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| . INTRODUCTION

Commercial pure titanium (CP-Ti) and titanium (Ti) alloys have been used
an implant material from orthopedics and dental field. Because, its alloys
have low elastic modulus, mechanical properties, good corrosion resistance
and excel lent biocompatibility [1-5]. However, CP-Ti and Ti alloys have some
problems such as high modulus of elasticity and toxic. Especially, Ti-6Al-4V
alloy has toxic elements such as Alzheimer’ s disease of Al element and
toxicity of V element, it can create harmful environment [6-8]. So, some
researchers have been studies on problems of Ti alloys. They have focused on
nontoxic element such as niobium (Nb), hafnium (Hf), tantalum (Ta), and
zirconium (Zr) for controlling the contents. Especially, Nb and Hf element
are effective titanium B-stabilizers and complete mutual solubility in Ti
phases [11-15]. Therefore, Nb and Hf element will have superior properties
of alloys and biocompatibility such as the Ti-Nb-Hf alloy.

Many researchers have been studies various surface modifications of Ti
alloys to improve their bioactivity due to insufficient adhesion of cells on
bulk Ti surface. The plasma electrolytic oxidation (PEO) is one of various
process, it can occur very quickly to anodic spark oxidation from TiO.
again. Micro—arc oxidation and anodic spark oxidation are created based on
PEO process. The micro—arc oxidation shows many advantages, such as adhesion
of substrate metal, corrosion of Ti alloy and biocompatibility of Ti alloy
surfaces to improve a surface property [13-20]. From previous reports,
anodized TiO, surface provided higher cell adhesion, proliferation, and
cells cultured on anodized TiO, surfaces, it leads to higher ALP activity,
compared with the control surface such as a physical change [21, 22].
Especially, PEO process can control electrolyte composition, applied
voltage, current density and applied time, which can incorporate Ca and P
ions on the Ti0, surface [23-25]. PEO process for active surface can be

carried out in electrolytes containing Ca and P ions or other ions. Natural

_1_
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bone is composed of mineral elements such as magnesium (Mg), silicon (Si),
zinc (Zn), strontium (Sr), and manganese (Mn), etc. Especially, Mg is
closely related to indirectly affect mineral metabolism and calcification of
bone tissue. Also, role of Si deficiency has been reported to affect bone
formation and growth after clinical implantation of bio-implants [25-27].
However, there were a |ittle researches focused on PEO-treated Ti alloy in
electrolyte containing Ca, P, Mg, and Si ions for improvement of
biocompatibility.

In this study, the surface characteristics of (Mg/Si)-hydroxyapatite
coated Ti-29Nb—xHf alloys by plasma electrolyte oxidation for dental implant

have researched using various experimental instruments.
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Il'. BACKGROUND

2.1. Titanium[20-27]

Dental materials have been wused successfully for a variety of
biocompatible materials and other applications. CP Ti (commercial pure
titanium), Ti-6A1-4V and nickel-titanium shape memory alloys are widely used
due to several advantages, including low elastic modulus, excellent
corrosion resistance and improved biocompatibility as shown in Table 1.
[21-23]. Metal materials used for long periods of time in orthopedic and
dental areas should be free of toxic or allergic reactions to patients or
manipulators and should not cause changes in the corrosion or physical
properties of the equipment in the environment. Table 1 summarizes the
mechanical properties of various implant metal materials specified by the
ASTM standard [24]. However, in the case of the Ti-6A1-4V alloy widely used,
there are some disadvantages such as the release of the elements Al and V
which are cytotoxic to the human body, and these elements may have an
undesirable negative effect [25,26]. Principal requirements for all the
biomaterials, incluing metalics, are presently understood to be: corrosion
resistance, biocompatibility, bioadhesion (bone ingrowth), mechanical
properties, availability. The characteristics of the implants when selecting
or developing bio alloys are shown in Table 2. When a metal implant is
implanted in a living body, biomolecules such as biological fluids including
various cells and water, dissolved ions, and proteins surrounded by water
molecules are adhered to determine the affinity of the alloy by the

biological reaction with the metal material[25-27].
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Table 1. Mechanical properties of selected implant metals[25]

Alloys SUS 316L SUS 316 Co-28Cr-6Mo  Co-20Cr-15W-10Ni CPTi Ti-6AL4V (ELT) Ti-6AL-TND Ti-5Al-2.5Fe
ASTM designation 745 F55, F36 F75 F90 F67 F136 F1295
F138 F799
F13¢
Condiri led A led 30% cold as-cast’'annealed Annealed 44% cold  30% cold wor Forged annealed Forged anneal  Forged annealed
worked cold forged  HIP hotforged worked ked Forged heat treated ed
Young’s modulus ( 190 190 210 210 110 116 110 110
GPa) 190 253 210 116
190 210
Yield strength (MP e} | 331 448-517 448-648 485 896 900-1000 820-9202
a) 92 841 1606 1034
1213 $96-1200
Tensile strength (M 483 586 655-889 951-1220 760 965 1000-1100 940-1050
Pa) 930 1277 1896 1103
1351 1399-1586
— 4 —
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Table 2. Summarized properties of biomaterials[26]

Biomaterials Mechanical Properties

- Elastic modulus

- Tensile & yield strength

- Osseointegration
- Bio corrosion resistance - Elongation
- Adveres tissue reaction - Toughness

- Fatigue crack initiation, propagation

- Hardness. wear resistance
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2.2. Titanium properties[21-25]

Since the Kroll process has caused commercial potential in ore in 1936,
titanium, also referred to as the "marvelous metal," has been used in more
and more specialized applications because the Kroll process has made this
material a mine. Titanium is the most common element found on all continents
and is recovered from TiO—rich deposits of rutile, ilmenite and leucoxene.
Until titanium was discovered in 1794 and Kroll's innovative process
development in 1936, there was no practical way to recover titanium metal
from this ore because of its affinity for oxygen. Modern ore extraction,
benzylation and chemical processes have since made it possible to
mass—-produce titanium metal for the production of high-grade TiO, and CP-Ti
(commercial pure titanium) grades, important pigments in paints and
commercial products, alloys and other alloy systems [21,22]. Metal
biomaterials are <classified as stainless steel, cobalt-based alloys,
titanium metal and etc., and other materials include solid gold, dental
amalgam, and other special metals. Titanium can be transformed into two
crystal lographic forms. CP-Ti has a hexagonal close-packed (hcp) crystal
structure called a-phase at room temperature. The crystallographic change
of body-centered cubic (bcc) structure known as B-phase through the
addition of alloying and thermochemical treatment at 883 ° C is shown in
Fig 1. Titanium properties can lead to changes in alloying by bonding with
other elements. The stabilization effects of the alloying elements are
summarizes in Table 3. The main requirements for all biocompatible
materials, including metallics, are now understood with regard to corrosion
resistance, biocompatibility, bioadhesive (bone ingrowth), mechanical

properties, and availability [23-25].
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2.2.1 Ti-Nb—Hf system[7-13,28-33]

Much research has been done on dental Ti alloying elements, focusing on
alloys with Al and V added. So, focusing on Ti alloys, research on metallic
biomaterials such as Ta, Hf, Nb and Zr composed of non-toxic elements are
being conducted [7-9, 28-30]. Studies show that Ti-Nb alloys show great
potential as implant materials. For example, Ti-25Nb has a bending strength
of 1650 MPa and a bending strength of 77 GPa [10-13]. In addition, it is
reported that Ti-Nb alloy shows excellent corrosion resistance when compared
to Ti-6AI-4V alloy which is most used in dental field. Assis [31] also
reported that the addition of Nb and Zr elements to Ti had slightly improved
corrosion resistance compared to Ti-6Al-4V alloys. The Hf and Zr elements
exhibit complete mutual solubility in both the o and B structures with the
Ti phase. Also Ti alloyed with Hf will ikely to have good corrosion
resistance [32-33]. In previously reported studies, the binding of Nb and Hf
elements to Ti elements was spontaneously immobilized in 0.9% NaCl solution.

lcorr and |y decreased slightly with increasing Hf content [12, 31-33].
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HCP
(Hexagonal close packed)

0,468nm

B-phase (above 882.5 °C)

4

BCC
(body centered cubic)

Fig. 1. Allotropic transformation of titanium [30].
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‘aAlloy | a+fAlloy Metastable B Alloy | Stable B Alloy

Temperature ——

B-Stabilizers Concentration

Fig. 2. Phase diagram of Ti and PB-stabilization concentration [33].
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Table 3. Physical property of titanium [9].

Property Unit Value
Density (20 °C) glcm? 4.54
(a-phase)
Melting point °C 1688
Volume change in a-B transformation % 5.5
a-B transformation tempeure °C 882.5
Thermal expansion coefficient (20 °C) 10°/°C 8.41
Thermal conductivity cal/lcm/cm?°C/sec ~ 0.035
Specific heat (20 °C) cal/g 0.126
Electricity conductivity (about Cu) % 2.2
Characteristics resistance (0 °C) kQ - cm 80
Elastic modulus Gpa 103-107
— 10 —
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2.3. Titanium oxide surface[35-38]

Titanium is known to form naturally on the surface of Ti0, oxide when
exposed to air. It is known that the oxide film of thickness of several
nanometers generated on the titanium surface has excellent chemical
inertness, corrosion resistance, repassivation ability and biocompatibility
due to its chemical stability and structure [35-38]. The composition of the
mechanically polished CP-Ti surface and the oxide thickness indicated by
X-ray photoelectron spectroscopy (XPS) are summarized in Table 4. The
properties of the titanium oxide film grown at room temperature are shown in

Table 5 and summarized as fol lows:

1. TiO, oxide is mainly composed of amorphous or nanocrystalline oxide film

with thickness of 3-7 mm.

2. The Ti0, /Ti interface has an 0 to Ti concentration ration that varies

gradually from 2 to 1 from the Ti0O, to a much lower ration in the bulk.

3. Ti0, induces biomolecules, and is surrounded by a glycoprotein layer
that plays a role in recognizing cells or transporting chemicals between

cells in vivo, and the implants quickly heal in the bone.

_11_
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Table 4. Physical properties and crystal structure of Ti0.[35]

Calculated indirect band gap (eV)

Experimental band gap(eV)
Refractive index

Solubility in HF

Solubility in H,O

Hardness (Mohs)

Bulk modulus (GPa)

3.23-3.59(345.4-383.9nm)
T 3.2(7 387 nm)
2.54,2.49

Soluble

Insoluble

5.5-6

183

anaase-Til, 378 A
Lt

Property Anatase Rutile
Crystal structure Tetragonal Tetragonal
Atoms per unit cell (Z£) 4 2
Space group I4famd P4,/mnm
a=3.T845 a=0.4594
Lattice parameters (A)
c=4.5937 c=2.9587
Unit cell volume (nm3) 0.1363 0.0624
Density (g/em?) 3.894 4.250

3.02-3.24(382.7-410.1 nm)
~3.0(~ 413 nm)
2.79,2.903

Insoluble

Insoluble

6-6.5

206

L) F
‘;?ﬁ ';tif:"-' nutile-Tilh, 4. 50 A
952A é}} 2 1 B C}_:—_" ' @-\
&L LS & Y
Crystal structure et ﬁ- . ad
© o | ©ll >
®n ¢ {:J.--E}l-..{:j )
‘ (.'“::;';i_,«hﬁ.;?.

Collection @ chosun



Table 5. Physicochemical properties of titanium oxide and other metal

[36-38]

Most . Solubility Typical
Isoelectric  Charge - Iy

Element stable oint at pEL 7 atPh 7 tissue

oxide P P [mol/£] response
Ti Ti0, 3.5-6.7 - 3%106 Inertness
Al Al, O, 8.8-9.5 + 106 Sequestration
Nb Nb,O; 3.4-3.8 - ~1073 Inertness

V'}Oi = ]- g

<74 =2 -

A% V,0, 11.5-2.3 104 Toxicity
Ir Zr0O, 4.6,7,10-11 <106 Inertness
Ta Ta, 0, 2.7-3 - ~1073 Inertness

FeEO3 P {10_10 .
Fe FeO 2.2-9 1011 Sequestration
Cr Cr, 0y 6.7-7.4 +0 ~10-11 Toxicity
Co Co,0; 108 + ~10° Toxicity

23 . (COO) &
- 13 -
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2.4. Electrochemical anodization process(34].

Anodizing is an electrolytic process that creates an oxide film that
increases the thickness and density of oxide films on metal surfaces. To
achieve this, the conducting piece performing the anodizing treatment is
located in the electrolyzer connected to the positive terminal of the power
supply and acting as an anode. The cathode uses platinum plates or rods. The
electrons are forced to move from the electrolyte to the anode when power is
supplied. This process allows metal surface atoms to be exposed to oxygen
ions in the electrolyte. The atoms react to form the in situ part of the
oxide layer. When power is applied, the electrons return to the cathode, and

the description of the electrochemical anodization cell is shown in Fig 3.
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2H+2e —H,1
Ti —>Tit*+de-

Ti**+20? ->TiO,

Fig. 3. Schematic diagram of electrode processes in electrolysis of aqueous

solutions[34].
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2.5. Micro—porous oxide formation([21-25, 35-38]

Ti and oxygen ions formed in this oxidation-reduction reaction are driven
through oxides by an externally applied electric field to form an oxide
film. The following reactions may occur:

(1) Main reactions at the Ti / Ti0. interface during the anodic oxidation

are as follows:
Ti < Tit * + 2 (1=1)
(2) At the Ti0, /electrolyte interface:

2H, 0 < 20 = + 4H' (1-2)
2Ho 0 < 0, + 4H" + 4e” (1-3)

(3) At both interfaces:
Tiz "+ 202 =~ < Ti0, + 2e (1-4)

The drop in the applied voltage occurs mainly across the oxide film of the
anode, and the anode Ti0, has a higher resistance than the metal portion of
the electrolyte and the electric circuit. The oxide does not have sufficient
resistance to prevent current flow when the anodizing treatment is higher
than the breakdown voltage. The process at these high voltages is commonly
referred to as spark anodizing and has a porous oxide film on its surface.
Surgical insertion of Ti implants, such as cortical screw threads and some
artificial tooth roots, involves significant wear. These applications prefer
to have high adhesion and surface hardness on the implant surface. The
anodic plasma oxidation of Ti has been developed to meet these requirements.

When a positive voltage is applied to Ti, Ti atoms are ionized at the metal

_16_
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oxide interface and oxygen is diffused through the oxide layer. They combine
and the oxide becomes thicker. As oxide thickness increases, resistance also
increases, and this layer accounts for most of the voltage drop. Surface
deformations of Ti implants typically use voltages of several hundred volts.
In this case, micro-arc causes local formation. The intense oxygen gas
generated during the decomposition process has a temperature enough to melt
the oxide, which has crater-shaped pores on the surface. Moreover,
micrometer—scale porosity and topography can contribute to implant fixation

by mechanical interlocking.
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2.6. Effect of magnesium (Mg) and silicon (Si) in the
bone[3s5-41]

Various mineral elements exist in the human body, and essential trace
elements have been reported to play an important role in bone formation
because they affect bone density. Information on the effect of the mineral
element in the human body is shown in Table 6, and the content of the
mineral element present in the human body is shown in Table 7. Among the
various factors, magnesium (Mg) is one of the major substituents of calcium
(Ca). The amounts contained in the enamel, dentin and bone were 0.2 wt%, 1.1
wt% and 0.6 wt%, respectively. Mg is the fourth most abundant ion in the
human body, Mg is known as Ca substitute, and it has a structure that can be
easily substituted in HA lattice. This substitution structure is represented
by the formula Caip-x Mgx (POs) & (OH) ». Mg ions are known to play an
important role in the proliferation of bone metabolism by inhibiting
crystallization, stimulating nucleation of large amounts of apatite nuclei,
and influencing osteoblast and osteoclast activity. In the bone, Mg
stimulates irregular bones to convert them into more crystalline and mature
bones. Substitution of magnesium in Ca-deficient HA lattice is expected to
be comparable to hard tissue with excellent biocompatibility of Mg-HA. As a
result of solubility, crystallinity and particle shape, the bioactivity is
expected to be controlled by controlling the Mg® * substitution in the Mg-HA

solution window. Therefore, surface modification helps improve the activity
between the implant and bone.

Silicone (Si) influences skeletal development and bone formation, which
was established by Carlisle. In general, highly concentrated Si is present
in metabolically active osteoblasts and is considered essential for
extracellular matrix formation in bone and cartilage. In addition, a
reduction in Si in bone results in a decrease in the number of osteoblasts,

osseomatriceal collagen, and glycosaminoglycans. These findings suggest that

_18_

Collection @ chosun



Si may affect the cellular response at the implant/bone interface, thereby
influencing the rate of skeletal repair. Si has been shown to be involved in
apatite formation and HA in osteoblastic activity and simulated body fluids
(SBF).
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Table 6.

Effect of selected metallic ions on human bone metabolism

angiogenesis : summary of literature studies[35-38]

Ion

Biological response in vivo / in vitro

Si

Ca

Mg

Sr

-essential for metabolic processes, formation and caleification of bone tissue
-dietary intake of Si increases bone mineral density (BMD)

-aqueous Si induces Hap precipitation

-Si(OH), stimulates collagen I formation and osteoblastic differentiation

-favours osteoblast proliferation, differentiation and extracellular matrix (ECM) mineralization

-activates Ca-sensing receptors in osteoblast cells, increases expression of growth factors, e.g.
IGF-I or IGF-II

-stimulates expression of matrix la protein (MGP) a key regulator in bone formation

-shows anti-inflammatory effect and stimulates bone formation in vitro by activation protein
synthesis in osteoblasts

-increases ATPase activity, regulates transcription of osteoblastic differentiation genes, e.g.
collagen I, ALP, osteopontin and osteocalcin

-stimulates new bone formation
-increases bone cell adhesion and stability
(probably due to interactions with integrins)

-shows beneficial effects on bone cells and bone formation in vivo
-promising agent for treating osteoporosis

-significant amounts of cellular Cu are found in human endothelial cells when undergoing
angiogenesis

-promotes synergetic stimulating effects on angiogenesis when associated with angiogenic
growth factor FGF-2

-stimulates proliferation of hman endothelial cells

-induces differentiation of mesenchymal cells towards the osteogenic lineage

-stimulates RNA synthesis in fibroblast cells
-dietary boron stimulates bone formation

_20_
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Table 7. Comparative composition of human enamel, dentin, and bone[37-41]

Enamel Dentine Bone
Ca (wt.%) 37.6 40.3 36.6
P (wt.%) 18.3 18.6 17.1
CO, (wt.%) 3.0 4.8 4.8
Na (wt.%) 0.70 0.1 1.0
K (wt.%) 0.05 0.07 0.07
Mg (wt.%) 0.2 1.1 0.6
Sr (wt.%) 0.03 0.04 0.05
Cl1 (wt.%) 0.4 0.27 0.1
F (wt.%0) 0.01 0.07 0.1
Zn (ppm) 263 173 39
Ba (ppm) 125 129
Fe (ppm) 118 93
Al (ppm) 86 69
Ag (ppm) 0.6 2
Cr (ppm) 1 2 0.33
Co (ppm) 0.1 1 <0.025
Sb (ppm) 1 0.7
Mn (ppm) 0.6 0.6 0.17
Au (ppm) 0.1 0.07
Br (ppm) 34 114
Si (ppm) 500
Ca/P 1.59 1.67 1.65

- 21 -
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IIl. MATERIALS AND METHODS

3.1. The preparation of Ti—29Nb—xHf alloys

The CP Ti (G&S Titanium, Grade 4, USA), Nb, and Hf (Kurt J. Lesker
Company, 99.95 wt.% purity, USA) were used for making the Ti-29Nb-xHf (x= 0,
3, 7 and 15) alloys. And prepared alloys were cleaned by ultrasonic cleaner
with acetone and ethanol. After cleaning, all alloys were dried thoroughly.

The Ti-29Nb-xHf alloys were prepared by using the vacuum arc melting
furnace (vacuum arc melting system, SVT, KOREA) at high-purity Ar gas. The
gas was filled up to water cooling copper hearth in vacuum atmosphere. For
Keeping vacuum, atmosphere was controlled by chamber fine gage. To avoid
inhomogeneity of Ti-29Nb—xHf alloys, ingots were remelted at least 10 times
in Ar atmosphere at 1050C (MSTF-1650, MS Eng, KOREA) for 12hrs, and then
0C water quenching. The alloy ingots were cut off by using diamond wheel
cutting system (Accutom-5, Struers, Denmark) by way of a thickness of 3.0 mm
for experiments, and then ultrasonically cleaned in acetone and finally

dried in air.
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3.2. The characterization of Ti—-29Nb—xHf alloys

The microstructure of the Ti-29Nb-xHf alloys were analyzed by optical
microscopy (OM, Olymmpus BME0 M, Japan) after performing treatment in
Keller’ s reagent (2 m HF + 3 m¢ HCl + 5 mé NHO; + 190 ™ H,0). The
compositions of each alloys were identified by X-Ray fluorescence (XRF,
Analyzer  Serial number-581331,  OLYMPUS,  Japan), Analyzer  Serial
number-581331, OLYMPUS, Japan). The phase and composition of each alloy was
observed by using X-ray diffractometer (XRD, X' pert PRO. Philips). The

HCPDS files and characterization were used for matching each characteristic
peak in this study.
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3.3. Micro—pore formation on the alloy surface

The washed Ti-29Nb and Ti-29Nb-15Hf alloys were used as anodes and a
carbon rod was used as the catode in different electrolytes containing Mg
concentration of 0 Mol% (CaP), 5 Mol% (5Mg), 10 Mol% (10Mg), 20 Mol% (20Mg),
as shown in Table 8. The concentration of the electrolytic solution was
stirred during anodizing process in the beaker. The micro—pore formation was
carried out using by DC power supply (KDP-1500, KOREA) at 270 V for 3 min as
shown in Table 9. The current density was applied to 70 mA in anodizing
process. The morphologies of micro—pore formed Ti-29Nb and Ti-29Nb—15Hf
oxide were observed by a FE-SEM, EDS, and XRD. The image J (jttp://rsb.
info. nih. gov/i/, NIH, USA) software and image analyzer (Image Pro Plus,
Media Cybernetics, PA, USA) were used for measuring the surface fraction of

porosity and pore size from FE-SEM image of micro-pore formed al loy.
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Table 8. The condition of different electrolytes containing plasma

electrolytic oxidation.

Experimental Condition Composition of Electrolyte

Specimen Calcium Acetate Calcium Magnesium acetate Sodium Metasilicate
(mol L) Glycerophosphate tetrahydrate (mol L)
(mol L") (mol L")
CaP 0.15 0.02 0 0
5Mg/5Si 0.1425 0.02 0.0075 0.001
10Mg/5Si 0.135 0.02 0.015 0.001
20Mg/55i 0.12 0.02 003 0.001
- 25 —
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Table 9. The condition of plasma electrolytic oxidation.

Working equipment KDP-1500, KOREA
Working electrode Samples (Ti-29Nb and Ti-25Ta-15Hf alloy)
Counter electrode High dense carbon
Applied voltage 270V
Applied current 70 mA
Time 3 min
- 26 -
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3.4. Measurement of mechanical properties

The elastic modulus (E) and the hardness (H) of the Ti-29Nb-xHf alloy were
measured by using nano-indentation tester (TTX-NHT3, Anton paar, Austrial)
and vickers hardness tester (DM-2D, AFFRI, Italy). The nano-indentation test
was performed at allowable load range of 500 mN, a pulling speed of 25 N /
min, depth range fine range 40 um, and large range 200 um. At least five
indentation measures were obtained for each alloy in the nano—indentation

test.

_27_

Collection @ chosun



3.5. Surface wettability measurement

For performing wettability test, micro-pore surfaces of Ti-29Nb and
Ti-29Nb-15Hf formed by PEO-treatment in electrolyte containing Ca, Mg, P,
and Si ions, were used by water contact angle goniometer (Kruss DSA100,
Germany). Surface wettability values were obtained through performing water
contact angle test. The water contact angles were obtained by sessile
droplet method and a video camera. At least ten water contact angle values

were measured for each alloy with 6 #¢ drop mode.
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y.: Surface tension of liquid
y:: Surface free energy of solid
y=.: Interfacial tension between liquid and solid

Vil = ¥s = COSH + ya

Fig. 4. Equilibrium wetting state of liquid.
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3.6. Electrochemical tests

To evaluate the electrochemical characteristics of Ti—-29Nb—xHf before and
after PEO-treatment in a solution containing Mg. Potentiodynamic polarizatio
n and AC impedance tests were performed wusing a three-electrode
electrochemical system. A specimen was connected to the working electrode, a
saturated calomel electrode (SCE) was used as the reference electrode, and a
high density carbon rod was used as the counter electrode. Argon gas was
injected and stirred to remove impurities, oxides and dissolved oxygen. All
specimens were allowed to stabilize in the electrolyte at the appropriate
open circuit potential for 10 min before the start of the test. The
specimens were used for each test, and mean values with the standard
deviations of the corrosion parameters were obtained from the raw data.
Potentiodynamic polarization and AC impedance tests were carried out using a
potentiostat (Model 2273, EG&G Co. USA) using a 0.9% NaCl solution at
36.5+1 C. The potential applied to the specimen was swept from the initial
potential of -1500 to 2000 mV with scan rate of 100 mV/min, and the
corrosion potential (Ecorr) and current density (lerr) were measured using a
Tafel line analysis. An electrochemical impedance spectroscopy (EIS) test
was performed at the open-cicuit potential. A sinusoidal voltage of =+20mV
was applied over a frequency range of 0.01 Hz to 100 kHz. Experimental
results were interpreted assuming an equivalent circuit using the
appropriate fitting procedure implemented in the ZSimpWin program (v.3.21,
EChem Software, USA).
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3.7. Formation of bone-like apatite in simulated body
fluid

The PEO-treated Ti-29Nb and Ti-29Nb-15Hf specimens in solution containing
Ca, P, Mg, and Si ions were prepared to examine the bioactivity in simulated
body fluid (SBF) for 1 day. The ion concentrations of the SBF were listed in
Table 10. Each specimen was placed in a beaker with SBF solution. The pH

condition of SBF solution was kept in an incubator at 36.5 C.
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Table 10. Composition of SBF, in comparison with human blood plasma.

Concentration (mM)

lons
Blood plasma SBF
Na* 142.0 142.0
K+ 5.0 50
Mg2+ 1.5 1.5
Ca?+ 25 2.5
cl 103.0 103.0
HCO, 27.0 10.0
HPO,* 1.0 10
S0, 0.5 05
_ 32 _
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3.8. MC3T3-E1 cel | culture test

The mouse osteoblastic cell |ine MC3T3-E1(DSMZ, Braunschweig, Germany) was
used in cell culture for 1day. Cells were grown in 12 well plates at a
density of 2x10° cells per 1 ml. And cells were routinely cultured on the
he PEO-treated Ti-29Nb and Ti-29Nb—15Hf specimens in solution containing Ca,
P, Mg, and Si ions in humidified atmosphere at 37C for cell attachment
observation. Cells cultured on each specimen were washed and fixed with
phosphate buffered saline (PBS) and 4% buffered neutral formalin for cell
adhesion. After fixing, the morphology analysis of the attached cells were

observed using by field-emission scanning electron microscopy (FE-SEM).
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IV.. RESULTS AND DISCUSSION

4.1. Microstructure observation of Ti—29Nb—xHf alloys

Fig. 5 shows optical microscopy (OM) images of Ti-29Nb—-xHf alloys by
different Hf contents (0, 3, 7, and 15 wt. %) after chemical etching in
Keller’ s solution. Fig. 5 (a) is Ti-29Nb, (b) is Ti-29Nb-3Hf, (c) is
Ti-29Nb-7Hf, and (d) is Ti-29Nb-15Hf alloy, respectively. The microstructure
of the Ti-29Nb alloy showed needle-like structure in grain. And needle—|ike
structure changed to an equiaxed grain structure with increasing Hf content.
These needle-like structures were disappeared in Fig. 5(d). This phenomena
suggest that the structure change with increasing Hf content in the
Ti-29Nb-xHf alloys has the same role of increasing compositional Zr content
in other alloys. It has B-stabilizing Hf and Nb with chemically similar
properties [10,18].

Fig. 6 shows the X-ray fluorescence (XRF) analysis results of Ti-29Nb-xHf
alloy after heat treatment at 1050 ° C for 12hrs in Ar atmosphere, followed
by 0°C water quenching. Fig. 6 (a) is Ti-29Nb, (b) is Ti-29Nb-3Hf, (c) is
Ti-29Nb-7Hf, and (d) is Ti-29Nb-15Hf alloy, respectively. The XRF results
indicated that the elements of Ti-29Nb-xHf alloys were detected for Ti, Nb,
and Hf. As a result, it was confirmed that the prepared alloys were in good
agreement with the designed alloy.

Fig. 7 shows the XRD analysis results of Ti-29Nb-xHf alloy. Fig. 7 (a) is
Ti-29Nb, (b) is Ti-29Nb-3Hf, (c) is Ti-29Nb-7Hf, and (d) is Ti-29Nb—15Hf
alloy, respectively. The peaks of a” phase showed higher intensity such as
(100), (020), (101), and (021) in Fig. 7 (a) Ti-29\Nb alloy compared to
alloys. Especially, Fig. 7 (b) Ti-29Nb-3Hf and Fig. 7 (c) Ti-29Nb-7Hf alloys
showed the a” + B phases. However, in the case of Fig. 7 (d) Ti-29Nb-15Hf
alloys, the B phase peaks such as (110), (200), and (211) have higher
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intensity compared to other alloys, change with increasing Hf content. From

the previous study, Hf content of above 15 wt.% in Ti-Nb binary alloys was

changed needle—like to equiaxed microstructure and a” to B-phase [19]. It

needle—like microstructure is mainly composed of a”
B —-phase as shown in

is confirmed that
-phase and equiaxed microstructure mainly consists of

Fig. 5.
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CHOSUN UNIVERSITY

Fig. 5. OM images of Ti—-29Nb-xHf alloys after heat treatment at 1050 ° C for
12hrs in Ar atmosphere, followed by 0 ° C water quenching: (a) Ti-29Nb, (b)
Ti-25Nb-3Hf, (c) Ti-29Nb-7Hf, and (d) Ti-29Nb—15Hf.
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Fig. 6. XRF analysis results of Ti-29Nb—-xHf alloys after heat treatment at
1050 ° C for 12hrs in Ar atmosphere, followed by 0°C water quenching: (a)
Ti-29Nb, (b) Ti-29Nb-3Hf, (c) Ti-29Nb-7Hf, and (d) Ti-29Nb-15Hf.
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Fig. 7. XBD analysis results of Ti-29Nb-xHf alloys after heat treatment at
1050 ° C for 12hrs in Ar atmosphere, followed by O °C water quenching: (a)
Ti-29Nb, (b) Ti-29Nb-3Hf, (c) Ti-29Nb-7Hf, and (d) Ti-29Nb-15Hf [42].
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4.2. Corrosion behavior of Ti—-29Nb—xHf alloys

Fig. 8 shows the potentiodynamic polarization curves of Ti-29Nb—xHf alloys
(x= 0, 3, 7, and 15) for various samples in a 0.9% NaCl solution at 36.5 +
1 C. As a result, the corrosion potential (Ec) values of Ti-29Nb-3Hf,
Ti-29Nb-7Hf, and Ti-29Nb-15Hf alloys are -470 mV, -450 mV, and -370 mV. It
is exhibited that increasing Hf element serves nobler Ecr values than the
Ti-290Nb (-602 mV) without Hf element. And corrosion current density (leorr)
value of Ti-29Nb is 6.90 x 107 A-cm?, Ti-29Nb-3Hf is 8.78 x 107 A-cm?,
Ti-29Nb-7Hf is 8.84 x 107 A-cm?, and Ti-29Nb-15Hf is 7.02 x 107 A-cm®.
The leorr value of Ti-29Nb—15Hf decreased slightly from 8.78 x 107 A-cm” to
7.02 x 107 A-cm?. Furthermore, in the potentiodynamic plots, the
Ti-29Nb-15Hf alloy exhibited the highest corrosion resistance. These results
suggested that, upon addition of Hf, the passive area was significantly
enlarged. Generally, Hf as an alloying element plays a crucial role in
inhibiting the aggressive chloride ions present in solution. The corrosion
current density was evaluated by wusing the based on a software
approximation. The corrosion potential (Ecrr), current density at 300 mV
(ls0omv), corrosion current density (leorr), and primary passivation potential
(Epp) from the summary of potentiodynamic polarization curve are reported in
Table 11. Therefore, the corrosion potential found in alloys containing Hf
is higher than that observed in alloys without Hf [8-13, 42].

Fig. 9 shows the Bode-plots and Bode-phase for Ti-29Nb, Ti-29Nb-3Hf,
Ti-29Nb-7Hf, and Ti-29Nb-15Hf alloys after AC impedance test in 0.9% NaCl
solution at 36.5+1° . Fig. 9 (a) is Bode-plots and (b) is Bode-phase plots.
The electrochemical values of Ti-29Nb—xHf alloys were obtained from
Bode-plots and Bode-phase plots by ZsimpWin software to simulate the
equivalent circuit of bulk Ti alloy with anodic oxide layer in 0.9% NaCl
solution system. Suitable values were found to fit the model presented in

Fig. 10, and the approximated line in Fig. 9 generated by this model proved
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appropriate data. It can seen that the result of the systematic error was
fitted as shown in Table 11, suggesting that this model provided a reliable
description of the electrochemical system. As shown in Fig. 9, the
experimental AC impedance data results for a untreated Ti-29Nb-xHf alloys
were obtained through the solution resistance (Rs), polarization resistance
(Rp), constant phase elements (CPE), and empirical exponent of the CPE (n)
calculation values. From Fig. 9 the wuntreated Ti-29Nb, Ti-29Nb-3Hf,
Ti-29Nb7Hf and Ti-29Nb—-15Hf alloy showed a stable passivating film on a
phase angle near 90° in the mid-low frequency range. It is thought that the
increase in impedance from Bode plot can be considered that the intermediate
frequency region is related to the naturally formed stable oxide film in
0.9% NaCl solution [43-45].

Fig. 11 shows the OM images of Ti-29Nb—xHf alloys after potentiodynamic
test in 0.9% NaCl solution at 36.5+1°C. Fig. 11 (a) is Ti-29\b, (b) is
Ti-25Nb-3Hf, (c) is Ti-29Nb-7Hf, and (d) is Ti-29Nb—15Hf. The microstructure
of the (a) Ti-29Nb alloy showed the corroded area with black spots on the
surface. The corroded area on the Ti-29Nb-15Hf was decreased compared to
others. It is thought that addition of Hf to Ti-29Nb-xHf alloys can be
increased the corrosion resistance due to stable passive film on the

sur face.
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Fig. 8. Anodic polarization curves of Ti-29Nb-xHf alloys after
potentiodynamic test in 0.9% NaCl solution at 36.5+1°C.
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Fig. 9. Bode-plots and Bode—-phase for Ti-29Nb—-xHf alloys after AC impedance
test in 0.9% NaCl solution at 36.5+1°C : (a) Bode-plots and (b) Bode-phase
plots.
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Table 11. Electrochemical parameters of non—-treated Ti-29Nb-xHf alloys from

anodic polarization test.

Samples Ecor (MV) ls0omv (A/cm?) leorr (A/ecm?) lpp (A/cm?)
OHf -602 1.11 x10° 6.90 x 1077 1.13x 10°°
3Hf -470 1.30 x 10°° 8.78 x 1077 1.12x10°
7Hf -450 1.22x10°® 8.84 x 107 1.11 x 10°®
15Hf -370 1.32x 10° 7.02 x 107 1.17 x 10°®
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Fig. 10. Equivalent circuit of bulk Ti-29Nb—-xHf alloys with anodic oxide
layer [44].
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Fig. 11. Corrosion morphologies of Ti—-29Nb-xHf alloys after potentiodynamic
test in 0.9% NaCl solution at 36.5+1°C: (a) Ti-29Nb, (b) Ti-25Nb-3Hf, (c)
Ti-290Nb-7Hf, and (d) Ti-29Nb—15Hf.
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4.3. Mechanical properties of Ti—29Nb—xHf alloys

Fig. 12 shows the Vickers hardness results of Ti-29Nb-xHf alloys. Fig. 12
is (a) Ti-29Nb, (b) is Ti-29Nb-3Hf, (c) is Ti-29Nb-7Hf, and (d) is
Ti-29Nb-15Hf. The Vickers hardness results of water quenched Ti-29Nb—xHf
alloys are shown in Table 12. The value of Vickers hardness for Ti—-29Nb
alloy was 200.4 <+ 5.66Hv, while the corresponding values for the
Ti-29Nb-3Hf, Ti-29Nb-7Hf, and Ti-29Nb-15Hf alloys were 189 + 7.96Hv, 186 =+
3.19Hv, and 185 + 4.24Hv, respectively. Furthermore, the value of Vickers
hardness decreased slightly as the Hf element increase. The content of Hf
increases, phase transformation from a "-hexagonal structure to the B
—-body-centered cubic was occurred and the alloy becomes sensitive to the
indentation, resulting in a lower hardness value [46-50]. In the case of
addition of Hf content to Ti-29Nb alloy, needle-like structure of a "phase
changed to an equiaxed grain structure of [phase, therefore, the value of
Vickers hardness was lowered. |t is assumed that the control of the
metastable o' martensitic phase and stability of pBphase were related to
addition of Hf element during the water quenching process [46-52].

Fig. 13 shows the nano-indentation test results of elastic modulus
measurements of Ti-29Nb—xHf alloys. The elastic modulus was measured using
by nano-indentation. The nano-indentation test results of water quenched
Ti-29Nb-xHf alloys are shown in Table 12. The results of elastic modulus for
Ti-29Nb alloy was 99.29 + 2.00 GPa, while the corresponding results for the
Ti-29Nb-3Hf, Ti-29Nb-7Hf, and Ti-29Nb-15Hf alloys were 94.71 + 2.36, 94.36
+ 2.31, and 88.04 £ 1.92, respectively. The low elastic modulus was the
Ti-29Nb-15Hf alloy with the highest content of Hf compared with other
alloys. It is shown that the elastic modulus decrease gradually with
addition Hf increased. It is reported that the value reduction of elastic
modulus was related to the B phase increases [42]. It is reported that the

value of elastic modulus decreases with the B phase increases. Control of
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the elastic modulus to lower the stress shielding effect can prevent bone
resorption and bone destruction [42-44]. Therefore, value reduction of

elastic modulus can be obtained from the addition of Hf element into the

Ti-29Nb al loy.
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Fig. 12. Vicker’ s hardness graph of Ti-29Nb-xHf alloys: (a) Ti-29Nb, (b)
Ti—-29Nb-3Hf, (C) Ti-29Nb-7Hf, and (d) Ti-29Nb-15Hf
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Table 12. Vicker’ s hardness values of Ti—-29Nb—-xHf alloy.

Young’s Modulus (E) Vickers Hardness
Samples / Properties

[GPa] [Hv]
Ti-29Nb 99.29 + 2.00 2004 + 566
Ti-29Nb-3Hf 94.71 + 2.36 189.2 + 7.96
Ti-29Nb-7Hf 94.36 + 2.31 186.2 + 3.19
Ti-29Nb-15Hf 88.04 + 1.92 185.7 £ 4.24
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4.4. Micro—pore formation on the alloy surface

Fig. 14 shows the FE-SEM morphologies of PEO treated Ti-29Nb alloy. Fig. 14
(a) is low-magnification (x 5,000), and (b) is high-magnification (x
50,000). Anodization treatment was performed at 270 V for 3 min on the
Ti-29Nb alloy. After PEO coating result, surface showed formation of
micro—pores with uniform distribution on the surface of alloys. Fig. 14
shows the small holes on oxide film are formed in the large holes. This is
thought to trigger the increase in gas evolution on the Ti alloy surface.
This formation of micro—porous is caused by sparks when processing PEO. In a
short time, rough surfaces and various porous oxide films can be obtained
[563-55]. The various porous oxide films of Ti alloy can be controlled by
anodizing time in anodizing process.

Fig. 15 shows the FE-SEM morphologies of PEO treated Ti-29Nb alloy(a, b, c,
and d) and Ti-29Nb-xHf alloy(a-1, b-1, c¢-1, and d-1) with different
electrolytes containing Mg concentration of (a and a-1) 0 Mg (b and b-1) 5
Mg, (¢ and c-1) 10 Mg, and (d and d-1) 20 Mg, respectively. Anodization
treatment was performed at 270 V for 3 min on Ti-29Nb and Ti-29Nb—15Hf
alloys with ions (Ca, P, Mg, Si). The various types of micro-porous oxide
layers were formed as shown in Fig. 15. The number of micro—pore increased
with increasing Mg concentration, whereas, the size of micro—pore decreased
with increasing Mg concentration. Also, the number and the size of
micro—pore formed Ti-29Nb-15Hf alloy were occurred with the tendency |ike
Ti-29Nb alloy with increasing Mg concentration. And chemical composition of
oxide layer was investigated by EDS analysis. |t was confirmed that the
oxide films on Ti-29Nb and Ti-29Nb-15Hf alloy were in good on the composed
of the alloying elements, including ions (Ca, P, Mg, Si) and oxygen. In the
PEO process, anodic compounds with Mg and Si ions in electrolyte drawn into
discharge channel due to electric fields, and competition of Mg and Si ions

in the solution are occurred for substitution with Ca and P. In the case of
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Mg? * ions, the dehydration of aqueous ions, which needs to occur before
incorporation into the crystalline structure, is slow. Also, it thought that
the smaller ionic radius of Mg® *(0.0069nm) might also affect the
substitution for Ca® *(0.099nm) in apatite [53-60].

Fig. 16 shows the FE-SEM and images of micro-pore distribution formed
Ti-29Nb and Ti-29Nb—15Hf alloy by PEO processing with different electrolytes
containing Mg concentration of (a and a-1) 0 Mg (b and b-1) 5 Mg, (c and
c-1) 10 Mg, and (d and d-1) 20 Mg. The summarized values for the micro-pore
formed on Ti-29Nb and Ti-29Nb-15Hf alloy were obtained using by Image J
software (http://rsb.info.nih.gov/ij/, NIH, USA) and Image analyzer software
(Image Pro Plus, Media Cybernetics, PA, USA). Fig. 16(a) is OMg, Fig. 16(b)
is BMg, Fig. 16(c) is 10Mg, and Fig. 16(d) is 20Mg for Ti-29Nb alloy. And
Fig. 16(a-1) is OMg, Fig. 16(b) is 5Mg, Fig. 16(c) is 10Mg, and Fig. 16(d)
is 20Mg for Ti-29Nb—15Hf alloy, respectively. It shows the change of the
number of pores and the size of pores according to the Mg concentration in
the electrolyte. The average numbers of micro—-pore formed on Ti-29Nb alloy
by changing the Mg concentration at 270 V for 3 min were 22.98 £+ 1.77 for
OMg, 31.35 £+ 1.75 for 5Mg, 54.33 = 1.34 for 10Mg, and 59.45 + 0.15 for
20Mg, respectively. The average numbers of micro-pore fabricated by changing
the Mg concentration from Ti-29Nb-15Hf alloy at 270 V for 3 min were 23.43
+ 2.11 for OMg, 31.66 = 2.32 for 5Mg, 55.67 = 1.54 for 10Mg, and 60.77 =+
0.23 for 20Mg, respectively. It is confirmed that the numbers of micro—pore
depends on the composition of electrolyte with added ions and the chemical
composition of the alloy. In the case of the Ti-29Nb alloy, as the Mg
concentration increased from OMg to 20Mg for a constant alloy composition,
the mean pore size decreased drastically from 1.35 £ 0.09 to 0.83 = 0.29.
It is thought that the activation energy depend on the increasing Mg
concentration in the solution to attack on the alloy surface leading to the
a small size of micro—pore formation gradually. In the case of the
Ti-29Nb-15Hf alloy, as the Mg concentration increased from OMg to 20Mg for a

constant alloy composition, the mean pore size decreased drastically from
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1.51 £ 0.08 to 0.89 £ 0.34. The area ratio of occupied micro—pore for
Ti-29Nb alloy with increasing Mg concentration was 10.59 + 0.33, 11.02 =+
0.47, 12.17 £ 0.55, and 13.15 + 0.32 and the area ratio of occupied
micro—pore for Ti-29Nb—-15Hf alloy with increasing Mg concentration was 9.83

+ 0.29, 10.99 £+ 0.44, 12.38 £ 0.51, and 13.11 £ 0.41, respectively. The
values of the micro—pore number and layer sizes for the Ti-29Nb and
Ti-29Nb-15Hf alloy with different Mg concentration are shown in Table 13.

Fig. 17 shows the EDS mapping analysis results of PEO-treated (a) Ti-29Nb
and (b) Ti-29Nb-15Hf alloys in Ca, P, Mg, and Si electrolyte, respectively.
As a result of the EDS mapping analysis, Ca/P ratio was obtained by oxide
film and was found the distribution degree of doping of ions. In Fig. 17, Ca
/ P ratios were determined on the oxide film surface, it is summarized in
Table 14 and Fig. 18. Ti-29Nb and Ti-29Nb-15Hf alloy were observed 1.62 and
1.64 for Ca / P ratio. Also, as the content of added Mg increased, the ratio
of Ca / P tended to decrease. In same concentration of electrolyte, the Ca /
P ratio decreased with increasing Mg content. It is considered that there is
a transition zone consisting of Ca, P, Mg, Si and O complexes between the
exterior and interior of the coating material. Therefore, it is thought that
Mg and Si ions on the PEO-treated implant surfaces serve a biocompatibility
and good effect on cell and bone binding [45-47, 60-63].

Fig. 19 shows the TF-XRD patterns of PEO treated Ti-29Nb and Ti-29Nb-15Hf
alloy with different electrolytes containing Mg concentration of (a) 0 Mg,
(b) 5 Mg, (c) 10 Mg, and (d) 20 Mg, respectively. The peaks of Ti0,
consisted predominantly of anatase with small amount of rutile, which was
mixture structure as shown in the surface of the micro-pore formed Ti-29Nb
and Ti-29Nb-15Hf al loys. Regarding with this result, the hydroxyapatite and
anatase phases are believed to have more efficient nucleation and growth

than the rutile layer because of their good lattice match [64-66].
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Fig. 14. FE-SEM images showing morphologies of PEO-treated Ti—-29Nb al loy:
(a) low-magnification (x 5,000) and (b) high-magnification (x 50,000).
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Fig. 15. FE-SEM images showing morphologies of PEO-treated Ti-29Nb alloy(a,
b, ¢, and d) and Ti-29Nb-xHf alloy(a-1, b-1, c-1, and d-1) with different
electrolytes containing Mg concentration of (a and a-1) 0 Mg (b and b-1) 5
Mg, (c and c-1) 10 Mg, and (d and d-1) 20 Mg.
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Fig. 16. FE-SEM and pore distribution images of micro—pore formed Ti-29Nb
and Ti-29Nb-15Hf alloy by PEO processing with different electrolytes
containing Mg concentration of (a and a-1) 0 Mg, (b and b-1) 5 Mg, (c and
c-1) 10 Mg, and (d and d-1) 20 Mg.
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Table 13. The summarized data from image analysis for the micro—-pore formed
on Ti-29Nb and Ti-29Nb-15Hf alloys by PEO.

Numbers of micro-pore (N/10*um?)

(Ca+0Mg/P+55i) (Ca+5Mg/P+55i) (Ca+10Mg/P+55i) (Ca+20Mg/P+55i)

Ti-29Nb 2298 + 1.77 3135+ 175 5433 + 1.34 59.45+ 0.15

Ti-29Nb-15Hf 2343 + 2.11 31.66 + 2.32 55.67 + 1.54 60.77 + 0.23

Mean pore size (um)

(Ca+0Mg/P+5Si) (Ca+5Mg/P+58Si) (Ca+10Mg/P+5Si) (Ca+20Mg/P+5Si)

Ti-29Nb 1.35 £ 0.09 1.21 £ 0.13 093 +0.19 0.83 + 0.29

Ti-29Nb-15Hf 1.51 + 0.08 1.27 + 0.10 1.04 + 0.15 0.89 + 0.34
Area ratio of occupied by micro-pores (%/10%um?)

(Ca+0Mg/P+58i) (Ca+5Mg/P+58Si) (Ca+10Mg/P+5Si) (Ca+20Mg/P+5Si)

Ti-29Nb 10.59 + 0.33 11.02 + 0.47 12.17 £ 0.55 13.15 £ 0.32

Ti-25Nb-15Hf 9.83 + 0.29 10.99 + 0.44 12.38 + 0.51 13.11 + 0.41
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Fig. 17. EDS mapping analysis results of PEO-treated (a) Ti-29Nb and (b)
Ti—-29Nb-15Hf al loy.

_58_

Collection @ chosun



Table 14. EDS mapping results of Ti-29Nb and Ti-29Nb-15Hf alloys with

different electrolytes containing Mg concentration.

Composition (wt. %) CalP (Ca+xMg/P+55i)
Samples

o Mg Ca Si P Ti Hf Nb Total ratio ratio

PEO 270-treated
Ti-29Nb (OMg) 41.33 - 6.80 - 4.49 3117 - 16.20 100.00 - 1.51
Ti-29Nb (5Mg) 36.29 0.14 11.30 0.50 6.52 36.29 - 11.14 100.00 1.73 1.62
Ti-29Nb (10Mg) 37.97 0.24 6.51 0.22 4.13 35.76 - 15.18 100.00 1.57 1.55
Ti-29Nb (20Mg) 38.58 047 6.60 022 4.46 35.28 - 1430 100.00 1.47 1.51

PEO 270-treated
Ti-29Nb-15Hf (OMg) 36.32 - 6.08 - 4.20 33.29 9.27 10.84 100.00 - 1.44
Ti-29Nb-15HTf (5Mg) 38.40 0.09 6.99 0.30 4.00 28.98 7.01 14.53 100.00 1.74 1.64
Ti-29Nb-15Hf (10Mg) 3517 0.40 6.03 0.31 4.14 31.48 8.93 13.55 100.00 1.45 1.44
Ti-29Nb-15Hf (20Mg) 38,77 0.82 5.69 0.1 4.61 31.16 4.10 14.74 100.00 1.23 1.38
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Fig. 19. TF-XRD patterns of PEO-treated Ti-29Nb and Ti—-29Nb—-15Hf alloys with
different electrolytes containing Mg concentration: (a) 0 Mg, (b) 5 Mg, (c)
10 Mg, and (d) 20 Mg.
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4.5. Electrochemical behaviors of Ti-29Nb and
Ti—-29Nb-15Hf al loys

Fig. 20 shows the anodic polarization curves of PEO treated Ti-29Nb—xHf
alloys after potentiodynamic test in 0.9% NaCl solution at 36.5+£1C. Fig.
20(a) is Ti-29Nb and (b) is Ti-29Nb-15Hf, respectively. These values were
obtained from the polarization curves and the Tafel curves using the
negative and positive polarity branches of the curves, respectively. This
phenomenon means the more higher corrosion resistance of PEO-treated
Ti-29Nb-15Hf alloy compared to PEO-treated Ti-29Nb alloy. It can be seen
that the corrosion potential of the PEO-treated Ti-29Nb—15Hf alloy are
higher than that for the PEO-treated Ti-29Nb alloy. The value of Ecrr for the
PEO-treated Ti-29Nb alloy with Ca, P ions was -950 mV, while the
corresponding values for the O Mg, 5Mg, 10Mg, and 20 Mg coatings were -920
mV, -880 mV, and -860 mV, respectively. And the value of Ecr for the
PEO-treated Ti—-29Nb—15Hf alloy with Ca, P ions was -850, -750, -720, and -
660, respectively. The lqr values of PEO-coated specimen were obtained from
the polarization curves wusing Tafel Iine analysis. Furthermore, the
decreases of corrosion current density in the bulk Ti alloy, relative to the
lcorr value calculated for the other specimens, could be associated with an
increase in the corrsion resistance of the dense oxid films such as TiO.. The
value of ler for the PEO-treated Ti-29Nb alloy was 1.37 x 10° A-cm?,
while the corresponding values for the 0 Mg, 5 Mg, 10 Mg, and 20 Mg coatings
were 1.42 x 10° A-cm® 1.48 x 10° A-cm’,1.60 x 10° A-cm?,
respectively. The value of ls for the PEO-treated Ti-29Nb—-15Hf alloy was
1.77 x 10° A-cm?, while the corresponding values for the 0 Mg, 5 Mg, 10
Mg, and 20 Mg coatings were 9.76 x 107 A-cm®, 9.63 x 107 A-cm?, 1.03 x
10° A-cm®, respectively. Ecorr Of PEO-treated Ti-29Nb-15Hf alloy with Mg
concentration showed higher than that of PEO-treated Ti-29Nb alloy with Mg

concentration. When the porous oxide layer is formed on the surface of the
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specimen, it affects the thickness of the oxide film and increases OCP.
Therefore, this reaction was able to obtain lower results in current density
of PEO-coated specimen than current density in bulk specimen. In other
words, a stable passive film is formed in the passive region of all
specimen, as shown in Fig 20. The results for corrosion potential (Ecorr),
corrosion current density (ler), corrosion current density of oral
environment at 300 mV (lsom). current density of primary passivation(lg),
and critical current density in passive region(l,) from the polarization
curves are given to Table 16. Especially, corrosion potential of PEO-treat
Ti-29Nb-15Hf alloy with Mg concentration, that of Ecrr increased compared to
non—-coated surface with Mg concentration. Also, the corrosion rate of the
micro—pore formed Ti-29Nb and Ti-29Nb—15Hf alloy in solution containg Mg
ions, decreased compared to the non-Mg treated surface. that of the
micro—pore formed Ti-29Nb—-15Hf alloy was lower than the corrosion rate of
the micro-pore formed Ti-29Nb alloy. It is comfirm that the pore size and
the number of the Ti-Nb alloy containing Hf element increased as compared
with other samples. Although the titanium surface forms a stable passive
film in the anodizing process, the active reaction in the pores can be
affected by the corrosive solution. And surface pores tend to act as

corrosion sites in NaCl solution [65-68].
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Fig. 20. Anodic polarization curves of PEO-treated Ti-29Nb—-xHf alloys after
potentiodynamic test in 0.9% NaCl solution at 36.5+1C: (a) Ti-29Nb and (b)
Ti-29Nb—-15Hf .
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Table 15. Electrochemical parameters of PEO-treated Ti—29Nb and Ti-29Nb-15Hf
alloys with concentration of Mg ion from anodic polarization curves:
corrosion potential(Ecrr), corrosion current density(ler:), current density

at 300 mV(lsomv), and primary passivation current density(lp).

Samples Ecorr (MV) laoomyv (WA/CM?) leorr (WA/CM?) lop (MA/CM?) I, (uA/cm?)
Ti-29Nb 0OMg -950 2.63 x10° 1.37 x10°® 1.56 x10° 1.42 x10°®
5Mg -920 3.61 x10°% 1.42 x10¢ 2.72 x10°® 2.07 x10®

10Mg -880 3.21 x 10 1.48 x 106 2.80 x 10 1.42 x10¢

20Mg -860 3.79 x10°% 1.60 x10°¢ 2.96 x10°© 1.65 x10°®

Ti-29Nb-15Hf OMg -850 2.80 x10° 1.77 x10°® 2.84 x10° 1.16 x10°®
S5Mg -750 1.29 x10° 9.76 x 107 1.27 x10°® 543 x107

10Mg =720 1.67 x10°® 9.63 x 107 1.42 x10° 7.36 x 107

20Mg -660 1.42 %10 1.03 x10© 1.30 x10°® 6.32 x 107
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4.6. Biocompatibility of Ti-29Nb and Ti—-29Nb—-15Hf al loys

Fig. 21 shows the contact angle measurements of Ti-29Nb and Ti-29Nb—15Hf
surfaces with different electrolytes containing Mg concentration of (a and
a-1) 0 Mg, (b and b-1) 5 Mg, (c and c-1) 10 Mg, and (d and d-1) 20 Mg,
respectively. In Fig. 24 (a), (b), (c), and (d) of PEO-treated Ti-29Nb
alloy, the contact angles are 48.71° , 45.09° , 41.58° , and 39.53° ,
respectively. And in Fig. 21 (a-1), (b-1), (c-1), and (d-1), the contact
angles are 49.11° , 38.81° , 37.10° , and 36.64° , respectively. From the
Fig. 21, the contact angles of PEO-treated Ti-29Nb and Ti-29Nb—15Hf alloys
in different electrolytes containing Mg ion shows slightly the lower value
compared with PEO treated Ti-29Nb and Ti-29Nb-15Hf alloys in electrolytes
un—containg Mg ions. Porosity was formed on the PEO-treated surface, and as
the Hf content increased, the pore size decreased and secondary pore was
formed in the first formed pore. Such a high wettability leads to a good
biocompatibility for the implant surface [69-72]. Also, surface morphology
of micro—pore structure is important to achieve improved cell adhesion on Ti
alloy implant surfaces. Therefore, micro-pore formed oxide surface of Ti
alloys shows a hydrophilic behavior, due to complete spreading of water on
the entire and into the pores. It is thought that, the surface roughness is
an important factor in the contact angle of the implant surface, and the
implant surface should have a low contact angle and high surface roughness
in order to be suitable for the living body [69-75].

Fig. 22 FE-SEM images showing morphology of bone-like apatite formed
Ti-29Nb-15Hf  alloy, (a) low-magnification (x 5,000) and (b)
high-magnification (x 50,000), respectively. Fig. 22 (a)-(b) indicate
bone-like apatite formed well in the SBF for every specimen. The bone-Iike
apatite of the PEO-treated Ti-29Nb-15Hf alloy surface was formed
definitively in the hole. It is thought that apatite formation in the hole
can help to fix the implant [72-76].
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Fig. 23 shows the FE-SEM images morphology of bone-like apatite formed
Ti-29Nb and Ti-29Nb-15Hf alloys with Mg concentration after anodization at
270 V for 3min. Fig. 23 (a) is 0 Mg, (b) is 5 Mg, (c) is 10 Mg, and (d) is
20 Mg for Ti-29Nb micro-pore surface, and Fig. 23 (a-1) is 0 Mg, Fig. 23
(b-1) is 5 Mg, Fig. 23 (c-1) is 10 Mg, and Fig. 23 (d-1) is 20 Mg,
respectively. From the bone-like apatite formed results, bone-like apatite
is well formed on the surface of 5 Mg/Si PEO-treated Ti-29Nb—-15Hf alloy
compared to the other specimen after SBF immersion. Generally, these
reactions are thought to be influenced by the action of Mg and Si ions in
the human body. It is known that Mg and Si ions are closely related to
tissue calcification in the human body and indirectly affect mineral
metabolism [77].

Fig. 24 shows the FE-SEM images showing morphology of cell cultured
Ti-29Nb—-15Hf, (a) is low-magnification (x 1,000), middle-magnification (x
3,000), and (b) is high-magnification (x 10,000). Fig. 24 shows the cell
growth of PEO-treated Ti-29Nb—15Hf alloy with Mg concentration at 37 C for
1day. The mouse osteoblastic cell |ine MC3T3-E1(DSMZ, Braunschweig, Germany)
was used in cell culture. The pores and surfaces were well covered with
lamel lipodia and filopodia on the PEO-treated Ti-29Nb-15Hf alloy in the
solution containing Ca, P, Mg, and Si ions. In Fig. 24, cell growth on the
surface can be observed. Cell was proliferated from the nucleus to
micro—pore formed surface.

Fig. 25 shows the FE-SEM images showing morphology of cell cultured Ti-29Nb
and Ti-29Nb-15Hf alloys for 1day. Fig. 25 (a) is O Mg, Fig. 25 (b) is 5 Mg,
Fig. 25 (c) is 10 Mg, and Fig. 25 (d) is 20 Mg for Ti-29Nb, and Ti-29Nb,
Fig. 25 (a-1) is O Mg, Fig. 25 (b-1) is 5 Mg, Fig. 25 (c-1) is 10 Mg, and
Fig. 25 (d-1) is 20 Mg, respectively. In the case of PEO-treated Ti-29Nb and
Ti-29Nb-15Hf alloy with Mg concentration, the number and growth of cells
were distributed all pore surface. Cell culture and high wettability are
closely related, and surface morphology of micro—pore formed alloy is

important to achieve improved cell adhesion. According to previous study,
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According to previous study, Mg is the most abundant cation in the human
body as a factor that induces the proliferation of osteoblasts. Therefore.
magnesium plays an active role in the process of new bone tissue formation
process [75-80].

_68_

Collection @ chosun



(a) =3 (b) EE | = |

Av. 4509 . 5
i/- ‘ Av. 41.5: 8‘
Av. 48.71

(a-1) 2=z (b1) = (d-1) |

Av.37.10 it
Av, 38,81
Av. 49.11

Fig. 21. Contact angles measurements of Ti-29Nb and Ti-29Nb—-15Hf alloy
surfaces: (a and a-1) 0 Mg, (b and b-1) 5 Mg, (c and ¢c-1) 10 Mg, and (d and

d-1) 20 Mg.
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Fig. 22. FE-SEM images showing morphology of bone-like apatite formed
Ti-29Nb-15Hf  alloy: (a) low-magnification (x 5,000) and (b)
high-magnification (x 50,000).
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Fig. 23. FE-SEM images showing morphology of bone-like apatite: Ti—29Nb
alloy: (a) 0 Mg, (b) 5 Mg, (c) 10 Mg, and (d) 20 Mg, and Ti-29Nb-15Hf alloy:
(a-1) 0 Mg, (b-1) 5 Mg, (c-1) 10 Mg, and (d-1) 20 Mg.
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Fig. 24. FE-SEM images showing morphology of cell cultured Ti-29Nb-15Hf
alloy: (a) low-magnification (x 1,000), middle-magnification (x 3,000), and
(b) high-magnification (x 10,000).
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Fig. 25. FE-SEM images showing morphology of cell cultured Ti-29Nb—xHf
alloys for 1day: Ti—-29Nb alloy: (a) O Mg, (b) 5 Mg, (c) 10 Mg, and (d) 20
Mg, and Ti-29Nb-15Hf alloy: (a-1) O Mg, (b-1) 5 Mg, (c-1) 10 Mg, and (d-1)
20 Mg.
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V. CONCLUSIONS

In this study, surface characteristics of PEO-treated Ti—-29Nb-xHf alloy in
electrolytes containing Ca, P, Mg, and Si ions have been researched. The
results were as follows;

1. The microstructure of the Ti-29Nb—-xHf alloys showed o~ and Bphase. As
the Hf content increased, the shape of the needle-like decreased and the
shape of the equiaxed structure and the [Bphase increased.

2. The hardness of Ti-29Nb-xHf alloy decreased slightly as the Hf content
increased, and elastic modulus decreased.

3. The surface of oxide films showed the uniform micro-pore formation on the
surface. Especially, in the case of PEO-treated Ti-29Nb—xHf alloys in
electrolytes containing Mg ion, pore size decreased and numbers increased
compared to PEO-treated Ti-29Nb—xHf alloys in electrolytes without Mg ion.

4. From the XRD analysis, in the case of Mg ion addition to electrolyte, the
anatase peak on the Ti—-29Nb—xHf alloy was shifted slightly to left side with
a lower diffraction angle,

5. The Ca/P and (CatMg)/(Si+P) ratios were the closest to the ideal value
for PEO-treated Ti—-29Nb and Ti-29Nb—-15Hf in solution containing 5Mg Mol%.
Also, these ratios of PEO-treated Ti-29Nb—xHf alloys in solution containing
Mg and Si ions decreased as Mg ion increased.

6. Corrosion potential of the PEO-treated Ti—-29Nb—-xHf alloys increased as Mg
ion increased, and corrosion potential of PEO-treated Ti-29Nb-15Hf al loy

showed higher than that of the Ti—-29Nb al loy.

7. The contact angles of micro—pore formed Ti-29Nb and Ti-29Nb—-15Hf al loy
sur face with Mg ions showed lower than those of other alloy surface.
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8. The PEO-treated Ti-29Nb—15Hf alloy in electrolytes containing 5Mol Mg

was a good cell proliferation and growth with lamellipodia and filopodia
covered the pores and surfaces.

In conclusion, the formation of the anatase and micro—-pore on Ti-29Nb-xHf

alloys can be controlled by varying the Mg concentration of electrolyte for
improvement of biocompatibility.
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