

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

 February 2020

Master’s Degree Thesis

A study on analytical transform kernel

derivation for Versatile Video Coding

(VVC)

Graduate School of Chosun University

Department of Information and Communication

Engineering

Sandeep Shrestha

[UCI]I804:24011-200000279047[UCI]I804:24011-200000279047

A study on analytical transform kernel

derivation for Versatile Video Coding

(VVC)

February 25, 2020

Graduate School of Chosun University

Department of Information and Communication

Engineering

Sandeep Shrestha

A study on analytical transform kernel

derivation for Versatile Video Coding

(VVC)

Advisor: Prof. Bumshik Lee

A thesis submitted in partial fulfillment of the

requirements for a master’s degree in engineering

November 2019

Graduate School of Chosun University

Department of Information and Communication

Engineering

Sandeep Shrestha

i

Table of contents

List of figures .. iv

List of tables .. vi

한글요약 .. ix

Abstract ... xi

1. Introduction ... 1

1.1 Background ... 1

1.2 Objectives ... 6

1.3 Motivation ... 7

1.4 Thesis Layout .. 9

2. Related Works ... 10

2.1 Compound Orthonormal Transform (COT) 10

2.2 Unified Matrix for Transform ... 11

2.3 Adjustment Stages .. 12

2.4 Transform Adjustment Filter (TAF) 14

3. Proposed Method .. 16

3.1 Common Sparse Unified Matrix ... 16

3.2 Unified DST-3 Matrix (U) .. 17

3.2.1 DST-3 and DCT-2 Relationship 18

ii

3.2.2 The Proposed Derivation Method of the DCT-2 Kernel .. 19

3.3 The Proposed Grouped DST-7 Transform Kernel 23

3.3.1 Grouping Concept .. 24

3.3.2 Specific Rows of Different Point DST-7 27

3.3.3 Derivation of DCT-8 .. 29

3.4 Permutation Matrix ... 29

3.4.1 DST-7 Transform Kernel Pattern 30

3.4.2 Algorithm for Generation of Permutation Matrix (G) 32

3.4.3 First-half Algorithm ... 34

3.4.4 Second-half Algorithm ... 36

3.4.5 Alternate Method .. 36

3.5 Exceptional Cases ... 39

3.5.1 Exceptional Condition in Proposed Grouping Concept ... 39

3.5.2 Approach 1 ... 40

3.5.3 Approach 2 ... 41

3.6 DST-7 Transform Kernel Fast Algorithm 42

3.6.1 DST-7/DCT-8 Fast Algorithm ... 43

3.6.2 Fast Algorithm Implementation on The Proposed DST-7 47

4. Simulation Results and Discussions .. 50

4.1 Simulation Results of Proposed methods 50

4.2 Approach 1 and Approach 2 Comparison 63

iii

4.3 Comparison Between Proposed Method and COT 63

4.4 Comparison Between Proposed Method and Unified Matrix 65

4.5 Proposed Method and Adjustment Stages Comparison 66

4.6 Proposed Method and TAF Comparison 67

5. Conclusion ... 70

Acknowledgment ... 71

References .. 72

iv

List of figures

Figure 1-1. A basic block diagram of the video codec 1

Figure 1-2. DST-7 Vs DST-4 and DCT-8 Vs DCT-4 6

Figure 2-1. JEM-7.1 Adaptive Multiple Transform 12

Figure 2-2. JEM-7.1 Adjustment Stages [25] 13

Figure 2-3. JEM-7.1 Transform Adjustment Filter (TAF) 14

Figure 3-1. Common sparse unified matrix 16

Figure 3-2. Structure of 64-point unified DST-3 (U) matrix 18

Figure 3-3. Decomposition of 64-point DST-3 transform matrix kernel

 .. 19

Figure 3-4. Proposed method to obtain 16-point DST-3 22

Figure 3-5. Generation of [𝐒7,0]32 dependent grouped row elements

of DST-7 using permutation matrix 25

Figure 3-6. General multiplication of specific stored row and

permutation matrix (G) .. 25

Figure 3-7. Grouped 32-point DST-7 transform kernel 26

Figure 3-8. Grouped 32-point DST-7 transform kernel ([𝐒7,0]32 as

the specific stored row) .. 30

Figure 3-9. Pattern matching between [𝐒7,0]32 row and [𝐒7,31]32

row of 32-point DST-7 transform kernel 31

v

Figure 3-10. Algorithm for the generation of the permutation matrix (G

matrix) .. 32

Figure 3-11. 8-point permutation matrix .. 33

Figure 3-12. First-half and second-half algorithm to obtain permutation

matrix ... 34

Figure 3-13. Selection of smaller block size permutation matrix from

the larger block size permutation matrix 38

Figure 3-14. [𝐒7,3]32 row group of 32-point DST-7 transform

kernel .. 39

Figure 3-15. Approach 1 for deriving 32-point DST-7 transform kernel

[Highlighted is the tuned value] 40

Figure 3-16. Approach 2 for deriving 32-point DST-7 transform kernel

[Highlighted is the tuned values] 41

Figure 3-17. Implementation of features in derived 16-point grouped

DST-7 transform kernel ... 48

Figure 4-1. Comparison of the proposed and original transform

kernels (Approach 1) .. 51

Figure 4-2. Comparison of the proposed and original transform

kernels (Approach 2) .. 52

vi

List of tables

Table 1. MTS transform kernels based on prediction and block size . 8

Table 2. Generation of 32-point DST-7 transform kernel 24

Table 3. Generation of 16-point DST-7 Transform kernel 28

Table 4. Generation of 8-point DST-7 transform kernel 28

Table 5. Generation of 4-point DST-7 transform kernel 28

Table 6. Overall simulation results of approach 1 53

Table 7. Simulation results of Approach 1 (AI) 55

Table 8. Simulation results of Approach 1 (RA) 56

Table 9. Simulation results of Approach 1 (LDB) 57

Table 10. Overall simulation results of Approach 2 58

Table 11. Simulation results of Approach 2 (AI) 60

Table 12. Simulation results of Approach 2 (RA) 61

Table 13. Simulation results of Approach 2 (LDB) 62

Table 14. Simulation results of COT .. 64

Table 15. Simulation results of Unified matrix 65

Table 16. Simulation results of Adaptive Multiple Transforms (AMTs)

 .. 67

vii

Table 17. Simulation results using Transform Adjustment Filter (TAF)

 .. 68

viii

Acronyms

VVC Versatile Video Coding

DCT Discrete Cosine Transform

DST Discrete Sine Transform

CTC Common Test Conditions

VTM VVC Test Model

EncT Encoding Time

DecT Decoding Time

AI All Intra

RA Random Access

LDB Low-Delay B

QP Quantization Parameter

CABAC Context-Adaptive Binary Arithmetic Coding

AVC Advanced Video Coding

HEVC High-Efficiency Video Coding

HDR High Dynamic Range

ROM Read Only Memory

COT Compound Orthonormal Transform

AMTs Adaptive Multiple Transforms

TAF Transform Adjustment Filter

ix

한글요약

Versatile Video Coding(VVC)

비디오 코딩을 위한변환 커널

유도 방법에 관한 연구
산딥 쉬레스따

지도교수: 이범식

조선대학교대학원,

정보통신공학과

Versatile Video Coding (VVC)의 표준화에서는 DCT-2 (Discrete

Cosine Transform-2), DST-7 (Discrete Sine Transform-7), DCT-8

(Discrete Cosine Transform-8)이 주변환커널로 사용되고 있다.

그러나 이들 변환 커널과 함께 DST-4 (Discrete Sine Transform-4)와

DCT-4 (Discrete Cosine Transform-4)도 역시 그 압축 성능과 구현성

복잡도 이득으로 인해 표준화 과정 중 주 변환 커널로 고려되어왔다.

구현 복잡도의 이점으로 인해 DST-4와 DCT-4는 DST-7과 DCT-8

변환 커널의 대안으로 사용될 수 있다. 그러나 이러한 다양한

종류의 변환 커널과 크기는를 정수 계수로 저장하기 위해선느 많은

메모리가 필요하며 이 것은 VVC 비디오 코덱 중요한 복잡도

문제가 될 수 있다. 이러한 문제를 해결하기 위하여 본 학위

논문에서는 unified sparse 행렬의 개념을 제안하고, 이 행렬을

이용하여 서로 다른 크기의 변환 커널 매트릭스(DCT-2, DST-7,

DCT-8, DST-4, DCT-4)를 간단한 수학적 연산을 통해 얻을 수 있다.

제안하는 unified sparse matrix는 unified-DST-3 행렬과 grouped-

DST-7 행렬의 두 부분으로 구성된다. unified-DST-3 행렬은 서로

다른 크기의 변환 커널 DCT-2, DST-4 및 DCT-4 변환 커널을 유도

사용되며, gruped-DST-7 행렬은 다양한 크기의 DST-7 및 DCT-8

x

변환 커널을 도출하는 데 사용된다. grouped-DST-7 행렬에서 32

픽셀 크기의 DST-7에 대해 두 가지 접근방식(Approach 1과

Approach 2)을 이용할 수 있다. 실험은 공통 테스트 조건(CTC)에

따라 VTM-3.0 참조 소프트웨어에서 수행되었고 제안하는 방법의

BDBR 결과는 AI와 RA 조건에 대해 압축 성능에 영향을 주지

않았고으나 기존의 방법에 비해 79.85%의 메모리 저감 효과를 얻을

수 있었다.

xi

Abstract

A study on analytical transform

kernel derivation for Versatile Video

Coding (VVC)

Sandeep Shrestha

Advisor: Prof. Bumshik Lee

Department of Information and

Communication Engineering

Graduate School of Chosun University

In the standardization of Versatile Video Codec (VVC), DCT-2

(Discrete Cosine Transform-2), DST-7 (Discrete Sine Transform-7), and

DCT-8 (Discrete Cosine Transform-8) are being regarded as the major

transform kernels. However, along with the defined transform kernels,

DST-4 (Discrete Sine Transform-4) and DCT-4(Discrete Cosine

Transform-4) are also counted as the basic transform kernels. Usually,

DST-4 and DCT-4 can be used as the replacement of the DST-7 and

DCT-8 transform kernels respectively for their effectiveness in smaller

resolution sequences. While storing all those transform kernels, memory

usage is regarded as the major issue. To deal with this scenario, a

common sparse unified matrix concept is introduced in this thesis paper

from which any point transform kernel matrix can be obtained i.e. DCT-

2, DST-7, DCT-8, DST-4 and DCT-4 after some mathematical

operations. The defined common sparse unified matrix is composed up

of two parts: unified DST-3 matrix and grouped DST-7 matrix. Unified

xii

DST-3 matrix is used to derive different block size DCT-2, DST-4 and

DCT-4 transform kernels whereas the grouped DST-7 matrix is used to

derive different block size DST-7 and DCT-8 transform kernels. In the

grouped DST-7 matrix concept, two approaches (approach 1 and

approach 2) has been introduced for the 32-point DST-7 to make 32-

point DST-7 transform kernel compatible with the proposed algorithm.

Similarly, the tuning of one element of the certain row of the DST-7

transform kernel affects other rows of DST-7 transform kernel is also

shown in the proposed grouping concept of the DST-7 transform kernel

matrix. The transform kernels used for simulation are DCT-2, DST-7

and DCT-8. The simulation is conducted in VTM-3.0 reference software

under the common test condition (CTC). The BDBR results of the

proposed methods showed no significant loss for AI and RA. However,

for LDB, approach 1 showed a gain of 0.21% for V-chroma and less

significant loss of 0.09% for U-chroma whereas approach 2 showed a

gain of 0.05% for V-chroma and loss of 0.30% for U-chroma. Similarly,

the proposed method has no significant impact on the encoding and

decoding time which shows that there is no complexity issue in the

proposed method even with 79.85% memory reduction.

Index Terms— VVC, DCT-2, DST-7, DCT-8, DST-3, DST-4, DCT-

4, common sparse unified matrix, unified DST-3 matrix, grouped DST-

7 matrix, unit element matrices, permutation matrix.

1

1. Introduction

1.1 Background

Generally, a video codec is a device or software that is used to compress or

decompress a digital media file, such as a video or image. The word “codec”

is composed of 2 parts: encode and decode. The encoder undergoes the

compression (encoding) function whereas the decoder performs the

decompression (decoding) function [1]. The basic block diagram that helps to

understand the basic workflow of video codec is shown in Fig. 1-1.

Figure 1-1. A basic block diagram of the video codec

 In video coding, initially, video source undergoes through various

prediction in the block level or macroblock level where prediction is done

based on previously-coded are, either from the current frame (Intra prediction)

[2] or from other frames that have already been coded and transmitted (Inter

prediction) [3]. Finally, subtraction of the prediction from the current block or

macroblock is done to obtain the predicted residual. After that, the transform

and quantization process [4] is performed. In transform, basic transform

kernels [5-8] such as DCT-2, DST-7, DCT-7, DST-4, and DCT-4 are used

where a block of those residual samples are transformed using integer

transform [9-10]. The transform produces outputs of a set of coefficients, each

2

of which is a weighting value for a standard basis pattern. The output of the

transform i.e. a block of transformed coefficients is quantized where each

coefficient is divided by an integer value, called quantization step size. The

quantization reduces the precision of the transform coefficients according to a

quantization parameter (QP). Setting QP to high value means that more

coefficients are set to zero which results in high compression at the expense of

poor decoded image or video quality. On the other hand, setting QP to a low

value means more non-zero coefficients resulting in better-decoded video or

image quality but lower compression. After these steps encoding process is

done where a number of values are encoded to form the compressed bitstream.

The values and parameter (syntax elements) are converted into binary codes

using variable length coding [11] and/or arithmetic coding [12-13] and/or

Context-adaptive binary arithmetic coding (CABAC) [14-15]. The encoded

bitstream then can be stored or transmitted.

After all those encoding procedure, decoding is done from each of the syntax

elements and extracted the information described above (quantized transform

coefficients, prediction information, etc.). The inverse process is performed on

the decoder side for each step mentioned above in the encoder. The quantized

transform coefficients are re-scaled where each coefficient is multiplied by an

integer value to restore its original scale. Similarly, an inverse transform

combines the standard basis patterns i.e. inverse (DCT-2, DST-7, DCT-8,

DST-4, and DCT-4) to re-create each block of residual data which combined

together to form a residual macroblock. Finally, the decoder adds the

prediction to the decoded residual to reconstruct a decoded different

macroblock which can then be displayed as part of a video frame.

3

In the video coding, various standardization works have been carried out with

their own specialization in each standardization. Some of the standardizations

that have been carried out are H.261, H.262, H.263 [16], H.264/Advanced

Video Coding (AVC) [17], H.265/High Efficiency Video Coding (HEVC)

[18]. Recently the process of standardization of Versatile Video Coding

(VVC) [19] is undergoing whose main objective is to provide a significant

improvement in compression performance over the existing “High Efficiency

Video Coding (HEVC)” standard and also aid the deployment of higher-

quality video services and emerging applications such as 360° omnidirectional

immersive multimedia and high-dynamic-range (HDR) video.

In the different trends of standardization, different block size transform

kernels are used in the compression of video sources. In the previous video

compression standards, different block size DCT-2 is regarded as the major

transform kernel due to it’s subsampling property for smaller sizes from its

larger sized kernel [18]. Recently in the different proposals submitted for

standardization of VVC, other transform kernels like DST-7, DCT-8, DST-4

and DCT-4 are also being used due to its energy distribution properties. With

the introduction of the different block size transform kernels like DCT-2, DST-

7, DCT-8, DST-4, and DCT-4, memory storage has become one of the major

problems. On the other hand, applying the fast algorithm along with the less

memory storage to transform kernels has become a challenging task to be

performed.

The major proposed concept of this thesis is to focus on the memory storage

along with the implementation of the fast algorithm to the different block size

transform kernels. In this thesis, a common sparse unified matrix has been

introduced with less memory usage based on which any block size transform

4

kernels i.e. DCT-2, DST-7, DCT-8, DST-4 and DCT-4 can be achieved after

some mathematical computation. The proposed method only stores 1648

elements instead of 8180 elements each of 8-bit precision.

The used transform kernel elements are derived on the basis of following

mathematical equations:

DCT-2 [CN
II]
n,k
= √

2

N
εkcos (

π(2n+1)k

2N
) (1)

 where, εk = {
1

√2
 k = 0

1 otherwise

DCT-4 [CN
IV]

n,k
= √

2

N
cos (

π(2n+1)(2k+1)

4N
) (2)

DCT-8 [CN
VIII]

n,k
=

2

√2(N−1)
cos (

π(2n+1)(2k+1)

4N−2
) (3)

DST-4 [SN
II]
n,k
= √

2

2N
εksin (

π(2n+1)(k+1)

2N
) (4)

 where, εk = {
1

√2
 k = N − 1

1 otherwise

DST-7 [SN
VII]

n,k
=

2

√2N+1
sin (

π(2k+1)(n+1)

2N+1
) (5)

In general, a DCT and a DST is a Fourier related transform similar to discrete

Fourier Transform (DFT). DCT is the real part and DST is the imaginary part

of the DFT. There are eight variants of DCT and DST. The most common

variant of discrete cosine transform is type-II DCT also known as DCT-2. The

DCT has a strong “energy compaction” property with lossy compression as

the signal information is concentrated in a few low-frequency components. It

is effective only when there is not much difference in the residuals after

5

prediction that is why DCT-2 is mainly effective for the inter prediction.

Regarding the usage of DST-7 and DCT-8, it is also regarded as lossy

compression with strong “energy compaction” property as that of DCT-2.

They produce more coding gains for boundary and intra prediction.

DST-4 and DCT-4 can be used as the replacement of the DST-7 and DCT-8

transform kernels respectively as they show the similarly signal behavior. The

signal behaviors of respective signal are shown in Fig. 1-2.

(a) DST-7 Vs DST-4

6

(b) DCT-8 Vs DCT-4

Figure 1-2. DST-7 Vs DST-4 and DCT-8 Vs DCT-4

1.2 Objectives

As transform is regarded as one of the key component while undergoing

compression and decompression in video coding, the goals and ideas for this

research set are as following:

 Derive all the different point transform kernels i.e. DCT-2, DST-7,

DCT-8, DST-4, and DCT-4 from a common sparse unified matrix.

 Reduce the (static) memory from 32768 bytes to 13168 bytes.

 Exhibit the relationship between different row elements in DST-

7/DCT-8 transform kernel matrix i.e. tuning of one element of the

row may affect other rows that depend on the tuned element of the

row from the grouping concept of DST-7 introduced in this paper.

7

 Exhibit how the proposed concept supports the fast algorithm of

DST-7 transform kernel.

 Use only three transform kernels DCT-2, DST-7 and DCT-8

although DCT-4 and DST-4 transform kernels can also be derived

from the proposed method

1.3 Motivation

In the standardization of Versatile Video Codec (VVC), DCT-2, DST-7, and

DCT-8 are being regarded as the major transform kernels. Previously, in the

different video codec standards [17-18], different block-sized DCT-2 and

small block-sized DST-7 transform kernels were used due to energy

coefficient distribution properties for different residuals obtained after intra

and inter prediction of the different frames. Recently, in the undergoing

standardization of VVC, different block size transform kernels like DCT-2,

DST-7, DCT-8, DST-4 and DCT-4 have been presented. It was presented as

the option that DST-4 can be used instead of DST-7 and DCT-4 can be used

instead of DCT-8 because of the similar energy coefficient distribution of these

two transform kernels. On the other hand, the transform kernels DST-4 and

DCT-4 can be achieved from the sub-sampling of even and odd rows of DCT-

2 transform kernel that showed effectiveness only in smaller resolution test

sequences. However, the use of different block sizes DST-7 and DCT-8

transform kernel which is also known as MTS, showed its effectiveness in

different resolution test sequences. The use of MTS transform kernels based

on prediction and block size is shown in Table. 1.

8

Table 1. MTS transform kernels based on prediction and block size

 Prediction Prediction tools Block Size Transform kernel

MTS

Intra

ISP

(Intra Sub-Partition)

4×4 upto

16×16
DCT-2 , DST-7

MIP

(Matrix Intra

Prediction

4×4 upto

64×64
DCT-2, DST-7, DCT-8

Normal Intra
4×4 upto

64×64
DST-7, DCT-8

Inter

SBT

(Sub-block

Transform)

4×4 upto

64×64

(DCT-2, DST-7, DCT-8) depends

on SBT position

As DST-7 and DCT-8 transform kernels cannot be achieved from sub-

sampling or any other methods from the DCT-2 transform kernels, more

efficient kernel storage and management scheme are needed. The consequence

is that ROM memory size gets increases as it has to store 8180 elements each

of 8-bit precision.

Several proposals were presented to solve the memory storage issue. These

proposals tried to solve by replacing small block size DST-7 and DCT-8

transform kernel with small block size DST-4 and DCT-4 transform kernel

respectively and to obtain large block size DST-7 and DCT-8 transform kernel,

it was proposed to replace some rows of DCT-2 transform kernels with rows

of DST-7 and DCT-8 transform kernels. Consequently, five transform kernels

were used i.e. DCT-2 along with DST-4 and DCT-4 for small block size, DST-

7 and DCT-8 for large block size. The proposed method presented failed to

give larger block size DCT-2 transform kernel as some rows of DST-7

transform kernels were injected into larger block size DCT-2 transform kernel.

9

Similarly, different adjustment matrices and unified matrix concepts were also

presented but none of them provided the required transform kernels i.e. DCT-

2, DST-7 and DCT-8 for solving memory issues.

Hence, to overcome this issue, a common sparse unified matrix is proposed

that stores only 1648 elements instead of 8180 elements (including different

block size DCT-2, DST-7 and DCT-8) each of 8-bit precision in this thesis.

The proposed method uses three transform kernels i.e. DCT-2, DST-7 and

DCT-8 although it can also generate the different block size DST-4 and DCT-

4 transform kernels by storing the same number of elements in memory along

with the fast algorithm implementation of DCT-2 and DST-7 transform

kernels.

1.4 Thesis Layout

The rest of this thesis is organized as follows: Section 2 provides the related

works. Section 3 describes the proposed method i.e. common sparse unified

matrix and its composition to derive different block sizes DCT-2, DCT-4,

DST-4, DST-7, and DCT-8 transform kernels. Section 4 provides all the

experimental results and finally, section 5 presents the conclusions of the

thesis.

10

2. Related Works

For the standardization of VVC, different contributions related to memory

were presented [21]. Some of the related proposals presented for the

standardization of VTM-3.0 software are as following:

2.1 Compound Orthonormal Transform (COT)

 This contribution [22] reports the use of DST-4/DCT-4 to replace DST-

7/DCT-8 for 4-point and 8-point transforms used in MTS (multiple transform

set) [21] and also embeds 16-point and 32-point DST-7/DCT-8 into 64-point

DCT-2. It was proposed that all the transform types used in VVC can be

extracted from one single 64×64 matrix so that 33% transform core storage

can be saved when compared to VTM-3.0. In the proposed COT, 2-point, 4-

point, 8-point, 16-point and 32-point DCT-2 can be extracted from the even

rows whereas 4-point, 8-point DST-4/DCT-4 and 16-point, and 32-point DST-

7/DCT-8 can be extracted from the odd rows.

As 16-point and 32-point DST-7/DCT-8 transform kernels are embedded in

64-point DCT-2 primary transform kernel, which prevents the extracting of

the 64-point DCT-2 transform kernel. Consequently, the fast algorithm of the

64-point DCT-2 transform kernel [23] cannot be used. Similarly, the number

of transform kernel matrix is also increased to 5 i.e. DCT-2, DST-7, DCT-8,

DST-4 and DCT-4 whereas it was aimed to use only three transform kernels.

11

2.2 Unified Matrix for Transform

This contribution [24] proposed to use three types of transform kernels i.e.

DCT-2, DST-7 and DCT-8 by sampling from the large size transform kernel

matrix which is termed as the unified matrix. All these transform kernels are

mathematical sampled using the relations as:

DCT-2 can be derived by sampling a subset of coefficients in the matrix as:

 𝐃𝐂𝐓𝟐𝐍×𝐍[𝐥, 𝐤] = 𝐦𝐚𝐭𝐫𝐢𝐱𝟔𝟒×𝟔𝟒[𝐥, 𝟐(𝟔 − 𝐥𝐨𝐠𝟐𝐍) ∗ 𝐤] , (6)

where 𝐃𝐂𝐓𝟐𝐍×𝐍[𝐥, 𝐤] represents the l-th element of the k-th basic vector of

DCT-2 for N×N matrix and N is a size of matrix from 64 to 2 and

𝐦𝐚𝐭𝐫𝐢𝐱𝟔𝟒×𝟔𝟒[𝐥, 𝐤] represents the unified matrix from which sub-sampling is

done.

DCT-8 can be derived by sampling a subset of coefficients in the matrix as:

𝐃𝐂𝐓𝟖𝐍×𝐍[𝐥, 𝐤] = 𝐦𝐚𝐭𝐫𝐢𝐱𝟔𝟒×𝟔𝟒[𝐥, 𝟐(𝟔 − 𝐥𝐨𝐠𝟐𝐍) ∗ 𝐤 + 𝟐(𝟓 −

 𝐥𝐨𝐠𝟐𝐍)] , (7)

where 𝐃𝐂𝐓𝟖𝐍×𝐍[𝐥, 𝐤] represents the l-th element of the k-th basic vector of

DCT-8 for N×N matrix and N is a size of matrix from 32 to 4 and

𝐦𝐚𝐭𝐫𝐢𝐱𝟔𝟒×𝟔𝟒[𝐥, 𝐤] represents the unified matrix from which sub-sampling is

done.

DST-7 can be derived by sampling a subset of coefficients in the matrix as:

𝐃𝐒𝐓𝟕𝐍×𝐍[𝐥, 𝐤] = (−𝟏)
𝐤 ∗ 𝐃𝐂𝐓𝟖_𝐍 × 𝐍[𝐍 – 𝐥 − 𝟏, 𝐤] (8)

𝐃𝐒𝐓𝟕𝐍×𝐍[𝐥, 𝐤] = (−𝟏)
𝐤 ∗ 𝐦𝐚𝐭𝐫𝐢𝐱𝟔𝟒×𝟔𝟒[𝐍 – 𝐥 − 𝟏, 𝟐(𝟔 − 𝐥𝐨𝐠𝟐𝐍) ∗

𝐤 + 𝟐(𝟓 − 𝐥𝐨𝐠𝟐𝐍)] , (9)

12

where 𝐃𝐒𝐓𝟕𝐍×𝐍[𝐥, 𝐤] represents the l-th element of the k-th basic vector of

DST-7 for N×N matrix and N is a size of matrix from 4 to 32 and

𝐦𝐚𝐭𝐫𝐢𝐱𝟔𝟒×𝟔𝟒[𝐥, 𝐤] represents the unified matrix from which sub-sampling is

done.

Based on the test results of the proposed method for all Intra (AI), no gain

for Class A1 and Class A2 but consists of some gain for the lower classes has

been shown. For random access (RA) and low delay B (LDB), the overall

result shows no gain. While making an analysis based on the simulation

results, losses in RA and LDB and losses in AI’s class A1 and A2 might be

due to the mismatch of the DST-7 and DCT-8 transform kernels with the

original transform signal values.

2.3 Adjustment Stages

This proposal [25] is based on JEM7 [26], where five types of discrete cosine

and sine transforms (DCTs and DSTs) are employed for primary separable

transformation of residual blocks as in Fig. 2-1.

Figure 2-1. JEM-7.1 Adaptive Multiple Transform

13

It was proposed that these five types of discrete cosine and sine transforms

can be approximated by applying different adjustment stages as shown in Fig.

2-2.

The adjustment stages are defined by sparse block-band orthogonal matrices

which are proposed to be easy to compute and very similar to filtering with the

small number of taps. The experiment performed on “4-tap” sparse block-band

matrices.

Figure 2-2. JEM-7.1 Adjustment Stages [25]

Although the proposed method tried to save memory by not storing DCT-5,

DCT-8, DST-1 and DST-7 using different adjustment stages, the number of

multiplication increases and the normalized values of the different adjustment

stages are different, hence the transform kernels may not exactly be matched.

Based on the experimental results, there is a less significant loss in luminance

but the noticeable loss in the chrominance of the higher test sequences which

might be due to mismatch of the proposed transform signal.

14

2.4 Transform Adjustment Filter (TAF)

This proposal [27] is the extended version of 2.3. This contribution reports a

method of complexity reduction of the DST-7/DCT-8 kernels using MTS. The

adjustment stages are given the name of TAF (Transform Adjustment Filter)

which is a sparse matrix as shown in Fig. 2-3.

Figure 3-2. JEM-7.1 Transform Adjustment Filter (TAF)

The size M forward DST-7 (𝐒7) is approximated as:

 𝐒7 = 𝐒 ⋅ 𝐂2
𝑡 ⋅ 𝐅 ⋅ 𝐀 , (10)

where S and F are the sign matrix and flip matrix and 𝐂2
t is the transpose of

the DCT-2 matrix and A is a sparse adjustment matrix.

 𝐒𝐤,𝐧 = {
0, if n! = k

(−1)n, otherwise
 (11)

128 2 0

-2 128 3 0

0 -3 128 4 0

0 0 -4 128 5 0

0 0 0 -5 128 7 0

0 0 0 0 -7 128 8 0

0 0 0 0 0 -8 127 9 0

0 0 0 0 0 0 -9 127 11 1 0

0 0 0 0 0 0 0 -11 127 12 1 0

0 0 0 0 0 0 0 1 -12 127 14 1 0

0 0 0 0 0 0 0 0 1 -14 126 15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 -15 126 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 -16 126 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 -16 126 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 -18 125 20 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 -20 125 21 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -21 124 22 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -22 124 23 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -23 123 25 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -25 123 26 3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 -26 122 27 3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 -27 122 28 3 0 0 0 0 0 0 0 0

0 3 -28 121 29 4 0 0 0 0 0 0 0

0 3 -29 121 30 4 0 0 0 0 0 0

0 4 -30 120 32 5 0 0 0 0 0

0 4 -32 119 34 5 0 0 0 0

0 5 -34 118 34 5 0 0 0

0 5 -34 118 36 6 0 0

0 5 -36 117 37 6 0

0 6 -37 117 36 6

0 6 -36 116 41

0 6 -41 121

15

 𝐅𝐤,𝐧 = {
1, if n = M − 1 − k
0, otherwise

 (12)

DCT-8 (𝐂8) transform kernel of size M is derived as (13):

 𝐂8 = 𝐂2
t ⋅ 𝐅 ⋅ 𝐀 ⋅ 𝐅 (13)

Consequently, the inverse DST-7 and DCT-8 are derived using the relation

(14) and (15)

 𝐢𝐒𝟕 = 𝐀
𝐭 ⋅ 𝐅. 𝐂𝟐 ⋅ 𝐒 (14)

 𝐢𝐂𝟖 = 𝐅 ⋅ 𝐀𝐭 ⋅ 𝐅 ⋅ 𝐂𝟐 , (15)

where 𝐢𝐒𝟕 and 𝐢𝐂𝟖 refers to inverse DST-7 and inverse DCT-8 respectively.

The number of adjustment stage i.e. TAF has been reduced in comparison to

section 2.3 but the number of multiplication increase as additional

multiplication with the TAF has to be performed. This contribution reduces

memory usage only by storing the different point DCT-2 transform kernels i.e.

no need to store the different point DST-7/DCT-8 transform kernels. The

normalized value of the TAF is not the same which is the major reason that the

derived transform kernels are not well-matched with the original DST-7/DCT-

8 transform kernel. Consequently, higher loss can be seen in the higher test

sequences classes in spite of the less significant loss in the overall simulation

result.

16

3. Proposed Method

In this research, an analytical transform kernel derivation method using a

common sparse unified matrix is proposed. The common sparse unified matrix

is composed of two parts

1. A unified DST-3 matrix to derive DCT-2, DST-4 and DCT-4

transform kernels

2. A grouped DST-7 matrix to derive DST-7 and DCT-8 transform

kernels

3.1 Common Sparse Unified Matrix

The common sparse unified matrix is the overall core matrix from which any

point of DCT-2, DST-7, DCT-8, DST-4, and DCT-4 transform kernels can be

derived.

Figure 3-1. Common sparse unified matrix

17

Fig. 3-1. shows the basic configuration of the common sparse unified matrix.

This matrix comprises 32-point, 16-point, 8-point, 4-point, and 2-point DST-

4 transform kernels along with a 2-point DST-3 transform kernel. Similarly, it

also comprises of 6 × 32 block size P matrix, 4 × 16 block size Q matrix, 2 ×

8 block size R matrix and 2 × 4 block size S matrix. In short, the common

sparse unified matrix is composed of two parts

1. A unified DST-3 matrix to derive the DCT-2 transform kernel

2. A grouped DST-7 matrix to derive the DST-7/DCT-8 transform kern

els

3.2 Unified DST-3 Matrix (U)

A unified DST-3 matrix also named as 𝐔 matrix is the matrix that is used to

derive different point DCT-2 transform kernel. The unified matrix (𝐔)

comprises of 32-point DST-4, 16-point DST-4, 8-point DST-4, 4-point DST-

4, 2-point DST-4, and 2 point DST-3 transform kernels and the remaining

transform kernel elements are depicted as zero values. The structure unified

DST-3 matrix is shown in Fig. 3-2.

18

Figure 3-2. Structure of 64-point unified DST-3 (U) matrix

Since the U matrix contains a number of zero elements except DST-4 elements,

the data size to be stored can significantly be reduced. Thus, the defined sparse

unified DST-3 matrix stores only 1368 elements each of 8-bit precision. The

overall size of the common sparse unified matrix is 10944 bytes.

3.2.1 DST-3 and DCT-2 Relationship

There exist the relationship between DST-3 and DCT-2 [25] transform

kernels which can be expressed as

 𝐂𝟐 = 𝐅 × 𝐒𝟑 × 𝐒 , (16)

where 𝐂𝟐 and 𝐒𝟑 are DCT-2 and DST-3 transform kernel respectively and F

and S are a flipping and a sign change matrices, respectively and defined as

19

 𝐅𝐦,𝐧 = {
1, if n = N − 1 −m,
0, otherwise,

 (17)

 𝐒𝐦,𝐧 = {
(−1)m, if n = m,
0, otherwise.

 (18)

3.2.2 The Proposed Derivation Method of the DCT-2 Kernel

In order to retrieve any block size of the DCT-2 kernel, it is necessary to use

any block size DST-3 transform kernel matrix as (16). In Fig. 3-3, at the right

bottom part of the unified DST-3 matrix (𝐔), there exists a 2 × 2 DST-3

transform kernel matrix. Using relation (16), and selected 2 × 2 DST-3

transform kernel matrix, 2-points DCT-2 transform kernel can be derived. For

deriving other points of the DCT-2 kernel, different point DST-3 transform

kernels are needed. Thus to derive different point DST-3 transform kernels

from the unified DST-3 matrix, 64-point unit-element matrices i.e. A, B, C, D,

E is multiplied with unified DST-3 matrix (𝐔) which is shown in Fig. 3-3.

Figure 3-3. Decomposition of 64-point DST-3 transform matrix kernel

20

Unit-element matrices A, B, C, D, and E are the matrices which comprise of

either 1 or -1 or 0 values. 𝐔 matrix is multiplied with these unit-element

matrices in sequential order. In each multiplication with unit-element matrices

in sequential order gives a large block size DST-3 transform kernel matrix.

Based on Fig. 3-3, the relationship between sparse unified DST-3 transform

kernel matrix and five unit-element matrix can be shown as:

𝐒3,64 = 𝐔𝐀𝐁𝐂𝐃𝐄 , (19)

where 𝐒3,64is the 64-point DST-3 transform kernel matrix and U represents

the unified DST-3 matrix and A, B, C, D, and E represents 64-point unit-

element matrices composed of -1, 0 and 1 and is defined as (20) – (24)

𝐀𝐦,𝐧 =

{

1 , if (m = n, ∀ 0 < (m, n) < 60) ||

 (m = n, ∀ 60 < (m, n) < 62) ||

 (
m + n = 123 ∀ (61 < m < 64) and

(60 < n < 62)
) ||

 (
i − j = −2, ∀ (60 < m < 62) and

 (61 < n < 64)
)

−1 , if (m + n = 125, ∀ 61 < (m, n) < 64
0 , elsewhere

 (20)

𝐁𝐦,𝐧 =

{

1 , if (m = n, ∀ 0 < (m, n) < 56) ||

 (m = n, ∀ 55 < (m, n) < 60) ||

 (
m + n = 119 , ∀ (59 < m < 64) and

(55 < n < 60)
) ||

 (
i − j = −4, ∀ (55 < m < 60) and

 (59 < n < 60)
)

−1 , if (m + n = 123, ∀ 59 < (m, n) < 64
0 , elsewhere

 (21)

21

𝐂𝐦,𝐧 =

{

1 , if (m = n, ∀ 0 < (m, n) < 48) ||

 (m = n, ∀ 47 < (m, n) < 56) ||

 (
m + n = 111 , ∀ (55 < m < 64) and

(47 < n < 56)
) ||

 (
i − j = −8, ∀ (47 < m < 56) and

(55 < n < 64)
)

−1 , if (m + n = 119, ∀ 55 < (m, n) < 64
0 , elsewhere

 (22)

𝐃𝐦,𝐧 =

{

1 , if (m = n, ∀ 0 < (m, n) < 32) ||

 (m = n, ∀ 31 < (m, n) < 48) ||

 (
m + n = 95 , ∀ (47 < m < 64) and

(31 < n < 48)
) ||

 (
i − j = −16, ∀ (31 < m < 48) and

(47 < n < 64)
)

−1 , if (m + n = 111, ∀ 47 < (m, n) < 64
0 , elsewhere

 (23)

𝐄𝐦,𝐧 =

{

1 , if (m = n, ∀ 0 < (m, n) < 32) ||

 (
m + n = 63 , ∀ (31 < m < 64) and

(0 < n < 32)
) ||

 (
i − j = −32, ∀ (0 < m < 32) and

(31 < n < 64)
)

−1 , if (m + n = 95, ∀ 31 < (m, n) < 64
0 , elsewhere

 (24)

From the unit-element matrices different point DST-3 transform kernels can

be derived as:

 𝐒3,4 = T[𝐔64 × 𝐀64]4 (25)

 𝐒3,8 = T[𝐔64 ×𝐌64]8 (26)

 𝐒3,16 = T[𝐔64 × 𝐍64]16 (27)

 𝐒3,32 = T[𝐔64 × 𝐎64]32 (28)

22

 𝐒3,64 = 𝐔64 × 𝐏64 , (29)

where 𝑺3,𝑁 is DST-3 transform kernels with N×N block selection of the

right-bottom part of the matrix obtained after multiplication and T[]𝑁

represents the function that takes N×N block of the right-bottom part of the

matrix,𝐔 indicates the unified DST-3 matrix as in Fig. 3-1 and M, N, O, and

P can be obtained using unit-element matrices as (30).

Figure 3-4. Proposed method to obtain 16-point DST-3

Fig. 3-4 represents the proposed method of obtaining DCT-2 using (27). The

unified DST-3 matrix U is multiplied with A, B, and C unit-element matrix in

a sequential manner, which gives the result as 32-point DST-4, 16-point DST-

4, and 16-point DST-3 kernel matrices. From the generated matrix, 16×16

block size DST-3 matrices are selected which is the right bottom part of the

 𝐌 = 𝐀 × 𝐁

 𝐍 = 𝐀 × 𝐁 × 𝐂

 𝐎 = 𝐀 × 𝐁 × 𝐂 × 𝐃

 𝐏 = 𝐀 × 𝐁 × 𝐂 × 𝐃 × 𝐄

 (30)

23

generated matrix. Using the relation (16), it is easy to derive the 16-point DCT-

2 kernel matrix from the 16-point DST-3 matrix. Similar sequential

multiplication is performed to derive different block size DST-3 transform

kernel and from the different points DST-3 transform kernel, DCT-2 transform

kernels can be obtained using (16).

3.3 The Proposed Grouped DST-7 Transform Kernel

In the different block size DST-7 transform kernel, some of the special rows

are selected and stored. The selected stored rows are used to generate the group

of elements of respective block size DST-7 transform kernel with the help of

permutation matrix (G). Permutation matrix (G) is composed up of 1, -1 and

0 elements which is multiplied with the selected stored rows to generate

different group depending on different row elements based on different block

sizes. The rows in the particular group are dependent on each previous rows

sequentially which is explained in section 3.3.1. The total elements that has to

be stored to generate different block size DST-7 transform kernel is 400

elements each of 8-bit precision. The P, Q, R, and S elements as shown in Fig.

3-1 are the stored rows to implement the grouping concept of DST-7 transform

kernel. After the generation of different block size DST-7 transform kernel,

respective block size DCT-8 transform kernel is derived using the relation

between DST-7 transform kernel, flipping matrix (F) and sign change matrix

(S).

24

3.3.1 Grouping Concept

In order to describe the grouping concept of DST-7 in the proposed method,

32-point DST-7 [𝐒7]32 is taken as an example. For the 32-point DST-7, only

six rows i.e. [𝐒7,𝟎]32 , [𝐒7,𝟏]32 , [𝐒7,𝟐]32 , [𝐒7,𝟑]32 , [𝐒7,𝟓]32 , and [𝐒7,𝟔]32 rows

are stored, which are also regarded as the specifically selected rows.

[Note[𝐒M,𝐍]O: where M, N, and O are transform kernel, row number and block

size respectively]. Using these specific selected rows and permutation matrix

(G), all elements of the 32-point DST-7 can be derived and complete DST-7

transform kernels are obtained as shown in Table. 2. Since only size of rows

are used for deriving complete 32-points DST-7, a significantly large amount

of data size can be saved for deriving the kernel.

Table 2. Generation of 32-point DST-7 transform kernel

Rows G (Permutation matrix)

[𝐒7,𝟎]32 [𝐒7,𝟑𝟏]32 [𝐒7,3𝟎]32 [𝐒7,𝟐𝟖]32 [𝐒7,𝟐𝟒]32 [𝐒7,𝟏𝟔]32

[𝐒7,𝟏]32 [𝐒7,𝟐𝟗]32 [𝐒7,𝟐𝟔]32 [𝐒7,2𝟎]32 [𝐒7,𝟖]32 [𝐒7,𝟏𝟓]32

[𝐒7,𝟐]32 [𝐒7,𝟐𝟕]32 [𝐒7,𝟐𝟐]32 [𝐒7,𝟏𝟐]32 [𝐒7,𝟕]32 [𝐒7,𝟏𝟕]32

[𝐒7,𝟑]32 [𝐒7,𝟐𝟓]32 [𝐒7,𝟏𝟖]32 [𝐒7,𝟒]32 [𝐒7,𝟐𝟑]32 [𝐒7,𝟏𝟒]32

[𝐒7,𝟓]32 [𝐒7,𝟐𝟏]32 [𝐒7,1𝟎]32 [𝐒7,𝟏𝟏]32 [𝐒7,𝟗]32 [𝐒7,𝟏𝟑]32

[𝐒7,𝟔]32 [𝐒7,𝟏𝟗]32

As shown in Table. 2, the rows column indicates the specific selected rows

of 32-point DST-7. The elements that can be derived from the multiplication

of the specific selected rows and the permutation matrix (G) are given row-

wise. Each selected specific rows while storing are independent of each other

i.e. for 32-point DST-7, the selected specific [𝐒7,0]32 , [𝐒7,1]32 , [𝐒𝟕,𝟐]32 ,

[𝐒7,3]32, [𝐒7,5]32, and [𝐒7,6]32 rows are independent of each other. Based on

25

the selected specific stored row, determining dependent rows can be explained

in more detail in Fig. 3-5 and Fig. 3-6.

Figure 3-5. Generation of [𝐒7,0]32 dependent grouped row elements of

DST-7 using permutation matrix

Figure 3-6. General multiplication of specific stored row and permutation

matrix (G)

The [𝐒7,0]32 is considered as one of the basic row. Based on a [𝐒7,0]32 all the

remaining rows i.e. [𝐒7,31]32, [𝐒7,30]32, [𝐒7,28]32, [𝐒7,24]32, and [𝐒7,16]32 row

elements are generated. Based on Fig. 3-5 and Fig. 3-6, the following steps are

used to generate the remaining rows

1. The [𝐒7,31]32 row is generated by multiplication of [𝐒7,0]32 row of

DST-7 transform kernel and G matrix

2. The [𝐒7,30]32 row is generated by multiplying [𝐒7,31]32 row obtained

from step 1. and G

3. In each row, the first element of the previous row should be equal to

the last element of the resultant row obtained after multiplying with

the G matrix without considering sign values as shown in Fig. 3-7.

4. The process is repeated until the last element of the [𝐒7,0]32 row

matches with the first-element of the [𝐒7,16]32 row without

considering the sign values as shown in Fig. 3-7.

5. If the first element generated row is negative, the sign values of each

26

element of the respective row is altered.

Figure 3-7. Grouped 32-point DST-7 transform kernel

Fig. 3-7 shows all the derived 32-point DST-7 transform kernels where the

first row of each individual group is regarded as the stored specific row. After

multiplication of the [𝐒7,0]32 row and G, the [𝐒7,31]32 row is obtained. In the

[𝐒7,31]32 row, the first element of the [𝐒7,0]32 row i.e. 4 is equal to the last

element of the [𝐒7,31]32 row neglecting the sign values. Similarly, the first

27

element of [𝐒7,31]32 row is equal to the last element of the [𝐒7,30]32row i.e. 9.

The process is repeated until the last element of the [𝐒7,0]32 row matches with

the first element of the [𝐒7,16]32 row i.e. 90 in the first group of 32-point DST-

7 transform kernel elements.

Similarly, in the [𝐒7,6]32 row group of 32-point DST-7, the [𝐒7,19]32 row is

obtained after multiplying with the permutation matrix (G). In this group, the

first element of the [𝐒7,6]32 row is equal to the last element of the [𝐒7,19]32

row i.e. 53 and the last element of the [𝐒7,6]32 row is equal to the first element

of the [𝐒7,19]32 row i.e. 85. Hence, only two elements are grouped.

Based on the steps explained above, all the DST-7 transform kernel row

elements are obtained.

3.3.2 Specific Rows of Different Point DST-7

The generation of 16-point DST-7 transform kernel based on the proposed

grouping concept is shown in the Table. 3. The specific selected rows are

[𝐒7,0]16, [𝐒7,1]16, [𝐒7,2]16, and [𝐒7,5]16. Using the specific selected rows and

permutation matrix (G), all the elements of 16-point DST-7 transform kernels

are derived.

28

Table 3. Generation of 16-point DST-7 Transform kernel

Rows Permutation matrix (G)

[𝐒7,0]16 [𝐒7,15]16 [𝐒7,14]16 [𝐒7,12]16 [𝐒7,8]16

[𝐒7,1]16 [𝐒7,13]16 [𝐒7,10]16 [𝐒7,4]16 [𝐒7,7]16

[𝐒7,2]16 [𝐒7,11]16 [𝐒7,6]16 [𝐒7,3]16 [𝐒7,9]16

[𝐒7,5]16

For the generation of 8-point DST-7 transform kernel, the selection specific

rows are [𝐒7,0]8 and [𝐒7,1]8. The specific stored rows, permutation matrix, and

rows depending on the specific stored are shown in Table. 4.

Table 4. Generation of 8-point DST-7 transform kernel

Rows Permutation matrix (G)

[𝐒7,0]8 [𝐒7,7]8 [𝐒7,6]8 [𝐒7,4]8

[𝐒7,1]8 [𝐒7,5]8 [𝐒7,2]8 [𝐒7,3]8

Similarly, the generation of 4-point DST-7 transform kernel with the help of

permutation matrix (G) and specific stored rows i.e. [𝐒7,0]4 and [𝐒7,1]4 are

shown in Table. 5.

Table 5. Generation of 4-point DST-7 transform kernel

Rows Permutation matrix (G)

[𝐒7,0]4 [𝐒7,3]4 [𝐒7,2]4

[𝐒7,1]4

29

3.3.3 Derivation of DCT-8

As from the proposed grouped DST-7 matrix, different point DST-7

transform kernel elements can be easily obtained. Based on the obtained DST-

7 transform kernel, DCT-8 [25] of various block size can be achieved using

the relation

 𝐂8 = 𝐒 × 𝐒𝟕 × 𝐅 , (31)

where 𝐂8 and 𝐒7 are the DCT-8 and DST-7 transform kernels, respectively

and S and F are the sign-changing and flipping matrices, respectively and

defined as

 𝐅𝐦,𝐧 = {
1, if n = N − 1 −m,
0, otherwise,

 (32)

 𝐒𝐦,𝐧 = {
(−1)m, if n = m,
0, otherwise.

 (33)

3.4 Permutation Matrix

The permutation matrix,(G) is used to derive all the elements of DST-7

transform kernel. It comprises of either 1 or -1 or 0 elements. This matrix

multiplies with the specific stored rows of DST-7 which finally gives all the

elements of the particular block size DST-7 transform kernel.

30

3.4.1 DST-7 Transform Kernel Pattern

Grouping concept is used in the derivation of the DST-7 transform kernel

which is explained in section 3.3. Let’s consider a certain group of elements

of 32-point DST-7 transform kernel as shown in Fig. 3-8 where the[𝐒7,0]32

row is regarded as the specific stored row.

Figure 3-8. Grouped 32-point DST-7 transform kernel ([𝐒7,0]32 as the specific

stored row)

If analysis is made based on Fig. 3-8, the specific elements of the respective

rows are repeated at a certain pattern without considering the sign change.

Based on [𝐒7,0]32 row elements, [𝐒7,31]32 row elements are derived. If a clear

study on [𝐒7,0]32 and [𝐒7,31]32 row elements is done, the [𝐒7,31]32 row

elements are repeated at the interval of one element gap of the [𝐒7,0]32 row i.e.

9, 17, 26, etc. elements of [𝐒7,0]32 row the 1-st, 3-rd, 5-th column respectively

repeated in [𝐒7,31]32 row in 0-th, 1-st, 2-nd etc. column elements respectively

without considering sign change. Similarly, the [𝐒7,31]32 row and [𝐒7,30]32

row and remaining rows depending on the previous row follows a similar

pattern. This pattern exhibited by different grouped elements of DST-7

transform kernel is defined in the matrix model which is known as the

permutation matrix. Hence, the permutation matrix is nothing but the replica

of the pattern depicted by different groups of DST-7 transform kernel as shown

in Fig. 3-9.

31

Figure 3-9. Pattern matching between [𝐒7,0]32 row and [𝐒7,31]32 row of 32-

point DST-7 transform kernel

This pattern behavior shows that the elements under the same group are

directly or indirectly dependent on each other which means a change of one

element under the certain grouped matrix affects the other elements under the

same group.

32

3.4.2 Algorithm for Generation of Permutation Matrix (G)

Figure 3-10. Algorithm for the generation of the permutation matrix (G matrix)

The following steps are used for the generation of the permutation matrix

based on Fig. 3-10.

1. Initially, the size of the permutation matrix is defined. Based on the

size defined, after generation of the permutation matrix (G)

multiplication with the specific stored DST-7 transform kernel

elements are done. Sizes defined are either 4-point, 8-point, 16-point,

33

32-point.

2. Variable m and n are set to 0 and size-1 so that the initial size of the

permutation matrix can be set from 0.

3. Two variables a and b are initially set to 1 and 0 respectively in order

to apply the condition either the row and column equal to a or b in

order to set the value in the respective location as -1 or 1 or 0 while

computing the values of permutation matrix.

4. Variable condition1 and condition2 are set to true and false

respectively in order to set different logic for the first-half part and

second-half part of the matrix which plays a crucial role in setting

elements to -1 or 1 or 0 in the permutation matrix as shown in Fig. 3-

12.

5. Initially, row is initialized to 0.

6. If the row is less than size defined in step 1 further processing is done

else the whole operation is ended.

7. Different column operations are done based on condition1 and

condition2 so that first-half and second-half of the matrix can be

separated which finally allows us to use our first-half algorithm for

the first-half part of the matrix and second-half algorithm in the

second half of the matrix that allows us to set values of the

permutation matrix as -1 or 1 or 0 as shown in the Fig. 3-11 and Fig.

3-12.

Figure 3-11. 8-point permutation matrix

34

The first-half and second-half algorithms are explained in section

3.4.3 and 3.4.4 respectively.

8. Variable row is incremented by 1 and loop back to step 6.

Figure 3-12. First-half and second-half algorithm to obtain permutation matrix

3.4.3 First-half Algorithm

7.1. Based on Fig. 3-12, initially the variable column is set to 0 i.e. in order

to allow the counting of row and column of the matrix starting from

[0][0] i.e. [row][column]=[0][0]

35

7.2. Check if the column is less than half of the size defined in step 7.1.

7.3. If the condition defined in step 7.2 is false, then the value of the

variable column is set to half of the size defined in step 1 which allows

setting values of the second half of the permutation matrix as -1 or 1

or 0.

7.4. If the condition defined in step 7.2 holds true, then further checking is

done to set the permutation matrix value as 0 or not by using the

condition as the row is equal to the variable a and column variable

define in step 7.1 equal to variable b defined in step 7.3.

7.5. If the condition defined in step 7.4 is false then for the first-half of the

permutation matrix at the particular location the element value is set

to 0.

7.6. If the condition defined in step 7.4 is true then further checking is done

i.e. if the condition1 defined is true or false which helps in setting the

value as -1 or 1.

7.7. If the condition defined in step 7.6 holds false the value of the

permutation matrix at the particular location is set as -1 and the

variable condition1 is set to true.

7.8. If the condition defined in step 7.6 is true, then the permutation matrix

at the particular location is set to 1 and the variable condition1 is set

to false.

7.9. Then for setting values i.e. -1 or 1 or 0 in further first-half of the

permutation matrix the variable, a is set as a+2 and b as b+1.

7.10. For computing values in the further column, the variable column is

increased by 1 and further processing is repeated from step 7.2.

36

3.4.4 Second-half Algorithm

7.11. After setting the value of the column as half of the size defined in step

7.3, the condition is applied to check if the variable column is less than

size or not.

7.12. If the condition defined in step 7.11 holds false then the variable row

is increased by 1.

7.13. If the condition defined in step 7.11 holds true then the condition2

variable is checked for true or false.

7.14. If the condition defined in step 7.13 is false then the element value at

the particular location of the permutation matrix is set as 1 and

variable condition2 is set to false.

7.15. If the condition defined in step 7.13 is true then the element value at

the particular location of the permutation matrix is set as -1 and

variable condition2 is set to true.

7.16. Then the variable m is set to m+2 and variable n to n-1.

7.17. Finally, the variable column is incremented by 1 and step 7.11 is

repeated.

3.4.5 Alternate Method

On the basis of the first-half and second-half algorithm explained, any block

size permutation matrix can easily be obtained. For the generation of the

permutation matrix from the first-half and second-half algorithm, the size has

to be defined each time as 4 or 8 or 16 or 32 as input based on the requirement.

The same result for the different small block size permutation matrix can also

37

be achieved from the larger size permutation matrix by sub-sampling of larger

block size permutation matrix.

Fig. 3-13 shows the selection of a smaller block size permutation matrix from

the larger block size permutation matrix. Let us consider the size of the

permutation matrix as 32-point. As the size of the permutation matrix is set to

32, from the first-half and second-half algorithm the 32-point permutation

matrix can be obtained. From the obtained 32-point permutation matrix, the

bottom middle right and left equal half part of the smaller block size generated

from the larger block is usually selected as shown in Fig. 3-13 (a), (b) and (c).

Fig 3-13 (a) shows the generation of 16-point permutation matrix from a 32-

point permutation matrix. At the bottom middle right (16/2 = 8-point) and left

(16/2 = 8-point) equal half part of the smaller block size which forms a 16-

point smaller permutation matrix from the larger 32-point permutation matrix.

Similarly, Fig 3-13 (b) shows the selection of the 8-point permutation matrix

from a 16-point or 32-point permutation matrix and Fig. 3-13 (c) explains the

selection of the 4-point permutation matrix from an 8-point or 16-point or 32-

point permutation matrix.

The advantage of this selection method is that there is no need to set the size

of the permutation matrix as input and execute first-half and second-half

algorithm again and again based on our block size requirement. The required

block size permutation matrix is selected from the larger block size

permutation matrix.

38

(a) Generation of 16-point

permutation matrix from

32-point permutation matrix

(b) Generation of 8-point permutation

matrix from 16-point or 32-point

permutation matrix

(c) Generation of 4-point permutation matrix from 8-point or 16-point or 32-point

permutation matrix

Figure 3-13. Selection of smaller block size permutation matrix from the larger

block size permutation matrix

39

3.5 Exceptional Cases

As the procedure to derive all the elements of the DST-7 transform kernel is

already been mentioned in section 3.3.1, this section deals with the exception

encountered while deriving the elements of 32-point DST-7 transform kernel.

3.5.1 Exceptional Condition in Proposed Grouping Concept

As the steps for deriving the elements of DST-7 transform kernel already

been mentioned which tells that in each row the first element of the previous

row should be equal to the last element of the resultant row obtained after

multiplication with permutation matrix (G) without considering sign values

and the process is repeated until the last element of the first specific stored row

matches with the first-element of the generated row.

Using these steps, the exception can be viewed in the [𝐒7,3]32 row group

where the [𝐒7,3]32 row is considered as the specific stored row as shown in

Fig. 3-14.

Figure 3-14. [𝐒7,3]32 row group of 32-point DST-7 transform kernel

Based on the combination of the [𝐒7,3]32 row element and permutation

matrix (G), other rows like [𝐒7,25]32 , [𝐒7,18]32 , [𝐒7,4]32 , [𝐒7,23]32 , and

[𝐒7,14]32 rows should be obtained. The first element of the [𝐒7,3]32 row is

40

well-matched with the last element of the [𝐒7,25]32 row regardless of the sign

value and the first element of the [𝐒7,25]32 row is matched with the last element

of the [𝐒7,18]32 row and based on the step mentioned above, the process ends

up as the last element of the [𝐒7,3]32 row gets matched with the first element

of the [𝐒7,18]32 row. The consequence is that the remaining rows i.e. [𝐒7,4]32,

[𝐒7,23]32, and [𝐒7,14]32 rows cannot be obtained.

In order to eliminate the exception which is only seen in the [𝐒7,3]32 row

group, two approaches have been defined in section 3.5.2 and section 3.5.3.

3.5.2 Approach 1

This approach deals with the modification/tuning of the [𝐒7,(3,31)]32 i.e. 88

has been changed to 89 regardless of sign change as shown in Fig. 3-15. [Note:

[𝐒M,(N,P)]O where M, N, P, and O are DST-7 transform kernel, row, column

and size of the matrix respectively].

Figure 3-15. Approach 1 for deriving 32-point DST-7 transform kernel

[Highlighted is the tuned value]

In Fig. 3-15, based on the proposed concept, the effect of tuning can be seen

in other row elements as well, which is directly or indirectly dependent on the

[𝐒7,3]32 row stored. The consequence of the changed value is that the first

41

element of the [𝐒7,3]32 row matches with the last element of the [𝐒7,25]32 row

i.e. 30. Similarly, the first of the [𝐒7,25]32 row matches with the last element

of the [𝐒7,18]32 row i.e. 56. Following the steps of the derivation of DST-7

transform kernel, the first element of the [𝐒7,18]32 row matches with the last

element of the [𝐒7,4]32 row i.e. 88. Similarly, the first element of the [𝐒7,4]32

row matches with the last element of the [𝐒7,23]32 row i.e. 38. Finally, the first

element of the [𝐒7,23]32 row matches with the last element of the [𝐒7,14]32 row

i.e. 68 and consequently, the last element of the stored specific row i.e. [𝐒7,3]32

row’s last element 89 matches with the first element of the [𝐒7,14]32 row

regardless of the sign change.

Hence, approach 1 deals with the exception encountered during the

generation of 32-point DST-7 transform kernel.

3.5.3 Approach 2

As approach 1, approach 2 also deals with the modification/tuning of one of

the elements of 32-point DST-7 transform kernel which is shown in Fig. 3-16.

Figure 3-16. Approach 2 for deriving 32-point DST-7 transform kernel

[Highlighted is the tuned values]

42

This approach deals with the modification of the [𝐒7,(3,3)]32 element value of

the 32-point DST-7 transform kernel i.e. from “88” to “89” element value. The

consequence of the tuned value is that the first element of the [𝐒7,3]32 row

matches with the last-element of the [𝐒7,25]32 row i.e. 30 regardless of sign

value. Similarly, the first element of the [𝐒7,25]32 row matches with the last

element of the [𝐒7,18]32 row i.e. 56. Following steps mentioned while the

generation of the DST-7 transform kernel, the first element of the [𝐒7,18]32

row matches with the last element of the [𝐒7,4]32 row i.e. 89. Similarly, the

first element of the [𝐒7,4]32 row matches with the last element of the [𝐒7,23]32

row i.e. 38. The first element of the [𝐒7,23]32 row matches with the last element

of the [𝐒7,14]32 row i.e. 68. Finally, the [𝐒7,3]32 group matrix is closed as the

last element of the [𝐒7,3]32 row matches with the first element of the [𝐒7,14]32

row i.e. 88.

Hence, Approach 2 also deals with the exception encountered during the

generation of 32-point DST-7 transform kernel.

Finally based on these two approaches using the relation as mentioned in

(16), respective two tuned DCT-8 transform kernel can be derived.

3.6 DST-7 Transform Kernel Fast Algorithm

The fast algorithm [29] of DST-7 transform kernel has already been adopted.

The details about the fast algorithm is described in section 3.6.1 based on the

different features of DST-7 transform kernel. The proposed 16-point and 32-

point DST-7 transform kernel well satisfy the features which are explained in

section 3.6.2.

43

3.6.1 DST-7/DCT-8 Fast Algorithm

The fast algorithm of DST-7/DCT-8 is based on three features for an N-point

which is described as:

Feature #1: In some basis vectors which contain N distinct numbers without

considering the sign changes, it is observed that the sum of several (2 or 3)

numbers equals to the sum of another several (1 or 2) numbers.

Feature #2: Replicate patterns with symmetric or anti-symmetric

characteristics that can be observed in some basis vectors.

Feature #3: There is another one or two basis vector(s) which only contain(s)

very few (1 or 2) distinct number(s) without considering the sign changes

To explain the fast methods utilizing these features, an example from 16-

point DST-7 transform can be explained. Before explaining all those features

let us consider the elements of DST-7 transform kernel as

44

{ a b c d e f g h i j k l m n o p }

{ c f i l o o l i f c 0 -c -f -i -l -o }

{ e j o m h c -b -g -l -p -k -f -a d i n }

{ g n l e -b -i -p -j -c d k o h a -f -m }

{ i o f -c -l -l -c f o i 0 -i -o -f c l }

{ k k 0 -k -k 0 k k 0 -k -k 0 k k 0 -k }

{ m g -f -n -a l h -e -o -b k i -d -p -c j }

{ o c -l -f i i -f -l c o 0 -o -c l f -i }

{ p -a -o b n -c -m d l -e -k f j -g -i h }

{ n -e -i j d -o a m -f -h k c -p b l -g }

{ l -i -c o -f -f o -c -i l 0 -l i c -o f }

{ j -m c g -p f d -n i a -k l -b -h o -e }

{ h -p i -a -g o -j b f -n k -c -e m -l d }

{ f -l o -i c c -i o -l f 0 -f l -o i -c }

{ d -h l -p m -i e -a -c g -k o -n j -f b }

{ b -d f -h j -l n -p o -m k -i g -e c -a }

where{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p}are the N unique

numbers which are specified by the formulation of DST-7.

Example of Feature #1

It is noted that the element values have the following characteristics.

a + j = l

b + i = m

45

c + h = n

d + g = o

e + f = p

Therefore, to calculate y0, instead of doing the following vector-by-vector

multiplication:

y0 = a·x0 + b·x1 + … + p·x15

which requires 16 multiplications. The following alternative implementation

can be done to derive the same results:

y0 = a·(x0+x11) + b·(x1+x12) + … + j·(x9+x11) + k·x10

which requires 10 multiplications. It is observed that the number of

multiplications is reduced.

Example of Feature #2

The second basis vector is

{ c, f, i, l, o, o, l, i, f, c, 0, -c, -f, -i, -l, -o}

Segment 0 Segment 1 Segment 2

which can be divided into three segments, and they are replicated with sign

changes or flipped versions of each other. Based on Feature #2, when

calculating y1, instead of doing the following vector-by-vector multiplication

y1 = c·x0 + f·x1 + …- o·x15

46

which requires 16 multiplications. The following alternative implementation

can be used to derive the same results.

y1 = c·(x0+x9-x11) + f·(x1+x8-x12) + i·(x2+x7-x13) +

l·(x3+x6-x14) + o·(x4+x5-x15)

which only requires 5 multiplications. It is reported the number of

multiplications is reduced.

Example of Feature #3

It is observed that the 6th basis vector-only contains 1 distinct number without

considering the sign changes as shown below.

{k, k, 0, -k, -k, 0, k, k, 0, -k, -k, 0, k, k, 0, -k}

Instead of taking the vector-by-vector multiplication of

y5 = k·x0 + k·x1 + … - k·x15

which requires 11 multiplications, y5 can also be achieved by the following

operations:

y5 = k·(x0+x1- … -x15)

which only requires 1 multiplication

47

3.6.2 Fast Algorithm Implementation on The Proposed DST-7

The major drawback of the fast algorithm of DST-7 transform kernel is that

in different rows different features have to be applied. It becomes difficult to

apply the features row-wise as there should be match in each row that it follows

a certain feature or not. For the larger DST-7 transform kernel implementing

this feature becomes really tedious and time-consuming.

The proposed grouping concept introduced in this thesis solves the problem

by implementing a particular feature in certain row group elements. The

feature applied to one row is applied to all the row group elements that are

dependent on that row. This grouping concept really becomes beneficial for

the large block size DST-7 transform kernel as individual selection of features

for each row is not need to be performed.

48

Figure 3-17. Implementation of features in derived 16-point grouped DST-7

transform kernel

Fig. 3-17. shows the grouping concept applied to the 16-point DST-7

transform kernel. After applying the grouping concept in the DST-7 transform

kernel, the respective groups only follows the specific feature described in

section 7.1. This makes easy to separate which feature has to be used in a

particular row of the transform kernel.

49

Feature 1

 Feature 1 is supported for the groups whose specific stored rows are [𝐒7,0]16

and [𝐒7,2]16. This feature is applied to all the rows which directly or indirectly

depend on the [𝐒7,0]16 row and [𝐒7,2]16 row.

Feature 2

Feature 2 is supported for the group whose specific stored row is [𝐒7,1]16 row.

This feature is applied to all the rows which directly or indirectly depend on

the [𝐒7,1]16 row.

Feature 3

Feature 3 is supported for the group whose specific stored row is the [𝐒7,5]16

row. As no other rows depends on this specific stored row hence, only in the

[𝐒7,5]16 row this feature is applied.

50

4. Simulation Results and Discussions

4.1 Simulation Results of Proposed methods

(a) Original DCT-2 Vs Proposed DCT-2 (16-point Approach 1 and Approach 2)

(b) Original DST-7 Vs Proposed DST-7 (32-point Approach 1)

51

(c) Original DCT-8 Vs Proposed DCT-8 (32-point Approach 1)

Figure 4-1. Comparison of the proposed and original transform kernels

(Approach 1)

(a) Original DST-7 Vs Proposed DST-7 (32-point Approach 2)

52

(b) Original DCT-8 Vs Proposed DCT-8 (32-point Approach 2)

Figure 4-2. Comparison of the proposed and original transform kernels

(Approach 2)

In order to verify the derived transform kernels obtained from the proposed

method, the original transform kernels obtained from VTM-3.0 [30] reference

software is matched with the proposed transform kernels. Fig. 4-1. and Fig. 4-

2. shows the comparison of similarities between original transform kernel

(DCT-2, DST-7 and DCT-8) obtained from VTM-3.0 [30] reference software

and the proposed derived transform kernels (DCT-2, DST-7 (approach 1 and

2) and DCT-8 (approach 1 and 2)). Based on figures, it can be seen that the

derived transform kernels are closely overlapped with the original transform

kernels. This indicates that the original transform kernels are well

approximated by the proposed transform kernels and are more likely to have

identical coding gains with the original transform kernels.

Similarly, the simulation of the proposed method is conducted on the VVC

reference software VTM-3.0[30] using the CTC condition [31]. The PC for

53

simulation has Centos 7 OS with intel ® Xeon ® Silver 4114 CPU @ 2.20 GHz

processor with 20 cores and 156 GB of RAM. The simulation results of

approach 1 and approach 2 are shown in Table.6 and Table.10 respectively

Table 6. Overall simulation results of approach 1

 All Intra Main10 of Approach 1
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.00% -0.08% 0.00% 100% 100%

Class A2 0.00% -0.04% 0.00% 100% 100%

Class B 0.00% 0.02% 0.06% 100% 100%

Class C 0.00% -0.04% -0.07% 100% 100%

Class E 0.00% 0.04% 0.00% 100% 100%

Overall 0.00% -0.02% 0.00% 100% 100%

Class D 0.00% 0.00% 0.10% 102% 100%

 Random access Main10 of Approach 1
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.01% 0.07% 0.06% 101% 100%

Class A2 -0.04% 0.08% 0.08% 101% 100%

Class B 0.00% 0.18% 0.01% 100% 100%

Class C 0.00% 0.01% 0.10% 101% 100%

Overall -0.01% 0.09% 0.06% 101% 100%

Class D -0.01% -0.20% -0.15% 101% 100%

54

 Low delay B Main10 of Approach 1
 Over VTM-3.0
 Y U V EncT DecT

Class B -0.01% -0.29% -0.42% 100% 100%

Class C 0.06% 0.21% 0.10% 101% 100%

Class E -0.02% 0.54% -0.51% 101% 100%

Overall 0.01% 0.08% -0.27% 101% 100%

Class D -0.03% 0.08% -0.21% 101% 100%

Table. 6. shows the simulation results of Approach 1 based on the VTM-3.0

anchor under CTC condition. For AI configuration, there is no loss in

luminance whereas there is 0.08% chroma (U) gain in class A1 and negligible

loss i.e. 0.10% in class D in chroma (V). The overall results for 0.00% in

luminance and a 0.02% gain in chrominance (U).

For RA configuration, the maximum gain for luminance is 0.04% for class

A2 and a negligible loss of 0.01% for class A1. Similarly, for chrominance

(U), the maximum RA gain is 0.20% for class D and a negligible loss of 0.18%

for class B. The overall result for RA configuration is a gain of 0.01% gain for

luminance and loss of 0.09% i.e. maximum negligible loss for chrominance.

For LDB configuration, the maximum gain for luminance is 0.03% for class

D and loss of 0.06% for class C. The chrominance gain (V) is 0.51% for class

E and loss is 0.10% for class C. Similarly, chrominance (U) gain of 0.29% for

class B and loss is 0.54% for class E. The overall result for luminance is

negligible 0.01% loss and negligible loss of 0.08% in U chrominance and in V

chrominance, there is a gain of 0.27%.

The detail experimental result of approach 1 using different test sequences

are as following

55

Table 7. Simulation results of Approach 1 (AI)

 Test Sequences
BD-rate (piecewise cubic)

 Y U V

Class A1 (4K)

Tango2 -0.01% -0.31% 0.08%

FoodMarket4 0.01% -0.01% 0.04%

Campfire -0.01% 0.08% -0.10%

Class A2 (4K)

CatRobot1 -0.01% -0.01% 0.01%

DaylightRoad2 0.00% -0.10% 0.02%

ParkRunning3 0.01% 0.00% -0.03%

Class B (1080p)

MarketPlace 0.02% -0.13% 0.00%

RitualDance 0.00% 0.07% 0.10%

Cactus 0.01% 0.01% 0.05%

BasketballDrive -0.01% -0.02% 0.07%

BQTerrace 0.00% 0.15% 0.09%

Class C (WVGA)

BasketballDrill 0.01% -0.18% -0.12%

BQMall -0.01% 0.15% -0.06%

PartyScene 0.00% -0.04% -0.10%

RaceHorses 0.01% -0.09% 0.00%

Class D (WQVGA)

BasketballPass 0.01% -0.17% -0.08%

BQSquare 0.00% 0.23% 0.28%

BlowingBubbles 0.00% -0.03% 0.03%

RaceHorses 0.00% -0.03% 0.18%

Class E (720p)

FourPeople 0.00% -0.05% -0.01%

Johnny -0.02% 0.18% -0.07%

KristenAndSara 0.02% -0.02% 0.08%

 Based on Table. 7 approach 1, no significant loss is found in AI for

luminance and for chrominance, some gain is observed in the higher resolution

classes but some negligible losses are observed in lower resolution classes.

56

Table 8. Simulation results of Approach 1 (RA)

 Test Sequences
BD-rate (piecewise cubic)

 Y U V

Class A1 (4K)

Tango2 0.04% 0.14% 0.01%

FoodMarket4 0.00% 0.11% 0.17%

Campfire 0.00% -0.04% 0.01%

Class A2(4K)

CatRobot1 -0.04% 0.10% 0.17%

DaylightRoad2 -0.04% 0.19% 0.07%

ParkRunning3 -0.03% -0.06% 0.01%

Class B(1080p)

MarketPlace -0.02% 0.28% -0.13%

RitualDance -0.01% -0.02% 0.00%

Cactus -0.03% -0.04% 0.14%

BasketballDrive 0.05% -0.01% -0.14%

BQTerrace 0.01% 0.69% 0.17%

Class C(WVGA)

BasketballDrill -0.01% 0.13% 0.15%

BQMall -0.02% -0.12% 0.18%

PartyScene 0.02% 0.18% -0.18%

RaceHorses 0.00% -0.15% 0.24%

Class D(WQVGA)

BasketballPass -0.03% -0.09% -0.17%

BQSquare -0.07% -0.95% -0.24%

BlowingBubbles -0.01% 0.01% 0.30%

RaceHorses 0.08% 0.23% -0.47%

Based on Table. 8 approach 1, no significant loss is seen in RA as well for

both luminance and chrominance. Higher-resolution shows some gain whereas

less significant loss is shown in the lower resolution test sequences.

57

Table 9. Simulation results of Approach 1 (LDB)

 Test Sequences
BD-rate (piecewise cubic)

 Y U V

Class B(1080p)

MarketPlace 0.05% -0.04% -0.35%

RitualDance 0.03% -0.11% -0.27%

Cactus -0.10% -0.45% -0.06%

BasketballDrive 0.01% -0.16% -0.13%

BQTerrace -0.05% -0.68% -1.28%

Class C(WVGA)

BasketballDrill 0.04% 0.55% 0.10%

BQMall 0.16% 0.61% 0.11%

PartyScene 0.04% -0.22% -0.08%

RaceHorses -0.01% -0.10% 0.28%

Class D(WQVGA)

BasketballPass -0.09% 0.36% -0.43%

BQSquare -0.02% 0.55% 0.59%

BlowingBubbles 0.00% -0.43% -0.83%

RaceHorses -0.02% -0.16% -0.17%

ClassE(720p)

FourPeople 0.17% -0.77% -0.30%

Johnny -0.22% 2.81% -0.22%

KristenAndSara 0.00% -0.43% -1.00%

 Table. 9 shows the detailed simulation results of LDB which shows mostly

gains in luminance and chrominance in lower resolution test sequences.

From the above results, it is seen that approach 1 results are very close to the

VTM-3.0 anchor. This signifies that the transform kernel obtained from the

proposed method is significantly close to the original transform kernel.

58

Table 10. Overall simulation results of Approach 2

 All Intra Main10 of Approach 2
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.00% -0.11% 0.02% 100% 100%

Class A2 0.00% -0.01% 0.02% 99% 100%

Class B 0.00% 0.01% 0.07% 100% 100%

Class C 0.00% -0.06% -0.10% 100% 100%

Class E 0.00% 0.01% 0.03% 100% 100%

Overall 0.00% -0.03% 0.01% 100% 100%

Class D 0.00% 0.16% -0.06% 102% 100%

 Random access Main10 of Approach 2
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.00% -0.07% 0.07% 100% 100%

Class A2 -0.02% 0.14% 0.02% 100% 100%

Class B -0.01% 0.26% 0.06% 101% 100%

Class C 0.02% -0.03% 0.04% 100% 100%

Overall 0.00% 0.09% 0.05% 100% 100%

Class D 0.00% 0.10% 0.07% 101% 100%

 Low delay B Main10 of Approach 2
 Over VTM-3.0
 Y U V EncT DecT

Class B 0.02% -0.16% 0.23% 96% 100%

Class C 0.02% 0.34% 0.19% 101% 100%

Class E 0.00% 0.99% -0.84% 101% 100%

Overall 0.01% 0.30% -0.05% 99% 100%

Class D 0.00% 0.48% 0.15% 101% 100%

59

Table. 10 shows the simulation results of approach 2 which is based on VTM-

3.0 anchor under CTC condition. For the AI configuration, there is no change

in luminance. In the luminance, the maximum gain is 0.11% for class A1 and

loss is 0.16% for class D. The overall result shows that there is no change in

luminance whereas there is a gain of 0.03% and loss of 0.01% i.e. regarded as

negligible in chrominance.

For the RA configuration, 0.02% is the maximum luminance gain for class

A2, 0.02% is the maximum luminance loss i.e. for class C. Regarding

chrominance, the maximum gain is 0.07% for class A1, and maximum loss is

0.26% for class B. The overall results show that there is neither gain nor loss

in luminance and a very negligible loss of 0.09% in chrominance.

For the LDB configuration, there is negligible loss of 0.02% for luminance

in class B and C. Similarly, the maximum gain for chrominance is 0.84% in

class E and loss of 0.99% in class E. The overall results show that there is

negligible loss of 0.01% in luminance and loss of 0.30% and gain of 0.05% in

chrominance.

The detail experimental result of approach 2 using different test sequences

are as following

60

Table 11. Simulation results of Approach 2 (AI)

 Test Sequences
BD-rate (piecewise cubic)

 Y U V

Class A1 (4K)

Tango2 0.00% -0.45% 0.04%

FoodMarket4 0.01% 0.07% 0.11%

Campfire 0.00% 0.04% -0.09%

Class A2(4K)

CatRobot1 0.00% -0.06% 0.06%

DaylightRoad2 -0.01% 0.01% 0.00%

ParkRunning3 0.00% 0.01% -0.01%

Class B(1080p)

MarketPlace -0.01% -0.05% 0.08%

RitualDance 0.01% 0.00% 0.06%

Cactus 0.01% 0.01% 0.12%

BasketballDrive -0.01% 0.05% -0.05%

BQTerrace 0.00% 0.04% 0.12%

Class C(WVGA)

BasketballDrill 0.02% 0.02% -0.02%

BQMall -0.01% -0.06% -0.02%

PartyScene 0.00% -0.01% -0.12%

RaceHorses 0.00% -0.19% -0.24%

Class D(WQVGA)

BasketballPass 0.05% 0.08% -0.13%

BQSquare -0.01% 0.20% 0.07%

BlowingBubbles -0.01% 0.07% -0.06%

RaceHorses -0.03% 0.29% -0.11%

ClassE(720p)

FourPeople 0.00% 0.07% 0.01%

Johnny -0.03% -0.09% -0.12%

KristenAndSara 0.02% 0.06% 0.19%

Table. 11 shows the detail simulation result of approach 2 where no

significant loss is found in AI for luminance and for chrominance, some gain

is observed in the higher resolution classes. The highest gain observed for

61

chrominance is 0.45% for Class A1 Tango2 test sequence and the highest loss

observed for chrominance is 0.29% for the Class D RaceHorses test sequence.

Table 12. Simulation results of Approach 2 (RA)

 Test Sequences
BD-rate (piecewise cubic)

 Y U V

Class A1 (4K)

Tango2 0.00% -0.21% -0.06%

FoodMarket4 0.01% 0.02% 0.16%

Campfire -0.01% -0.02% 0.10%

Class A2(4K)

CatRobot1 -0.02% 0.19% 0.17%

DaylightRoad2 -0.01% 0.32% -0.08%

ParkRunning3 -0.03% -0.07% -0.03%

Class B(1080p)

MarketPlace -0.04% 0.33% 0.10%

RitualDance 0.01% 0.13% 0.12%

Cactus -0.04% -0.10% -0.15%

BasketballDrive 0.01% -0.11% -0.09%

BQTerrace 0.01% 1.03% 0.31%

Class C(WVGA)

BasketballDrill 0.01% -0.11% 0.13%

BQMall 0.00% 0.23% -0.21%

PartyScene 0.01% 0.04% 0.16%

RaceHorses 0.06% -0.27% 0.10%

Class

D(WQVGA)

BasketballPass -0.02% 0.47% -0.10%

BQSquare -0.10% -0.19% -0.40%

BlowingBubbles -0.02% 0.14% 0.58%

RaceHorses 0.15% -0.03% 0.20%

Table. 12 shows the detail simulation result of approach 2 where no

significant loss is found in RA for luminance but for chrominance, 1.03% loss

is observed in class B BQTerrace test sequence and 0.27% gain in class C

RaceHorses test sequence. In spite of high loss in RA, the overall result for all

test sequences is showing negligible loss for chrominance.

62

Table 13. Simulation results of Approach 2 (LDB)

 Test Sequences
BD-rate (piecewise cubic)

 Y U V

Class B(1080p)

MarketPlace 0.05% 0.02% 0.22%

RitualDance 0.04% -0.10% -0.03%

Cactus -0.06% -0.52% 0.28%

BasketballDrive 0.02% -0.42% -0.12%

BQTerrace 0.04% 0.24% 0.79%

Class C(WVGA)

BasketballDrill -0.01% 0.67% 0.66%

BQMall 0.06% 0.56% 0.34%

PartyScene 0.03% 0.08% -0.14%

RaceHorses -0.01% 0.04% -0.10%

Class D(WQVGA)

BasketballPass 0.02% 0.88% -0.53%

BQSquare -0.10% 0.46% 0.73%

BlowingBubbles 0.06% 0.65% 0.40%

RaceHorses 0.00% -0.07% 0.00%

ClassE(720p)

FourPeople 0.14% 0.14% -0.07%

Johnny -0.13% 1.74% -1.28%

KristenAndSara -0.02% 1.09% -1.18%

Table. 13 shows the LDB detail simulation result of approach 2. The

maximum gain for luminance is 0.13% for class E Johny test sequence and

maximum loss is 0.14% for class E FourPeople test sequence. Similarly, for

chrominance, the maximum loss is 1.74% for Class E Johny test sequence and

gain is 1.28 for V chrominance. The maximum gain and loss are observed in

class E test sequences. The overall result is also showing some losses of 0.30%

in chrominance but a negligible loss of 0.01% in luminance.

63

4.2 Approach 1 and Approach 2 Comparison

Comparing the approach 1 and approach 2, both comprises of negligible

losses based on the VTM-3.0 anchor. Although approach 1 and approach 2

results are close to each other but base on the results of LDB, approach 1 is

better than approach 2. In approach 2, there exist a loss of 0.30% in U chroma

whereas there is a negligible loss of only 0.08% in U chroma of LDB in

approach 1. Similarly, the LDB gain of V chroma of approach 1 is higher than

approach 2 i.e. a 0.27% gain in comparison to a 0.05% gain. While analyzing

the overall result and detail result of different test sequences, it can be said that

approach 1 is better than approach 2 as approach 1 provides small gain over

VTM-3.0.

4.3 Comparison Between Proposed Method and COT

While comparing the proposed obtained results with the COT [22], the

simulation results of COT are shown in the Table. 14. Analyzing the results,

although the results of COT are better than the proposed, 64-point DCT-2

cannot be achieved, as kernel elements of DST-4 and DST-7 are embedded in

64-point DCT-2. This is the main reason why better results for MTS turned off

cannot be achieved where only different point DCT-2 transform kernel is used.

Similarly, the memory that has to be stored in COT is 32768 bytes (64-point)

whereas the proposed method stores only 13168 bytes memory and after some

computation, the same transform kernels of different sizes can be achieved.

64

Table 14. Simulation results of COT

 All Intra Main10
 Over VTM-3.0
 Y U V EncT DecT

Class A1 -0.01% -0.01% 0.09% 101% 100%

Class A2 -0.05% -0.05% -0.01% 102% 100%

Class B -0.14% -0.13% -0.12% 102% 98%

Class C -0.29% -0.21% -0.31% 101% 99%

Class E -0.34% -0.28% -0.13% 98% 98%

Overall -0.17% -0.14% -0.11% 101% 99%

Class D -0.31% -0.32% -0.31% 104% 104%

 Random access Main10
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.00% 0.02% 0.05% 101% 99%

Class A2 -0.02% 0.17% 0.09% 99% 99%

Class B -0.07% 0.06% 0.01% 101% 99%

Class C -0.11% -0.05% 0.04% 101% 100%

Overall -0.06% 0.05% 0.04% 101% 99%

Class D -0.14% -0.44% -0.34% 101% 101%

 Low delay B Main10
 Over VTM-3.0
 Y U V EncT DecT

Class B -0.02% -0.26% 0.08% 100% 100%

Class C 0.01% 0.44% 0.17% 99% 96%

Class E 0.10% 1.06% 0.16% 102% 98%

Overall 0.02% 0.30% 0.13% 100% 98%

Class D 0.02% 0.20% 0.08% 104% 102%

65

4.4 Comparison Between Proposed Method and

Unified Matrix

Based on the results from Table. 15, some gain is shown in the AI

configuration. However gain is seen in the overall result of AI

configuration, higher classes i.e. A1 and A2 are showing high losses.

Similarly, loss is seen in the RA and LDB configuration as well. The

losses in class A1 and A2 along with RA and LDB losses are due to

the mismatching of proposed DST-7 and DCT-8 with the original

DST-7 and DCT-8 transform kernels. Similarly, the memory needed

to store here in this proposal is 32768 bytes (64-points) whereas the

proposed method in this paper stores only 13168 bytes. The

simulation results proposed in [24] are shown in Table. 15.

Table 15. Simulation results of Unified matrix

 All Intra Main10
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.20% 0.16% 0.30% 101% 100%

Class A2 0.15% 0.09% 0.09% 101% 100%

Class B -0.02% -0.15% -0.14% 101% 99%

Class C -0.30% -0.35% -0.41% 102% 100%

Class E -0.25% -0.35% -0.29% 100% 98%

Overall -0.06% -0.14% -0.12% 101% 99%

Class D -0.35% -0.36% -0.47% 103% 102%

66

 Random access Main10
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.18% 0.26% 0.32% 101% 101%

Class A2 0.14% 0.19% 0.31% 99% 99%

Class B 0.07% 0.17% -0.10% 100% 100%

Class C -0.07% -0.04% 0.05% 98% 96%

Overall 0.07% 0.14% 0.11% 99% 99%

Class D -0.14% -0.45% -0.26% 98% 96%

 Low delay B Main10
 Over VTM-3.0
 Y U V EncT DecT

Class B 0.17% 0.02% 0.33% 98% 96%

Class C 0.15% 0.34% 0.39% 98% 98%

Class E 0.19% 0.81% -0.36% 96% 88%

Overall 0.17% 0.32% 0.18% 97% 95%

Class D 0.06% 0.05% -0.17% 98% 97%

4.5 Proposed Method and Adjustment Stages Comparison

Based on the results [25] from Table. 16, the overall result of AI showed

negligible luminance loss of 0.03% and U chrominance loss of 0.05% and V

chrominance loss of 0.11% with an Encoding time of 104%. In the higher test

sequences, there is high loss in the chrominance whereas there is few loss in

the luminance for all the test sequences. Similarly, for RA there is no gain i.e.

luma loss of 0.04% and U and V chroma loss of 0.06% and 0.13% respectively.

67

Table 16. Simulation results of Adaptive Multiple Transforms (AMTs)

 All Intra Main10
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.06% 0.18% 0.19% 101% 97%

Class A2 0.06% 0.03% 0.10% 102% 97%

Class B 0.03% 0.09% 0.13% 102% 98%

Class C 0.01% -0.01% 0.11% 105% 105%

Class E 0.03% -0.06% 0.11% 109% 106%

Overall 0.03% 0.05% 0.11% 104% 101%

Class D 0.01% 0.05% -0.01% 107% 109%

 Random Access Main10
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.03% 0.06% 0.14% 101% 99%

Class A2 0.04% 0.12% 0.22% 100% 100%

Class B 0.05% -0.13% 0.05% 101% 99%

Class C 0.00% 0.04% 0.03% 99% 98%

Overall 0.04% 0.06% 0.13% 100% 99%

Class D 0.05% 0.26% 0.24% 100% 100%

4.6 Proposed Method and TAF Comparison

Based on the simulation results [27] shown in Table. 17, no AI gain is seen in

the luminance and gain of 0.11% is seen in class D of U chrominance and in

V chrominance small gain of 0.03% is seen in class C. The overall result is

showing less significant loss. For the higher test sequence classes, there is

showing high loss. Similarly, for RA higher test sequences are showing the

68

high loss and the overall result is a 0.06% loss for luma and 0.11% loss for

both U and V chroma. For the LDB, the overall result is showing loss i.e.

0.03% loss of luma and 0.18% and 0.16% loss in U and V chroma respectively.

The loss is seen due to the mismatch of the proposed DST-7/DCT-8 transform

kernel signal with the original transform kernel signals.

Table 17. Simulation results using Transform Adjustment Filter (TAF)

 All Intra Main10
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.10% 0.12% 0.13% 95% 84%

Class A2 0.14% 0.08% 0.03% 97% 88%

Class B 0.07% 0.03% 0.10% 96% 88%

Class C 0.01% 0.07% -0.03% 97% 93%

Class E 0.06% 0.04% 0.11% 96% 89%

Overall 0.07% 0.06% 0.06% 96% 88%

Class D 0.04% -0.11% 0.08% 97% 96%

Class F 0.03% 0.04% 0.09% 97% 94%

 Random Access Main10
 Over VTM-3.0
 Y U V EncT DecT

Class A1 0.09% 0.11% 0.08% 99% 98%

Class A2 0.05% 0.20% 0.24% 99% 98%

Class B 0.05% 0.25% 0.12% 99% 98%

Class C 0.06% -0.12% 0.04% 99% 100%

Overall 0.06% 0.11% 0.11% 99% 99%

Class D -0.02% -0.45% -0.51% 99% 100%

Class F 0.01% -0.09% 0.14% 99 98%

69

 Low delay B Main10
 Over VTM-3.0
 Y U V EncT DecT

Class B 0.05% -0.17% 0.12% 100% 101%

Class C 0.01% -0.01% 0.21% 100% 100%

Class E 0.02% 1.00% 0.16% 100% 99%

Overall 0.03% 0.18% 0.16% 100% 100%

Class D -0.04% 0.21% -0.17% 100% 100%

Class F 0.14% 0.36% -0.60% 100% 99%

70

5. Conclusion

In this thesis, a kernel derivation method for the VVC video codec is

proposed. Since the memory consumption to store different block size

transform kernels is a major issue in video coding standardization of VVC,

this thesis deals with storing fewer elements of transform kernels and deriving

all the transform kernels based on that stored transform kernel elements. The

proposed method uses a common unified sparse matrix which is derived from

the DST-3 matrix and some specific rows derived from the selected rows from

the DST-7 transform kernel. Similarly, to make compatible with the proposed

method for DST-7 transform kernel, two approaches (Approach 1 and

Approach 2) have been introduced which signifies the DST-7 transform kernel

closely matches the proposed DST-7 transform kernel. The proposed method

also supports the fast algorithm of DST-7 transform kernel which got adopted

[21]. The proposed method in this thesis gives comparable results with the

VTM-3.0 anchor with negligible loss which signifies that the proposed

transform kernels are significantly close to the original signal in the VTM-3.0

anchor.

71

Acknowledgment

I would like to express my deepest gratitude to my advisor, Prof. Bumshik

Lee, for his support, patience, and encouragement throughout my graduate

study. His technical and editorial advice and words of encouragement and

guideless were essential to complete this research successfully.

I am expressing my deep gratitude to my parents, brother and sisters for their

love, understanding, supports, and encouragement during the period of this

research.

Finally my deepest thanks to my fellow lab mates for their support

throughout the course of my research.

72

References

[1] Thomas Wiegand, Gary J. Sullivan, Senior Member, IEEE, Gisle

Bjøntegaard, and Ajay Luthra, Senior Member, IEEE, ‘Overview of the

H.264/AVC Video Coding Standard’, IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol. 13,

Jul. 2003.

[2] Kai Zhang, Li Zhang, Wei-Jung Chien, Marta Karczewicz, ‘Intra-

Prediction Mode Propagation for Video Coding’, IEEE JOURNAL ON

EMERGING AND SELECTED TOPICS IN CIRCUITS AND

SYSTEMS, vol. 9, Mar. 2019.

[3] Jean Bégaint, ‘Towards novel inter-prediction methods for image and

video compression’, Ph.D. thesis, University of Rennes 1, Comue

University Britian Loire, Research unit: INRIA Rennes - Brittany

Atlantic and Technicolor R&I, November 29, 2018. [Online]. Available:

https://hal.archives-ouvertes.fr/tel-01960088/document

[4] V. K. Goyal, ‘Theoretical foundations of transform coding’, IEEE Signal

Processing Magazine, vol. 18, no. 5, pp. 9-21, Sept. 2001

[5] Abedi, M.; Sun, B.; Zheng, Z., ‘A Sinusoidal-Hyperbolic Family of

Transforms With Potential Applications in Compressive Sensing’, IEEE

Transactions on Image Processing. 28 (7): 3571–3583, Jul. 2019.

[6] Anil K. Jain, ‘A Sinusoidal Family of Unitary Transforms’, IEEE trans.

pattern anal. mach. intell, vol. PAMI-1, pp. 356-365, Oct. 1979.

[7] WK Cham, PhD, ‘Development of Integer Cosine Transforms by the

Principle of Dyadic Symmetry’, Proc. Inst. Elect. Eng., pt. 1, vol. 136,

no. 4, pp. 276-282, Aug. 1989.

[8] G. Strang, ‘The Discrete Cosine Transform’, SIAM Review, vol. 41 no.

1, pp. 135- 147, Mar. 1999.

[9] Iain Richardson, ‘White Paper: 4x4 Transform and Quantization in

H.264/AVC’,2010.

[10] Sadiqullah Khan and Gulistan Raja. (2004), ‘Integer cosine transform

and Its application in Image/Video Compression’, ICSEA, Conference

proceeding Islamabad, pp.189-193.

https://hal.archives-ouvertes.fr/tel-01960088/document
https://www.semanticscholar.org/author/Iain-Richardson/138696055

73

[11] Richardson I.E. G . (2002), ‘White Paper H.264/MPEG-4 Part 10:

Variable Length Coding’.

[12] Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP

(2007). ‘Section 22.6. Arithmetic Coding’. Numerical Recipes: The Art

of Scientific Computing (3rd ed.). New York: Cambridge University

Press. ISBN 978-0-521-88068-8.

[13] Rissanen, J.J.; Langdon G.G., Jr (March 1979). ‘Arithmetic

coding‘ (PDF). IBM Journal of Research and Development. 23 (2): 149–

162. doi:10.1147/rd.232.0149V. K. Goyal, ‘Theoretical foundations of

transform coding’, IEEE Signal Processing Magazine, vol. 18, no. 5, pp.

9-21, Sept. 2001

[14] Marpe, D., Schwarz, H., and Wiegand, T., ‘Context-Based Adaptive

Binary Arithmetic Coding in the H.264/AVC Video Compression

Standard’, IEEE Trans. Circuits and Systems for Video Technology, Vol.

13, No. 7, pp. 620–636, July 2003.

[15] ‘Context-Based Adaptive Binary Arithmetic Coding (CABAC)

’, Fraunhofer Heinrich Hertz Institute. Retrieved 13 July 2019

[16] S. Vetrivel, K. Suba, G.A Thisha, ‘An Overview of H.26x Series And its

Applications’, International Journal of Engineering Science and

Technology, Vol. 2(9), 2010, 4622-4631.

[17] T. Wiegand, G.J. Sullivan, G. Bjontegaard, A. Luthra, ‘Overview of the

H.264/AVC video coding standard’, IEEE Transactions on Circuits and

Systems for Video Technology, vol. 13, No. 7. (2003), pp. 560-576.

[18] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand,

‘Overview of the High Efficiency Video Coding (HEVC) Standard’,

IEEE, pp. 1649–1668, Sep. 2012

[19] J. Chen and Y. Ye, S. H. Kim, ‘Algorithm description for Versatile Video

Coding and Test Model 3 (VTM 3),[JVET-L1002]’, JVET of ITU-T SG

16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 12th Meeting: Macao, CN,

Oct. 2018.

[20] Rao, K. R.; Yip, P., ‘Discrete Cosine Transform’, IEEE Transactions on

Computers. Boston: Academic Press, 1990.

http://apps.nrbook.com/empanel/index.html#pg=1181
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-88068-8
https://web.archive.org/web/20070928023306/http:/researchweb.watson.ibm.com/journal/rd/232/ibmrd2302G.pdf
https://web.archive.org/web/20070928023306/http:/researchweb.watson.ibm.com/journal/rd/232/ibmrd2302G.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1147%2Frd.232.0149
http://iphome.hhi.de/marpe/download/cabac_ieee03.pdf
http://iphome.hhi.de/marpe/download/cabac_ieee03.pdf
http://iphome.hhi.de/marpe/download/cabac_ieee03.pdf
https://www.hhi.fraunhofer.de/en/departments/vca/research-groups/image-video-coding/research-topics/context-based-adaptive-binary-arithmetic-coding-cabac.html
https://www.hhi.fraunhofer.de/en/departments/vca/research-groups/image-video-coding/research-topics/context-based-adaptive-binary-arithmetic-coding-cabac.html

74

[21] Gary J. Sullivan , Jens-Rainer Ohm, ‘Meeting Report of the 13th Meeting

of the Joint Video Experts Team (JVET)’, Joint Video Experts Team

(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th

Meeting: Marrakech, MA, 9–18 Jan. 2019.

 [22] X. Zhao, X. Li, S. Liu, ‘CE6: Compound Orthonormal Transform JVET-

M0200’, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and

ISO/IEC JTC 1/SC 29/WG 11 13th Meeting: Marrakech, MA, Jan. 2019.

[23] Feig, E.; Winograd, S., ‘Fast algorithms for the discrete cosine

transform’, IEEE Transactions on Signal Processing. 40 (9), pp. 2174–

2193., Sep. 1992.

[24] K. Choi, M. Park, M.W. Park, W. Choi, ‘CE6: Unified matrix for

transform JVET-M0200’, Joint Video Experts Team (JVET) of ITU-T

SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 13th Meeting:

Marrakech, MA, Jan. 2019.

 [25] A. Said, H. Egilmez, V. Seregin, M. Karczewicz, ‘Complexity Reduction

for Adaptive Multiple Transforms (AMTs) using Adjustment Stages

JVET-J0066’, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3

and ISO/IEC JTC 1/SC 29/WG 11 10th Meeting: San Diego, US, Apr.

2018.

[26] JVET JEM software--https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoft

 ware/

[27] Pierrick Philippe, ‘CE6: MTS simplification with TAF’, Joint Video

Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC

29/WG 11 13th Meeting: Marrakech, MA, Jan. 2019.

[28] Zhaobin Zhang, Xin Zhao, Xiang Li, Li Li, Member, IEEE, Yi Luo, Shan

Liu, and Zhu Li, Senior Member, IEEE, ‘Fast DST-7/DCT-8 with Dual

Implementation Support for Versatile Video Coding’, IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, no. under review.

[29] Xin Zhao, Xiang Li, Yi Luo, Shan Liu, ‘CE6: Fast DST-7/DCT-8 with

dual implementation support JVET-M0497’, Joint Video Experts Team

(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 13th

Meeting: Marrakech, MA.

75

[30] JVET VTM software — JVET. https://vcgit.hhi.fraunhofer.de/jvet/

VVCSoftware_VTM/tree/VTM-3.0.

[31] P. Hanhart, J. Boyce, K. Choi, J.-L. Lin, ‘JVET common test conditions

and evaluation procedures for 360° video’. Joint Video Exploration Team

(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 12th

Meeting: Macau, CN.

	1. Introduction
	1.1 Background
	1.2 Objectives
	1.3 Motivation
	1.4 Thesis Layout

	2. Related Works
	2.1 Compound Orthonormal Transform (COT)
	2.2 Unified Matrix for Transform
	2.3 Adjustment Stages
	2.4 Transform Adjustment Filter (TAF)

	3. Proposed Method
	3.1 Common Sparse Unified Matrix
	3.2 Unified DST-3 Matrix (U)
	3.3 The Proposed Grouped DST-7 Transform Kernel
	3.4 Permutation Matrix
	3.5 Exceptional Cases
	3.6 DST-7 Transform Kernel Fast Algorithm

	4. Simulation Results and Discussions
	4.1 Simulation Results of Proposed methods
	4.2 Approach 1 and Approach 2 Comparison
	4.3 Comparison Between Proposed Method and COT
	4.4 Comparison Between Proposed Method and Unified Matrix
	4.5 Proposed Method and Adjustment Stages Comparison
	4.6 Proposed Method and TAF Comparison

	5. Conclusion
	Acknowledgment
	References

<startpage>18
1. Introduction 1
 1.1 Background 1
 1.2 Objectives 6
 1.3 Motivation 7
 1.4 Thesis Layout 9
2. Related Works 10
 2.1 Compound Orthonormal Transform (COT) 10
 2.2 Unified Matrix for Transform 11
 2.3 Adjustment Stages 12
 2.4 Transform Adjustment Filter (TAF) 14
3. Proposed Method 16
 3.1 Common Sparse Unified Matrix 16
 3.2 Unified DST-3 Matrix (U) 17
 3.3 The Proposed Grouped DST-7 Transform Kernel 23
 3.4 Permutation Matrix 29
 3.5 Exceptional Cases 39
 3.6 DST-7 Transform Kernel Fast Algorithm 42
4. Simulation Results and Discussions 50
 4.1 Simulation Results of Proposed methods 50
 4.2 Approach 1 and Approach 2 Comparison 63
 4.3 Comparison Between Proposed Method and COT 63
 4.4 Comparison Between Proposed Method and Unified Matrix 65
 4.5 Proposed Method and Adjustment Stages Comparison 66
 4.6 Proposed Method and TAF Comparison 67
5. Conclusion 70
Acknowledgment 71
References 72
</body>

