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요약

독립성분분석기반 딥 네트워크 설계 및 사용자 인식의 응용

이재능

지도교수 :  곽근창 교수, Ph. D.

조선대학교 대학원 제어계측공학과

본 논문에서는 독립성분분석기반 딥 네트워크인 ICANet1의 체계적인 구조를 제

안하고, ICANet2 모델로 발전시킨다. 기존에 제안된 PCANet은 deep learning의 비

해 계산량이 작고, 속도가 빠르다. 하지만 데이터의 변형에 따라 성능이 낮아지는 

단점이 있다. 문제점을 해결하기 위해 ICANet알고리즘을 제안한다. ICANet알고리

즘에는 2가지 구조가 있다. ICANet1 알고리즘의 첫 번째 단계는 평균제거단계이

고, 중심영상을 구한다. 그 다음은 중심영상을 이용하여 공분산을 구하고, 그 값

을 통해 고유벡터를 얻고, 마지막으로 고유벡터는 독립성분분석 필터의 입력으로 

사용된다. 여기서 센터링 (centering) 과 화이트닝 (whitening) 단계가 실행되고, 

가중치 업데이트를 통해 최적 독립성분 행렬이 얻어진다. 이 행렬을 이용하여 평

균제거단계를 통해 얻어진 패딩영상과 합성곱이 계산된다. 이것이 바로 ICANet2의 

첫 번째 단계이다. ICANet2의 경우에는 고유벡터를 사용하지 않고, PCA의 특징벡

터를 이용한다. PCA 특징벡터의 상관관계를 제거하기 위해, ICA알고리즘을 이용하

여 통계적 독립인 벡터를 찾는다. 통계적 독립 벡터를 이용함으로써 PCA의 단점을 

개선 할 수 있고, 이를 통해 성능을 개선할 수 있다. ICANet의 2번째 단계는 1단

계와 거의 동일하며, 1단계에서 얻은 데이터를 사용하기 때문에 차원의 수만 감소

된다. 2단계에서 얻은 합성곱 데이터를 이용하여 출력 단계의 입력으로 사용된다. 

여기서 해싱코드 단계와 히스토그램을 이용해서 독립성분분석 네트워크 특징을 얻
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을 수 있다. 최종 히스토그램에서 얻어진 특징 값은 벡터 화하여 분류기의 입력으

로 사용된다. ICANet을 사용함으로써, 딥러닝 보다 구조가 얕기 때문에 성능은 떨

어 질 수 있으나, 인식속도에서 월등한 면을 보여주고, 특히 모바일에서도 사용이 

가능 할 것으로 기대된다. 분류기는 유클리드 거리, 제곱유클리드 거리, 도시블록 

거리, 민코프스키 거리, 코사인거리, 상관관계 거리 그리고 스피어만 거리, SVM를 

이용하여 성능을 나타낸다. 제안된 방법의 성능을 검증하기 위해 FERET 얼굴데이

터, CU-FACE 데이터, CU-ECG 데이터, 노이즈 ECG 데이터베이스를 사용하였다. 실

험결과 시간에 영향을 받은 Dup1, Dup2데이터의 경우 ICANet1, 2가 PCANet보다 좋

은 성능을 가져왔다. 또한 잡음 심전도 데이터를 사용했을 때 PCANet보다 향상된 

성능을 나타냈다. 이로써 ICANet알고리즘의 유효성을 증명하였다. 
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Ⅰ. Introduction

1.1 Research background and review of papers

Deep learning is defined as a set of machine learning algorithms that are 

dependent on the derived neural network of machine learning and attempt a 

high level of abstraction (a task that summarizes key content or functions 

in large amounts of data or complex data) through a combination of several 

nonlinear transformation techniques. It can also be said that it is a field 

of machine learning that teaches computers how people think in a big frame. 

When there is any data, it is expressed in the form that the computer 

understands (for example, the pixel information is represented by a column 

vector in the case of images). As a result of these efforts, various deep 

learning techniques such as deep neural networks, convolutional neural 

networks, and deep belief networks are used for computer vision, speech 

recognition, natural language processing, It is applied to the field of 

voice/signal processing and shows cutting-edge results [1-3]. However, there 

is a limit to deep learning. For example, the problem of time and cost for 

collecting big data, the efficiency problem that must be learned through 

many repetitions, the theoretical verification of algorithm except slope 

descent is poor, and the black box can be listed [4-6]. In other words, a 

convolutional neural networks (CNN) is a basic deep learning architecture 

that has been applied to text, image, and speech recognition. In many 

industries, deep learning interest is constant. In addition, the most 

important thing is that CNN can automatically extract and learn hidden 

representations of data on a number of blocks consisting of a convolutional 

layer, activation function layer, and max-pooling layer. However, how to 

choose parameters and configurations, including the filter sizes, the number 

of layers, and the pooling function, is a big challenge. Consequently, the 

network structure such as AlexNet, ResNet and GoogLeNet are growing deeper. 

Despite the great successes of deep learning, common researchers are not yet 

solving its feature learning mechanism and optimal network configuration 

problem. Accordingly, Chen studied the principle component analysis network 
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(PCANet), which is a shallow and intensive deep learning network. Also, a 

simple deep learning network, which have to be very easy, even trivial, to 

train and to adapt to different database and tasks. Consequently, such a 

basic network could serve as a good reference for researchers to justify the 

use of more advanced processing components or more sophisticated 

architectures for their deep learning networks empirically. Therefore, The 

PCANet algorithm has been proposed by Chan. However, PCANet is still 

correlated, and the ICANet algorithm has been proposed to remove the 

correlation. Although the ICANet algorithm has appeared recently, it has not 

been systematically generalized. Therefore, this paper aims to generalize 

algorithms from ICANet1 ~ 2 and extend the concept. In order to improve the 

limitations of PCA in the face recognition field, various studies on ICA 

have been conducted and we propose deep ICANet1, 2 algorithm that improves 

the disadvantages of PCANet and generalized to improve performance using 

practical data. In addition, we validate the ICANet algorithm by comparing 

the performance with the existing PCANet algorithm and analyzing the 

influence of the parameters. Lastly, the ECG data is applied for 

authentication security, and the face data is used for comparing the 

performance of the algorithm. 

The contribution of this paper is as follows. First, we generalized the 

ICANet1 algorithm. The proposed ICANet1 algorithm is poorly explained 

theoretically and structurally. Therefore, this paper improves the 

theoretical lack of ICANet1's algorithm. Second, we modeled a new structure 

called ICANet2. Third, the validity of the algorithm was verified by using 

the electrocardiogram data and the image data obtained in real life. To 

study ICANet algorithm, we list the trend of several algorithms as follows.

We first list the trends of PCA, which is the origin of the PCANet 

algorithm. The PCA was proposed by Jolliffe in 2002 [7]. First, the derived 

algorithms of PCA are listed in order of domestic and foreign. Chungnam 

National University Bui [8] studied in-video human detection and pose 

estimation using motion data based on RPCA algorithm. Chosun University [9] 

performed personal identification using the electrocardiogram signal data 

based on MPCA algorithm. The existing one dimensional electrocardiogram 

signal was changed into three-dimensional shape to improve the recognition 
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rate. Seoul National University Park [10] classifies images using kernel 

principal component analysis with image database class. Kim [11] of Suwon 

University used numerical incremental principal component analysis based on 

handwritten numerical data.

The following are overseas trends using RPCA. Jin [12] detected 

contrast-filled vessels using X-ray data based on robust principal component 

analysis (RPCA). Lu [13] was classified using face image and object data 

based on RPCA. We use Li [14] image data based on RPCA to detect moving 

objects. Vaswani [15] performed subspace tracking and restoration using RPCA 

based on image data. Liu [16] performed tumor classification using RPCA 

based on MRI data. Sun [17] used geo-spatial classification using 

Hyper-spectral data based on RPCA. Zhong [18] classified faces and numbers 

using robust 2DLDA based on face and numerical data. Yan [19] face and 

numerical data based on RPCA.

The following are trends using KPCA. Kuang [20] performed intrusion 

detection using KPCA based on communication data. Liu [21] performed mental 

fatigue estimation using KPCA-HMM based on EEG data. Vinay [22] performed 

face recognition using face data based on KPCA. Quan [23] performed facial 

recognition using face data based on KPCA. Romero [24] classified the images 

using KPCA based on satellite image data. Xia [25] performed image 

classification using KPCA based on hyper-spectral image data. Yuan [26] 

studied smoke detection using image data based on KPCA. Hotta [27] performed 

a scene classification using KPCA based on image data. Xiao [28] performed 

novelty detection using KPCA based on image data of square, spiral, and 

banana motifs.

The following are research trends of various SPCA. Chaib [29] performed a 

scene classification using sparse PCA based on image data. Ashutosh [30] 

classifies objects using standardized PCA based on hyper-spectral image 

data. Uddin [31] classifies images using segmented PCA based on 

hyper-spectral image data. Xiao [32] performed face recognition using face 

data based on sparse PCA. Hu [33] performed leukemia analysis using sparse 

PCA based on medical statistical data. Pierrefeu [34] analyzed mild 

cognitive impairments using structured sparse PCA based on MRI medical data. 

Wang [35] performed image classification using sparse PCA based on 
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hyper-spectral image data. Chail [36] performed VHR scene classification 

using hyper-spectral image data based on sparse PCA. Li [37] analyzed and 

classified images using a supervised version of PCA based on hyper-spectral 

image data. Liu [38] performed facial recognition using face data based on 

symmetry PCA. Xi [39] uses numeric image data based on separable PCA for 

number classification.

The following are research trends for various IPCA. Dagher [40] studied 

face recognition using incremental PCA based on face data. Rozza [41] 

studied spam filtering using isotropic PCA based on alphabetical data 

obtained from e-mail. Yuan [42] performed scene separation for visual 

monitors using incremental PCA based on scene data. Qu [43] performed object 

recognition using incremental PCA based on object data. Qing [44] performed 

face detection using incremental PCA based on scene data. Wang [45] 

diagnosed the circuit breaker using Improved PCA based on feature data. Yin 

[46] performed visual tracking using incremental PCA based on 3D image data. 

Alorf [47] performed face detection and recognition using the improved PCA 

based on face data. The following lists the algorithms derived from LDA. 

Bengherabi [48] performed facial recognition using regularized LDA based on 

facial data. Yuan [49] used terrain classification using spectral-spatial 

LDA based on hyper-spectral data. He [50] classified the terrain using a 

nonlinear compressed sensing-based LDA topic based on polarimetric synthetic 

aperture radar image data. Zeng [51] classifies objects using a multi-linear 

discriminant analysis network based on object data. The following lists ICA 

algorithms and algorithms derived from ICA. First, Hong Seongjun [52] in 

Korea performed facial expression recognition using face data based on ICA. 

Hwang [53] studied mode separation of buildings using ICA based on sound 

data. Baek [54] classifies images using ICA based on image data. Kwon [55] 

used image data based on ICA to classify the red pepper images. Kang [56] 

studied the translational-warping mode of dry matter using ICA based on 

sound data. Kim [57] analyzed the vibration source contribution of plate 

structures using vibration signal data ICA. Kim [58] studied the 

identification of vibration source signals of structures using ICA based on 

sound data. Jeon [59] studied frequency binarization using frequency domain 

ICA based on sound data. Park  [60] studied blind signal separation using 



- 5 -

ICA based on voice data. Hwang [61] studied a new mode separation technique 

using the acceleration response of structures using sound data based on ICA. 

Lee [62] designed a dynamic noise reduction filter using ICA. Jung [63] 

designed a partial discharge pattern classifier using ICA based on high - 

dimensional data.

Overseas, Wu [64] performed gender recognition using multi-scale ICA 

based on image data. Sun [65] performed tumor classification using 

microarray data based on ICA. Martis [66] performed ECG beat classification 

using the ECG data based on ICA. Wang [67] performed video event 

classification using ICA based on video data. Yu [68] performed image 

classification based on image data and ICA. Falco [69] performed 

hyper-spectral image classification using the effectiveness of different ICA 

based on image data. Stewart [70] performed a single-trial classification 

using ICA based on EEG data. Xiao [71] studied sparse representation using 

image reconstruction ICA. Pruim [72] studied the removal of motion artifacts 

using robust ICA based on MRI data. Ruhi [73] studied eye blink artifact 

denoising using wavelet ICA based on EEG data. Coloigner [74] performed 

cancer classification using semi-nonnegative ICA based on image data. Tao 

[75] performed SAR data classification using Tensorial ICA based on image 

data. Griffanati [76] performed hand classification using fMRI data based on 

ICA. Chai [77] performed driver fatigue classification using EEG data based 

on entropy rate bound minimization analysis ICA. Sai [78] performed an 

automated classification using wavelet-ICA based on EEG data. Zhang [79] 

performed facial recognition using ICANet based on image data. Lv [80] 

recognized saccadic ECG signals using ICA based on EOG signal data.

The following is a research trend about deep learning. Because ICANet is 

part of deep learning, a comparative analysis is needed. Ruslan [81] 

classified images and motion using a hierarchical dirichlet process deep 

Boltzmann machine based on motion data and image data. Chen [82] performed 

hyper-spectral data classification using a stacked auto-encoder based on 

image data. Dobhal [83] performed human activity recognition using binary 

image data based on CNN. Hasan [84] performed activity recognition using 

sparse auto-encoder based on video image data. Du [85] performed action 

recognition using hierarchically bidirectional RNN based on skeleton data. 
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Neverova [86] performed human identification using dense clockwork RNN based 

on image data. Wang [87] performed action recognition using three channel 

deep convolutional neural networks based on depth map image data. Koohzadi 

[88] performed human action recognition using a CNN structure based on video 

data. Kim [89] performed human activity classification using deep CNN based 

on motion data. Liu [90] performed action recognition using two CNN based on 

video data. Daniel [91] transformed the structure of CNN based on image data 

to generate motion data and picture data. Chen [92] performed action 

recognition using the structure of CNN based on image data. Wu [93] 

performed human identification using CNN structure based on image data. Ni 

[94] performed an action representation using a CNN structure based on video 

data. Rahmani [95] performed human action recognition using robust 

non-linear knowledge transfer model based on motion capture data. Wang [96] 

performed human action recognition using a CNN structure based on image 

data. Finally, there are studies on noise using ICA. Yang [97] proposed a 

new framework for measuring sternal cardio-mechanical signals from moving 

subjects using multiple sensor. Interference detection and removal method 

with minimal distortion of the EMG was developed based on the independent 

component analysis by Zheng [98] ICA is more resistant to noise than PCA.  

In this paper, we demonstrate the superiority of ICANet by adding noise to 

the data.

1.2 Composition of paper

This study is composed as follows. Section 1 describes the motivation for 

ICANet's algorithm development and lists the derived algorithms of the 

PCANet algorithm that overcomes the shortcomings of deep learning. It shows 

the emergence background of PCANet and ICANet. In Section 2, we show the 

research trends of PCA, LDA, ICA and LBP algorithms, and show the proposed 

methods of PCANet, LDANet, and ICANet algorithms. Section 3 presents ICANet1 

and ICANet2. In Section 4, we prove the validity of the proposed algorithm 

using face and ECG database and compare the effect of each parameter. 

Finally, Section 5 present concludes.
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Ⅱ. PCANet and its variances with ICA

2.1 PCA

PCA is a method of identifying patterns in data and expressing the data 

in such a method as to highlight their similarities and differences. Since 

patterns in data could be hard to find in data of high dimension, where the 

graphical representation is not available, PCA is a useful tool for 

analyzing data.

One of the main advantage in PCA is that once we have found these 

patterns in the data, and we compress the data, for example by reducing the 

number of dimensions, without a lot of loss of information.

The PCA is a set of mutually orthogonal basis vectors indicating the 

direction of maximum dispersion of data. PCA is widely used for image data. 

The biggest problem in recognition problem using image data is the high 

level of data. Dimensioning the high dimension can lead to efficient 

features. It is a method of expressing an arbitrary image by orthogonal 

basis image that expresses the overall characteristics of a learning image 

using statistical characteristics of a learning image, that is, decomposing 

into an Eigen image and linear combination of the inherent image. PCA was 

applied to face recognition by Pentland in 1991.
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Algorithm 1 PCA

Input : a D-dimensional training set      and 

        the new (lower) dimensionality d (with d≤D)

1. Computing the mean  



 





2. Computing the covariance matrix    



 



 
  

 


3. Finding the spectral decomposition of Cov (x), obtaining the  

   Eigenvectors   and their corresponding Eigenvalues 

    . Noting that the Eigenvalues are sorted, such that 

   ≥ ≥∙∙∙≥ ≥

4. For any ∈ , its new lower dimensional representation is: 

     
   

 
 ∈  and the original x can be 

   approximated as

≈
  

  ∙∙∙
         

2.2 ICA

In this section, we present the ICA algorithm used in the setting of 

recognition problem and describe the procedure as it develops for several 

different architectures. 

Firstly, we address the motivation of ICA. Suppose that they are in a 

room where two people are speaking at the same time. The room has two 

microphones at different places, and we can get two voice signals which we 

can denote by  and , with  and  the amplitudes, and t the time 

index. The signal recorded by the microphone is the weighted sum of the 

speech signals emitted by the two speakers, which we denote by  and 

. We can express this as a linear equation:

                               (1)
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                               (2)

where , , , and  are parameters that depend on the distances of the 

microphones from the speakers. It would be very useful if we could now 

estimate the two original speech signals  and , using only the 

recorded signals  and . In shortly, the motivation for developing 

ICA is similar to the cocktail-party problem (CPP). In other words, it is a 

method to independently select only the signal that the developer desires in 

a lot of noise. Therefore, there is an advantage of being robust against 

noise.

Secondly, we indicate the definition of ICA with an algorithm. To define 

ICA, we could use a statistical “latent variables” model. Supposed that we 

observe n linear mixtures, ,...,  of n independent components.

   for                      (3)

We have originally defined the time index t in the ICA algorithm, suppose 

that each mixture,  as well as each independent component,  is a random 

variable, instead of a suitable time signal. The observed data , the 

microphone signals in the CPP, are then a sample of this random variable. 

Without loss of generality, we could suppose that both the mixture variables 

and the independent components have zero mean. If this is not true, then 

observable variables  could always be centered by subtracting the sample 

mean, which makes the model zero mean. 

It is useful to use vector-matrix notation instead of the sums. Let x be 

the random vector with  elements; likewise s is the random vector of 

 elements. Let A be the matrix with elements . Generally, bold 

lowercase letters indicate vectors, and bold upper-case letters denote 

matrices. All vectors are understood as column vectors; thus , or the 

transpose of x, is a row vector. Using this vector-matrix notation, the 

above mixing model is written as

                                  (4)
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Sometimes we need the columns of matrix A; denoting them by a j the model 

can be also written as 


 



                                 (5)

The statistical model in equation (4) is called independent component 

analysis, or ICA model. The ICA model is a generative model, which means it 

describes how the observed data are generated in the process of mixing 

components. The independent components are latent variables that mean they 

cannot be observed directly. In addition, the mixing matrix is supposed to 

be unknown. All we observe is the random vector x, and we have to estimate 

both A and s with it. This should be done under as general assumptions as 

possible. The independent components are latent variables, meaning that they 

cannot be directly observed. Also, the mixing matrix is assumed to be 

unknown. All we observe is the random vector x, and we must estimate both A 

and s using it. This must be done under as general assumptions as possible.

The starting point for ICA is the very simple assumption that the 

components  are statistically independent. Statistical independence will be 

rigorously defined in Section 3. It will be shown below that, we must also 

assume that the independent component must have non-Gaussian distribution. 

However, in the basic model, we do not assume these distributions to be 

known (if they are, the problem can be considerably simplified.) For 

simplicity, we also assume that the unknown mixing matrix is square. This 

assumption, however, can be sometimes withdrawn, as will be shown in Section 

4.5. Then, after estimating the matrix A, we can compute its inverse, set W, 

and obtain the independent component simply by:

                                (6)

As demonstrated earlier, the output      
 is obtained by mapping 

s through an invertible squashing function “f” that is

                              (7)
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The obtained matrices       
 and      

 could be 

interpreted as pre-synaptic and postsynaptic activation of neurons, 

respectively. This is achieved by computing gradient ascent on the entropy 

of the output taken with respect to W. We define the mutual information M 

between “n”, random variables,    as follows:     

  
 



                   (8) 

where each  denotes a marginal entropy. The mutual entropy M is always 

non-negative. Finally, the gradient update rule for the weight matrix W 

assumes the standard form.

  

∆∝∇  ′                (9)

where I is the identity matrix. Given the form of the logistic transfer 

function, we get  ′ .

On the other hand, the objective of the first architecture model is to 

find a set of statistically independent basis images from Eigenvectors 

obtained with the PCA method. Figure 2.1 shows the ECG representation of th 

face image obtained for this model.  

(a)

(b)

Figure. 2.1. ECG representation. (a) ECG representation for the first 

architecture (ICA1). (b) ECG representation for the second architecture (ICA2).
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The face-image representation for this architecture comes as a linear 

combination of statistically independent basis images and a feature vector 

    for th face image. The feature vectors for training the image 

set are obtained by the product of features found with PCA method and the 

inverse of weight matrix being the results of the ICA. The purpose of the 

second architecture model is to find a factorial face code. Here, the 

face-image representation is represented by a linear combination of the 

statistically independent feature vector    and the basis image. 

As an example, figure 2.1 illustrates the face representation of the th 

face image for the second model. Here, the factorial codes for face images 

are obtained by taking a product of a zero-mean matrix of the training image 

set and the weight matrix produced from the ICA. 

In short, ICA is related to the method called blind source separation 

(BSS). The “source” indicates here the original signal, i.e. the 

independent component, like the speaker in the cocktail party problem. 

“Blind” means we know very little, if anything, about the mixing matrix, 

and make little assumptions on the source signals. ICA is the probably the 

most widely used method for BSS. Meanwhile, FastICA offers most of the 

advantages of neural algorithms: It is parallel, distributed, 

computationally simple, and requires little memory. Stochastic gradient 

methods seem to be preferable only when fast adaptivity in changing 

environment is required.

Another advantage of the FastICA is that unlike ordinary ML algorithms, 

which only work for a given class of distributions, it can estimate both 

sub- and super-Gaussian independent components. Also, the FastICA algorithm 

is the most widely used method for blind source separation problems, it is 

computationally efficient and requires less memory than other blind source 

separation algorithms. The other advantage is that independent components 

can be estimated one by one that further decreases computational load. 
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2.3 Deep Learning

Deep Learning (DL) is a subset of machine learning which is getting a lot 

of attention for its recent success in solving particularly hard large-scale 

problems in such areas as image classification, signal processing, natural 

language processing, and motion classification. DL is a refinement of the 

Artificial Neural Networks, which, as discussed earlier, “roughly” emulate 

how the human brain learns and solves problems. 

Before we dive into how deep learning works, it’s important to 

understand how Artificial Neural Networks (ANN) work. An ANN is made up of 

interconnected group of neurons, like the neuron network in the human brain. 

In a simple way, a neuron in a neural network is a unit that receives a 

number of inputs (), computes them, and sends the output to the other nodes 

or neurons in a simple deep learning network. Weights (), or parameters, 

indicates the strength of the input connection and can be either positive or 

negative. The inputs are multiplied by the associated weights (, 

,...,) and the neuron adds the output from all inputs. At the last 

step, the neuron performs a computation or activation function. The 

activation function (sigmoid function and ReLU are popular) allows the ANN 

to model complex nonlinear patterns. Figure 2.2 shows an example application 

of deep learning.

Figure 2.2. Applications of deep learning
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Figure 2.3. Simple deep learning architecture called stacked auto-encoder

Figure 2.3 represents a simple deep learning architecture called stacked 

auto-encoder. The first layer is the input layer, and this is where features 

    are inputted. The second layer is the hidden layer. Any layer that 

is not an input or an output layer is a hidden layer. The term DL basically 

means that there are multiple levels of hidden layers. Networks typically 

contain more than three hidden layers, but in some cases, they can feature 

more than 1,500 hidden layers. Hidden layers are essentially a hierarchical 

grouping of different variables that provide a better-defined relationship. 

Currently, most DL algorithms are supervised. Thus, DL models are trained 

against the known truth.

The benefit of multiple hidden layers is that when a pattern needs deeper 

investigation, this can be done with additional hidden layers. Image 

classification is an example where DL can achieve high performance on very 

hard visual recognition tasks (even exceeding human performance in certain 

areas). We illustrate this point with an example of how additional hidden 

layers help perform facial recognition. Figure 2.4 shows image recognition 

using deep learning.
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Figure 2.4.  Image Recognition using DL

When a picture is inputted into a DL network, it is first decomposed into 

image pixels. The algorithm would look for patterns of shapes at certain 

locations in the data. The first hidden layer tries to uncover specific 

facial patterns: eyes, mouth, nose, ears. Adding an additional hidden layer 

decomposes the discovered facial patterns into more granular attributes. For 

example, the “mouth” can be further deconstructed into “teeth”, 

“lips”, “gums”, etc. Additional hidden layers can further evolve these 

patterns to recognize subtlest nuances. In the end, a deep learning network 

can break down a very complicated problem into a set of simple problems. 

Deep learning also features a good performance in many areas. Below we 

outline the disadvantages and advantages of the deep learning algorithms.

【Advantages】

- DL significantly outperforms other solutions in multiple domains, 

including speech recognition, language and image processing, etc.

- With DL there is no need for feature engineering, which one of the 

most time-consuming steps in machine learning applications.

- DL can be relatively easy adapted to new problems like computer 

vision, time series processing, etc. where convolutional neural 
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networks, recurrent neural networks, long short-term memory, and the 

like techniques are increasingly used.

【Disadvantages】

-  DL requires a large amount of data - if we only have thousands of 

sample, DL is not likely to outperform other algorithms.

-  From computational perspective DL is extremely expensive to train; 

complex models may take weeks to train using hundreds of machines 

equipped with expensive GPUs.

-  DL does not have much in the way of strong theoretical foundation, 

which further leads to the next disadvantage.

- Determining topology/flavor/training method/hyper parameters for a 

deep learning algorithm is rather an art than a science.

-  What is learned is not always easy to comprehend. Other classifiers 

(such as decision trees, logistic regression, etc.) yield the 

results, which are much easier to understand.
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2.4 PCANet

In this section, we first review the PCANet [99][100]. Its architecture 

is shown in Figure 2.5 and can be divided into three stages that include 10 

steps. Figure 2.6 shows the PCANet workflow of extracting the features from 

the train dataset. Table 2.1 shows the core parameters of the PCANet.

Table 2.1 The core parameters of PCANet

Parameters definition

× The size of input image

 The number of data

×
The patch size.  are  odd integers and satisfy 

≤  ≤  ≤  ≤ 


The number of filters of two stages. 

 ≤  ≤   ≤  ≤ 


The block size. 

 ≤  ≤  ≤  ≤     


The overlap ratio of block. 

which means R varies from 0 to 0.9 with the interval 0.1

Figure 2.5.  Diagram of PCANet.
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The detailed description of the workflow:

(1) The original input consists of training images, such as ECG and face. 

If Step (4) is performed before, the input image is the PCA output. 

(2) PCA filter bank extracts the PCANet filters. 

(3) The PCA filterbank outputs Eigenvectors.

(4) Original images are convolved with the PCANet filters output for the 

next step.

(5) V is convolved with the PCANet filters output for the next step.

(6) After two PCA steps, the output image is the PCANet output.

(7) The output image is binarized and block-wise histograms are 

calculated. Here, we create a weight map and proceed with binary 

quantization and weighted combination of the elements in the input 

data.

Figure 2.6. Workflow of PCANet.
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Suppose we have N input training images      ∈
× ,  and 

the patch size (or 2D filter size), where  and    are odd integers 

satisfying ≤ ≤ ≤ ≤. Further, the number of filters in the layer 

is , i.e.,  is the first stage and  is the second stage. In the 

following, we describe the PCANet structure in detail. Let N input images 

      be concatenated as follows:

    ⋯ ∈
×                       (10)

2.4.1 First Stage of PCANet

As shown in figure 2.6, the first stage of PCANet includes the following: 

【Step 1】 The first patch sliding process.

       Before sliding the images are padded to 
′∈

 × 

out-of-range, input pixels are assumed zero. This ensures that 

all weights in the filters reach the entire images. We use a 

patch of the size  × to slide each pixel of the th image 


′∈

 × , and subsequently reshape each  × matrix 

into a column vector, followed by concatenation to obtain a 

matrix:

     ⋯  ∈
×                  (11)

       where   denotes the th vectorized patch in . Thus, for all 

input training images      , we can obtain the 

following matrix. 

       Figure 2.7 shows an example of the first patch sliding process. 

The data of the square matrix are vectorized according to the 

patch size. For example, if the patch size is [5 × 5], a square 

matrix is set as. In figure 2.7, a CIFAR image is used as an 

example. When there is an image of 32 * 32 * 3, a 5 * 5 patch 

image is resized to a row vector of 25 * 1, and the patch is 

moved to one image to obtain the mean removal value, which is 



- 20 -

also referred to as a center image in the PCA. The size of the 

image  after all patch slides is 25 * 784 25 * 784 (
 ×

 ). Then, 
 is calculated to obtain 

the central image.

   ⋯ ∈
 ×                     (12)

   ⋯ ∈


×                  (13)

【Step 2】: The first mean remove process.

        In this step, we subtract the patch mean from each patch and 

obtain the following: 

  

⋯

 ∈

×                 (14)

        By subtracting each patch image from the above equation, we can 

obtain the following expression.

   ∈

 ×               (15)

【Step 3】: The first PCA process.

        In this step, the Eigenvalues and Eigenvectors of  are 

calculated from equation (15) using the PCA algorithm. The 

covariance is obtained by repeating the above equation from all 

patches and images.






 ×                            (16)

       where N is the number of images and L is the number of filters. 

The Eigenvector can be obtained according to the following 
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equation.

 ×



                           (17)



×



   



                  (18)

 


′  ′ 



                        (19)

       Let the number of L be chosen as the Eigenvector obtained above. 

The resulting Eigenvector is linearly combined with the center 

image of the zero-padded original image.

                            (20)

       s is the stage and the first stage is one.  means Eigenvectors 1 

to . By subtracting each patch image from the above equation, we 

can obtain the following expression. For each input image 

∈
 × , we obtain  output images  

      
 ∈ × 

after the first stage of PCANet. We denote   as

  
 ⋯  

 ⋯  
 ⋯ 

 ∈
 ×                 (21)

Figure 2.7.  Example of patch step
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2.4.2 Second Stage of PCANet

【Step 1】: The second patch sliding process.

        Almost repeating the same process as the first stage, as shown 

in figure 2.6, the second stage of PCANet also includes three 

steps:

        Similar to step 1, we use a patch of size × to slide each 

pixel of the th image  ′ ∈
×    and obtain a 

matrix as follows:

    ⋯ ∈
×                 (22) 

       where  denotes the th vectorized patch in 
   Therefore, for 

all the input training images      , we can obtain the 

following matrix. 

   ⋯∈
 ×                   (23)

       We concatenate the matrices of all the  filters and obtain a 

matrix

   ⋯ ∈

×                     (24)

【Step 2】 The second mean remove process 

       In this step, we subtract the patch mean from each patch and 

obtain the following: 

  

⋯

 ∈


×                  (25)

         By subtracting each patch image from the above equation, we can 

obtain the following expression.
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   ∈

 ×                 (26)

【Step 3】 The second PCA process.

       In this step, the Eigenvalues and Eigenvectors of  are 

calculated from equation (26) using the PCA algorithm. The 

covariance is obtained by repeating the above equation from all 

patches and images.






 ×                            (27)

       where N is the number of images and L is the number of filters. 

The Eigenvector can be obtained according to the following 

equation.

 ×



             (28)



×



   



                (29)

 


′  ′ 



                    (30)

       Let the number of L be chosen as the Eigenvector obtained above. 

The resulting Eigenvector is linearly combined with the center 

image of the zero-padded original image.

                           (31)

       s is the stage and the first stage is one.  means Eigenvectors 1 

to . By subtracting each patch image from the above equation, we 

can obtain the following expression. For each input image 

 
 ∈ × , we obtain  output images 

   
        

 ∈ ×  after the second stage of PCANet. 
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Thus, we obtain  image 

   
            ∈

 ×  after and 

second stages. We denote   as

    
 ⋯   

 ⋯  
 ⋯ 

 

⋯   
 ⋯ 

 ⋯  
 ⋯ 

 

              (32) 

2.4.3 Output Stage of PCANet

【Step 1】 Binary quantization.

       In this step, we binarize the outputs  of the second stage of 

PCANet, and obtain 

      
                     (33)

       where ∙ is Heaviside step function whose value is one for     

   positive entries and zero otherwise. We denote P as 

     ⋯   ⋯   ⋯ 
⋯   ⋯  ⋯  ⋯ 

              (34) 

【Step 2】 Weight and sum.

       Around each pixel, we view the vector of  binary bits as a 

decimal number. This converts the binary images    back into 

integer-valued images as follows:

  
  



                            (35)

       We denote T as

   ⋯   ⋯  ⋯  ∈
 ×              (36) 
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【Step 3】 Block sliding.

       We use a block of size × to slide each of the  images 

    , with overlap ratio R, and then reshape each ×

matrix into a column vector, which is then concatenated to obtain 

a matrix

     ⋯    ⋯   ∈
×              (37) 

       where    denotes the th vectorized patch in     B is 

the number of blocks when using a block of size × to slide 

each     which overlap ratio R and given by 

       

∙       
                  (38) 

       where stride1 and stride2 are vertical and horizontal steps, 

respectively, 

  ∙ 

  ∙ 
                    (39) 

       and (.) means round off. As we can see from equation (39), the 

number of blocks B is increasing as the overlap ratio R is 

increasing. For  images, we concatenate  to obtain a matrix

   ⋯  ⋯  ∈
×                   (40) 

       We denote Z as

    ⋯  ⋯   ⋯  ∈
×                (41) 
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【Step 4】 Histogramming

        We compute the histogram (with 
 bins) of the decimal values in 

each column of  and concatenate all the histograms into one 

vector and obtain 

     ⋯  ⋯    ⋯   ∈

    (42) 

        which is the “feature” of the input image  and Hist(.) 

denotes the histogram operation. We denote f as

   ⋯  ∈

                      (43) 

        The feature vector is then sent to a classifier, for example, 

support vector machine (SVM), Euclidean distance, etc.
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Algorithm 2 PCANet

1.   Input: training data 
   ∈

×      × 


2.   Reading: Image data or signal data

3. Initialization of variable: 
     The size of the patch ← select the size of the patch in PCANet
     The number of filters ← select the number of filters in PCANet
  
4. Stage 1 of PCANet

   - Patch mean-removal:    ∈

 ×

   - Compute convolution using PCA:  
    

 


′  ′ 





       - Output :     

5. Stage 2 of PCANet

   - Patch mean-removal:    ∈

 ×

   - Compute convolution using PCA: 
                    

 


′  ′ 





       - Output :     

6. Output layer
   - Binary hashing: compute the decimal-valued image 

      
          

   - Histogram: 

   ⋯  ⋯   ⋯   ∈



   - Output :    ⋯  ∈


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2.5 LBP

The LBP (local binary pattern) is a feature developed for classifying the 

original image texture and is used for other image recognition applications 

such as face recognition. The local binary pattern (LBP) is a value 

calculated for every pixel of the image, and is an index value obtained by 

coding the relative brightness change of the surrounding 3 x 3 region of 

each pixel in binary (If the pixel is brighter than the center pixel, it has 

a value of 1; if it is dark, it is coded as 0, and then, the binary 

connected with these values is used as an index for the local texture). 

Figure 2.8 shows the principle of basic LBP.

Figure 2.8. Principle of basic LBP

It is the original LBP application that uses this histogram as a texture 

model for the corresponding image area after obtaining the histogram for the 

index value calculated through each pixel (for the purpose of classifying 

the texture of lawn, forest, land, wall, etc).

In the following example of using LBP for face recognition, the face 
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region is divided into cells of a certain size. Then, a histogram for LBP is 

obtained for each cell (a histogram of LBP index values belonging to the 

cell). There is a method of using the vector obtained by connecting the 

histograms obtained in a row as a final feature 

A pixel located at the center in a 3x3 cell and a neighboring eight 

pixels are compared with each other. In figure 2.8, the value of the center 

pixel is 54, so if the neighboring pixel value is greater than or equal to 

54, it is set to 1, and if it is less than 54, the threshold value is set to 

zero. If you list them in order, we get a binary value like 11001011. 

Calculating the binary value as a decimal value is 203. Possible values are 

the number of 256 cases from 0 to 255 in total. We calculate this for all 

pixels and make a histogram. It is not simply a histogram of pixel values, 

but a histogram of LBP values. Then a total of 256 bins will be filled. The 

texture of one image is represented by 256 numbers. These primitive LBP have 

robust characteristics even when the brightness of the image changes. Figure 

2.9 shows the LBP applied face recognition.

Figure 2.9. LBP applied face recognition
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Ⅲ. Proposed ICANet

This section presents ICANet, the proposed method of this paper.

3.1  Statistically independent basis image ICANet 

(ICANet1)

ICANet1 (statistically independent basic image Net) is a modified 

algorithm from ICA1, which is an algorithm that extracts independent 

components through ICA filter using Eigenvectors obtained from PCA. The 

first stage is a simple deep learning type in which the PCA and ICA 

algorithms form a network in the form of a cascade. In the second step, 

three algorithms, PCA, ICA, and LBP, are performed using image patch data. 

Finally, the hashing code step similar to LBP and the feature using the 

histogram is vectorized. Finally, the final classification is done using 

SVM. Figure 3.1 below shows the structure of ICANet1. 

Figure 3.1. Structure of ICANet1.
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To find a statistically independent basic image set according to a set of 

faces, the independent components of the face image are separated based on 

the image synthesis model shown in the figure below. Since existing 

Eigenvectors are not statistically independent, it is the goal of ICANet1 to 

find Eigenvectors that are statistically independent using ICA. The face 

image of X is assumed a linear mixture of an unknown set of statistically 

independent source images S, where A is an unknown mixing matrix. The source 

is reconstructed by a W learning filter matrix producing a statistically 

independent output. The image consists of a row of input matrix X. Is 

provided as a set of independent base images for the face, using the input 

images in the row of X, where the ICA output in the row of U is the images. 

Such a base image may be regarded as a statistically independent set of 

facial features, wherein the pixel values of each feature image are 

unpredictable in the pixel values of the other feature images. The ICA 

expression consists of. The coefficients for the linear combination of the 

independent basic images of the U that make up each face image as shown in 

Fig. In this model, the coefficient matrix B is obtained from the mixing 

matrix A≜
 . Each row of A contains a coefficient b for one image x. 

Figure 3.2 shows an image synthesis model.

Figure 3.2. An image synthesis model.
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 is represented by a matrix containing the first m principal component 

axes in the column. We perform ICA through 
 and generate a matrix of m 

independent source images in the row of U. Here, the coefficients b for the 

linear combination of the base images in U constituting the face images of X 

is determined as follows. The principal component representation of the 

zero-mean image sets in  based X is defined as   . The least 

square error approximation value of   
 is obtained by X. The ICA 

algorithm produces the following matrix  

 
   → 

 
                     (44) 

  
 →  

                     (45) 

where  is the sphering matrix defined as    


 



. Thus, the 

row of 
  includes the least-square error approximation of the linear 

combination coefficient of X, which is statistically independent of U, 

constituting  as in PCA. Since U is an independent component 

representation of a face image based on statistically independent sets of m 

feature images, U is given by the rows of the matrix.

  
                             (46) 

To obtain the    we can obtain the test image by using the 

principal component representation based on the training image and 

calculating the   
 . The ICA representation of the face did not 

require a PCA step and was used to meet the purpose. The purpose is as 

follows:

1. Reducing the number of sources to a manageable number. 

2. Providing a convenient way to calculate the representation of a test 

image. Without using the PCA step, the length of the U-row, 

   
, can be normalized to normalize U and U to obtain 

 
  and  without computing the pseudo-inverse.
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3.1.1 First Stage of ICANet1

【Step 1】 The first patch sliding process.

       Before sliding the images are padded to 
′∈

 × 

out-of-range, input pixels are assumed zero. This ensures that 

all weights in the filters reach the entire images. We use a 

patch of the size  × to slide each pixel of the th image 


′∈

 × , and subsequently reshape each  × matrix 

into a column vector, followed by concatenation to obtain a 

matrix:

     ⋯  ∈
×                       (47)

       where   denotes the th vectorized patch in . Thus, for all 

input training images     , we can obtain the 

following matrix. 

   ⋯ ∈
 ×                   (48)

   ⋯ ∈

×                  (49)

【Step 2】: The first mean remove process.

        In this step, we subtract the patch mean from each patch and 

obtain the following: 

  

⋯

 ∈

×                 (50)

        By subtracting each patch image from the above equation, we can 

obtain the following expression.

   ∈


×               (51)
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【Step 3】 The first PCA process with ICA

        In this step, the Eigenvalues and Eigenvectors of  are 

calculated from equation (51) using the PCA algorithm. The 

covariance is obtained by repeating the above equation from all 

patches and images.






 ×                            (52)

       where N is the number of images and L is the number of filters. 

The Eigenvector can be obtained according to the following 

equation.

 ×



                          (53)



×



   



                 (54)

 


′  ′ 



                       (55)

                             (56)

       Let the number of L be chosen as the Eigenvector obtained above. 

To apply the ICA algorithm to estimate the independent component, 

we apply Eigenvectors to ICA. The first ICA centering and the 

whitening algorithm is applied, and then the data normalization 

is performed. Then, the initial weight is set randomly, and the 

initial weight and the data obtained from the whitening are 

linearly combined. There are two methods of ICA (Kurtosis, 

Negentropy) and Kurtosis method. Therefore, the expression is as 

follows.

  

                        (57)

       The values obtained above and whitening data are linearly 

combined and normalized. Singular value decomposition is 
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performed to remove the correlation. Then, the delta value is 

obtained by carrying out the dot product operation with the 

weight obtained from the singular value decomposition and the 

initial weight obtained randomly and subtracting the value from 

1. If the delta value is greater than 0.000001, the data obtained 

from the final weight and whitening are linearized, and this 

value is called independent components. The obtained independent 

components U and the linear image of the center image of the zero 

padded original image are combined. A linear combination of the 

obtained independent components U and the center image of the 

zero-padded original image are performed.

                             (58)

       s is the stage and the first stage is one.  means independent 

elements 1 to . By subtracting each patch image from the above 

equation, we can obtain the following expression.  For each input 

image ∈
 × , we obtain  output images 

 
     

 ∈ ×  after the first stage of ICANet. We 

denote   as

  
 ⋯  

 ⋯  
 ⋯ 

 ∈
 ×                 (59)

Figure 3.3 shows first stage of ICANet1 and PCA and ICA are cascaded. In 

the first stage, a two-dimensional convolutional output is obtained. Figure 

3.4 shows feature CU-ECG database in the first stage of ICANet1.
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Figure 3.3. First stage of ICANet1.

Figure 3.4. Feature CU-ECG database in first stage of ICANet1.

One covariance is generated for each image, and the second stage is 

affected by the number of filters to generate 40 covariance (  ), 

resulting in 40 convolution outputs in the first stage. 
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3.1.2 Second Stage of ICANet1

A hashing code is generated based on the convoluted feature and the 

weight map. The values generated by the hashing code are also projected onto 

a weight map.

【Step 1】 The second patch sliding process.

       Almost repeating the same process as the first stage, as shown in 

Figure 3.1, the second stage of ICANet1 also includes three 

steps: Similar to step 1, we use a patch of size × to slide 

each pixel of the th image  ′ ∈
×    and obtain a 

matrix as follows:

    ⋯ ∈
×                 (60) 

       where   denotes the th vectorized patch in . Thus, for all 

input training images     , we can obtain the 

following matrix. 

   ⋯∈
 ×                   (61)

       We concatenate the matrices of all the  filters and obtain a 

matrix

   ⋯ ∈


×                     (62)

【Step 2】 The second mean remove process 

       In this step, we subtract the patch mean from each patch and 

obtain the following: 

  

⋯

 ∈

×                (63)
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       By subtracting each patch image from the above equation, we can 

obtain the following expression. 

   ∈

 ×               (64)

【Step 3】 The second PCA process with ICA

       In this step, the Eigenvalues and Eigenvectors of  are 

calculated from equation (51) using the PCA algorithm. The 

covariance is obtained by repeating the above equation from all 

patches and images.






 ×                            (65)

       where N is the number of images and L is the number of filters. 

The Eigenvector can be obtained according to the following 

equation.

 ×



                          (66)



×



   



                  (67)

 


′  ′ 



                        (68)

                             (69)

       A linear combination of the obtained independent components U and 

the center image of the zero-padded original image are performed.

                             (70)

       s is the stage and the first stage is one.  means independent 

elements 1 to . By subtracting each patch image from the above 
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equation, we can obtain the following expression. By subtracting 

each patch image from the above equation, we can obtain the 

following expression. For each input image  
 ∈ × , we obtain 

 output images    
      

 ∈ ×  after the second 

stage of PCANet. Thus, we obtain  image  

   
            ∈

 ×  after and 

second stages. We denote   as

    
 ⋯   

 ⋯  
 ⋯ 

 

⋯   
 ⋯ 

 ⋯  
 ⋯ 

 

              (71) 

Figure 3.5 shows the second stage of ICANet1 and it is a cascade of PCA, 

ICA, and LBP algorithms. The second stage processes the data for each image, 

updating the Eigenvectors and independent Eigenvectors accordingly. 

Therefore, the feature values of the output stage also show different 

feature values. Figure 3.6 shows the CU-ECG database in the second stage of 

ICANet1. The number of Eigenvectors is increased based on the number of 

filters (  ), and four feature values are extracted from one image.

The detailed description of the workflow is below:

(1) In the PCA phase, the center image is obtained, and the Eigenvector 

is obtained by using the normalization of the covariance.

(2) Perform the centering and whitening process in the ICA stage, and 

obtain an independent Eigenvector using updated weights.

(3) The center image is obtained from the basic data and convolution is 

performed with the zero padded image and the independent Eigenvector 

obtained from ICANet (2), and the ICA convolution output value is 

extracted.

(4) In LBP step, feature value is extracted through hashing code step, 

patch sliding step, histogram, and step.

(5) Finally, the feature obtained in (4) is vectorized, and     

classification is performed using the feature value.
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Figure 3.5. Second and output stage of ICANet1.

Figure 3.6. Feature CU-ECG database in second and output stage of ICANet1.
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3.1.3 Output Stage of ICANet1

Step 1 to Step 3 is the same as the previous PCANet algorithm. The 

following lists the advantages of ICANet. There are PCANet algorithms, but 

papers that have been studied with various structures of ICANet are a new 

challenge.

Figure 3.7. Hashing codes in output stage of ICANet1.

The hashing code is similar to the local binary patterns. It is a binary 

algorithm that codes zero if the feature value is less than zero, and one if 

the feature value is bigger than zero, as in figure 3.7. Therefore, the 

independence component obtained from ICA is simplified to zero and one. 

Figure 3.7 shows the hashing codes in the output stage of ICANet1.    

【Advantage of ICANet】

   (1) The network structure is simple and computationally efficient.

   (2) The ICA filter is trained with an unsupervised algorithm using 

unlabeled samples, which is practical. 

   (3) Compared to deep learning models, each layer parameter in ICANet 

can be easily trained.
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Algorithm 3 ICANet1

1. Reading: Image data or signal data
2. Initialization of variable: 
The size of the patch ← select the size of the patch in ICANet1
The number of filters ← select the number of filters in ICANet1
  
3. Stage 1 of ICANet1

   - Patch mean-removal:    ∈


×

   - Compute Eigenvector using PCA:  

                      


′  ′ 





       - Compute convolution using ICA:  

                       

       - Output:    

4. Stage 2 of ICANet1

   - Patch mean-removal:    ∈

 ×

   - Compute Eigenvector using PCA:  
     

 


′  ′ 





   - Compute convolution using ICA:  
                   

  

   - Output:    

5. Output layer
   - Binary hashing: compute the decimal-valued image 

      
          

   - Histogram: 

   ⋯  ⋯   ⋯   ∈



Output:    ⋯  ∈


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3.2 Factorial ICANet (ICANet2)

ICANet2 is a modified algorithm in ICANet. It extracts independent 

components by applying feature vectors obtained from PCA to ICA filters. To 

find a statistically independent basic image set according to a set of ECG. 

Since existing feature vectors are not statistically independent, it is the 

goal of ICANet2 to find feature vectors that are statistically independent 

using ICA. Figure 3.8 shows the structure of ICANet2.

Figure 3.8. Structure of ICANet2.

The ICA in Architecture 1 finds the weight vector in the direction of 

statistical dependence at the population of the face image at the pixel 

location. Projecting the data to these weights creates an independent set of 

images that cannot predict the pixel gray value of one image in the gray 

value of another image. These independent images span the subspace of the 

face image defined by the first 75 PCA Eigenvectors and each face represents 

a measure of the linear combination of these independent template images 
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that make up each face image.

The base image obtained in Architecture 1 was space-independent, but the 

coefficients coding each face are not. By changing the architecture of the 

independent component analysis, the coefficients were defined as 

statistically independent of the second representation. In other words, the 

second ICA architecture finds the factorial code for the face image. Changes 

to the architecture are consistent with transposing the input. Each facial 

image was treated as a coded observation with a gray value at each pixel 

location. ICA in Architecture 2 finds the weight vector in the direction of 

statistical dependency in the face code across the face set. Projecting the 

data to these weights produces a set of independent coding variables that 

will replace the "pixel location" where the value of a particular coding 

variable cannot be predicted by other coding variables. Each face is 

represented by the value taken by this new set of independent coding 

variables. The similarity of ICA-factorial representation (ICA2) and 

principal component representation is straightforward. The principal 

component coefficients constitute uncorrelated facial codes, while ICA2 

coefficients constitute independent face codes. Figure 3.9 shows an image 

synthesis model in ICANet2 and figure 3.10 shows two architectures for 

performing ICA on images.  

Figure 3.9. Image synthesis model in ICANet2.
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Figure 3.10. Two architectures for performing ICA on images. 

3.2.1 First Stage of ICANet2

The first stage of ICANet2 is similar to the first stage of ICANet1, but 

there is a difference in the third step.

【Step 1】 The first patch sliding process.

       Before sliding the images are padded to 
′∈

 × 

out-of-range, input pixels are assumed zero. This ensures that 

all weights in the filters reach the entire images. We use a 

patch of the size  × to slide each pixel of the th image 


′∈

 × , and subsequently reshape each  × matrix 
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into a column vector, followed by concatenation to obtain a 

matrix:

     ⋯  ∈
×                       (72)

       where   denotes the th vectorized patch in . Thus, for all 

input training images     , we can obtain the 

following matrix.

   ⋯ ∈
 ×                   (73)

   ⋯ ∈

×                  (74)

【Step 2】 The first mean remove process.

       In this step, we subtract the patch mean from each patch and 

obtain the following: 

  

⋯

 ∈

×                 (75)

       By subtracting each patch image from the above equation, we can 

obtain the following expression.

   ∈


×               (76)

【Step 3】 The first PCA process with ICA

       In this step, the Eigenvalues and Eigenvectors of  are 

calculated from equation (76) using the PCA algorithm. The 

covariance is obtained by repeating the above equation from all 

patches and images
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




 ×                            (77)

where N is the number of images and L is the number of filters. The 

Eigenvector can be obtained according to the following equation.

 ×



                            (78)



×



   



                    (79)

 


′  ′ 



                          (80)

  


                        (81)

                   (82)

 


                      (83)

                           (84)

  means whitened process and centered feature vector. Let the 

number of L be chosen as the Eigenvector obtained above. To apply the ICA 

algorithm to estimate the independent component, we apply it to ICA based on 

the feature vector. The first ICA centering and the whitening algorithm are 

applied, and then the data normalization is performed. Then, the initial 

weight is set randomly, and the initial weight and the data obtained from 

the whitening are linearly combined. There are two methods of ICA (Kurtosis, 

Negentropy) and Kurtosis method. Therefore, the expression is as follows. 

Therefore, the expression is as follows.

  

                        (85)

The values obtained above and whitening data are linearly combined and 

normalized. Singular value decomposition is performed to remove the 

correlation. Then, the delta value is obtained by carrying out the dot 
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product operation with the weight obtained from the singular value 

decomposition and the initial weight obtained randomly and subtracting the 

value from 1. If the delta value is greater than 0.000001, the data obtained 

from the final weight and whitening are linearized, and this value is called 

independent components. A linear combination of the obtained independent 

components U and the center image of the zero-padded original image are 

performed.

                             (86)

s is the stage and the first stage is one.  means independent elements 1 

to . By subtracting each patch image from the above equation, we can obtain 

the following expression. For each input image ∈
 × , we obtain 

output images  
      

 ∈ ×  after the first stage of ICANet. We 

denote   as

  
 ⋯  

 ⋯  
 ⋯ 

 ∈
 ×                 (87)

3.2.2 Second Stage of ICANet2

A hashing code is generated based on the convoluted feature and the 

weight map. The values generated by the hashing code are also projected onto 

a weight map.

【Step 1】 The second patch sliding process.

       Almost repeating the same process as the first stage, as shown in 

Figure 3.1, the second stage of ICANet1 also includes three 

steps: Similar to step 1, we use a patch of size × to slide 

each pixel of the th image  ′ ∈
×    and obtain a 

matrix as follows:

    ⋯ ∈
×                 (88) 
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       where   denotes the th vectorized patch in . Thus, for all 

input training images     , we can obtain the 

following matrix. 

   ⋯∈
 ×                   (89)

       We concatenate the matrices of all the  filters and obtain a 

matrix

   ⋯ ∈


×                     (90)

【Step 2】 The second mean remove process 

       In this step, we subtract the patch mean from each patch and 

obtain the following: 

  

⋯

 ∈

×                (91)

       By subtracting each patch image from the above equation, we can 

obtain the following expression. 

   ∈


×               (92)

【Step 3】 The first PCA process with ICA

       In this step, the Eigenvalues and Eigenvectors of  are 

calculated from equation (76) using the PCA algorithm. The 

covariance is obtained by repeating the above equation from all 

patches and images
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




 ×                            (93)

where N is the number of images and L is the number of filters. The 

Eigenvector can be obtained according to the following equation.

 ×



                            (94)



×



   



                    (95)

 


′  ′ 



                          (96)

  


                        (97)

                   (98)

 


                      (99)

                          (100)

  means whitened process and centered feature vector. Let the 

number of L be chosen as the Eigenvector obtained above. To apply the ICA 

algorithm to estimate the independent component, we apply it to ICA based on 

the feature vector. The first ICA centering and the whitening algorithm are 

applied, and then the data normalization is performed. Then, the initial 

weight is set randomly, and the initial weight and the data obtained from 

the whitening are linearly combined. There are two methods of ICA (Kurtosis, 

Negentropy) and Kurtosis method. Therefore, the expression is as follows. 

Therefore, the expression is as follows.

  

                        (101)

The values obtained above and whitening data are linearly combined and 

normalized. Singular value decomposition is performed to remove the 

correlation. Then, the delta value is obtained by carrying out the dot 

product operation with the weight obtained from the singular value 
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decomposition and the initial weight obtained randomly and subtracting the 

value from 1. If the delta value is greater than 0.000001, the data obtained 

from the final weight and whitening are linearized, and this value is called 

independent components. A linear combination of the obtained independent 

components U and the center image of the zero-padded original image are 

performed.

                             (102)

s is the stage and the first stage is one.  means independent elements 1 

to . By subtracting each patch image from the above equation, we can obtain 

the following expression. For each input image ∈
 × , we obtain 

output images  
      

 ∈ ×  after the first stage of ICANet. We 

denote   as

  
 ⋯ 

 ⋯ 
 ⋯ 

 ∈
 ×                 (103)

3.2.3 Output Stage of ICANet2

Step 1 to Step 3 is the same as the previous PCANet algorithm. The 

following lists the advantages of ICANet. There are PCANet algorithms, but 

papers that have been studied with various structures of ICANet are a new 

challenge. 

【Step 1】 Binary quantization.

       In this step, we binarize the outputs  of the second stage of 

PCANet, and obtain 

       
                     (104)

【Step 2】 Weight and sum.

       Around each pixel, we view the vector of  binary bits as a 

decimal number. This converts the binary images    back into 
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integer-valued images as follows:

  
  



                             (105)

       We denote T as

    ⋯  ⋯   ⋯∈
 ×              (106) 

【Step 3】 Block sliding.

       We use a block of size × to slide each of the  images 

    , with overlap ratio R, and then reshape each ×

matrix into a column vector, which is then concatenated to obtain 

a matrix

     ⋯   ⋯   ∈
×              (107) 

       We denote Z as

   ⋯  ⋯  ⋯  ∈
×                (108) 

【Step 4】 Histogramming

        We compute the histogram (with 
 bins) of the decimal values in 

each column of  and concatenate all the histograms into one 

vector and obtain 

     ⋯  ⋯    ⋯   ∈

    (109) 

        which is the “feature” of the input image  and Hist(.) 

denotes the histogram operation. We denote f as
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   ⋯  ∈

                      (110) 

        The feature vector is then sent to a classifier, for example, 

support vector machine (SVM), Euclidean distance, etc.

ICANet2 is also called a factorial ICANet, and a feature vector is 

obtained through the intensive multiplication of the center matrix and the 

Eigenvector. Unlike ICANet1, the Eigenvectors are linearly multiplied by the 

covariance of the patch center image. Finally, the feature values are 

extracted through the linear multiplication of the sum of the patch images 

and the normalized Eigenvectors. This is different from ICANet1. ICANet2 has 

the same number of features as ICANet1. Figure 3.11 shows the first stage of 

ICANet2 and figure 3.12 shows feature CU-ECG database in the first stage of 

ICANet2.  Figure 3.13 indicates second and output stage of ICANet2 and 

figure 3.14 shows feature CU-ECG database in second and output stage of 

ICANet2.

The detailed description of the workflow is below:

(1) Perform PCA step like ICANet1.

(2) Patch sliding of all images is performed, and the average image and 

the Eigen vector obtained from the PCA are convoluted.

(3) The Eigenvectors are updated through the normalization step using the 

Eigenvectors, and then the convolution is performed using the average 

image of all the images and the updated Eigenvectors. This is called 

a feature vector.

(4) The center image is obtained from the basic data, and the zero padded 

image and the independent Eigen feature vector obtained in (2) are 

convoluted and the ICA convolution output value is extracted.

Steps (5) and (6) are the same as ICANet1.
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Figure 3.11. First stage of ICANet2.

Figure 3.12. Feature CU-ECG database in first stage of ICANet2.  
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Figure 3.13. Second and output stage of ICANet2.

Figure 3.14. Feature CU-ECG database in second and output stage of ICANet2.  
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Algorithm 4 ICANet2

1. Reading: Image data or signal data

2. Initialization of variable

3. Stage 1 of ICANet2

- Patch mean-removal :    ∈

 × 

- Compute Eigenvector using PCA:  
                    

 


′  ′ 





    - Compute PCA feature vector using PCA:  

  


 ,    ,   


 

- Compute convolution using ICA:  

                        

- Output :    

4. Stage 2 of ICANet2 

- Patch mean-removal:    ∈

 × 

    - Compute PCA feature vector using PCA:  

  


 ,    ,   


 

- Compute convolution using ICA:  

                        

- Output :    

5. Output layer
Binary hashing: compute the decimal-valued image 

      
          

Histogram: 

   ⋯  ⋯   ⋯   ∈



Output :    ⋯  ∈


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Ⅳ. Experiment and Results

This section describes the data acquisition process and environment, 

evaluates the data, and examines the similarities. In addition, we present 

the performance assessment and the effectiveness of the ICANet.

4.1 Database

In this paper, we use databases obtained from various systems to 

determine the suitability of the algorithm.

4.1.1 CU-ECG database

The CU-ECG DB is the data from Chosun University, Korea. The data 

contains 100 people. The measurement time is 10 s for one measurement;  60 

times was measured during three days for each individual. Measurements were 

made when the participants were sitting in the chair in a relaxed state with 

the data-sampling rate of 500,000 Hz. All acquired ECG are Lead1 type taken 

with wet electrodes. We used a processor, an amplifier, a band-pass filter, 

and a low-pass filter as the primary board and the sensor. The processor is 

Atmega8; Analog to Digital (AD) converter uses 10-bit resolution. For 

communication, we use USB to serial. The gain of the amplifier was 1000 

times, and the signal was measured using a 5-V positive power source. To 

acquire ECG data, the patient is seated in the chair in a relaxed state. The 

patch shown in the picture below is attached to the arm and the data is 

acquired. The acquired data is stored in the computer using universal 

synchronous/asynchronous receiver/transmitter (USART) communication. Figure 

4.1 shows a data acquisition environment for ECG biometrics and figure 4.2 

indicates mainboard and experiment environment. Figure 4.3 shows 

preprocessing using CU-ECG database and figure 4.4 indicates samples of 

CU-ECG database with noise CU-ECG. Figure 4.5 shows samples of CU-ECG 

database with size scale. Noise (White Gaussian) was used to determine the 

robustness of ICA. In addition, additive white Gaussian noise (AWGN) is a 

basic noise model used in Information theory to mimic the effect of many 

random processes that occur in nature. 
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Figure 4.1. Data acquisition environment for ECG biometrics

Figure 4.2. Mainboard and experiment environment

(a)                                  (b)

(c)                                  (d)

Figure 4.3. Preprocessing using CU ECG database: (a) raw signal; (b) mean 

variance; (c) spike removal; (d) R peak detection.
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       (a)                                 (b)

(c)                           (d)                           (e)

Figure 4.4. Samples of CU-ECG database with noise CU-ECG. (a) ECG 

scalogram. (b) salt noise with ECG scalogram. (c) 1D raw-ECG signal. (d) noise 

ECG signal.  (e) Gaussian noise with ECG scalogram

      

        (a)                     (b)             (c)

Figure 4.5. Samples of CU-ECG database with size scale. (a) 28 × 28. (b) 20 

× 20. (c) 12 × 12
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4.1.2 FERET face database

FERET DB is configured for the development of automatic face recognition 

capabilities. It is a face image of 14051 8-bit grayscales. It also includes 

facial images of various poses and presents the outlines of alternative 

facial expressions and other illuminations. For some people, they include 

face images with glasses and other hair lengths. Nevertheless, this DB is 

one of the most known face databases since it contains many face images of 

many people. Images of an individual were acquired in sets of 5 to 11 

images, collected under relatively unconstrained conditions. Two frontal 

views were taken (Fa and Fb); a different facial expression was requested 

for the second frontal image. For 200 sets of images, a third frontal image 

was taken with a different camera and different lighting (this is referred 

to as the Fc image). Figure 4.6 shows example of different categories of 

FERET images. Table 4.1 shows data information of FERET.

                                                           

Figure 4.6. Example of different categories of FERET images. The duplicate 1 

image was taken within one year of the Fa image and the duplicate 2 and Fc 

images were taken at least one year apart.

Table 4.1. Data information of FERET

         Features

Database
Data Size Number of data per class

Fa 13500 X 1196 1 (1196 class)

Fb 13500 X 1195 1 (1196 class)

Fc 13500 X 194 1 (1196 class)

Duplicate1 13500 X 722 from 2 to 10 (243 class)

Duplicate2 13500 X 234 from 2 to 10 (75 class)
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4.1.3 CU-Face Database

Deep learning is generally known for algorithms that use big data. 

Therefore, the correlation between ICANet and small data can be confirmed by 

applying the CU-Face database that is small data. The CU-Face data is data 

acquired from Chosun University. The total number of participants is five, 

and the training data is composed of 10 pieces per person and the testing 

data is composed of 80 pieces of data. Therefore, verification data is 8 

times more than learning. Moreover, the size of the learning data is 1800 * 

50, and the size of the verification data is 1800 * 400. In order to show 

the robustness of ICANet, we also experimented with data mixed with noise 

(Gaussian noise). Figure 4.7 shows example of CU-Face data with noise. 

Figure 4.7. Example of CU-Face data with noise

4.2 Experimental Results and Discussion

In this section, we show the classifier used for experiments and the 

experimental results.

4.2.1 Classifier

Distance measurement is a method of calculating the distance between two 

observations. In this paper, we show performance using (Euclidean, squared 

Euclidean, city-block, Minkowski, cosine, correlation, and Spearman) 

distance and SVM. Table 4.2 shows mathematical expression of classier.
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Table 4.2. Mathematical expression of classier

Classifier Mathematical expression

Euclidean distance (ED) 
        

′

Squared Euclidean distance (SED) 
     

    


City-block distance (CBD)  
  



 

Minkowski distance (MKD)  



  



 


Cosine distance (CSD)   ′
′


′



Correlation distance (CLD)

         ′        ′
 
     

′



   






Spearman distance (SMD)

          ′        ′
 
     

′



   





 



4.2.2 Performance evaluation            

TP is the number of correct predictions for the positive samples, TN is 

the number of correct predictions for the negative samples, FN is the number 

of incorrect predictions for the positive samples, and FP is the number of 

incorrect predictions for the negative samples.

         


                  (111)

4.2.3 Setting parameters

FERET data based parameters are set from three to five in terms of L, K 

is set to two to eight, and H is set to 4 or 8 because of memory problem. 
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4.2.4 Experimental results and performance analysis

To show the performance of the proposed algorithm, performance is shown 

through various classifiers. The feature extractor is PCANet, ICANet1 to 

ICANet2. The classifiers are the Euclidean distance, the squared Euclidean 

distance, the city-block distance, the Minkowski distance, the cosine 

distance, the correlation distance, the spearman distance, SVM was used. 

Performance analysis using FERET data showed similar performance to PCANet 

when using Fb data. However, as the data was changed to Fc, Dup1, and Dup2, 

it showed higher performance in ICANet1 and 2 than PCANet. If the training 

data and the testing data are similar, the PCANet can have a good effect, 

but if the non-similar of real-life data is used, the ICANet algorithm is 

robust. Especially, when the Dup2 and noise ECG data is used, the robustness 

of the ICANet2 algorithm is verified. In addition, the classifier has been 

confirmed that the SVM algorithm works well. In addition, verification time 

is important for ECG personal authentication. The verification time of 

PCANet was about 0.2 seconds, ICANet1 was 0.2 seconds, similar to PCANet, 

and ICANet2 was 0.15 seconds. Therefore, the effectiveness of the ICANet 

algorithm for personal authentication has been demonstrated in terms of 

classification time.

● Influence on the number of filters

The number of filters is an important factor for the recognition 

performance in the convolution layer on ICANet, because there is the amount 

of information increased when the number of filters in the first stage 

gradually increased. Figure 4.8 shows the influence on the number of filters 

in ICANet.
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      (a)                                      (b)  

Figure 4.8. The influence on the number of filters in ICANet. (a) CU-ECG 

database. (b) noise CU-ECG database.

● Influence on block size

Compared to the number of filters, the performance tends to decrease as 

the block size increases. As the block size increases, the spacing of the 

strides becomes wider, resulting in information loss of data and degradation 

of performance. Figure 4.9 shows the influence on the block size in ICANet 

and figure 4.10 shows correlation of PCANet, ICANet1, and ICANet2.

      (a)                                      (b)

Figure 4.9. The influence on the block size in ICANet. (a) CU-ECG database. 

(b) noise CU-ECG database.
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(a)                           (b)                           ©

Figure 4.10. Correlation of PCANet, ICANet1, and ICANet2. (a) PCANet1. (b) 

ICANet1. (c) ICANet2 

To illustrate ICANet's feature distribution, Figure 4.11 shows a 

distribution chart of feature in ICANet. Figure 4.12 shows performances of 

CU-ECG using SVM and figure 4.13 performances of Gaussian noise CU-ECG using 

SVM. When using CU-ECG data, it is similar to PCANet's performance, but 

ICANet's robustness is proved when using noise mixed with white Gaussian 

(signal to noise ratio = 30). Figure 4.14 to 4.17 shows a comparison of face 

recognition rates on various methods on FERET (Fb, Fc, Dup1, and Dup2) 

database.  In the case of Fb data, the performance of PCANet 's algorithm 

was high, but the performance of ICANet was higher than PCANet as Fc and 

Dup1 and Dup2 data. The reason is that the performance of ICA is improved by 

removing the correlation between the original vector, feature vector, and 

covariance through the independent component analysis of ICA. Figure 4.18 

shows performance of CU-Face database and figure 4.19 indicates performance 

of CU-ECG. In addition, Figure 4.20 shows performance of CU-Face and figure 

4.21 presents performance of FERET. In addition to figure 4.22 shows 

performance of CU-ECG and figure 4.23 indicates performance of scale CU-ECG. 

As shown in Figure 4.22, the processed data shows similar performance to 

PCANet. However, the PCANet using Eigenvectors is weak against noise, and 

the feature vector using statistical independence is robust against noise. 

In addition, as shown in Figure 4.23, ICANet's classification rate did not 

significantly decrease compared to PCANet even if information of data was 

lost. In addition, as shown in Figure 4.19, the performance was higher than 
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the basic deep learning of auto-encoder and the classification time was 

about 0.05 seconds faster than PCANet. In addition, as shown in Figure 4.21, 

high performance was expected in face data as well as electrocardiogram 

data, and it is shown that it is better than PCANet in small data as shown 

in Figure 4.21. As a result of performance, ICANet showed higher performance 

than PCANet when face data and ECG data were used. Especially, it showed 

stronger than PCANet in noise data. Table 4.3 to 4.8 shows performance of 

(PCANet, ICANet1, ICANet2) using CU-ECG and noise CU-ECG database. Table 4.9 

to 4.24 shows Performance of (PCANet, ICANet1, ICANet2) using FERET database 

(Fb, Fc, Dup1, Dup2). 

      (a)                                     (b)

(c)

Figure 4.11. Distribution chart of feature in ICANet. (a) ICANet1. (b) ICANet2. 
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Table 4.3. Performance of PCANet using CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

8 4 10 0.9760 10 4 8 0.9748 

9 4 4 0.9830 10 4 9 0.9795 

9 4 5 0.9813 10 4 10 0.9754 

9 4 6 0.9819 4 5 4 0.9825 

9 4 7 0.9836 4 5 5 0.9743 

9 4 8 0.9830 4 5 6 0.9772 

9 4 9 0.9737 4 5 7 0.9772 

9 4 10 0.9801 4 5 8 0.9784 

10 4 4 0.9825 4 5 9 0.9550 

10 4 5 0.9819 4 5 10 0.9585 

10 4 6 0.9807 5 5 4 0.9801 

10 4 7 0.9807 5 5 5 0.9784 

Table 4.4. Performance of ICANet1 using CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

8 7 4 0.9848 4 9 4 0.9848 

8 7 6 0.9825 4 9 6 0.9772 

8 7 8 0.9836 4 9 8 0.9684 

8 7 10 0.9807 4 9 10 0.9480 

8 7 12 0.9801 4 9 12 0.9456 

10 7 4 0.9830 6 9 4 0.9836 

10 7 6 0.9801 6 9 6 0.9813 

10 7 8 0.9789 6 9 8 0.9801 

10 7 10 0.9801 6 9 10 0.9708 

10 7 12 0.9789 6 9 12 0.9754 

12 7 4 0.9801 8 9 4 0.9813 

12 7 6 0.9825 8 9 6 0.9836 
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Table 4.5. Performance of ICANet2 using CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

8 4 10 0.9760 10 4 8 0.9848 

9 4 4 0.9830 10 4 9 0.9795 

9 4 5 0.9813 10 4 10 0.9754 

9 4 6 0.9819 4 5 4 0.9825 

9 4 7 0.9836 4 5 5 0.9743 

9 4 8 0.9830 4 5 6 0.9772 

9 4 9 0.9737 4 5 7 0.9772 

9 4 10 0.9801 4 5 8 0.9784 

10 4 4 0.9825 4 5 9 0.9550 

10 4 5 0.9819 4 5 10 0.9585 

10 4 6 0.9807 5 5 4 0.9801 

10 4 7 0.9807 5 5 5 0.9784 

Table 4.6. Performance of PCANet using Gaussian noise CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

4 6 4 0.8643  5 6 9 0.7848 

4 6 5 0.8368 5 6 10 0.8023 

4 6 6 0.8304 6 6 4 0.9012 

4 6 7 0.8187 6 6 5 0.8789 

4 6 8 0.8316 6 6 6 0.8871 

4 6 9 0.7269 6 6 7 0.8830 

4 6 10 0.7351 6 6 8 0.8930 

5 6 4 0.8942 6 6 9 0.8105 

5 6 5 0.8667 6 6 10 0.8345 

5 6 6 0.8690 7 6 4 0.9094 

5 6 7 0.8596 7 6 5 0.8830 

5 6 8 0.8637 7 6 6 0.8930 
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Table 4.7. Performance of ICANet1 using Gaussian noise CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

6 4 12 0.7327 12 8 4 0.9351 

7 4 4 0.9275 12 8 8 0.9339 

7 4 5 0.9170 12 8 12 0.9058 

7 4 6 0.9058 4 12 4 0.8386 

7 4 7 0.9041 4 12 8 0.8281 

7 4 8 0.9211 4 12 12 0.7281 

7 4 9 0.8526 8 12 4 0.9345 

7 4 10 0.8673 8 12 8 0.9035 

7 4 11 0.7468 8 12 12 0.8164 

7 4 12 0.8018 12 12 4 0.9316 

8 4 4 0.9187 12 12 8 0.9327 

8 4 5 0.9170 12 12 12 0.9006 

Table 4.8. Performance of ICANet2 using Gaussian noise CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

4 4 8 0.8363 8 8 6 0.9363 

4 4 12 0.8070 8 8 7 0.9257 

4 4 16 0.7632 8 8 8 0.9123 

8 4 4 0.9234 8 8 9 0.9082 

8 4 8 0.9082 8 8 10 0.9140 

8 4 12 0.8959 9 8 4 0.9322 

8 4 16 0.8965 9 8 5 0.9345 

12 4 4 0.9281 9 8 6 0.9211 

12 4 8 0.9117 9 8 7 0.9146 

12 4 12 0.9105 9 8 8 0.9175 

12 4 16 0.9129 9 8 9 0.9135 

4 8 4 0.8994 9 8 10 0.9199 



- 70 -

Table 4. 9. Performance of PCANet using FERET database (Fb), R=0.5

ED SED CBD MKD CSD CLD SMD SVM L K H

0.8686 0.8686 0.8586 0.8686 0.9289 0.9297 0.9297 0.9054 3 4 4

0.9690 0.9690 0.9615 0.9690 0.9816 0.9816 0.9808 0.9649 3 4 8

0.8117 0.8117 0.8000 0.8117 0.9364 0.9356 0.9448 0.9665 4 4 4

0.9556 0.9556 0.9356 0.9556 0.9874 0.9883 0.9874 0.9732 4 4 8

0.8887 0.8887 0.8828 0.8887 0.9464 0.9473 0.9456 0.9741 3 6 4

0.9690 0.9690 0.9623 0.9690 0.9849 0.9849 0.9791 0.9766 3 6 8

0.8653 0.8653 0.8619 0.8653 0.9490 0.9490 0.9531 0.9766 4 6 4

0.9598 0.9598 0.9623 0.9598 0.9841 0.9858 0.9858 0.9808 4 6 8

0.9029 0.9029 0.8937 0.9029 0.9531 0.9548 0.9531 0.9816 3 8 4

0.9640 0.9640 0.9640 0.9640 0.9791 0.9791 0.9791 0.9824 3 8 8

0.8820 0.8820 0.8711 0.8820 0.9640 0.9640 0.9623 0.9824 4 8 4

0.9649 0.9649 0.9649 0.9649 0.9883 0.9874 0.9883 0.9841 4 8 8

Table 4.10. Performance of PCANet using FERET database (Fc), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.8918 0.8918 0.8711 0.8918 0.9536 0.9588 0.9536 0.9381 

0.9794 0.9794 0.9639 0.9794 0.9845 0.9845 0.9845 0.9794 

0.8505 0.8505 0.8402 0.8505 0.9588 0.9588 0.9639 0.9794 

0.9742 0.9742 0.9639 0.9742 0.9897 0.9897 0.9897 0.9794 

0.8814 0.8814 0.8763 0.8814 0.9485 0.9485 0.9485 0.9794 

0.9433 0.9433 0.9330 0.9433 0.9742 0.9691 0.9742 0.9794 

0.8660 0.8660 0.8608 0.8660 0.9639 0.9639 0.9588 0.9845 

0.9691 0.9691 0.9639 0.9691 0.9845 0.9845 0.9845 0.9845 

0.8608 0.8608 0.8454 0.8608 0.9330 0.9330 0.9330 0.9845 

0.9227 0.9227 0.9021 0.9227 0.9639 0.9639 0.9588 0.9845 

0.8505 0.8505 0.8454 0.8505 0.9639 0.9639 0.9639 0.9845 

0.9278 0.9278 0.9227 0.9278 0.9742 0.9742 0.9794 0.9845 
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Table 4.11. Performance of PCANet using FERET database (Dup1), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.7382 0.7382 0.7175 0.7382 0.8587 0.8560 0.8587 0.8393 

0.8421 0.8421 0.8338 0.8421 0.9086 0.9072 0.8934 0.8975 

0.6274 0.6274 0.6011 0.6274 0.8837 0.8837 0.8726 0.9072 

0.7895 0.7895 0.7452 0.7895 0.9349 0.9349 0.9363 0.9307 

0.7271 0.7271 0.7161 0.7271 0.8615 0.8601 0.8587 0.9321 

0.8407 0.8407 0.8199 0.8407 0.9017 0.9017 0.9030 0.9349 

0.7050 0.7050 0.6856 0.7050 0.8837 0.8837 0.8767 0.9377 

0.8089 0.8089 0.8006 0.8089 0.9224 0.9224 0.9141 0.9391 

0.7105 0.7105 0.6994 0.7105 0.8518 0.8518 0.8504 0.9391 

0.8047 0.8047 0.7950 0.8047 0.8809 0.8837 0.8864 0.9391 

0.6842 0.6842 0.6704 0.6842 0.8767 0.8753 0.8740 0.9391 

0.7936 0.7936 0.7687 0.7936 0.9141 0.9155 0.9086 0.9391 

Table 4.12. Performance of PCANet using FERET database (Dup2), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.7137 0.7137 0.6838 0.7137 0.7991 0.7991 0.7991 0.7906 

0.8077 0.8077 0.7949 0.8077 0.8761 0.8718 0.8462 0.8462 

0.5812 0.5812 0.5470 0.5812 0.8376 0.8376 0.8333 0.8547 

0.7521 0.7521 0.7094 0.7521 0.9017 0.9017 0.9103 0.8974 

0.6923 0.6923 0.6752 0.6923 0.8120 0.8120 0.8120 0.9017 

0.8120 0.8120 0.7906 0.8120 0.8590 0.8590 0.8547 0.9060 

0.6581 0.6581 0.6624 0.6581 0.8376 0.8376 0.8333 0.9145 

0.7821 0.7821 0.7521 0.7821 0.8803 0.8803 0.8675 0.9145 

0.6709 0.6709 0.6581 0.6709 0.8248 0.8248 0.8205 0.9145 

0.7991 0.7991 0.7778 0.7991 0.8419 0.8376 0.8504 0.9145 

0.6538 0.6538 0.6410 0.6538 0.8419 0.8419 0.8419 0.9145 

0.7821 0.7821 0.7650 0.7821 0.8889 0.8932 0.8889 0.9145 
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Table 4.13. Performance of ICANet1 using FERET database (Fb), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.7799 0.7799 0.7791 0.7799 0.9013 0.9013 0.9004 0.8762 

0.9582 0.9582 0.9448 0.9582 0.9724 0.9732 0.9724 0.9456 

0.7046 0.7046 0.6862 0.7046 0.9280 0.9297 0.9389 0.9490 

0.9481 0.9481 0.9406 0.9481 0.9816 0.9816 0.9824 0.9682 

0.7331 0.7331 0.7272 0.7331 0.9322 0.9314 0.9414 0.9682 

0.9456 0.9456 0.9297 0.9456 0.9824 0.9824 0.9841 0.9782 

0.8477 0.8477 0.8326 0.8477 0.9230 0.9238 0.9247 0.9782 

0.9607 0.9607 0.9506 0.9607 0.9799 0.9799 0.9799 0.9782 

0.7674 0.7674 0.7715 0.7674 0.9381 0.9381 0.9381 0.9782 

0.9540 0.9540 0.9448 0.9540 0.9808 0.9808 0.9808 0.9782 

0.8100 0.8100 0.7941 0.8100 0.9456 0.9456 0.9490 0.9782 

0.9331 0.9331 0.9222 0.9331 0.9824 0.9824 0.9849 0.9782 

0.8393 0.8393 0.8360 0.8393 0.9397 0.9397 0.9372 0.9782 

0.9556 0.9556 0.9464 0.9556 0.9766 0.9757 0.9732 0.9782 

0.8460 0.8460 0.8469 0.8460 0.9423 0.9431 0.9456 0.9782 

0.9389 0.9389 0.9339 0.9389 0.9808 0.9808 0.9791 0.9791 

0.7657 0.7657 0.7615 0.7657 0.9456 0.9456 0.9473 0.9791 

0.9238 0.9238 0.9205 0.9238 0.9816 0.9816 0.9833 0.9791 

Table 4.14. Performance of ICANet1 using FERET database (Fc), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.8247 0.8247 0.8196 0.8247 0.9536 0.9536 0.9485 0.9227 

0.9742 0.9742 0.9485 0.9742 0.9845 0.9845 0.9845 0.9588 

0.7680 0.7680 0.7680 0.7680 0.9536 0.9485 0.9691 0.9691 

0.9948 0.9948 0.9948 0.9948 0.9948 0.9948 0.9948 0.9845 

0.6804 0.6804 0.6598 0.6804 0.9742 0.9742 0.9742 0.9845 

0.9381 0.9381 0.8866 0.9381 0.9948 0.9948 0.9948 0.9897 

0.8866 0.8866 0.8557 0.8866 0.9381 0.9330 0.9227 0.9897 

0.9794 0.9794 0.9845 0.9794 0.9948 0.9948 0.9948 0.9948 

0.8711 0.8711 0.8505 0.8711 0.9742 0.9691 0.9691 0.9948 

0.9536 0.9536 0.9381 0.9536 0.9845 0.9845 0.9897 0.9948 

0.7165 0.7165 0.7165 0.7165 0.9794 0.9794 0.9794 0.9948 

0.9124 0.9124 0.9021 0.9124 0.9948 0.9948 0.9948 0.9948 

0.7990 0.7990 0.7784 0.7990 0.9485 0.9485 0.9433 0.9948 

0.9639 0.9639 0.9536 0.9639 0.9897 0.9897 0.9845 0.9948 

0.7268 0.7268 0.7062 0.7268 0.9433 0.9433 0.9485 0.9948 

0.9175 0.9175 0.9072 0.9175 0.9948 0.9948 0.9897 0.9948 

0.7268 0.7268 0.7165 0.7268 0.9433 0.9433 0.9536 0.9948 

0.8711 0.8711 0.8608 0.8711 0.9948 0.9948 0.9897 0.9948 
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Table 4.15. Performance of ICANet1 using FERET database (Dup1), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.6247 0.6247 0.6039 0.6247 0.8546 0.8546 0.8504 0.8296 

0.8380 0.8380 0.8186 0.8380 0.9058 0.9072 0.9003 0.8989 

0.4931 0.4931 0.4612 0.4931 0.8753 0.8753 0.8684 0.9030 

0.7812 0.7812 0.7535 0.7812 0.9280 0.9280 0.9238 0.9197 

0.5249 0.5249 0.5028 0.5249 0.8435 0.8407 0.8518 0.9197 

0.7396 0.7396 0.7091 0.7396 0.9294 0.9294 0.9155 0.9349 

0.6136 0.6136 0.5873 0.6136 0.8227 0.8227 0.8172 0.9349 

0.8338 0.8338 0.8116 0.8338 0.8961 0.8961 0.8892 0.9418 

0.5235 0.5235 0.4958 0.5235 0.8837 0.8823 0.8726 0.9418 

0.7742 0.7742 0.7604 0.7742 0.9252 0.9252 0.9155 0.9446 

0.4792 0.4792 0.4765 0.4792 0.8670 0.8684 0.8670 0.9460 

0.7355 0.7355 0.7230 0.7355 0.9169 0.9169 0.9086 0.9460 

0.6537 0.6537 0.6385 0.6537 0.8407 0.8380 0.8241 0.9460 

0.7659 0.7659 0.7576 0.7659 0.8864 0.8878 0.8795 0.9460 

0.5360 0.5360 0.5166 0.5360 0.8476 0.8463 0.8546 0.9460 

0.7078 0.7078 0.6939 0.7078 0.9114 0.9100 0.8989 0.9460 

0.4086 0.4086 0.4086 0.4086 0.8504 0.8504 0.8463 0.9460 

0.7299 0.7299 0.6994 0.7299 0.9030 0.9017 0.8906 0.9460 

Table 4.16. Performance of ICANet1 using FERET database (Dup2), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.6410 0.6410 0.6111 0.6410 0.7906 0.7906 0.7692 0.7564 

0.8077 0.8077 0.7821 0.8077 0.8803 0.8803 0.8675 0.8761 

0.5684 0.5684 0.5299 0.5684 0.8376 0.8376 0.8333 0.8803 

0.7863 0.7863 0.7436 0.7863 0.8889 0.8889 0.8675 0.8974 

0.3889 0.3889 0.3547 0.3889 0.8462 0.8462 0.8547 0.9060 

0.6880 0.6880 0.6325 0.6880 0.9145 0.9103 0.9103 0.9145 

0.6282 0.6282 0.6026 0.6282 0.8077 0.8077 0.8162 0.9188 

0.7778 0.7778 0.7735 0.7778 0.8590 0.8590 0.8504 0.9188 

0.4530 0.4530 0.4487 0.4530 0.8162 0.8120 0.8034 0.9188 

0.7863 0.7863 0.7692 0.7863 0.8761 0.8761 0.8590 0.9231 

0.3974 0.3974 0.3718 0.3974 0.8504 0.8504 0.8376 0.9231 

0.6923 0.6923 0.6880 0.6923 0.8718 0.8761 0.8718 0.9274 

0.6239 0.6239 0.6111 0.6239 0.8077 0.8077 0.8034 0.9274 

0.7692 0.7692 0.7564 0.7692 0.8504 0.8504 0.8376 0.9274 

0.4744 0.4744 0.4701 0.4744 0.8248 0.8248 0.8205 0.9274 

0.7051 0.7051 0.6880 0.7051 0.8675 0.8675 0.8675 0.9274 

0.3547 0.3547 0.3675 0.3547 0.8291 0.8291 0.8376 0.9274 

0.6325 0.6325 0.6282 0.6325 0.8889 0.8889 0.8803 0.9274 
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Table 4.17. Performance of ICANet2 using FERET database (Fb), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.8151 0.8151 0.8017 0.8151 0.9130 0.9121 0.9155 0.8795 

0.9632 0.9632 0.9473 0.9632 0.9782 0.9782 0.9774 0.9573 

0.8276 0.8276 0.8226 0.8276 0.9339 0.9322 0.9364 0.9598 

0.9540 0.9540 0.9490 0.9540 0.9833 0.9833 0.9833 0.9690 

0.7607 0.7607 0.7331 0.7607 0.9364 0.9364 0.9456 0.9699 

0.9464 0.9464 0.9347 0.9464 0.9808 0.9799 0.9841 0.9741 

0.8561 0.8561 0.8477 0.8561 0.9222 0.9222 0.9213 0.9741 

0.9439 0.9439 0.9389 0.9439 0.9590 0.9598 0.9531 0.9749 

0.7858 0.7858 0.7732 0.7858 0.9431 0.9431 0.9473 0.9749 

0.9565 0.9565 0.9473 0.9565 0.9799 0.9799 0.9816 0.9757 

0.7205 0.7205 0.7088 0.7205 0.9431 0.9431 0.9490 0.9757 

0.9423 0.9423 0.9322 0.9423 0.9808 0.9808 0.9841 0.9766 

0.8586 0.8586 0.8494 0.8586 0.9230 0.9213 0.9180 0.9766 

0.9473 0.9473 0.9397 0.9473 0.9724 0.9724 0.9749 0.9766 

0.7799 0.7799 0.7766 0.7799 0.9456 0.9456 0.9448 0.9766 

0.9515 0.9515 0.9498 0.9515 0.9816 0.9816 0.9824 0.9774 

0.7464 0.7464 0.7339 0.7464 0.9314 0.9314 0.9389 0.9774 

0.9130 0.9130 0.9138 0.9130 0.9833 0.9833 0.9833 0.9782 

Table 4.18. Performance of ICANet2 using FERET database (Fc), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.8505 0.8505 0.8402 0.8505 0.9536 0.9536 0.9433 0.9330 

0.9742 0.9742 0.9536 0.9742 0.9845 0.9845 0.9794 0.9845 

0.8608 0.8608 0.8196 0.8608 0.9639 0.9639 0.9588 0.9897 

0.9948 0.9948 0.9742 0.9948 0.9948 0.9948 0.9948 0.9948 

0.7938 0.7938 0.7629 0.7938 0.9588 0.9588 0.9742 0.9948 

0.9742 0.9742 0.9536 0.9742 0.9948 0.9948 0.9948 0.9948 

0.8196 0.8196 0.8093 0.8196 0.9433 0.9433 0.9381 0.9948 

0.9742 0.9742 0.9588 0.9742 0.9897 0.9897 0.9897 0.9948 

0.8299 0.8299 0.7938 0.8299 0.9485 0.9485 0.9588 0.9948 

0.9536 0.9536 0.9433 0.9536 0.9845 0.9845 0.9845 0.9948 

0.7680 0.7680 0.7629 0.7680 0.9536 0.9536 0.9588 0.9948 

0.8814 0.8814 0.8660 0.8814 0.9897 0.9897 0.9897 0.9948 

0.7784 0.7784 0.7784 0.7784 0.9330 0.9330 0.9278 0.9948 

0.9588 0.9588 0.9330 0.9588 0.9845 0.9794 0.9691 0.9948 

0.8041 0.8041 0.8041 0.8041 0.9433 0.9433 0.9433 0.9948 

0.9330 0.9330 0.9227 0.9330 0.9897 0.9897 0.9845 0.9948 

0.6907 0.6907 0.6495 0.6907 0.9433 0.9433 0.9433 0.9948 

0.7216 0.7216 0.7165 0.7216 0.9845 0.9794 0.9794 0.9948 
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Table 4.19. Performance of ICANet2 using FERET database (Dup1), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.6759 0.6759 0.6524 0.6759 0.8560 0.8546 0.8504 0.8283 

0.8075 0.8075 0.7978 0.8075 0.8975 0.8975 0.8837 0.8934 

0.5776 0.5776 0.5485 0.5776 0.8670 0.8670 0.8657 0.8989 

0.8075 0.8075 0.7881 0.8075 0.9141 0.9141 0.9155 0.9224 

0.4224 0.4224 0.4169 0.4224 0.8684 0.8712 0.8767 0.9224 

0.6842 0.6842 0.6662 0.6842 0.9391 0.9391 0.9377 0.9377 

0.6828 0.6828 0.6648 0.6828 0.8296 0.8310 0.8296 0.9377 

0.8061 0.8061 0.7936 0.8061 0.8920 0.8920 0.8823 0.9391 

0.5166 0.5166 0.4931 0.5166 0.8781 0.8781 0.8629 0.9391 

0.7618 0.7618 0.7424 0.7618 0.9224 0.9224 0.9183 0.9418 

0.4349 0.4349 0.4197 0.4349 0.8698 0.8670 0.8670 0.9418 

0.7271 0.7271 0.7064 0.7271 0.9169 0.9169 0.9127 0.9432 

0.5554 0.5554 0.5443 0.5554 0.8463 0.8476 0.8407 0.9432 

0.7770 0.7770 0.7645 0.7770 0.8947 0.8947 0.8864 0.9432 

0.5485 0.5485 0.5499 0.5485 0.8449 0.8435 0.8352 0.9446 

0.7244 0.7244 0.7188 0.7244 0.9017 0.9017 0.9030 0.9446 

0.4058 0.4058 0.3947 0.4058 0.8560 0.8532 0.8560 0.9446 

0.7036 0.7036 0.6898 0.7036 0.9100 0.9114 0.8906 0.9446 

Table 4.20. Performance of ICANet2 using FERET database (Dup2), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.5214 0.5214 0.5000 0.5214 0.7906 0.7906 0.7949 0.7692 

0.7991 0.7991 0.7650 0.7991 0.8590 0.8590 0.8462 0.8718 

0.5342 0.5342 0.5427 0.5342 0.8333 0.8333 0.8162 0.8761 

0.7564 0.7564 0.7479 0.7564 0.8932 0.8974 0.8761 0.9359 

0.4530 0.4530 0.4188 0.4530 0.8248 0.8248 0.8376 0.9359 

0.7051 0.7051 0.6538 0.7051 0.9103 0.9103 0.9017 0.9444 

0.6496 0.6496 0.6325 0.6496 0.8034 0.8034 0.8162 0.9444 

0.8120 0.8120 0.7821 0.8120 0.8632 0.8632 0.8632 0.9444 

0.5598 0.5598 0.5256 0.5598 0.8248 0.8248 0.8333 0.9444 

0.7479 0.7479 0.7222 0.7479 0.8889 0.8889 0.8846 0.9444 

0.3889 0.3889 0.3846 0.3889 0.8333 0.8333 0.8419 0.9444 

0.7479 0.7479 0.7350 0.7479 0.9017 0.9017 0.8974 0.9444 

0.5470 0.5470 0.5427 0.5470 0.8248 0.8248 0.8034 0.9444 

0.7607 0.7607 0.7436 0.7607 0.8376 0.8376 0.8376 0.9444 

0.5342 0.5342 0.5128 0.5342 0.8162 0.8162 0.8333 0.9444 

0.7265 0.7265 0.6966 0.7265 0.8632 0.8675 0.8632 0.9444 

0.3590 0.3590 0.3504 0.3590 0.8205 0.8205 0.8205 0.9444 

0.6752 0.6752 0.6581 0.6752 0.8803 0.8803 0.8889 0.9444 
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Table 4.21. Performance of algorithms using FERET database (Fb), R=0.5

Networks

classifier  
PCANet ICANet1 ICANet2

ED 0.9690 0.9607 0.9632 

SED 0.9690 0.9607  0.9632  

CBD 0.9649 0.9506 0.9498 

MKD 0.9690 0.9607  0.9632  

CSD 0.9883 0.9824  0.9833  

CLD 0.9883 0.9824  0.9833  

SMD 0.9883 0.9849  0.9841  

SVM 0.9841 0.9791  0.9782  

Table 4.22. Performance of algorithms using FERET database (Fc), R=0.5

Networks

classifier  
PCANet ICANet1 ICANet2

ED 0.9794 0.9948 0.9948 

SED 0.9794 0.9948  0.9948  

CBD 0.9639 0.9948 0.9742 

MKD 0.9794 0.9948  0.9948  

CSD 0.9897 0.9948  0.9948  

CLD 0.9897 0.9948  0.9948  

SMD 0.9897 0.9948  0.9948  

SVM 0.9845 0.9948  0.9948  



- 77 -

Table 4.23. Performance of algorithms using FERET database (Dup2), R=0.5

Networks

classifier  
PCANet ICANet1 ICANet2

ED 0.8421 0.8380 0.8075 

SED 0.8421 0.8380  0.8075  

CBD 0.8338 0.8186 0.7978 

MKD 0.8421 0.8380  0.8075  

CSD 0.9349 0.9294  0.9391  

CLD 0.9349 0.9294  0.9391  

SMD 0.9363 0.9238  0.9377  

SVM 0.9391 0.9460  0.9446  

Table 4.24. Performance of algorithms using FERET database (Dup2), R=0.5

Networks

classifier  
PCANet ICANet1 ICANet2

ED 0.8120 0.8077 0.8120 

SED 0.8120 0.8077  0.8120  

CBD 0.7949 0.7821 0.7821 

MKD 0.8120 0.8077  0.8120  

CSD 0.9017 0.9145  0.9103  

CLD 0.9017 0.9103  0.9103  

SMD 0.9103 0.9103  0.9017  

SVM 0.9145 0.9274  0.9444  
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Figure 4.12. Performances of CU-ECG using SVM

Figure 4.13. Performances of Gaussian noise CU-ECG using SVM
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Figure 4.14. Performance of FERET database (Fb), R=0.5

Figure 4.15. Performance of FERET database (Fc), R=0.5
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Figure 4.16. Performance of FERET database (Dup1), R=0.5

Figure 4.17. Performance of FERET database (Dup2), R=0.5
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Figure 4.18. Performance of CU-Face database

Figure 4.19. Performance of CU-ECG
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Figure 4.20. Performance of CU-Face

Figure 4.21. Performance of FERET 
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Figure 4.22. Performance of CU-ECG

Figure 4.23. Performance of scale CU-ECG
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Ⅴ. Conclusion 

In this paper, we have organized the ICANet1 algorithm to improve the 

disadvantages of ICANet, and studied the new ICANet2 model. Experimental 

results show that PCANet algorithm has low performance when using noise data 

and small feature data. Normally, when processed data is used, it shows 

similar performance to PCANet. However, the PCANet using Eigenvectors is 

weak against noise, and the feature vector using statistical independence is 

robust against noise. In addition, ICANet showed robustness compared to 

PCANet, even with loss of data information. In addition, the performance was 

better than the basic deep learning of auto-encoders and the classification 

time was about 0.05 seconds faster than PCANet. We could expect to improve 

the performance of face data as well as electrocardiogram data. ICANet was 

superior to PCANet when all data were used. Especially, ICANet showed higher 

performance than PCANet when using noise data. Finally, we used ECG and 

facial data for personal identification security problem. ICANet algorithm 

has been studied to improve the problem of deep learning (computational 

complexity and composition method). ICANet 's effectiveness has been shown 

to be superior to computational weight and time although the recognition 

rate can be reduced due to shallow learning.
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ABSTRACT

Deep Network Design based on Independent Component Analysis 

and Application of User Recognition

Lee, Jae Neung

Advisor :  Prof. Kwak, Keun Chang, Ph. D.

Dept. of Control and Instrumentation Eng.,

Graduate School of Chosun University

In this paper, we propose a systematic structure of ICANet1, a deep 

network based on independent component analysis, and develop it into ICANet2 

model. The proposed PCANet has smaller computational complexity and faster 

speed than deep learning. However, there is a disadvantage in that the 

performance is lowered according to the modification of data. The ICANet 

algorithm is proposed to solve the problem. There are two structures for the 

ICANet algorithm. The first stage of the ICANet1 algorithm is a step of mean 

removal and obtaining a central image. Next, the covariance is obtained by 

using the center image, the Eigenvector is obtained through the value, and 

finally, the Eigenvector is used as the input of the independent component 

analysis filter. Here, centering and whitening steps are performed, and an 

optimal independent component matrix   is obtained by updating the weights. 

Using this matrix, a padding image obtained through the averaging step and 



- xi -

convolution are calculated. This is the first step in ICANet2. ICANet2 does 

not use Eigenvectors but uses PCA feature vectors. To remove the correlation 

among the PCA feature vectors, the ICA algorithm is used to find that are 

statistically independent. The use of statistically independent vectors can 

help overcome the disadvantages of the PCA and improve the performance. The 

second stage of the ICANet is almost identical to the first stage, and 

because it uses the data from the first stage, only the number of dimensions 

is reduced. It is used as an input to the output stage using the resultant 

product data from Step 2. Here, the feature values of the independent 

component analysis network can be obtained by using the hashing code step 

and the histogram. The feature values   obtained from the final histogram are 

vectorized and used as an input to the classifier. By using ICANet, the 

performance is lower than that of deep learning, but it is expected to be 

superior to recognition speed, especially for mobile. The classifier shows 

performance using Euclidean distance, squared Euclidean distance, city block 

distance, Minkowski distance, cosine distance, correlation distance, and 

Spearman distance, SVM. To verify the performance of the proposed method, we 

used the FERET face, the CU-FACE, the CU-ECG, and the noise ECG database. 

Experimental results show that ICANet1 and 2 have better performance than 

PCANet for Dup1 and Dup2 data affected by time. In addition, when noise ECG 

data were used, it showed better performance than PCANet. This proved the 

validity of the ICANet algorithm.
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