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ABSTRACT

Automatic Localization of Brain ROI from MRI using a
Two-Stage Ensemble Hough Convolutional Neural Network

Abol Basher

Advisor: Prof. Jung, Ho Yub, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

Artificial Intelligence is contributing in various ways to resolve complicated

problems now a days. Artificial neural network has already shown a lot of

break through in different disciplines, such as, medical imaging, computer vision,

share market. Deep learning based algorithms are using to address various

complex problems in medical imaging. Automatic localization of brain regions

of interest (ROIs) from magnetic resonance imaging (MRI) scan is a crucially

important task to diagnose the various neuro-degenerative diseases, such as,

Alzheimer’s disease. In this study, a method has been proposed to automatically

locate the brain ROI, such as, hippocampus from MRI scan using a two-stage

Hough convolutional neural Network (Hough-CNN). The proposed approach is a

amalgamation of Hough voting and the deep convolutional neural network (CNN)

and it locates the hippocampus in two Phase. In the first phase, the patches are

extracted from the whole MRI scan to train the global Hough-CNN except the

boundary region. In the second phase, the local patches are generated in the

vicinity of the hippocampus, and then the local models are trained using those

patches. In the test phase, the extracted patches from the whole hippocampal

x



region are used to predict the global position of hippocampus. After that, using

the global positions of the hippocampus, the local patches are extracted in the

vicinity of the target voxel. Using the local patches, the local Hough-CNN

estimates the exact location of the hippocampus in the MRI scan. The proposed

method is verified using Alzheimer’s Disease Neuroimaging Initiative (ADNI)

and the Gwangju Alzheimer’s and Related Dementia (GARD) cohort datasets.
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한글요약

2단계앙상블허프컨벌루셔널뉴럴네트워크를
사용한뇌MRI ROI위치예측연구

아볼바셔

지도교수:정호엽

컴퓨터공학과

대학원,조선대학교

인공 지능은 복잡한 문제 해결에 다양한 방식으로 기여하고 있습니다. 인

공 신경 네트워크는 이미 의료 이미징, 컴퓨터 비전과 같은 다양한 분야에서

많은 돌파구를 보여주었습니다. Magnetic resonance image (MRI) 스캔으로부

터 관심있는 뇌 region of interest (ROI)의 자동 위치 예측은 알츠하이머 병과

같은 다양한 신경 퇴행성 질환을 진단하기 위한 기본 작업 중 하나입니다. 이

연구에서는 2 단계 Hough Convolutional Neural Network (Hough-CNN)를 사

용하여 MRI스캔의해마와같은뇌 ROI를자동으로찾는방법이제안됩니다.

제안 된 접근법은 Hough 투표와 CNN (deep convolutional neural network)의

융합으로 2단계 Hough-CNN으로해마를찾습니다.첫번째단계에서는전역

Hough-CNN을 훈련시키기 위해 전체 MRI 스캔에서 three-view-patch (TVP)

가 추출됩니다. 두 번째 단계에서는 해마 근처에서 로컬 TVP를 생성한 다음

해당 패치를 사용하여 로컬 모델이 학습합니다. 테스트 단계에서, 전체 해마

영역에서 추출 된 TVP는 해마의 전체 위치를 예측하는 데 사용되며, 해마의

전역위치를사용하여,그주변로컬 TVP를추출합니다.로컬 TVP를사용하여

xii



로컬 Hough-CNN은MRI스캔에서해마의정확한위치를다시추정합니다.제

안된방법은 ADNI (Alzheimer ’s Disease Neuroimaging Initiative)및 Gwangju

Alzheimer ’s and Related Dementia (GARD) 코호트 데이터 세트에서 state-of-

the-arts결과를보여주고있습니다.
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I. INTRODUCTION

Artificial intelligence is being used to address complicated issues in different

fields in different way. Deep learning based methods are offering various

solutions for many complicated problems, such as, face recognition, object

detection, malware detectin, finger print recognition, hand writing recognition,

speech recognition, disease detection like alzheimer’s, tumour, and cancer cell

from multi-modal scanning of medical imaging and in so many other fields. This

study mainly focused on medical imaging. The neuro-anatomical structures of

human brain are highly complicated in nature and have many regions where the

neighbouring structure overlapped each other.

On medical imaging, a lot of researcher are carrying out several studies on

different branch of medical issues in recent years. One of the crucial studied

field of medical imaging is brain magnetic resonance imaging (MRI)[1]–[4].

Different neurological disorders, such as, Alzheimer’s disease, Schizophrenia,

Epilepsy etc., are diagnosed using MRI. To perform such diagnosis, the prior

knowledge of the particular organ in an MRI is very important. From 3-D MRI

space, automatic localization of region of interest (ROI) is very complicated task.

The hippocampus is one of the many ROIs, that has received a very high interest

by the researcher communities and they are trying to analyze it’s shape, size and

structural changes along with it’s atrophy. It is one of the complex ROIs of the

human brain limbic system[2]. The neuro-analyst belived that the hippocampus

plays a significant role in the learning process and the memory management of

our daily life activities[2]. In addition, the hippocampal shape, structure, and size

are the prime biomarker for the Alzheimer’s disease detection [1], [2], [5], [6].

Several research communities are working in different ways to perform
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accurate localization and segmentation of hippocampus with it’s sub-fields

automatically [1]–[3], [7]. Several methods[1]–[3], [7], [8] were proposed to

localize and segment the hippocampus and it’s sub-fields, yet it is a challenging

research field due to the anatomical structure of the left and right hippocampi

in both hemispheres. In adult brain, the approximate volume of hippocampus

is 3.0 to 3.5 cm3 on each side of the brain [9]. On the other hand, the faint

edges and the overlapping intensities with the neighboring structures makes the

hippocampal segmentation highly difficult[1]. Because of all this complexities, it

will be very helpful for the segmentation process if we have the prior knowledge

of the hippocampus in advance. Furthermore, it will provide an confined area of

ROI and possibly the segmentation seeding points as well.

In this study, we proposed a method by aggregating the Hough voting [10]–

[12] strategy with deep convolutional neural network (CNN)[13], [14]. Deep

CNN is known to be a very good feature extractor from the input data. Hough

voting and the deep CNN work together to determine the displacement vectors

from the random sample points to the target location from the given volumetric

MRI scan.

The proposed approach consisted of a two-stage ensemble learning similar to

[15] and [16]. Using this method, it is possible to exactly estimate the location

of the brain ROIs, such as, hippocampus. The proposed ensemble Hough-CNN

consists of multiple global and Local models. The models were amalgamated to

form ensemble model in both phase. Then, the amalgamated global and local

models were aggregated together to form the final two-stage ensemble Hough-

CNN. The global models were trained to learn the global feature maps from the

whole MRI scan. The global information of an MRI facilitates the global models

to learn the overall structural complexities of multiple organs of the human brain.
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The features extracted from the different regions of MRI scan offers an inter-

organ variability studies for the global model which help the global model to

localized the global position of the target ROI. From the vicinity of the target ROI,

multiple patches were extracted to train the local models. The local models learn

the locals features of the MRI scan. The differentiable objective looks towards

the overlapping organ and the distinguishable features collection from the local

area of the target ROI will facilitate the local model to exactly localize the

target ROI. In the test phase, the multiple trained global models were ensemble

together to predict the displacement vectors. The resultant averaged displacement

vectors were added with the global patches centres to have the predicted ROI

location in the MRI scan. This predicted location of ROI is considered as the

the global position of the ROI in the MRI scan. After that, the predicted global

locations of ROI were used to generate the patches for the local models. The local

models predicted the displacement vectors from the extracted local patches. The

predicted local displacement vectors were added with the global position of the

ROI to estimate the exact location of the ROI, which is expected to be inside the

ROI. This simple two-stage localization strategy offers us a good model which

can localize any ROI, such as, the left and right hippocampi from both hemishpere

of brain MRI scan.

A. Contributions

• A two-stage ensemble based method has been proposed to localize the

ROIs from MRI scan.

• We design and evaluate different Hough-CNN (GH-CNN and LH-CNN)

architecture with different number of layers and filters in each layers. This

approach offers an insight view on how different architecture cope with

3



different variabilities exist in medical MRI scans

• We demonstrate an efficient method to train the deep learning model using

small dataset. Each type of network is trained using different amount of

data to see the impact in the final localization. We have developed an

approach to generate different amount of data from limited amount of MRI

scans

• We adopted Keras sequential framework to implement a two-stage

ensembled Hough-CNN. It offers automatic data management which

allows us to consider as much data as it required to train, validate and test.

B. The Research Objectives

Although several methods have been proposed already, because of the nature

of challenging hippocampal complex structure a method of fully automatic

localization of hippocampus was not there. Therefore, a fully automatic deep

learning based method has been proposed using Hough voting and the deep CNN

in this thesis to localize the left and right hippocampi from MRI scan. Our goal

is, therefore, to reduce the amount of time required to localize the brain ROIs,

such as hippocampus, as well as provide simplified and computationally efficient

model which can accurately estimate the left and right hippocampi from an MRI

scan.

C. Thesis Layout

The thesis is organized as follows. In Chapter II, we present an overview of the

different types of algorithms contributing in medical imaging and other fields.

4



Then in chapter III, we describe the proposed methodology and the dataset used

to validate the proposed two-stage Hough-CNN. Next in Chapter IV, we discuss

about the network architecture, loss function employed to train the proposed two-

stage ensemble Hough-CNN and representative training procedures. We describe

the localization procedures, error calculation and the statistical significant of

the proposed method against the manual localization with a quantitative result

analysis in Chapter V. We summarize our proposed approach in Chapter VI.
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II. Related Works

In this section, we review the different methodologies related to medical

imaging and some of the non-medical research mostly related to localization,

segmentation, action recognition and object recognition from images and video

data. Many methods have been proposed to localize object from images of

different modality and disciplines. Brain structural ROIs localization have

received a high interest by the research communities. The localization methods

can be categorized into many types,such as, manual localization, spatial relation-

based localization, atlas and statistical atlas-based localization, statistical shape

model-based approaches as well as the artificial intelligence i.e., machine

learning and deep learning based methods. Although manual localization

considered as the gold standard in medical field, yet the researcher are thriving

to build a fully automatic localization methodology. The manual localization of

brain structures from MRI scan largely depends on expert radiologist, which

can require a very large amount of time [17], [18]. On the contrary, the spatial

relation-based method utilized a set of rules that were predefined such as fuzzy

sets [19], [20]. The atlas and statistical atlas-based method offer automatic

estimation of ROI from MRI scan, but it performs the localization by exploiting

an atlas to extrapolate information to the target image using co-registration [21],

[22]. In addition, these types of methods can accurately estimate the target

ROI’s position automatically, however, they usually require a large amount of

computation time. To overcome the complexities of atlas-based system, other

methods have been proposed, where statistical shape based model is one of

the important candidate. The statistical shape model is capable of estimating

shape variability from the training population and discern all the shapes existed
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in the training data and extract the mean approximate shape [23] . Using the

extracted mean shape, the statistical shape model-based approaches localize the

approximate position of the ROI.

A pairwise nonrigid coherent point drift registration-based method was

proposed in [1] to estimate the hippocampal position. Manually delineated 40

MRI scans were used to validate the proposed approach. They used the strength

of assembly based coherent point drift registration and estimated the root means

square distance from the random location to the target hippocampus. They have

reported the root mean square error of 3.5 mm from the predicted location to the

ground truth location.

On the other hand, a knowledge-based localization strategy of brain ROI was

reported in [2]. This approach were build based on statistical road map where

their intention was to localize the landmark in the brain MRI. They have also

localized the hippocampus as representative ROI from the MRI scan using their

proposed knowledge-based approach.

In [24], the authors have proposed an automatic segmentation method based

on statistical parameter mapping to automate total intra-cranial volume (TIV)

measurement from MRI scans. The intra-cranial volume is measured to correlate

the hippocampal volume atrophy which is known to have a connection with

several neurodegenerative disorders.

An in vivo atlas-based approach has been reported in [25] to segment the

hippocampal sub-fields from MRI scan. Hippocampus is known to have one of

the most complex structure in human brain. The sub-fields of the hippocampus

is highly complicated in nature. J.L. Winterburn et al. proposed an in vivo atlas

approach which can segment the hippocampal subfield. This approach has been

implemented in Freesurfer 5.3.0.
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On the contrary, an Bayesian model of shape and appearance based approach

were proposed by [26] to segment the sub-cortical brain. This method has been

packaged in FSL First software package.

An neural network based automated epileptic seizures detection were

proposed using multi-layer perception in [27].

In [28], 3-D fully convolutional networks based approach has been proposed

to segment the sub-cortical regions from brain MRI. 3-D convolution is not

computational efficient and it requires very long time to train the network.

However, J.Dolz et al. have come up with an idea to confine the limitation of

3-D CNN and segment the sob-cortical organs from MRI scans.

To detect arbitrary shape from image, a method was proposed in [29]. The

author used the Hough transform algorithm to extract the features from the input

image to identify the shapes.

In [30], A.Yao et al. proposed a method based on Hough transform voting

framework to classify and localize human action in videos. A discriminative

multi-class codebook were formed from the leaves of the decision trees, where

the codebook consist with the action class along with vote for action centres.

They used the low-level features such as optical flow and gradients to achieve the

state-of-the-art result on several datasets.

J. Gall et al. [10] proposed Hough forest, a method, by improving the general

Hough transform and amalgamating with the other models, such as Implicit

Shape Model, to detect an object from highly unconstrained images and video

frames. A random decision trees extracted from input data are used to form the

Hough forest, where the local appearances of images are utilized to construct

the leaves of the decision trees. Each leaf of the decision trees are marked as

a probabilistic vote in the Hough space, where a set of leaves behaves like an
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implicit appearance of codebook. The implicit appearance of codebook were

improved to construct the Hough forest and detect the object from images and

video frames.

A method were proposed combining generalized Hough transform with

a discriminative training in [31] to localize object in medical imaging. H.

Ruppertshofen et al. trained their model discriminatingly focusing on common

features of the target object in the training images considering a minimal

localization error to obtain efficient and robust localization results. They tested

their method to localize knee from long-leg radio-graphs, the vertebrae in C-arm

CT and the femoral head in whole-body MR.

A multiple objects instance detection methodology were developed by O.

Barinova in [32]. In this method, one the one hand, they used the wide

applicability and simplicity of Hough transform. On the other hand, they

overcome the multiple peak identification problem in Hough images as well

as detect the mltiple objects instances without invoking the non-maximum

suppression. Using this method, they improve the detection accuracy by a large

margin for straight line detection, and the pedestrian detection.

M. Godec et al.[33] extended the concept of Hough Forests to another domain

and aggregated the Hough voting-based detection and back-projection method

with a rough GrabCut segmentation to track the non-rigid object. They have

overcome the limitations of a fixed bounding box and tracked the objects using

generalized Hough transform. Under several predefined conditions, such as heavy

non-rigid transformation, rotations, changing scales, and the partial occlusions,

the proposed method showed robust and accurate tracking result.

On the other hand, A. Tran et al.[34] proposed a method to improve the

efficiency and reliability of the Hough forest. Firstly, instead of using the
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random patches from the training set, they selected a proportion of patches most

relevant to the image content from a geometrical criterion. Secondly,instead

of considering the uniformly sampling the parameter space, they utilized a

probability map to construct the sample set. Using their proposed approach,

training time were reduced drastically without affecting the accuracy and

confined the variability of the detectors in a certain range. The proposed method

were validated in the context of detecting the car and pedestrian.

Hough forest algorithm works effectively in object detection tasks. To extend

the potential of Hough forest in pattern search, C. Henderson et al.[35] proposed a

method that was capable of searching the database index and detecting the pattern

in a real time. They implemented and detected the pattern from complex and

crowded street-scenes in videos which was a challenging task.

Object detection in autonomous video surveillannce systems, Hough forest

based models are widely used now a days. Hough forest uses the local patches

that vote for the center of the object in image. However, since the voting process

is occurred independently by the patches, therefore, it is uncertain that the trees

constructed in Hough forests can have the optimal parameters for the entire

model. To overcome this issue, a model has been proposed in [36]. The authors

introduced weights to each displacement vectors in the training images and the

weights were updated during the training process to minimize the global loss

function. To accurately localize the instances in the image, the weights were

utilized in both training and detection process. The authors validated their method

on TUD pedestrian and UIUC car datasets.

To analyze interaction between human and advanced computer system with

human behaviour, head pose and facial feature localization can play a vital rule.

A method was proposed in [37] based on patches extracted from the image
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considering a regular grid. The authors performed a conjugated operation of

classification and regression on each patch. The foreground and background were

classified in classification phase, whereas, the casting of vote in the Hough space

were estimated in the regression phase. Instead of using the random forest, the

authors utilized the CNN to extract the features from the input images.

In [38], a method of Latent-Class Hough forests were proposed for 6

DoF pose estimation and object detection from cluttered and occluded images.

They amalgamated a scale-invariant patch descriptor with the regression forest

considering a template-based split function. The proposed approach used only the

positive samples for training, and the leave nodes were considered as the latent

variables. The authors validated their method using highly challenging dataset of

multiple instance holding 2-D and 3-D clutter as well as background occlusions.

The most relevant study related to our approach has been proposed by F.

Milletari et al [39]. They proposed a Hough-CNN based segmentation approach

for multi-modal, multi-regional medical images. In [39], they used Hough voting

strategy, which allowed them to automatically localize and segment the 26 ROIs

of the basal ganglia and the mid-brain from the MRI and transcranial Ultra-sound

volumes. To perform the localization and segmentation, CNN architectures have

been constructed to see the insights of the network, and how they cope with data

variability exist in medical images along with different modalities. Constructed

CNN models had different numbers of layers and convolutional kernels in each

layer.

Hough votes consist of a collection of evidences where each evidence refers

to a product set of various locations, aspects, and scales. The largest peak of all

Hough votes directs towards an instance of an objects. The displacement vectors

were estimated by the CNN models and directed towards the ROI based on the
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estimated instances in the Hough space domain. In this thesis, we focused on

automatic localization of brain ROIs, such as left and right hippocampi, using

two-stage ensemble Hough-CNN and we quantitatively evaluated the root mean

square error against manually delineated ground truth.
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III. Methodology and Datasets

A. Method

In 3-D MRI space, any specific location or organ’s position can be traced if

we can estimate the displacement vectors from that specific location or organ’s

position to any other positions. Using random voxel position as a center, we

can generate multiple sample patches with corresponding displacement vectors

from the voxel position to the region of interest. The distinguishable anatomical

structural context around the ground truth can be used to train the CNN to

estimate the displacement vectors. We can use the Hough voting strategy with

the amalgamation of deep CNN to calculate the displacement vectors from

input image features to the anatomy of interest. From the multiple patches, we

estimated multiple displacement vectors, which lead to the target ROI’s location.

The estimated multiple displacement vectors, then, can be averaged and added

with respective random patch centre to determine the ultimate point that is

designed to be placed inside the anatomical interest. To determine the accurate

location of the anatomy of interest point, two phase Hough-CNN based system

have been designed in this study [15]. In the first phase, the global position of

the anatomy of interest are estimated using the patches from the whole MRI scan

except the boundary region. In the second phase, the patches are extracted in the

vicinity of the ROI and those patches are used to train the multiple Hough-CNN

models to determine the exact location of the target ROI. The global and local

models are amalgamated in the test phase to estimate the accurate location of the

anatomy of interest inside the test MRI scan. Using this approach, left and right

hippocampi are localized from an MRI scan in this study.
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(a) The displacement vector calculation from random patch centre to the target hippocampus locations.

(c) The global displacement vectors (GDV) estimation (d) The local displacement vectors (LDV) estimation

Figure 1: The displacement vectors estimation from the random patches’s centres to the

target left and right hippocampi’s location. (a) from any particular slice, the extracted

patch centres to the target locations are shown for axial, coronal and sagittal slices. (b)

The green dots residing inside the MRI are the centres of the global patches. The offsets

from the centres to target image voxel positions (TIVP) are calculated to determine the

global displacement vectors (GDV) for each patch. (c) Similarly, for the local models,

the green dots residing inside the red circle in the vicinity of the TIVP are used to extract

patches to training the local models. The offsets from the centres of the green dots to the

red dot are the local displacement vectors (LDV) for the local models.

Now, let us consider that any volumatric MRI, M(XYZ) : Z3 → N and three

axes are X,Y,and Z in that MRI. If there are any random voxel position P(aX,bY,cZ)
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inside the MRI scan and manually localized voxel position of any particular

anatomy of interest, Q(uX,vY,wZ), then the displacement vectors between the

random voxel position P and the manually localized voxel position of any

anatomy of interest Q are XGT, YGT and ZGT.

XGT = uX – aX (1)

YGT = vY – bY (2)

ZGT = wZ – cZ (3)

XGT, YGT, and ZGT are used as the ground truth while the proposed Hough-

CNN are trained. aX, bX, and cX are the patch centres, and using these centres,

three view 2-D patches are extracted from MRI scan. The red and yellow dices

in Figure 1(a) denote as the voxel location of the target ROI’s and the random

patch center of the slices of axial, sagittal, and coronal view of an MRI scan,

respectively. The blue arrows reaching to the red dice are the displacement vectors

of those patches of the specific slices of axial, sagittal, and coronal view from

target ROI, i.e., hippocampus in this case. From multiple centres to the target

ROI’s displacement vectors are shown in Figure 1(b) and (c) imagining that the

green dots are the patch centres and the yellow arrow lines are the displacement

vectors from those patches, where the red dot is the target ROI.

B. Dataset

In this study, two MRI datasets are considered to verify the proposed approach.

Alzheimer’s disease neuroimaging initiative (ADNI) dataset consists of 351 MRI

scans with three classes: AD, MCI, and NC. The MRI voxels size was 1mm3 with
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the dimension of 256x256x170. The number of subjects participated to generate

the scans were 60. On the other hand, Gwangju Alzheimer’s and related dementia

(GARD) cohort dataset consist of 326 MRI scans with four classes: aAD, mAD,

ADD, and NC. The GARD dataset has the dimension of 312x212x240 with a

voxel size of 1mm3. The total of 326 subjects of male and female participated in

the scanning process.

Figure 2: The patches centres residing inside the red cuboid is considered region to

generate the patches. The whole cuboid is considered to generat patches for the global

model, whereas, only the circular regions used to generate the patches for the local

models. The center of the MRI is denoted by C and the circular red dot with a cross

is the target left and right hippocampi’s locations. X, Y, and Z are the three axes of the

3-D MRI scans.

C. Patch and Label Generation

MRI scan is highly complex and the dimension of the MRI is very large,

which is not computationally efficient for the machine that is used to train the
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models. Therefore, from 3-D MR imaging space, 2-D patches were extracted

considering uniformly distributed random point within the MRI scan. The

uniformly distributed random point is shown in Figure 2. The 3-D MRI scan

were split into axial, coronal, and sagittal slices. The representative 2-D axial,

coronal, and sagittal slices are shown in Figure 3 and 4.

Figure 3: The whole MRI scan except in the boundary region are considered to extract

patches using uniformly distributed sample points. From 3-D MRI space 2-D, 96x96

patches are extracted for the global model (GH-CNN). These extracted patches are

downscaled to 32x32 and then merged them into 3-channel 32x32 patches

Using those uniformly distributed global points, the generated global patches

from MRI slices are shown in Figure 3. The patches were extracted from whole

MRI scan except the boundary region. 96x96 sized patches were extracted for

the global model. The extracted patches were normalized using mean zero and

standard deviation of 1. After that, the 96x96 sized patches were resized into

32x32 sized patches. These global patches contained the global information of

the whole MRI along with the hippocampal information.

Similarly, the local patches were extracted using uniformly distributed

random local points shown in Figure 4. The generated patches have a size
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Figure 4: The local patches are generated from the vicinity of the target left and right

hippocampi. From the target position of the hippocampus, 3-D 8x8x8 cubic region are

selected to reside the local patches centres. The local patches’ size of 32x32 are generated

from the cubic cuboid and merged them into 3-channel 2-D patches for the local models.

of 32x32. Then, the extracted patches were normalized using mean zero and

standard deviation of 1. These generated patches have the local information about

the target ROI, such as hippocampus.
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IV. Network Architecture

A. Convolutional Neural Network

The proposed convolutional neural network [40], [41] model consists of a number

of layers which conduct operations on input data (Isize). The Convolutional

layers ( C#filter
kernel ) perform convolution operation on input images Isize with a

number of preset kernels. They are usually followed by batch normalization

layer [42] and activation function [43], where the normalization layer normalizes

the results of convolution and activation function rescales the batch normalized

outputs of convolution in a non linear manner. Pooling layers (PType
stride) are used

to reduce the dimensionality of the outcomes produced by the previous layers

through down-sampling. The type of the pooling can be max-pooling or average

pooling. Finally, to extract the high level features, the fully connected layers

(F#filter) are employed. The weights are optimized during training through back-

propagation[44]. CNNs are good at extracting features without requiring any

assistant from the user. The automatic extraction of image features through

CNN solved so many complicated issues and helped to analyze complex shapes,

orientation, and size from 2-D and 3-D medical and non-medical image data. In

addition, the optimal features extraction is a part of the learning process. The

data is processed through the layers in a feed-forward manner and the results

of the network are compared with the ground-truth through a cost function and

the error is back-propagated to update the weights of all the layers. The training

continues until it converge. After completing the training, the prediction can be

made by using the trained CNN model in a feed-forward manner and results can

be reported from the last layer outputs.
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(a) GH-CNN

(b) LH-CNN

(c) Two-Stage Ensemble Hough-CNN

Figure 5: The proposed two-stage ensemble Hough-CNN graphical architecture. (a)

The generated patches from the whole MRI scan are used to train the global Hough

convolutional neural network (GH-CNN). (b) On the other hand, the patches extracted

from the vicinity of the MRI scan are used to train the local models. (c) The multiple

trained CNN models are amalgamated together to form the ensemble global and local

model and then form a two-stage ensemble Hough-CNN to estimate the target ROI

locations.
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Table 1: GH-CNN and LH-CNN network architectures used in the ADNI dataset.

Model

Name

Network

Architecture

GH-CNN
GMlh

I32,C
16
3 ,C16

3 ,Pm
2 ,C

32
3 ,Pm

2 ,C
32
3 ,Pm

2 ,C
64
3 ,C128

3 ,

F128,F128,F3

GMrh

I32,C
16
3 ,C32

3 ,Pm
2 ,C

64
3 ,Pm

2 ,C
128
3 ,Pm

2 ,C
256
3 ,C512

3 ,

F512,F128,F3

LH-CNN
LMlh I32,C

32
3 ,C64

3 ,Pm
2 ,C

128
3 ,Pm

2 ,C
256
3 ,F512,F256,F3

LMrh I32,C
32
3 ,C64

3 ,Pm
2 ,C

128
3 ,Pm

2 ,C
256
3 ,F256,F128,F3

Isample size =Network input,C
(#filter)
(kernal size) =Convolutional layer,

Pm
2 =Max Pooling with stride 2,F(#filter) = Fully connected layer.

B. Network Architecture Overview

Different types of network design topologies were proposed[16], [27], [45], [46]

and [28] to analyze the brain ROIs. To localize the ROI, we have proposed a multi

phase ensemble [15], [16], [47] based network design topology in this study.

We have designed two different types of Hough-CNN architecture to address the

localization of left and right hippocampi, a significant brain ROI which is known

to be related with different neuro-degenerative disorders, from an MRI scan.

In addition, Hippocampus is also known to have connection with our memory

and learning process. We have constructed global Hough convolutional neural

network (GH-CNN) and local Hough convolutional neural network (LH-CNN).

GH-CNN is responsible for estimation of the global positioning of the anatomy
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Table 2: GH-CNN and LH-CNN network architectures used in the GARD cohort dataset.

Model

Name

Network

Architecture

GH-CNN
∗GMlh

I32,C
16
3 ,C32

3 ,Pm
2 ,C

64
3 ,Pm

2 ,C
128
3 ,Pm

2 ,C
256
3 ,C512

3 ,

F512,F128,F3

GMrh

I32,C
16
3 ,C32

3 ,Pm
2 ,C

64
3 ,Pm

2 ,C
128
3 ,Pm

2 ,C
256
3 ,C512

3 ,

F512,F128,F3

LH-CNN
LMlh I32,C

16
3 ,C32

3 ,Pm
2 ,C

64
3 ,Pm

2 ,C
128
3 ,C256

3 ,F256,F128,F3

LMrh I32,C
16
3 ,C32

3 ,Pm
2 ,C

64
3 ,Pm

2 ,C
128
3 ,C256

3 ,F256,F128,F3

Isample size =Network input,C
(#filter)
(kernal size) =Convolutional layer,

Pm
2 =Max Pooling with stride 2,F(#filter) = Fully connected layer.

∗One of GMlh does not have a batch normalization layer, instead, it has dropout layer

after first fully connected layer (f-1)(25 %) and second fully connected layer(f-2)(35 %)

of interest, whereas, the LH-CNN estimates the local position of the respective

ROI localized by the GH-CNN.

C. Global Hough Convolutional Neural Network

The global models extract the global features from whole MRI scan and

predict the global displacement vectors (GDV). Multiple GH-CNN models are

aggregated together to form the ensemble GH-CNN model. The GH-CNN

consists of 6 convolutional layers with 3 fully connected layers. All convolutional

layers have the same kernel size (3x3) but the number of filters are different in

different convolutional blocks. Each convolutional block is followed by batch
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normalization layers and relu activation function. Three pooling layers are used

to design the GH-CNN. The pooling layers are placed after 2nd, 3rd, and 4th

convolutional layers. The fully connected layers are also followed by a batch

normalization layer and relu activation except the last fully connected layer. The

last fully connected layer is only followed by a batch normalization layer. The

GH-CNN architecture is shown in Figure 5(a) and the parameter detail is shown

in Table 1 and 2

Algorithm 1 Global Model Training Procedures

1 Data: Input MRI volume, M(XYZ),

2 Output: Trained GH-CNN model

3 Initialize the number of smaple k;

4 Initialize the global sample centres GSP(XYZ ), where

5 X= {X1,X2, · · ·Xk},

6 Y = {Y1,Y2, · · ·Yk},

7 Z = {Z1,Z2, · · ·Zk},

8 Generate the global samples, Sg = {S1, · · ·Sk} using (X,Y,Z)

9 Get the target ROIs Voxel location, GTVPXYZ

10 Calculate the global displacement vector,

TGDV(XYZ) =GTVP(XYZ) –GSP(XYZ )

11 Initialize the number of epochs e;

12 For i : 1 to e do

13 Network input: Sg; Label: TGDV(XYZ)

14 Predict, PGDV(XYZ)

15 Calculate loss, L = 1
k

(
(TGDV(XYZ) –PGDV(XYZ))

2
)
;

16 Find the best PGDV(XYZ) such that L→ 0;
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D. Local Hough Convolutional Neural Network

The neighboring area of target ROI contains the most important and

distinguishable features. Therefore, the local models, which are trained to extract

feature to localize the target ROI, plays the most important role. To localize

the hippocampus from 3-D MRI scan, we proposed a local models which is

responsible to estimate the exact location. Multiple local models are amalgamated

to construct the ensemble LH-CNN architecture.

The LH-CNN structure is little different than the GH-CNN. The number of

convolutional layers used in LH-CNN is not the same as GH-CNN. For GARD

dataset, LH-CNN consists of 5 convolutional layers with 3 fully connected

layers. The kernel size (3x3) is same as the GH-CNN. But the number of filters

used in convolutional layers are different in different convolutional layers. The

convolutional layers are aggregated with the batch normalization layers and relu

activation function. Two max-pooling layers are used to construct the LH-CNN.

The max-pooling layer is added after 2nd, and 3rd convolutional layers. The fully

connected layers are amalgamated with relu activation function except the last

fully connected layer. The relu activation are followed by a batch normalization

layers. The last fully connected layer are followed only by a batch normalization

layer. Similar network structure were used for ADNI Dataset as well, except that

4 convolutional layers were considered to build the model.

The local 3-channel 2-D 32x32 patches generated from the neighboring area

of the hippocampus are used to train the LH-CNN. The detail patch generation

techniques are explained in previous chapter. The local model learns the feature

maps from the input patches and predicts local displacement vector (LDV) for

each patch. After that, the averaged predicted LDV is calculated and added with
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global model estimated hippocampus position. The resultant value of the two-

stage ensemble Hough-CNN is the final predicated location of the hippocampus.

Using this voxel location, three view-planes of axial, sagittal, and coronal slice

of the hippocampus are displayed.

Algorithm 2 Local Model Training Procedures

1 Data: Input MRI volume, M(XYZ),

2 Output: Trained LH-CNN model

3 Initialize the number of smaple k;

4 Initialize the local sample centres LSP(XYZ ), where

5 X= {X1,X2, · · ·Xk},

6 Y = {Y1,Y2, · · ·Yk},

7 Z = {Z1,Z2, · · ·Zk},

8 Generate the local samples, Sl = {S1, · · ·Sk} using (X,Y,Z)

9 Get the target ROIs Voxel location, LTVPXYZ

10 Calculate the local displacement vector,

TLDV(XYZ) = LTVP(XYZ) –LSP(XYZ )

11 Initialize the number of epochs e;

12 For i : 1 to e do

13 Network input: Sl; Label: TLDV(XYZ)

14 Predict, PLDV(XYZ)

15 Calculate loss, L = 1
k

(
(TLDV(XYZ) –PLDV(XYZ))

2
)
;

16 Find the best PLDV(XYZ) such that L→ 0;
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E. Loss Function

In case of optimization algorithm, the function that determine the difference in

between the predicted output and the true output is known as a loss function or a

cost function. To train the GH-CNN and LH-CNN, we used square error as a loss

function. Now, if the predicted displacement vectors for an anatomy of interest in

3-dimensional space are XPT, YPT, and ZPT, whereas, the target displacement

vector are XGT, YGT, and ZGT considering axial, sagittal and coronal view, then

the projected generalized loss function can be written as follows.

MSE =
1

k∗q

(
j=k∗q

∑
j=1

)
(
1

3

(
(XGTj

–XPTj
)2+(YGTj

–YPTj
)2+(ZGTj

– ZPTj
)2
))

(4)

Now, for the GH-CNN, if the global displacement vectors are XGDV, YGDV,

and ZGDV, where the target displacement vectors are XGT, YGT, and ZGT

considering axial, sagittal and coronal view, then the loss function for global

models can be written as follows.

MSEGH–CNN =
1

k∗q

(
j=k∗q

∑
j=1

)
(
1

3

(
(XGTj

–XGDVj
)2+(YGTj

–YGDVj
)2+(ZGTj

– ZGDVj
)2
))

(5)

Similarly, for the LH-CNN, if the local displacement vectors are XLDV,

YLDV, and ZLDV, whereas, the target displacement vectors are XGT, YGT, and

ZGT considering axial, sagittal, and coronal view, then the loss function for local

models can be written as follows.
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MSELH–CNN =
1

k∗q

(
j=k∗q

∑
j=1

)
(
1

3

(
(XGTj

–XLDVj
)2+(YGTj

–YLDVj
)2+(ZGTj

– ZLDVj
)2
))

(6)

F. Training

For ADNI dataset, 231 MRI scans were used to generate the training patches,

whereas, 56 MRI scans are used to generate the validation patches. On the other

hand, 196 MRI scans were used to generate the training patches for the GARD

cohort dataset. For validation, 65 MRI scans are used to extract patches. After

generating the patches for GH-CNN and LH-CNN with their respective labels,

we run the model for training. All the models (24) were trained separately. We

have used the Adam optimizer[48] with square error cost function to observe the

training progress. The adam optimizer’s parameter setting were kept as default

except the learning rate. We used 1e-5 to 1e-2 as a learning rate to train the 24

models. The training were continued total of 250 epochs for each global model,

whereas, it was 200 epochs for each local model. The representative training and

validation curves for the GH-CNN and LH-CNN of the GARD cohort dataset

were shown in Figure 6 and 7, respectively. For the GH-CNN, the training time

was an average of 10 hours, whereas, for the local model, it took on average of 6

hours to train the models. We performed 5-fold cross validation for both datasets.
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Figure 6: The representative training and validation loss curve of the GARD cohort

dataset for the GH-CNN: Right Hippocampus.

The cross-validation results of the GARD and ADNI cohort dataset are shown

in Table 3 to Table 6 and Table 7 to Table 10, respectively. All the training

were performed on HP Workstation Intel Xeon Processor (3.10 GHz) with 32

GB RAM along with NVIDIA Quadro MD4000 GPU (8GB).

Figure 7: The representative training and validation loss curve of the GARD cohort

dataset for the LH-CNN: Right Hippocampus.
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Table 3: GARD cohort dataset: Left hippocampus (LH-CNN):

5-fold cross validation

Type Fold-1 Fold-2 Fold-3 Fold-4

Training MSE 0.7372 0.7447 0.7365 0.7359

Validation MSE 2.1765 2.0254 1.6226 1.8735

Testing MSE 2.9105 2.9269 2.9060 3.0835

Table 4: GARD cohort dataset: Left hippocampus (GH–CNN∗):

5-fold cross validation

Type Fold-1 Fold-2 Fold-3 Fold-4

Training MSE 1.1158 1.0648 1.0728 1.0509

Validation MSE 1.0743 1.2216 1.0420 1.1747

Testing MSE 1.2307 1.2008 1.2163 1.2421

Table 5: GARD cohort dataset: Right hippocampus (LH-CNN):

5-fold cross validation

Type Fold-1 Fold-2 Fold-3 Fold-4

Training MSE 0.1915 0.1959 0.1961 0.1915

Validation MSE 1.8579 1.7032 1.3898 2.1815

Testing MSE 1.8435 1.8159 1.8443 1.9543
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Table 6: GARD cohort dataset: Right hippocampus(GH–CNN∗):

5-fold cross validation.

Type Fold-1 Fold-2 Fold-3 Fold-4

Training MSE 1.1020 1.0907 1.0834 1.0989

Validation MSE 1.2734 1.3316 1.1550 1.4988

Testing MSE 1.3435 1.3748 1.3694 1.4312

Table 7: ADNI dataset: Left hippocampus (LH-CNN):

5-fold cross validation

Type Fold-1 Fold-2 Fold-3 Fold-4

Training MSE 0.1904 0.1944 0.1909 0.1935

Validation MSE 1.8078 2.2081 2.4217 2.0039

Testing MSE 2.3643 2.6135 2.3467 2.5086

Table 8: ADNI dataset: Left hippocampus (GH–CNN∗):

5-fold cross validation

Type Fold-1 Fold-2 Fold-3 Fold-4

Training MSE 0.9827 0.8994 0.9385 0.9760

Validation MSE 1.4610 2.3999 2.0405 1.3011

Testing MSE 1.7051 1.6782 1.7966 1.8073
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Table 9: ADNI dataset: Right hippocampus (LH-CNN):

5-fold cross validation.

Type Fold-1 Fold-2 Fold-3 Fold-4

Training MSE 0.6116 0.6192 0.6174 0.6208

Validation MSE 1.5231 1.6899 2.0639 1.4907

Testing MSE 1.8935 1.9638 2.1877 1.8086

Table 10: ADNI dataset: Right hippocampus (GH–CNN∗):

5-fold cross validation.

Type Fold-1 Fold-2 Fold-3 Fold-4

Training MSE 0.7625 0.7501 0.7539 0.7659

Validation MSE 1.0095 0.9184 1.1342 0.7891

Testing MSE 1.2212 1.2016 1.2596 1.1607

∗GH-CNN Model labels were down-scaled by 3 as the input image were down scaled by 3.

Therefore, all the GH-CNN model MSE values are needed to be up-scaled by 3 to get the actual MSE.
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V. Localization Procedures

A. ROI Localization Proccedure

In this phase, the trained model were aggregated to construct the two-stage

ensemble Hough network. Three trained global models were amalgamated to

form the global ensemble network. Similarly, three trained local models were

added together to form the local ensemble network. After that, the global

ensemble model and the local ensemble model were aggregated together to form

the single two-stage ensemble Hough-CNN.

From ADNI and GARD datasets, 56 and 65 MRI scans are used to test

the two-stage ensemble Hough-CNN, respectively. The generated global patches

from test MRI scans were used as input to the global ensemble network to predict

the global displacement vectors. Multiple patches were generated from each MRI

scan. Therefore, three global models predict multiple displacement vectors for

multiple patches generated from each MRI scan. The predicted displacement

vectors were added with the patch centres, which ultimately lead to the ROI

locations. The predicted multiple ROI locations were averaged to determine the

global position of the target ROI. After that, the predicted voxel location of

the target ROI were compared with the manually localized voxel location to

determine the global error.

The multiple global models predicted locations of the ROI were used to

generate the patches for the local models. The generated patches were used as

a input to the local ensemble network to predict the exact location of the ROI.

The local models predict multiple displacement vectors for the multiple patches

generated from each MRI scan. The predicted displacement vectors were added

with the averaged multiple global ensemble model predicted ROI locations. Then,
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the predicted ROI’s voxel locations were averaged to generate the final voxel

location of the target ROI.

Figure 8: The localization of left hippocampal position from MRI scan using the proposed

two-stage ensemble Hough-CNN. The ensemble view of the two-stage Hough-CNN in

the test phase is shown here. In the test phase, 3-view patches from the axial, coronal,

and sagittal slices of the MRI scan are used to estimate the global displacement vectors

(GDV) and then estimated GDV are added with respective random sample patches’

centres. The resultant values are the global position of the target ROI. Using these global

position of the target ROI, the local patches are generated and then used as a input to

the local models to estimate local displacement vector (LDV). The estimated LDV are

added with the global position of the target ROI and then averaged to calculate the exact

location of the ROI. Here, n is the number of models used in each phase and k is the

number of patches generated from each MRI scan.

Now, let us consider that the ensemble global model predicted displacement

vectors are V(XGDV,YGDV,ZGDV) ∈ R3 and the generated uniformly distributed

random patches’ centres are P(X,Y,Z) ∈ N3. Then, the global model predicted

ROI’s voxel locations, G(X ,X ,Z ), can be calculated using the following
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expression.

G(X ,X ,Z ) = P(X,Y,Z)+V(XGDV,YGDV,ZGDV) (7)

The ensemble global model predicted ROI’s voxel locations, G(X ,X ,Z ) will

be used to generate the patches for the local ensemble model. Consider that the

ensemble local model predicted the displacement vectors are U(XLDV,YLDV,ZLDV).

On the other hand, The patches centres for local ensemble model are G(X ,X ,Z ).

Therefore, the ensemble local model predicted ROI’s voxel location, H(X ,Y ,Z )

can be calculated using the following expression.

H(X ,Y ,Z ) =
1

k

k

∑
1

(
G(X ,Y ,Z )+U(XLDV,YLDV,ZLDV)

)
(8)

Here, k denotes the number of patches generated from each MRI scan.The

whole process is shown in Figure 8. The two-stage localization procedure is

illustrated in Algorithm 3.

B. Error Calculation

In ADNI and GARD dataset, the voxel volume size is 1mm3. Therefore, the

distance between the two voxels is 1mm. In 3-D MRI space, the root means

squared difference between the manually localized target ROI’s voxel position

and the ensemble Hough-CNN model predicted voxel location is the prediction

root mean square error (Euclidean distance) of the proposed automated method.

Now, we can express the predicted root mean square error as follows.

PErms =
√

(H(X ,Y ,Z ) –F(X,Y,Z))
2 (9)

Where PErms denoted as the predicted root mean square error. H(X,Y,Z) and

F(X,Y,Z) are the two-stage ensemble Hough-CNN predicted ROI’s voxel location
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and the manually localized ROI’s voxel locations, respectively. The estimated

root mean sqaure error (Euclidean distance) of the left and right right hippocampi

of the ADNI and GARD datasets are shown in Table 12 and 13. The average

runtime to calculate the displacement vectors, which lead to the hippocampal

position in an MRI, is 2 seconds.

C. Statistical Analaysis

To show the agreement of estimation between the manual and the proposed

automatic Hough-CNN based method, we have performed the statistical test on

the predicted result. Bland-Altman [49] mean-difference plot are used to test the

substitution of any two methods on measuring the same object. The suitability of

new method as a proxy with the accepted old method is validated by the statistical

point of view using Bland-Altman plot. We have used the Bland-Altman plot

to verify our proposed approach with manual delineation. The scatter plots are

shown in Figure 10 (a-d). We considered the X, Y, Z axes positions as the axial,

sagittal and coronal view voxel locations. After that, we compared them with the

manual delineation of same axes to estimate the differences and plotted them

against the mean values of the respective axes. The scatter plots were drawn

considering the 95% line of agreement (LOA). Most of the data for left and right

hippocampi of ADNI and GARD cohort datasets were confined by the 95% LOA,

which indicates the similar estimation of the voxel locations by the both methods.

Furthermore, we have performed the correlation estimation between our

method and the manual tracing of the hippocampus location in 3-D MR image

space. Using the measured locations of the left and right hippocampi of MRI

scans of ADNI and GARD cohort datasets, We have generated the plots utilizing
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the SPSS 16.0 software package. The correlation of the manual results and the

automatically predicted results are shown in Figure 9(a, b), and (c, d) for the

left and right hippocampi of the ADNI and GARD cohort datasets, respectively.

The measured p-value (P <0.001) in the test indicated that both the methods

were statistically significant. In addition, the automatic localization method can

be used a proxy for hippocampal position estimation from a 3-D MRI.

The estimated results were further analyzed to assess the suitability of the

proposed method as a replacement for the manual delineation. We computed the

Pearson squared correlation coefficient (R2), where the high R2 suggests that

the automatic method is highly significant and can be used as proxy. We have

reported the estimated R2 as well as the slop of regression β values for the left

and right hippocampi of the ADNI and GARD cohort datasets in Table 11. From

Table 11, we can see that R2 and β values are very close to 1, which indicate that

the proposed method can be a replacement of the manual delineation for brain

ROI localization from the MRI scan.

Table 11: Comparison of the proposed method and manual delineation: squared Pearson’s

correlation coefficient (R2) along with the slop of regression (β), both with the 95%

confidence intervals.

Dataset
R2

β

Axial Sagittal Coronal Axial Sagittal Coronal

ADNI: LH (56) 0.993 0.980 0.893 0.996 0.979 0.945

ADNI: RH (56) 0.993 0.979 0.963 0.996 0.990 0.981

GARD: LH (65) 0.771 0.939 0.890 0.878 0.969 0.943

GARD: RH (65) 0.852 0.947 0.935 0.923 0.973 0.967

LH = Left Hippocampus, RH = Right Hippocampus
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(a)

(b)

(c)

(d)

Figure 9: The left and right hippocampi of ADNI (56 MRI scans) (a, b) and GARD cohort

(65 MRI scans) (c, d) datasets: scatter plots of estimated voxel locations by our proposed

approach and the manually delineated positions with linear line of best fit ( not forced

through the origin).
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(a)

(b)

(c)

(d)

Figure 10: The left and Right hippocampi of ADNI (56 MRI scans) (a, b) and GARD

cohort (65 MRI scans) (c, d) datasets: scatter plots of left and right hippocampi’s positions

estimation from MRI scans with 95% limits of agreement (LOA) confined by the red

lines.
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Algorithm 3 Hippocampus Localization

1 Data: Input MRI volume, MXYZ,

2 Output: Estimated locations, H(X ,Y ,Z ),

3 Initialize the number of samples k,

4 Generate Sample Center, P(X ,Y ,Z ) , Where

5 X= {X1,X2, · · ·Xk},

6 Y = {Y1,Y2, · · ·Yk},

7 Z = {Z1,Z2, · · ·Zk},

8 Generate global samples, Sg = {S1 · · ·Sk},

9 For i : 1 to k do

10 V(XGDV,YGDV,ZGDV)← Sg to global trained model;

11 G(X ,Y ,Z ) = P(X ,Y ,Z )+V(XGDV,YGDV,ZGDV) ;

12 Use G(X,Y,Z) as a random reference points,

13 Generate samples, Sl = {S1 . . .Sk},

14 For i : 1 to k do

15 U(XLDV,YLDV,ZLDV)← Sl to local trained model;

16 L(X ,Y ,Z ) =G(X ,Y ,Z )+U(XLDV,YLDV,ZLDV) ;

17 H(X ,Y ,Z ) =
1
k

k

∑
1

(
L(X ,Y ,Z )

)
;

D. Result

From ADNI dataset, 56 T1-weighted MRI scans of 8 subjects were used in the

test phase to localize the left and right hippocampi.The automatic localized voxel

positions were compare with the expert manual outlining. The estimated root

mean square error between the predicated location and the manual outlining were
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2.3187 mm and 2.0440 mm for the left and right hippocampi, respectively.

Table 12: Prediction error in the ADNI MRI dataset. The boldface numbers are the final

error.

Dataset Hippocampus Model Name

Individual

model’s

prediction

error (mm)

Aggregated

prediction

error (mm)

GM-1 3.2477

GM-2 3.2802 3.2745

Left hippocampus GM-3 3.3346

LM-1 2.3536

LM-2 2.3967 2.3187

ADNI MRI

Dataset (343)
LM-3 2.2432

GM-1 2.9094

GM-2 3.0279 2.9741

Right hippocampus GM-3 3.0273

LM-1 2.0256

LM-2 2.1322 2.0440

LM-3 2.0544

GM = Global Model, LM = Local Model

Similarly, from GARD dataset, 65 T1-weighted MRI scans of 65 subjects

were considered in the test phase to localize the left and right hippocampi. The

left and right hippocampi of test MRI scans were manually localized previously

40



by the expert operator. The estimated root mean square error between our

proposed approach and the manual outlining were 2.3267 mm and 2.2519 mm

for the left and right hippocampi, respectively.

Table 13: Prediction error in the GARD cohort dataset. The boldface numbers are the

final error.

Dataset Hippocampus Model Name

Individual

model’s

prediction

error (mm)

Aggregated

prediction

error (mm)

GM-1 3.6243

GM-2 3.4936 3.5228

Left hippocampus GM-3 3.5016

LM-1 2.3075

LM-2 2.3355 2.3267

GARD cohort

Dataset (326)
LM-3 2.3701

GM-1 3.7468

GM-2 3.6941 3.7108

Right hippocampus GM-3 3.7192

LM-1 2.3035

LM-2 2.2363 2.2519

LM-3 2.2641

GM = Global Model, LM = Local Model

The representative localized three-view plane images of axial, sagittal and
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coronal slices of the left and right hippocampi with the minimum and maximum

root mean square error between the proposed approach and the manual outlining

of ADNI and GARD cohort datasets are shown in Figure 11 to Figure 18.

Axial Sagittal Coronal

(a) Predicted hippocampus location

Axial Sagittal Coronal

(b) Ground truth hippocampus location

Figure 11: ADNI Dataset (BEST CASE): Left hippocampus. Minimum RMS error is

0.7134 mm.
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Axial Sagittal Coronal

(a) Predicted hippocampus location

Axial Sagittal Coronal

(b) Ground truth hippocampus location

Figure 12: ADNI Dataset (WORST CASE): Left hippocampus. Maximum RMS error is

5.5622 mm.
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Axial Sagittal Coronal

(a) Predicted hippocampus location

Axial Sagittal Coronal

(b) Ground truth hippocampus location

Figure 13: AND Dataset (BEST CASE): Right hippocampus. Minimum RMS error is

0.1785 mm.
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Axial Sagittal Coronal

(a) Predicted hippocampus location

Axial Sagittal Coronal

(b) Ground truth hippocampus location

Figure 14: ADNI Dataset (WORST CASE): Right hippocampus. Maximum RMS error

is 4.3902 mm.
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Axial Sagittal Coronal

(a) Predicted hippocampus location

Axial Sagittal Coronal

(b) Ground truth hippocampus location

Figure 15: GARD Dataset (BEST CASE): Left hippocampus. Minimum RMS error is

0.3062 mm.
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Axial Sagittal Coronal

(a) Predicted hippocampus location

Axial Sagittal Coronal

(b) Ground truth hippocampus location

Figure 16: GARD Dataset (WORST CASE): Left hippocampus. Maximum RMS error

is 7.0523 mm.
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Axial Sagittal Coronal

(a) Predicted hippocampus location

Axial Sagittal Coronal

(b)Ground truth hippocampus location

Figure 17: GARD Dataset (BEST CASE): Right hippocampus. Minimum RMS error is

0.3546 mm.
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Axial Sagittal Coronal

(a) Predicted hippocampus location

Axial Sagittal Coronal

(b) Ground truth hippocampus location

Figure 18: GARD Dataset (WORST CASE): Right hippocampus. Maximum RMS error

is 5.8311 mm.

E. Discussion and Comparison

This study quantitatively assessed the automatic localization of ROI from MRI

scan. The left and right hippocampi were localized as the representative ROI from
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brain MRI scan. We have used the Hough voting strategy with the deep CNN to

accomplish the automatic estimation of ROI. The Hough votes concern about

a collection of evidences where each evidence refers to product set of various

locations, aspects, scales in a Hough space and the peak of all Hough votes direct

to an existence of an object. The deep CNN calculate the displacement vectors

directing toward the ROI location based on the instances of Hough votes. Thus,

the Hough-CNN is constructed in this study.

The ADNI MRI dataset of 343 MRI scans and GARD cohort dataset of

326 MRI scans were used to train, validate and test the proposed approach.

After training all the GH-CNN and LH-CNN models, we have used them to

construct the two-stage Hough-CNN. The constructed ensemble model were used

to quantitatively estimate the left and right hippocampi’s location in an MRI scan.

Then, we have compared the result with the manual delineation to calculate the

root mean square error (Euclidean distance) from the predicted voxel location to

the target voxel location.

Achuthan et al.[1] estimated the root mean square error (Euclidean distance)

of 3.5 mm from the predicted hippocampus location to the ground truth location.

Our proposed approach has an acceptable average root mean square error of

2.24 mm from the approximated hippocampal position to the ground truth

hippocampal location. A comparative analysis between the proposed method and

other existing methods is shown in Table 14.

We have further analyzed our estimated hippocampal location by comparing

with manual delineation using various statistical approach to show whether the

proposed method can be a replacement of the gold standard manual approach.

The statistical analysis showed that our proposed automatic delineation of brain

ROI can be used as proxy.
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Table 14: The comparative analysis between proposed method and other existing methods

Methods Localized Organ’s Name Average RMS Error (mm)

A. Achuthen et. al.[1] Hippocampus (40-datasets [50]) 3.5

W.A. AI et. al.[15] Aortic valve (CT) 2.04

Y. Zheng et. al. [51] Aortic valve (CT) 2.11

M. Elattar et. al.[52] Aortic valve (CT) 2.65

Left hippocampus (ADNI (56)) 2.32

Our proposed method Right hippocampus (ADNI (56)) 2.04 2.24

Left hippocampus (GARD(65)) 2.33

Right hippocampus(GARD(65)) 2.25
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VI. CONCLUSION

In this thesis, an automatic method has been proposed to localize the ROIs from

an MRI scan using two-stage Hough-CNN. The Hough-CNN was formed by the

amalgamation of the Hough voting strategy with a deep CNN. To calculate the

displacement vector from the target ROI, a deep CNN extracts the feature maps

from input sample patches to vote for the center of the sample. We introduced a

two-stage ensemble-based architecture to learn the global and local feature maps

independently from the target MRI. The ensemble GH-CNN model has three

different CNN models and they learn the global information from the training

data to predict the global displacement vectors to lead the models to the target

ROI using extracted global patches from the whole MRI scan. Similarly, the

ensemble LH-CNN model has also three independent CNN models, where each

model learns about the distinguishable local feature maps from extracted local

patches to predict the local displacement vectors which lead to the exact location

of the target ROI, i.e., hippocampus.

In the test phase, the global model predicts the global displacement vectors

which will aggregated with patches centers to determine global location of the

hippocampus. Then, those global position were used to generate the local patches

and passed through the LH-CNN to predict the local displacement vectors. After

that, the averaged the predicted displacement vector were estimated to add up

with the patches centers to estimate the exact location of target ROI.

We considered in this study to localize the left and right hippocampi from

MRI scan. The left and right hippocampi were localized from ADNI dataset of

56 MRI scans and the GARD cohort dataset of 65 MRI scans.The root mean

square error were used to see the ensemble model performances on new data.
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The estimated average rms error was 2.3187 mm and 2.0440 mm for the left

and right hippocampi of 56 MRI scans of ADNI dataset, respectively. Similarly,

for GARD dataset of 65 MRI scans, the average rms error was 2.3267 mm and

2.2519 mm for the left and right hippocampi, respectively.

The statistical analysis showed that the proposed approach is highly

correlated with the manually delineated hippocampus location. The computed

Pearson correlation coefficient strongly suggests that the proposed approach can

be a substitute of manual localization. Bland-Altman study also lead to the same

conclusion. Therefore, the proposed approach can be a substitute of the gold

standard manual delineation of brain ROI from MRI scan.

53



PUBLICATIONS

A. Journals

1. A. Basher, K. Y. Choi, J. J. Lee, et al., “Hippocampus localization using

a two-stage ensemble hough convolutional neural network”, IEEE Access,

vol. 7, pp. 73 436–73 447, 2019. DOI: 10.1109/ACCESS.2019.2920005.

[Online]. Available: https : / / doi . org / 10 . 1109 / ACCESS . 2019 .

2920005.

B. Conferences

1. A. Basher, S. Ahmed, and H. Y. Jung, “Ensembles of 3-d cnn models for

pure volume measurement of hippocampi in smri”, The 8th International

Conference on Smart Media and Application, 2019.

2. A. Basher and H. Y. Jung, “Hippocampus localization using hough-

cnn”, The 4th International Conference on Next Generation Computing

(http://www.icngc.org/), Ba Ria- Vung Tau University, Vung Tau City,

Vietnam., 2018.

3. A. Basher, A. N. R. Reza, S. Ahmed, et al., “A survey on residual

network evolution”, Korean Institute of Next Generation Computing,

Spring Conference, 2018.

54



REFERENCES

[1] A. Achuthan, M. Rajeswari, and W. M. S. Jalaluddin, “Hippocampus

localization guided by coherent point drift registration using assembled

point set”, in Hybrid Artificial Intelligent Systems - 8th International

Conference, HAIS 2013, Salamanca, Spain, September 11-13, 2013.

Proceedings, J. Pan, M. M. Polycarpou, M. Wozniak, A. C. P. L. F. de

Carvalho, H. Quintián-Pardo, and E. Corchado, Eds., ser. Lecture Notes

in Computer Science, vol. 8073, Springer, 2013, pp. 92–102, ISBN: 978-

3-642-40845-8. DOI: 10.1007/978-3-642-40846-5\_10. [Online].

Available: https://doi.org/10.1007/978-3-642-40846-5\_10.

[2] M. Siadat, H. Soltanian-Zadeh, and K. V. Elisevich, “Knowledge-based

localization of hippocampus in human brain MRI”, Comp. in Bio. and

Med., vol. 37, no. 9, pp. 1342–1360, 2007. DOI: 10 . 1016 / j .

compbiomed.2006.12.010. [Online]. Available: https://doi.org/

10.1016/j.compbiomed.2006.12.010.

[3] S. Zhao, D. Zhang, X. Song, and W. Tan, “Segmentation of hippocampus

in MRI images based on the improved level set”, in 4th International

Symposium on Computational Intelligence and Design, ISCID 2011,

Hangzhou, China, October 28-30, 2011, 2 Volumes, IEEE Computer

Society, 2011, pp. 123–126, ISBN: 978-1-4577-1085-8. DOI: 10.1109/

ISCID.2011.39. [Online]. Available: https://doi.org/10.1109/

ISCID.2011.39.

[4] M. Hajiesmaeili and M. Amirfakhrian, “A new approach to locate

the hippocampus nest in brain mr images”, in 2017 3rd International

55



Conference on Pattern Recognition and Image Analysis (IPRIA), IEEE,

2017, pp. 140–145.

[5] A. Payan and G. Montana, “Predicting alzheimer’s disease - A

neuroimaging study with 3d convolutional neural networks”, in ICPRAM

2015 - Proceedings of the International Conference on Pattern

Recognition Applications and Methods, Volume 2, Lisbon, Portugal, 10-12

January, 2015., M. De Marsico, M. A. T. Figueiredo, and A. L. N. Fred,

Eds., SciTePress, 2015, pp. 355–362, ISBN: 978-989-758-077-2.

[6] D. Gamberger, B. Zenko, A. Mitelpunkt, N. Shachar, and N. Lavrac,

“Clusters of male and female alzheimer’s disease patients in the

alzheimer’s disease neuroimaging initiative (ADNI) database”, Brain

Informatics, vol. 3, no. 3, pp. 169–179, 2016. DOI: 10.1007/s40708-

016 - 0035 - 5. [Online]. Available: https : / / doi . org / 10 . 1007 /

s40708-016-0035-5.

[7] J. L. Winterburn, J. C. Pruessner, S. Chavez, M. M. Schira, N. J. Lobaugh,

A. N. Voineskos, and M. M. Chakravarty, “A novel in vivo atlas of human

hippocampal subfields using high-resolution 3 T magnetic resonance

imaging”, NeuroImage, vol. 74, pp. 254–265, 2013. DOI: 10.1016/j.

neuroimage.2013.02.003. [Online]. Available: https://doi.org/

10.1016/j.neuroimage.2013.02.003.

[8] M. Chupin, E. Gérardin, R. Cuingnet, C. Boutet, L. Lemieux, S. Lehéricy,

H. Benali, L. Garnero, and O. Colliot, “Fully automatic hippocampus

segmentation and classification in alzheimer’s disease and mild cognitive

impairment applied on data from adni”, Hippocampus, vol. 19, no. 6,

pp. 579–587, 2009.

56



[9] M. Suzuki, H. Hagino, S. Nohara, S.-Y. Zhou, Y. Kawasaki, T. Takahashi,

M. Matsui, H. Seto, T. Ono, and M. Kurachi, “Male-specific volume

expansion of the human hippocampus during adolescence”, Cerebral

Cortex, vol. 15, no. 2, pp. 187–193, 2004.

[10] J. Gall, A. Yao, N. Razavi, L. J. V. Gool, and V. S. Lempitsky, “Hough

forests for object detection, tracking, and action recognition”, IEEE Trans.

Pattern Anal. Mach. Intell., vol. 33, no. 11, pp. 2188–2202, 2011. DOI:

10.1109/TPAMI.2011.70. [Online]. Available: https://doi.org/10.

1109/TPAMI.2011.70.

[11] T. D. Do, L. Vu, V. H. Nguyen, and H. Kim, “Full weighting hough forests

for object detection”, in 11th IEEE International Conference on Advanced

Video and Signal Based Surveillance, AVSS 2014, Seoul, South Korea,

August 26-29, 2014, IEEE Computer Society, 2014, pp. 253–258, ISBN:

978-1-4799-4871-0. DOI: 10 . 1109 / AVSS . 2014 . 6918677. [Online].

Available: https://doi.org/10.1109/AVSS.2014.6918677.
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