sensitivity of 93.37%, a specificity
of 87.33%, and AUC value of 0.87%. Similarly for EMCI-LMCI proposed
method achieved the outstanding performance as compare to the previous
method by combining the multiple features with accuracy of 81.73%, with a
sensitivity of 92.50%, a specificity of 78.73% with AUC value of 0.88%.
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7. Conclusion

In conclusion, the results demonstrated that the combination of three measure
form sMRI, cortical thickness, cortical area, cortical volume, and threes non-
imaging measure, CSF, APoE4 and MMSE score improves AD diagnosis,
furthermore it is shown that great potential to early identification of the mild
cognitive impairment ( prodromal stage of the Alzheimer’s disease). In this
method we proposed the SVM-RFE features selection with ELM classifier for
the multiple biomarkers based AD diagnosis which significantly improve the
classifier’s performance. Moreover the result were shown to be better or
satisfactory ~ as compare to the previous literatures, epically for most
challenging classification work such as HC versus MCI and EMCI verses
LMCI. The added value of combining different anatomical MRI measures
should be considered in AD scanning protocols. There is still common practice
to only use the specific part or a single measure of whole brain atrophy for AD
identification. Obtained results shows that clinical AD diagnosis could benefit
from calculating multiple measures from an anatomical MRI scan with others
non-imaging biomarkers and incorporate these all in an automated machine
learning system. The suggested method in this thesis effectively promotes the
diagnosis accuracy of AD and MCI, but this method still has some drawbacks.
The next move in future work will include the improvement from the following
aspects: firstly, try to optimize parameter obtaining process. Secondly, in order
to enhance the effectiveness of the suggested method the dataset can be
increased from the following aspects: extending the longitudinal dataset for
the better understanding of progression of mild cognitive impairment (MCI);
including the multimodal dataset such as PET and function MRI, which can

gives the different characteristic information of the Alzheimer’s disease.
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