

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

A u g u st 2 0 1 9

Doctor’s Degree Thesis

Deep Network Design based on

Independent Component Analysis and

Application of User Recognition

Graduate School of Chosun University

Dept. of Control and Instrumentation Engineering

Jae-Neung Lee

[UCI]I804:24011-200000267440

Deep Network Design based on

Independent Component Analysis and

Application of User Recognition

독립성분분석기반 딥 네트워크 설계 및 사용자 인식의 응용

August 23, 2019

Graduate School of Chosun University

Dept. of Control and Instrumentation Engineering

Jae-Neung Lee

Deep Network Design based on

Independent Component Analysis and

Application of User Recognition

Advisor: Prof. Keun-Chang Kwak

This thesis is submitted to The Graduate School of Chosun

University in partial fulfillment of the requirements for the

Doctor’s degree in Control and Instrumentation Engineering

April 2019

Graduate School of Chosun University

Dept. of Control and Instrumentation Engineering

Jae-Neung Lee

This is to certify that the Doctor’s Thesis of Jae-neung

Lee

has been approved by the Examining Committee for the thesis requirement
for the Doctors’s Degree in Control and Instrumentation Engineering

Committee Chairperson

Prof. Sung Bum Pan (Sign)

Committee Member

Prof. Hyun Sik Choi (Sign)

Committee Member

Prof. Hong Gi Yeom (Sign)

Committee Member

Prof. Do Hyung Kim (Sign)

Committee Member

Prof. Keun Chang Kwak (Sign)

June 2019

Graduate School of Chosun University

- i -

Table of Contents

Table of Contents···ⅰ

List of Figures···ⅳ

List of Table···ⅵ

Abstract(Korean)··ⅶ

Abstract(English)···ⅹ

Ⅰ. Introduction··1

 1.1. Research background and review of papers·······················1

 1.2. Composition of paper··6

Ⅱ. PCANet and its variance with ICA·······································7

 2.1. PCA··7

 2.2. ICA··8

 2.3. Deep Learning···13

 2.4. PCANet··17

 2.4.1 First Stage of PCANet··19

 2.4.2 Second Stage of PCANet··22

 2.4.3 Output Stage of PCANet··24

- ii -

 2.5. LBP··28

Ⅲ. Proposed ICANet···30

 3.1. Statistically Independent Basis Image ICANet

(ICANet1) ···33

 3.1.1 First Stage of ICANet1··34

 3.1.2 Second Stage of ICANet1···37

 3.1.3 Output Stage of ICANet1···41

 3.2. Factorial ICANet (ICANet2) ··43

 3.2.1 First Stage of ICANet2··45

 3.2.2 Second Stage of ICANet2···48

 3.2.3 Output Stage of ICANet2···51

Ⅳ. Experimental and Results··57

 4.1. Database···57

 4.1.1 CU-ECG database···57

 4.1.2 FERET face database··60

 4.1.3 CU-Face Database··61

 4.2. Experimental results and discussion···································61

 4.2.1 Classifier··61

 4.2.2 Performance evaluation ··62

- iii -

 4.2.3 Setting parameters···62

 4.2.4 Experimental results and performance

analysis ··63

Ⅴ. Conclusion··84

References··85

List of Publications···96

- iv -

List of Figures

Figure 2.1 ECG representation ···11

Figure 2.2 Applications of deep learning ···13

Figure 2.3 Simple deep learning architecture called stacked auto-encoder

14

Figure 2.4 Image Recognition using DL ···15

Figure 2.5 Diagram of PCANet ···17

Figure 2.6 Workflow of PCANet ···18

Figure 2.7 Example of patch step ···21

Figure 2.8 Principle of basic LBP ···28

Figure 2.9 LBP applied face recognition ···29

Figure 3.1 Structure of ICANet1 ···30

Figure 3.2 An image synthesis model ···31

Figure 3.3 First stage of ICANet1 ···36

Figure 3.4 Feature CU-ECG database in first stage of ICANet1 ···················36

Figure 3.5 Second and output stage of ICANet1 ···40

Figure 3.6 Feature CU-ECG database in second and output stage of ICANet140

Figure 3.7 Hashing codes in output stage of ICANet1 ·····································41

Figure 3.8 Structure of ICANet2 ···43

Figure 3.9 Image synthesis model in ICANet2 ···44

Figure 3.10 Two architectures for performing ICA on images ·························45

Figure 3.11 First stage of ICANet2 ···54

Figure 3.12 Feature CU-ECG database in first stage of ICANet2 ···················54

Figure 3.13 Second and output stage of ICANet2 ···55

Figure 3.14 Feature CU-ECG database in second and output stage of ICANet2

- v -

55

Figure 4.1 Data acquisition environment for ECG biometrics ·························58

Figure 4.2 Mainboard and experiment environment ···58

Figure 4.3 Preprocessing using CU ECG database ···58

Figure 4.4 Samples of CU-ECG database ···59

Figure 4.5 Samples of CU-ECG database with size scale ···································59

Figure 4.6 Example of different categories of FERET images ·························60

Figure 4.7 Example of CU-Face data with noise ···61

Figure 4.8 The influence on the number of filters in ICANet ·······················64

Figure 4.9 The influence on the block size in ICANet ·····································64

Figure 4.10 Correlation of PCANet, ICANet1, and ICANet2 ·······························65

Figure 4.11 Distribution chart of feature in ICANet ·······································66

Figure 4.12 Performances of CU-ECG using SVM ···78

Figure 4.13 Performances of Gaussian noise CU-ECG using SVM ·······················78

Figure 4.14 Performance of FERET database (Fb), R=0.5 ···································79

Figure 4.15 Performance of FERET database (Fc), R=0.5 ···································79

Figure 4.16 Performance of FERET database (Dup1), R=0.5 ·······························80

Figure 4.17 Performance of FERET database (Dup2), R=0.5 ·······························80

Figure 4.18 Performance of CU-Face database ···81

Figure 4.19 Performance of CU-ECG ···81

Figure 4.20 Performance of CU-Face ···82

Figure 4.21 Performance of FERET ···82

Figure 4.22 Performance of CU-ECG ···83

Figure 4.23 Performance of scale CU-ECG ···83

- vi -

List of Tables

Table 2.1 The core parameters of PCANet ···17

Table 4.1 Data information of FERET ···60

Table 4.2 Mathematical expression of classifiers ···62

Table 4.3 Performance of PCANet using CU-ECG database ·······························67

Table 4.4 Performance of ICANet1 using CU-ECG database ·····························67

Table 4.5 Performance of ICANet2 using CU-ECG database ·····························68

Table 4.6 Performance of PCANet using Gaussian noise CU-ECG database ··68

Table 4.7 Performance of ICANet1 using Gaussian noise CU-ECG database 69

Table 4.8 Performance of ICANet2 using Gaussian noise CU-ECG database 69

Table 4.9 Performance of PCANet using FERET database (Fb) ·······················70

Table 4.10 Performance of PCANet using FERET database (Fc) ·······················70

Table 4.11 Performance of PCANet using FERET database (Dup1) ···················71

Table 4.12 Performance of PCANet using FERET database (Dup2) ···················71

Table 4.13 Performance of ICANet1 using FERET database (Fb) ·····················72

Table 4.14 Performance of ICANet1 using FERET database (Fc) ·····················72

Table 4.15 Performance of ICANet1 using FERET database (Dup1) ·················73

Table 4.16 Performance of ICANet1 using FERET database (Dup2) ·················73

Table 4.17 Performance of ICANet2 using FERET database (Fb) ·····················74

Table 4.18 Performance of ICANet2 using FERET database (Fc) ·····················74

Table 4.19 Performance of ICANet2 using FERET database (Dup1) ·················75

Table 4.20 Performance of ICANet2 using FERET database (Dup2) ·················75

Table 4.21 Performance of algorithms using FERET database (Fb) ···············76

Table 4.22 Performance of algorithms using FERET database (Fc) ···············76

Table 4.23 Performance of algorithms using FERET database (Dup1) ···········77

Table 4.24 Performance of algorithms using FERET database (Dup2) ···········77

- vii -

요약

독립성분분석기반 딥 네트워크 설계 및 사용자 인식의 응용

이재능

지도교수 : 곽근창 교수, Ph. D.

조선대학교 대학원 제어계측공학과

본 논문에서는 독립성분분석기반 딥 네트워크인 ICANet1의 체계적인 구조를 제

안하고, ICANet2 모델로 발전시킨다. 기존에 제안된 PCANet은 deep learning의 비

해 계산량이 작고, 속도가 빠르다. 하지만 데이터의 변형에 따라 성능이 낮아지는

단점이 있다. 문제점을 해결하기 위해 ICANet알고리즘을 제안한다. ICANet알고리

즘에는 2가지 구조가 있다. ICANet1 알고리즘의 첫 번째 단계는 평균제거단계이

고, 중심영상을 구한다. 그 다음은 중심영상을 이용하여 공분산을 구하고, 그 값

을 통해 고유벡터를 얻고, 마지막으로 고유벡터는 독립성분분석 필터의 입력으로

사용된다. 여기서 센터링 (centering) 과 화이트닝 (whitening) 단계가 실행되고,

가중치 업데이트를 통해 최적 독립성분 행렬이 얻어진다. 이 행렬을 이용하여 평

균제거단계를 통해 얻어진 패딩영상과 합성곱이 계산된다. 이것이 바로 ICANet2의

첫 번째 단계이다. ICANet2의 경우에는 고유벡터를 사용하지 않고, PCA의 특징벡

터를 이용한다. PCA 특징벡터의 상관관계를 제거하기 위해, ICA알고리즘을 이용하

여 통계적 독립인 벡터를 찾는다. 통계적 독립 벡터를 이용함으로써 PCA의 단점을

개선 할 수 있고, 이를 통해 성능을 개선할 수 있다. ICANet의 2번째 단계는 1단

계와 거의 동일하며, 1단계에서 얻은 데이터를 사용하기 때문에 차원의 수만 감소

된다. 2단계에서 얻은 합성곱 데이터를 이용하여 출력 단계의 입력으로 사용된다.

여기서 해싱코드 단계와 히스토그램을 이용해서 독립성분분석 네트워크 특징을 얻

- viii -

을 수 있다. 최종 히스토그램에서 얻어진 특징 값은 벡터 화하여 분류기의 입력으

로 사용된다. ICANet을 사용함으로써, 딥러닝 보다 구조가 얕기 때문에 성능은 떨

어 질 수 있으나, 인식속도에서 월등한 면을 보여주고, 특히 모바일에서도 사용이

가능 할 것으로 기대된다. 분류기는 유클리드 거리, 제곱유클리드 거리, 도시블록

거리, 민코프스키 거리, 코사인거리, 상관관계 거리 그리고 스피어만 거리, SVM를

이용하여 성능을 나타낸다. 제안된 방법의 성능을 검증하기 위해 FERET 얼굴데이

터, CU-FACE 데이터, CU-ECG 데이터, 노이즈 ECG 데이터베이스를 사용하였다. 실

험결과 시간에 영향을 받은 Dup1, Dup2데이터의 경우 ICANet1, 2가 PCANet보다 좋

은 성능을 가져왔다. 또한 잡음 심전도 데이터를 사용했을 때 PCANet보다 향상된

성능을 나타냈다. 이로써 ICANet알고리즘의 유효성을 증명하였다.

- 1 -

Ⅰ. Introduction

1.1 Research background and review of papers

Deep learning is defined as a set of machine learning algorithms that are

dependent on the derived neural network of machine learning and attempt a

high level of abstraction (a task that summarizes key content or functions

in large amounts of data or complex data) through a combination of several

nonlinear transformation techniques. It can also be said that it is a field

of machine learning that teaches computers how people think in a big frame.

When there is any data, it is expressed in the form that the computer

understands (for example, the pixel information is represented by a column

vector in the case of images). As a result of these efforts, various deep

learning techniques such as deep neural networks, convolutional neural

networks, and deep belief networks are used for computer vision, speech

recognition, natural language processing, It is applied to the field of

voice/signal processing and shows cutting-edge results [1-3]. However, there

is a limit to deep learning. For example, the problem of time and cost for

collecting big data, the efficiency problem that must be learned through

many repetitions, the theoretical verification of algorithm except slope

descent is poor, and the black box can be listed [4-6]. In other words, a

convolutional neural networks (CNN) is a basic deep learning architecture

that has been applied to text, image, and speech recognition. In many

industries, deep learning interest is constant. In addition, the most

important thing is that CNN can automatically extract and learn hidden

representations of data on a number of blocks consisting of a convolutional

layer, activation function layer, and max-pooling layer. However, how to

choose parameters and configurations, including the filter sizes, the number

of layers, and the pooling function, is a big challenge. Consequently, the

network structure such as AlexNet, ResNet and GoogLeNet are growing deeper.

Despite the great successes of deep learning, common researchers are not yet

solving its feature learning mechanism and optimal network configuration

problem. Accordingly, Chen studied the principle component analysis network

- 2 -

(PCANet), which is a shallow and intensive deep learning network. Also, a

simple deep learning network, which have to be very easy, even trivial, to

train and to adapt to different database and tasks. Consequently, such a

basic network could serve as a good reference for researchers to justify the

use of more advanced processing components or more sophisticated

architectures for their deep learning networks empirically. Therefore, The

PCANet algorithm has been proposed by Chan. However, PCANet is still

correlated, and the ICANet algorithm has been proposed to remove the

correlation. Although the ICANet algorithm has appeared recently, it has not

been systematically generalized. Therefore, this paper aims to generalize

algorithms from ICANet1 ~ 2 and extend the concept. In order to improve the

limitations of PCA in the face recognition field, various studies on ICA

have been conducted and we propose deep ICANet1, 2 algorithm that improves

the disadvantages of PCANet and generalized to improve performance using

practical data. In addition, we validate the ICANet algorithm by comparing

the performance with the existing PCANet algorithm and analyzing the

influence of the parameters. Lastly, the ECG data is applied for

authentication security, and the face data is used for comparing the

performance of the algorithm.

The contribution of this paper is as follows. First, we generalized the

ICANet1 algorithm. The proposed ICANet1 algorithm is poorly explained

theoretically and structurally. Therefore, this paper improves the

theoretical lack of ICANet1's algorithm. Second, we modeled a new structure

called ICANet2. Third, the validity of the algorithm was verified by using

the electrocardiogram data and the image data obtained in real life. To

study ICANet algorithm, we list the trend of several algorithms as follows.

We first list the trends of PCA, which is the origin of the PCANet

algorithm. The PCA was proposed by Jolliffe in 2002 [7]. First, the derived

algorithms of PCA are listed in order of domestic and foreign. Chungnam

National University Bui [8] studied in-video human detection and pose

estimation using motion data based on RPCA algorithm. Chosun University [9]

performed personal identification using the electrocardiogram signal data

based on MPCA algorithm. The existing one dimensional electrocardiogram

signal was changed into three-dimensional shape to improve the recognition

- 3 -

rate. Seoul National University Park [10] classifies images using kernel

principal component analysis with image database class. Kim [11] of Suwon

University used numerical incremental principal component analysis based on

handwritten numerical data.

The following are overseas trends using RPCA. Jin [12] detected

contrast-filled vessels using X-ray data based on robust principal component

analysis (RPCA). Lu [13] was classified using face image and object data

based on RPCA. We use Li [14] image data based on RPCA to detect moving

objects. Vaswani [15] performed subspace tracking and restoration using RPCA

based on image data. Liu [16] performed tumor classification using RPCA

based on MRI data. Sun [17] used geo-spatial classification using

Hyper-spectral data based on RPCA. Zhong [18] classified faces and numbers

using robust 2DLDA based on face and numerical data. Yan [19] face and

numerical data based on RPCA.

The following are trends using KPCA. Kuang [20] performed intrusion

detection using KPCA based on communication data. Liu [21] performed mental

fatigue estimation using KPCA-HMM based on EEG data. Vinay [22] performed

face recognition using face data based on KPCA. Quan [23] performed facial

recognition using face data based on KPCA. Romero [24] classified the images

using KPCA based on satellite image data. Xia [25] performed image

classification using KPCA based on hyper-spectral image data. Yuan [26]

studied smoke detection using image data based on KPCA. Hotta [27] performed

a scene classification using KPCA based on image data. Xiao [28] performed

novelty detection using KPCA based on image data of square, spiral, and

banana motifs.

The following are research trends of various SPCA. Chaib [29] performed a

scene classification using sparse PCA based on image data. Ashutosh [30]

classifies objects using standardized PCA based on hyper-spectral image

data. Uddin [31] classifies images using segmented PCA based on

hyper-spectral image data. Xiao [32] performed face recognition using face

data based on sparse PCA. Hu [33] performed leukemia analysis using sparse

PCA based on medical statistical data. Pierrefeu [34] analyzed mild

cognitive impairments using structured sparse PCA based on MRI medical data.

Wang [35] performed image classification using sparse PCA based on

- 4 -

hyper-spectral image data. Chail [36] performed VHR scene classification

using hyper-spectral image data based on sparse PCA. Li [37] analyzed and

classified images using a supervised version of PCA based on hyper-spectral

image data. Liu [38] performed facial recognition using face data based on

symmetry PCA. Xi [39] uses numeric image data based on separable PCA for

number classification.

The following are research trends for various IPCA. Dagher [40] studied

face recognition using incremental PCA based on face data. Rozza [41]

studied spam filtering using isotropic PCA based on alphabetical data

obtained from e-mail. Yuan [42] performed scene separation for visual

monitors using incremental PCA based on scene data. Qu [43] performed object

recognition using incremental PCA based on object data. Qing [44] performed

face detection using incremental PCA based on scene data. Wang [45]

diagnosed the circuit breaker using Improved PCA based on feature data. Yin

[46] performed visual tracking using incremental PCA based on 3D image data.

Alorf [47] performed face detection and recognition using the improved PCA

based on face data. The following lists the algorithms derived from LDA.

Bengherabi [48] performed facial recognition using regularized LDA based on

facial data. Yuan [49] used terrain classification using spectral-spatial

LDA based on hyper-spectral data. He [50] classified the terrain using a

nonlinear compressed sensing-based LDA topic based on polarimetric synthetic

aperture radar image data. Zeng [51] classifies objects using a multi-linear

discriminant analysis network based on object data. The following lists ICA

algorithms and algorithms derived from ICA. First, Hong Seongjun [52] in

Korea performed facial expression recognition using face data based on ICA.

Hwang [53] studied mode separation of buildings using ICA based on sound

data. Baek [54] classifies images using ICA based on image data. Kwon [55]

used image data based on ICA to classify the red pepper images. Kang [56]

studied the translational-warping mode of dry matter using ICA based on

sound data. Kim [57] analyzed the vibration source contribution of plate

structures using vibration signal data ICA. Kim [58] studied the

identification of vibration source signals of structures using ICA based on

sound data. Jeon [59] studied frequency binarization using frequency domain

ICA based on sound data. Park [60] studied blind signal separation using

- 5 -

ICA based on voice data. Hwang [61] studied a new mode separation technique

using the acceleration response of structures using sound data based on ICA.

Lee [62] designed a dynamic noise reduction filter using ICA. Jung [63]

designed a partial discharge pattern classifier using ICA based on high -

dimensional data.

Overseas, Wu [64] performed gender recognition using multi-scale ICA

based on image data. Sun [65] performed tumor classification using

microarray data based on ICA. Martis [66] performed ECG beat classification

using the ECG data based on ICA. Wang [67] performed video event

classification using ICA based on video data. Yu [68] performed image

classification based on image data and ICA. Falco [69] performed

hyper-spectral image classification using the effectiveness of different ICA

based on image data. Stewart [70] performed a single-trial classification

using ICA based on EEG data. Xiao [71] studied sparse representation using

image reconstruction ICA. Pruim [72] studied the removal of motion artifacts

using robust ICA based on MRI data. Ruhi [73] studied eye blink artifact

denoising using wavelet ICA based on EEG data. Coloigner [74] performed

cancer classification using semi-nonnegative ICA based on image data. Tao

[75] performed SAR data classification using Tensorial ICA based on image

data. Griffanati [76] performed hand classification using fMRI data based on

ICA. Chai [77] performed driver fatigue classification using EEG data based

on entropy rate bound minimization analysis ICA. Sai [78] performed an

automated classification using wavelet-ICA based on EEG data. Zhang [79]

performed facial recognition using ICANet based on image data. Lv [80]

recognized saccadic ECG signals using ICA based on EOG signal data.

The following is a research trend about deep learning. Because ICANet is

part of deep learning, a comparative analysis is needed. Ruslan [81]

classified images and motion using a hierarchical dirichlet process deep

Boltzmann machine based on motion data and image data. Chen [82] performed

hyper-spectral data classification using a stacked auto-encoder based on

image data. Dobhal [83] performed human activity recognition using binary

image data based on CNN. Hasan [84] performed activity recognition using

sparse auto-encoder based on video image data. Du [85] performed action

recognition using hierarchically bidirectional RNN based on skeleton data.

- 6 -

Neverova [86] performed human identification using dense clockwork RNN based

on image data. Wang [87] performed action recognition using three channel

deep convolutional neural networks based on depth map image data. Koohzadi

[88] performed human action recognition using a CNN structure based on video

data. Kim [89] performed human activity classification using deep CNN based

on motion data. Liu [90] performed action recognition using two CNN based on

video data. Daniel [91] transformed the structure of CNN based on image data

to generate motion data and picture data. Chen [92] performed action

recognition using the structure of CNN based on image data. Wu [93]

performed human identification using CNN structure based on image data. Ni

[94] performed an action representation using a CNN structure based on video

data. Rahmani [95] performed human action recognition using robust

non-linear knowledge transfer model based on motion capture data. Wang [96]

performed human action recognition using a CNN structure based on image

data. Finally, there are studies on noise using ICA. Yang [97] proposed a

new framework for measuring sternal cardio-mechanical signals from moving

subjects using multiple sensor. Interference detection and removal method

with minimal distortion of the EMG was developed based on the independent

component analysis by Zheng [98] ICA is more resistant to noise than PCA.

In this paper, we demonstrate the superiority of ICANet by adding noise to

the data.

1.2 Composition of paper

This study is composed as follows. Section 1 describes the motivation for

ICANet's algorithm development and lists the derived algorithms of the

PCANet algorithm that overcomes the shortcomings of deep learning. It shows

the emergence background of PCANet and ICANet. In Section 2, we show the

research trends of PCA, LDA, ICA and LBP algorithms, and show the proposed

methods of PCANet, LDANet, and ICANet algorithms. Section 3 presents ICANet1

and ICANet2. In Section 4, we prove the validity of the proposed algorithm

using face and ECG database and compare the effect of each parameter.

Finally, Section 5 present concludes.

- 7 -

Ⅱ. PCANet and its variances with ICA

2.1 PCA

PCA is a method of identifying patterns in data and expressing the data

in such a method as to highlight their similarities and differences. Since

patterns in data could be hard to find in data of high dimension, where the

graphical representation is not available, PCA is a useful tool for

analyzing data.

One of the main advantage in PCA is that once we have found these

patterns in the data, and we compress the data, for example by reducing the

number of dimensions, without a lot of loss of information.

The PCA is a set of mutually orthogonal basis vectors indicating the

direction of maximum dispersion of data. PCA is widely used for image data.

The biggest problem in recognition problem using image data is the high

level of data. Dimensioning the high dimension can lead to efficient

features. It is a method of expressing an arbitrary image by orthogonal

basis image that expresses the overall characteristics of a learning image

using statistical characteristics of a learning image, that is, decomposing

into an Eigen image and linear combination of the inherent image. PCA was

applied to face recognition by Pentland in 1991.

- 8 -

Algorithm 1 PCA

Input : a D-dimensional training set      and

 the new (lower) dimensionality d (with d≤D)

1. Computing the mean  



 





2. Computing the covariance matrix   



 



 
  

 


3. Finding the spectral decomposition of Cov (x), obtaining the

 Eigenvectors   and their corresponding Eigenvalues

  . Noting that the Eigenvalues are sorted, such that

 ≥ ≥∙∙∙≥ ≥

4. For any ∈ , its new lower dimensional representation is:

   
   

 
 ∈  and the original x can be

 approximated as

≈
  

  ∙∙∙
  

2.2 ICA

In this section, we present the ICA algorithm used in the setting of

recognition problem and describe the procedure as it develops for several

different architectures.

Firstly, we address the motivation of ICA. Suppose that they are in a

room where two people are speaking at the same time. The room has two

microphones at different places, and we can get two voice signals which we

can denote by  and , with  and  the amplitudes, and t the time

index. The signal recorded by the microphone is the weighted sum of the

speech signals emitted by the two speakers, which we denote by  and

. We can express this as a linear equation:

    (1)

- 9 -

    (2)

where , , , and  are parameters that depend on the distances of the

microphones from the speakers. It would be very useful if we could now

estimate the two original speech signals  and , using only the

recorded signals  and . In shortly, the motivation for developing

ICA is similar to the cocktail-party problem (CPP). In other words, it is a

method to independently select only the signal that the developer desires in

a lot of noise. Therefore, there is an advantage of being robust against

noise.

Secondly, we indicate the definition of ICA with an algorithm. To define

ICA, we could use a statistical “latent variables” model. Supposed that we

observe n linear mixtures, ,...,  of n independent components.

   for  (3)

We have originally defined the time index t in the ICA algorithm, suppose

that each mixture,  as well as each independent component,  is a random

variable, instead of a suitable time signal. The observed data , the

microphone signals in the CPP, are then a sample of this random variable.

Without loss of generality, we could suppose that both the mixture variables

and the independent components have zero mean. If this is not true, then

observable variables  could always be centered by subtracting the sample

mean, which makes the model zero mean.

It is useful to use vector-matrix notation instead of the sums. Let x be

the random vector with  elements; likewise s is the random vector of

 elements. Let A be the matrix with elements . Generally, bold

lowercase letters indicate vectors, and bold upper-case letters denote

matrices. All vectors are understood as column vectors; thus , or the

transpose of x, is a row vector. Using this vector-matrix notation, the

above mixing model is written as

  (4)

- 10 -

Sometimes we need the columns of matrix A; denoting them by a j the model

can be also written as


 



 (5)

The statistical model in equation (4) is called independent component

analysis, or ICA model. The ICA model is a generative model, which means it

describes how the observed data are generated in the process of mixing 

components. The independent components are latent variables that mean they

cannot be observed directly. In addition, the mixing matrix is supposed to

be unknown. All we observe is the random vector x, and we have to estimate

both A and s with it. This should be done under as general assumptions as

possible. The independent components are latent variables, meaning that they

cannot be directly observed. Also, the mixing matrix is assumed to be

unknown. All we observe is the random vector x, and we must estimate both A

and s using it. This must be done under as general assumptions as possible.

The starting point for ICA is the very simple assumption that the

components  are statistically independent. Statistical independence will be

rigorously defined in Section 3. It will be shown below that, we must also

assume that the independent component must have non-Gaussian distribution.

However, in the basic model, we do not assume these distributions to be

known (if they are, the problem can be considerably simplified.) For

simplicity, we also assume that the unknown mixing matrix is square. This

assumption, however, can be sometimes withdrawn, as will be shown in Section

4.5. Then, after estimating the matrix A, we can compute its inverse, set W,

and obtain the independent component simply by:

  (6)

As demonstrated earlier, the output      
 is obtained by mapping

s through an invertible squashing function “f” that is

 (7)

- 11 -

The obtained matrices       
 and      

 could be

interpreted as pre-synaptic and postsynaptic activation of neurons,

respectively. This is achieved by computing gradient ascent on the entropy

of the output taken with respect to W. We define the mutual information M

between “n”, random variables,    as follows:

  
 



    (8)

where each  denotes a marginal entropy. The mutual entropy M is always

non-negative. Finally, the gradient update rule for the weight matrix W

assumes the standard form.

∆∝∇  ′ (9)

where I is the identity matrix. Given the form of the logistic transfer

function, we get  ′ .

On the other hand, the objective of the first architecture model is to

find a set of statistically independent basis images from Eigenvectors

obtained with the PCA method. Figure 2.1 shows the ECG representation of th

face image obtained for this model.

(a)

(b)

Figure. 2.1. ECG representation. (a) ECG representation for the first

architecture (ICA1). (b) ECG representation for the second architecture (ICA2).

- 12 -

The face-image representation for this architecture comes as a linear

combination of statistically independent basis images and a feature vector

    for th face image. The feature vectors for training the image

set are obtained by the product of features found with PCA method and the

inverse of weight matrix being the results of the ICA. The purpose of the

second architecture model is to find a factorial face code. Here, the

face-image representation is represented by a linear combination of the

statistically independent feature vector    and the basis image.

As an example, figure 2.1 illustrates the face representation of the th

face image for the second model. Here, the factorial codes for face images

are obtained by taking a product of a zero-mean matrix of the training image

set and the weight matrix produced from the ICA.

In short, ICA is related to the method called blind source separation

(BSS). The “source” indicates here the original signal, i.e. the

independent component, like the speaker in the cocktail party problem.

“Blind” means we know very little, if anything, about the mixing matrix,

and make little assumptions on the source signals. ICA is the probably the

most widely used method for BSS. Meanwhile, FastICA offers most of the

advantages of neural algorithms: It is parallel, distributed,

computationally simple, and requires little memory. Stochastic gradient

methods seem to be preferable only when fast adaptivity in changing

environment is required.

Another advantage of the FastICA is that unlike ordinary ML algorithms,

which only work for a given class of distributions, it can estimate both

sub- and super-Gaussian independent components. Also, the FastICA algorithm

is the most widely used method for blind source separation problems, it is

computationally efficient and requires less memory than other blind source

separation algorithms. The other advantage is that independent components

can be estimated one by one that further decreases computational load.

- 13 -

2.3 Deep Learning

Deep Learning (DL) is a subset of machine learning which is getting a lot

of attention for its recent success in solving particularly hard large-scale

problems in such areas as image classification, signal processing, natural

language processing, and motion classification. DL is a refinement of the

Artificial Neural Networks, which, as discussed earlier, “roughly” emulate

how the human brain learns and solves problems.

Before we dive into how deep learning works, it’s important to

understand how Artificial Neural Networks (ANN) work. An ANN is made up of

interconnected group of neurons, like the neuron network in the human brain.

In a simple way, a neuron in a neural network is a unit that receives a

number of inputs (), computes them, and sends the output to the other nodes

or neurons in a simple deep learning network. Weights (), or parameters,

indicates the strength of the input connection and can be either positive or

negative. The inputs are multiplied by the associated weights (,

,...,) and the neuron adds the output from all inputs. At the last

step, the neuron performs a computation or activation function. The

activation function (sigmoid function and ReLU are popular) allows the ANN

to model complex nonlinear patterns. Figure 2.2 shows an example application

of deep learning.

Figure 2.2. Applications of deep learning

- 14 -

Figure 2.3. Simple deep learning architecture called stacked auto-encoder

Figure 2.3 represents a simple deep learning architecture called stacked

auto-encoder. The first layer is the input layer, and this is where features

    are inputted. The second layer is the hidden layer. Any layer that

is not an input or an output layer is a hidden layer. The term DL basically

means that there are multiple levels of hidden layers. Networks typically

contain more than three hidden layers, but in some cases, they can feature

more than 1,500 hidden layers. Hidden layers are essentially a hierarchical

grouping of different variables that provide a better-defined relationship.

Currently, most DL algorithms are supervised. Thus, DL models are trained

against the known truth.

The benefit of multiple hidden layers is that when a pattern needs deeper

investigation, this can be done with additional hidden layers. Image

classification is an example where DL can achieve high performance on very

hard visual recognition tasks (even exceeding human performance in certain

areas). We illustrate this point with an example of how additional hidden

layers help perform facial recognition. Figure 2.4 shows image recognition

using deep learning.

- 15 -

Figure 2.4. Image Recognition using DL

When a picture is inputted into a DL network, it is first decomposed into

image pixels. The algorithm would look for patterns of shapes at certain

locations in the data. The first hidden layer tries to uncover specific

facial patterns: eyes, mouth, nose, ears. Adding an additional hidden layer

decomposes the discovered facial patterns into more granular attributes. For

example, the “mouth” can be further deconstructed into “teeth”,

“lips”, “gums”, etc. Additional hidden layers can further evolve these

patterns to recognize subtlest nuances. In the end, a deep learning network

can break down a very complicated problem into a set of simple problems.

Deep learning also features a good performance in many areas. Below we

outline the disadvantages and advantages of the deep learning algorithms.

【Advantages】

- DL significantly outperforms other solutions in multiple domains,

including speech recognition, language and image processing, etc.

- With DL there is no need for feature engineering, which one of the

most time-consuming steps in machine learning applications.

- DL can be relatively easy adapted to new problems like computer

vision, time series processing, etc. where convolutional neural

- 16 -

networks, recurrent neural networks, long short-term memory, and the

like techniques are increasingly used.

【Disadvantages】

- DL requires a large amount of data - if we only have thousands of

sample, DL is not likely to outperform other algorithms.

- From computational perspective DL is extremely expensive to train;

complex models may take weeks to train using hundreds of machines

equipped with expensive GPUs.

- DL does not have much in the way of strong theoretical foundation,

which further leads to the next disadvantage.

- Determining topology/flavor/training method/hyper parameters for a

deep learning algorithm is rather an art than a science.

- What is learned is not always easy to comprehend. Other classifiers

(such as decision trees, logistic regression, etc.) yield the

results, which are much easier to understand.

- 17 -

2.4 PCANet

In this section, we first review the PCANet [99][100]. Its architecture

is shown in Figure 2.5 and can be divided into three stages that include 10

steps. Figure 2.6 shows the PCANet workflow of extracting the features from

the train dataset. Table 2.1 shows the core parameters of the PCANet.

Table 2.1 The core parameters of PCANet

Parameters definition

× The size of input image

 The number of data

×
The patch size.  are  odd integers and satisfy

≤  ≤  ≤  ≤ 


The number of filters of two stages.

 ≤  ≤   ≤  ≤ 


The block size.

 ≤  ≤  ≤  ≤     


The overlap ratio of block.

which means R varies from 0 to 0.9 with the interval 0.1

Figure 2.5. Diagram of PCANet.

- 18 -

The detailed description of the workflow:

(1) The original input consists of training images, such as ECG and face.

If Step (4) is performed before, the input image is the PCA output.

(2) PCA filter bank extracts the PCANet filters.

(3) The PCA filterbank outputs Eigenvectors.

(4) Original images are convolved with the PCANet filters output for the

next step.

(5) V is convolved with the PCANet filters output for the next step.

(6) After two PCA steps, the output image is the PCANet output.

(7) The output image is binarized and block-wise histograms are

calculated. Here, we create a weight map and proceed with binary

quantization and weighted combination of the elements in the input

data.

Figure 2.6. Workflow of PCANet.

- 19 -

Suppose we have N input training images      ∈
× , and

the patch size (or 2D filter size), where  and  are odd integers

satisfying ≤ ≤ ≤ ≤. Further, the number of filters in the layer

is , i.e.,  is the first stage and  is the second stage. In the

following, we describe the PCANet structure in detail. Let N input images

     be concatenated as follows:

    ⋯ ∈
× (10)

2.4.1 First Stage of PCANet

As shown in figure 2.6, the first stage of PCANet includes the following:

【Step 1】 The first patch sliding process.

 Before sliding the images are padded to 
′∈

 × 

out-of-range, input pixels are assumed zero. This ensures that

all weights in the filters reach the entire images. We use a

patch of the size  × to slide each pixel of the th image


′∈

 × , and subsequently reshape each  × matrix

into a column vector, followed by concatenation to obtain a

matrix:

     ⋯  ∈
× (11)

 where   denotes the th vectorized patch in . Thus, for all

input training images      , we can obtain the

following matrix.

 Figure 2.7 shows an example of the first patch sliding process.

The data of the square matrix are vectorized according to the

patch size. For example, if the patch size is [5 × 5], a square

matrix is set as. In figure 2.7, a CIFAR image is used as an

example. When there is an image of 32 * 32 * 3, a 5 * 5 patch

image is resized to a row vector of 25 * 1, and the patch is

moved to one image to obtain the mean removal value, which is

- 20 -

also referred to as a center image in the PCA. The size of the

image  after all patch slides is 25 * 784 25 * 784 (
 ×

 ). Then, 
 is calculated to obtain

the central image.

   ⋯ ∈
 × (12)

   ⋯ ∈


×  (13)

【Step 2】: The first mean remove process.

 In this step, we subtract the patch mean from each patch and

obtain the following:

  

⋯

 ∈

×   (14)

 By subtracting each patch image from the above equation, we can

obtain the following expression.

   ∈

 ×  (15)

【Step 3】: The first PCA process.

 In this step, the Eigenvalues and Eigenvectors of  are

calculated from equation (15) using the PCA algorithm. The

covariance is obtained by repeating the above equation from all

patches and images.






 ×   (16)

 where N is the number of images and L is the number of filters.

The Eigenvector can be obtained according to the following

- 21 -

equation.

 ×



  (17)



×



   



 (18)

 


′  ′ 



 (19)

 Let the number of L be chosen as the Eigenvector obtained above.

The resulting Eigenvector is linearly combined with the center

image of the zero-padded original image.

    (20)

 s is the stage and the first stage is one.  means Eigenvectors 1

to . By subtracting each patch image from the above equation, we

can obtain the following expression. For each input image

∈
 × , we obtain  output images  

      
 ∈ × 

after the first stage of PCANet. We denote   as

  
 ⋯  

 ⋯  
 ⋯ 

 ∈
 × (21)

Figure 2.7. Example of patch step

- 22 -

2.4.2 Second Stage of PCANet

【Step 1】: The second patch sliding process.

 Almost repeating the same process as the first stage, as shown

in figure 2.6, the second stage of PCANet also includes three

steps:

 Similar to step 1, we use a patch of size × to slide each

pixel of the th image  ′ ∈
×    and obtain a

matrix as follows:

    ⋯ ∈
×       (22)

 where  denotes the th vectorized patch in 
 Therefore, for

all the input training images      , we can obtain the

following matrix.

   ⋯∈
 × (23)

 We concatenate the matrices of all the  filters and obtain a

matrix

   ⋯ ∈

×   (24)

【Step 2】 The second mean remove process

 In this step, we subtract the patch mean from each patch and

obtain the following:

  

⋯

 ∈


×   (25)

 By subtracting each patch image from the above equation, we can

obtain the following expression.

- 23 -

   ∈

 ×  (26)

【Step 3】 The second PCA process.

 In this step, the Eigenvalues and Eigenvectors of  are

calculated from equation (26) using the PCA algorithm. The

covariance is obtained by repeating the above equation from all

patches and images.






 ×   (27)

 where N is the number of images and L is the number of filters.

The Eigenvector can be obtained according to the following

equation.

 ×



  (28)



×



   



 (29)

 


′  ′ 



 (30)

 Let the number of L be chosen as the Eigenvector obtained above.

The resulting Eigenvector is linearly combined with the center

image of the zero-padded original image.

    (31)

 s is the stage and the first stage is one.  means Eigenvectors 1

to . By subtracting each patch image from the above equation, we

can obtain the following expression. For each input image

 
 ∈ × , we obtain  output images

   
        

 ∈ ×  after the second stage of PCANet.

- 24 -

Thus, we obtain  image

   
            ∈

 ×  after and

second stages. We denote   as

    
 ⋯   

 ⋯  
 ⋯ 

 

⋯   
 ⋯ 

 ⋯  
 ⋯ 

 

 (32)

2.4.3 Output Stage of PCANet

【Step 1】 Binary quantization.

 In this step, we binarize the outputs of the second stage of

PCANet, and obtain

      
           (33)

 where ∙ is Heaviside step function whose value is one for

 positive entries and zero otherwise. We denote P as

     ⋯   ⋯   ⋯ 
⋯   ⋯  ⋯  ⋯ 

 (34)

【Step 2】 Weight and sum.

 Around each pixel, we view the vector of  binary bits as a

decimal number. This converts the binary images    back into

integer-valued images as follows:

  
  



     (35)

 We denote T as

   ⋯   ⋯  ⋯  ∈
 × (36)

- 25 -

【Step 3】 Block sliding.

 We use a block of size × to slide each of the  images

    , with overlap ratio R, and then reshape each ×

matrix into a column vector, which is then concatenated to obtain

a matrix

     ⋯    ⋯   ∈
× (37)

 where    denotes the th vectorized patch in     B is

the number of blocks when using a block of size × to slide

each     which overlap ratio R and given by

       

∙       
 (38)

 where stride1 and stride2 are vertical and horizontal steps,

respectively,

  ∙ 

  ∙ 
 (39)

 and (.) means round off. As we can see from equation (39), the

number of blocks B is increasing as the overlap ratio R is

increasing. For  images, we concatenate  to obtain a matrix

   ⋯  ⋯  ∈
×      (40)

 We denote Z as

    ⋯  ⋯   ⋯  ∈
×  (41)

- 26 -

【Step 4】 Histogramming

 We compute the histogram (with 
 bins) of the decimal values in

each column of  and concatenate all the histograms into one

vector and obtain

     ⋯  ⋯    ⋯   ∈

 (42)

 which is the “feature” of the input image  and Hist(.)

denotes the histogram operation. We denote f as

   ⋯  ∈

 (43)

 The feature vector is then sent to a classifier, for example,

support vector machine (SVM), Euclidean distance, etc.

- 27 -

Algorithm 2 PCANet

1. Input: training data 
   ∈

×      × 


2. Reading: Image data or signal data

3. Initialization of variable:
 The size of the patch ← select the size of the patch in PCANet
 The number of filters ← select the number of filters in PCANet

4. Stage 1 of PCANet

 - Patch mean-removal:    ∈

 ×

 - Compute convolution using PCA:

 


′  ′ 





 - Output :     

5. Stage 2 of PCANet

 - Patch mean-removal:    ∈

 ×

 - Compute convolution using PCA:

 


′  ′ 





 - Output :     

6. Output layer
 - Binary hashing: compute the decimal-valued image

      
          

 - Histogram:

   ⋯  ⋯   ⋯   ∈



 - Output :    ⋯  ∈



- 28 -

2.5 LBP

The LBP (local binary pattern) is a feature developed for classifying the

original image texture and is used for other image recognition applications

such as face recognition. The local binary pattern (LBP) is a value

calculated for every pixel of the image, and is an index value obtained by

coding the relative brightness change of the surrounding 3 x 3 region of

each pixel in binary (If the pixel is brighter than the center pixel, it has

a value of 1; if it is dark, it is coded as 0, and then, the binary

connected with these values is used as an index for the local texture).

Figure 2.8 shows the principle of basic LBP.

Figure 2.8. Principle of basic LBP

It is the original LBP application that uses this histogram as a texture

model for the corresponding image area after obtaining the histogram for the

index value calculated through each pixel (for the purpose of classifying

the texture of lawn, forest, land, wall, etc).

In the following example of using LBP for face recognition, the face

- 29 -

region is divided into cells of a certain size. Then, a histogram for LBP is

obtained for each cell (a histogram of LBP index values belonging to the

cell). There is a method of using the vector obtained by connecting the

histograms obtained in a row as a final feature

A pixel located at the center in a 3x3 cell and a neighboring eight

pixels are compared with each other. In figure 2.8, the value of the center

pixel is 54, so if the neighboring pixel value is greater than or equal to

54, it is set to 1, and if it is less than 54, the threshold value is set to

zero. If you list them in order, we get a binary value like 11001011.

Calculating the binary value as a decimal value is 203. Possible values are

the number of 256 cases from 0 to 255 in total. We calculate this for all

pixels and make a histogram. It is not simply a histogram of pixel values,

but a histogram of LBP values. Then a total of 256 bins will be filled. The

texture of one image is represented by 256 numbers. These primitive LBP have

robust characteristics even when the brightness of the image changes. Figure

2.9 shows the LBP applied face recognition.

Figure 2.9. LBP applied face recognition

- 30 -

Ⅲ. Proposed ICANet

This section presents ICANet, the proposed method of this paper.

3.1 Statistically independent basis image ICANet

(ICANet1)

ICANet1 (statistically independent basic image Net) is a modified

algorithm from ICA1, which is an algorithm that extracts independent

components through ICA filter using Eigenvectors obtained from PCA. The

first stage is a simple deep learning type in which the PCA and ICA

algorithms form a network in the form of a cascade. In the second step,

three algorithms, PCA, ICA, and LBP, are performed using image patch data.

Finally, the hashing code step similar to LBP and the feature using the

histogram is vectorized. Finally, the final classification is done using

SVM. Figure 3.1 below shows the structure of ICANet1.

Figure 3.1. Structure of ICANet1.

- 31 -

To find a statistically independent basic image set according to a set of

faces, the independent components of the face image are separated based on

the image synthesis model shown in the figure below. Since existing

Eigenvectors are not statistically independent, it is the goal of ICANet1 to

find Eigenvectors that are statistically independent using ICA. The face

image of X is assumed a linear mixture of an unknown set of statistically

independent source images S, where A is an unknown mixing matrix. The source

is reconstructed by a W learning filter matrix producing a statistically

independent output. The image consists of a row of input matrix X. Is

provided as a set of independent base images for the face, using the input

images in the row of X, where the ICA output in the row of U is the images.

Such a base image may be regarded as a statistically independent set of

facial features, wherein the pixel values of each feature image are

unpredictable in the pixel values of the other feature images. The ICA

expression consists of. The coefficients for the linear combination of the

independent basic images of the U that make up each face image as shown in

Fig. In this model, the coefficient matrix B is obtained from the mixing

matrix A≜
 . Each row of A contains a coefficient b for one image x.

Figure 3.2 shows an image synthesis model.

Figure 3.2. An image synthesis model.

- 32 -

 is represented by a matrix containing the first m principal component

axes in the column. We perform ICA through 
 and generate a matrix of m

independent source images in the row of U. Here, the coefficients b for the

linear combination of the base images in U constituting the face images of X

is determined as follows. The principal component representation of the

zero-mean image sets in  based X is defined as   . The least

square error approximation value of   
 is obtained by X. The ICA

algorithm produces the following matrix  

 
   → 

 
  (44)

  
 →  

  (45)

where  is the sphering matrix defined as    


 



. Thus, the

row of 
  includes the least-square error approximation of the linear

combination coefficient of X, which is statistically independent of U,

constituting  as in PCA. Since U is an independent component

representation of a face image based on statistically independent sets of m

feature images, U is given by the rows of the matrix.

  
  (46)

To obtain the    we can obtain the test image by using the

principal component representation based on the training image and

calculating the   
 . The ICA representation of the face did not

require a PCA step and was used to meet the purpose. The purpose is as

follows:

1. Reducing the number of sources to a manageable number.

2. Providing a convenient way to calculate the representation of a test

image. Without using the PCA step, the length of the U-row,

   
, can be normalized to normalize U and U to obtain

 
  and  without computing the pseudo-inverse.

- 33 -

3.1.1 First Stage of ICANet1

【Step 1】 The first patch sliding process.

 Before sliding the images are padded to 
′∈

 × 

out-of-range, input pixels are assumed zero. This ensures that

all weights in the filters reach the entire images. We use a

patch of the size  × to slide each pixel of the th image


′∈

 × , and subsequently reshape each  × matrix

into a column vector, followed by concatenation to obtain a

matrix:

     ⋯  ∈
× (47)

 where   denotes the th vectorized patch in . Thus, for all

input training images     , we can obtain the

following matrix.

   ⋯ ∈
 × (48)

   ⋯ ∈

×  (49)

【Step 2】: The first mean remove process.

 In this step, we subtract the patch mean from each patch and

obtain the following:

  

⋯

 ∈

×   (50)

 By subtracting each patch image from the above equation, we can

obtain the following expression.

   ∈


×  (51)

- 34 -

【Step 3】 The first PCA process with ICA

 In this step, the Eigenvalues and Eigenvectors of  are

calculated from equation (51) using the PCA algorithm. The

covariance is obtained by repeating the above equation from all

patches and images.






 ×   (52)

 where N is the number of images and L is the number of filters.

The Eigenvector can be obtained according to the following

equation.

 ×



  (53)



×



   



 (54)

 


′  ′ 



 (55)

    (56)

 Let the number of L be chosen as the Eigenvector obtained above.

To apply the ICA algorithm to estimate the independent component,

we apply Eigenvectors to ICA. The first ICA centering and the

whitening algorithm is applied, and then the data normalization

is performed. Then, the initial weight is set randomly, and the

initial weight and the data obtained from the whitening are

linearly combined. There are two methods of ICA (Kurtosis,

Negentropy) and Kurtosis method. Therefore, the expression is as

follows.

   (57)

 The values obtained above and whitening data are linearly

combined and normalized. Singular value decomposition is

- 35 -

performed to remove the correlation. Then, the delta value is

obtained by carrying out the dot product operation with the

weight obtained from the singular value decomposition and the

initial weight obtained randomly and subtracting the value from

1. If the delta value is greater than 0.000001, the data obtained

from the final weight and whitening are linearized, and this

value is called independent components. The obtained independent

components U and the linear image of the center image of the zero

padded original image are combined. A linear combination of the

obtained independent components U and the center image of the

zero-padded original image are performed.

      (58)

 s is the stage and the first stage is one.  means independent

elements 1 to . By subtracting each patch image from the above

equation, we can obtain the following expression. For each input

image ∈
 × , we obtain  output images

 
     

 ∈ ×  after the first stage of ICANet. We

denote   as

  
 ⋯  

 ⋯  
 ⋯ 

 ∈
 × (59)

Figure 3.3 shows first stage of ICANet1 and PCA and ICA are cascaded. In

the first stage, a two-dimensional convolutional output is obtained. Figure

3.4 shows feature CU-ECG database in the first stage of ICANet1.

- 36 -

Figure 3.3. First stage of ICANet1.

Figure 3.4. Feature CU-ECG database in first stage of ICANet1.

One covariance is generated for each image, and the second stage is

affected by the number of filters to generate 40 covariance (  ),

resulting in 40 convolution outputs in the first stage.

- 37 -

3.1.2 Second Stage of ICANet1

A hashing code is generated based on the convoluted feature and the

weight map. The values generated by the hashing code are also projected onto

a weight map.

【Step 1】 The second patch sliding process.

 Almost repeating the same process as the first stage, as shown in

Figure 3.1, the second stage of ICANet1 also includes three

steps: Similar to step 1, we use a patch of size × to slide

each pixel of the th image  ′ ∈
×    and obtain a

matrix as follows:

    ⋯ ∈
×       (60)

 where   denotes the th vectorized patch in . Thus, for all

input training images     , we can obtain the

following matrix.

   ⋯∈
 × (61)

 We concatenate the matrices of all the  filters and obtain a

matrix

   ⋯ ∈


×   (62)

【Step 2】 The second mean remove process

 In this step, we subtract the patch mean from each patch and

obtain the following:

  

⋯

 ∈

×   (63)

- 38 -

 By subtracting each patch image from the above equation, we can

obtain the following expression.

   ∈

 ×  (64)

【Step 3】 The second PCA process with ICA

 In this step, the Eigenvalues and Eigenvectors of  are

calculated from equation (51) using the PCA algorithm. The

covariance is obtained by repeating the above equation from all

patches and images.






 ×   (65)

 where N is the number of images and L is the number of filters.

The Eigenvector can be obtained according to the following

equation.

 ×



  (66)



×



   



 (67)

 


′  ′ 



 (68)

    (69)

 A linear combination of the obtained independent components U and

the center image of the zero-padded original image are performed.

      (70)

 s is the stage and the first stage is one.  means independent

elements 1 to . By subtracting each patch image from the above

- 39 -

equation, we can obtain the following expression. By subtracting

each patch image from the above equation, we can obtain the

following expression. For each input image  
 ∈ × , we obtain

 output images    
      

 ∈ ×  after the second

stage of PCANet. Thus, we obtain  image

   
            ∈

 ×  after and

second stages. We denote   as

    
 ⋯   

 ⋯  
 ⋯ 

 

⋯   
 ⋯ 

 ⋯  
 ⋯ 

 

 (71)

Figure 3.5 shows the second stage of ICANet1 and it is a cascade of PCA,

ICA, and LBP algorithms. The second stage processes the data for each image,

updating the Eigenvectors and independent Eigenvectors accordingly.

Therefore, the feature values of the output stage also show different

feature values. Figure 3.6 shows the CU-ECG database in the second stage of

ICANet1. The number of Eigenvectors is increased based on the number of

filters (  ), and four feature values are extracted from one image.

The detailed description of the workflow is below:

(1) In the PCA phase, the center image is obtained, and the Eigenvector

is obtained by using the normalization of the covariance.

(2) Perform the centering and whitening process in the ICA stage, and

obtain an independent Eigenvector using updated weights.

(3) The center image is obtained from the basic data and convolution is

performed with the zero padded image and the independent Eigenvector

obtained from ICANet (2), and the ICA convolution output value is

extracted.

(4) In LBP step, feature value is extracted through hashing code step,

patch sliding step, histogram, and step.

(5) Finally, the feature obtained in (4) is vectorized, and

classification is performed using the feature value.

- 40 -

Figure 3.5. Second and output stage of ICANet1.

Figure 3.6. Feature CU-ECG database in second and output stage of ICANet1.

- 41 -

3.1.3 Output Stage of ICANet1

Step 1 to Step 3 is the same as the previous PCANet algorithm. The

following lists the advantages of ICANet. There are PCANet algorithms, but

papers that have been studied with various structures of ICANet are a new

challenge.

Figure 3.7. Hashing codes in output stage of ICANet1.

The hashing code is similar to the local binary patterns. It is a binary

algorithm that codes zero if the feature value is less than zero, and one if

the feature value is bigger than zero, as in figure 3.7. Therefore, the

independence component obtained from ICA is simplified to zero and one.

Figure 3.7 shows the hashing codes in the output stage of ICANet1.

【Advantage of ICANet】

 (1) The network structure is simple and computationally efficient.

 (2) The ICA filter is trained with an unsupervised algorithm using

unlabeled samples, which is practical.

 (3) Compared to deep learning models, each layer parameter in ICANet

can be easily trained.

- 42 -

Algorithm 3 ICANet1

1. Reading: Image data or signal data
2. Initialization of variable:
The size of the patch ← select the size of the patch in ICANet1
The number of filters ← select the number of filters in ICANet1

3. Stage 1 of ICANet1

 - Patch mean-removal:    ∈


×

 - Compute Eigenvector using PCA:

  


′  ′ 





 - Compute convolution using ICA:

   

 - Output:    

4. Stage 2 of ICANet1

 - Patch mean-removal:    ∈

 ×

 - Compute Eigenvector using PCA:

 


′  ′ 





 - Compute convolution using ICA:

  

 - Output:    

5. Output layer
 - Binary hashing: compute the decimal-valued image

      
          

 - Histogram:

   ⋯  ⋯   ⋯   ∈



Output:    ⋯  ∈



- 43 -

3.2 Factorial ICANet (ICANet2)

ICANet2 is a modified algorithm in ICANet. It extracts independent

components by applying feature vectors obtained from PCA to ICA filters. To

find a statistically independent basic image set according to a set of ECG.

Since existing feature vectors are not statistically independent, it is the

goal of ICANet2 to find feature vectors that are statistically independent

using ICA. Figure 3.8 shows the structure of ICANet2.

Figure 3.8. Structure of ICANet2.

The ICA in Architecture 1 finds the weight vector in the direction of

statistical dependence at the population of the face image at the pixel

location. Projecting the data to these weights creates an independent set of

images that cannot predict the pixel gray value of one image in the gray

value of another image. These independent images span the subspace of the

face image defined by the first 75 PCA Eigenvectors and each face represents

a measure of the linear combination of these independent template images

- 44 -

that make up each face image.

The base image obtained in Architecture 1 was space-independent, but the

coefficients coding each face are not. By changing the architecture of the

independent component analysis, the coefficients were defined as

statistically independent of the second representation. In other words, the

second ICA architecture finds the factorial code for the face image. Changes

to the architecture are consistent with transposing the input. Each facial

image was treated as a coded observation with a gray value at each pixel

location. ICA in Architecture 2 finds the weight vector in the direction of

statistical dependency in the face code across the face set. Projecting the

data to these weights produces a set of independent coding variables that

will replace the "pixel location" where the value of a particular coding

variable cannot be predicted by other coding variables. Each face is

represented by the value taken by this new set of independent coding

variables. The similarity of ICA-factorial representation (ICA2) and

principal component representation is straightforward. The principal

component coefficients constitute uncorrelated facial codes, while ICA2

coefficients constitute independent face codes. Figure 3.9 shows an image

synthesis model in ICANet2 and figure 3.10 shows two architectures for

performing ICA on images.

Figure 3.9. Image synthesis model in ICANet2.

- 45 -

Figure 3.10. Two architectures for performing ICA on images.

3.2.1 First Stage of ICANet2

The first stage of ICANet2 is similar to the first stage of ICANet1, but

there is a difference in the third step.

【Step 1】 The first patch sliding process.

 Before sliding the images are padded to 
′∈

 × 

out-of-range, input pixels are assumed zero. This ensures that

all weights in the filters reach the entire images. We use a

patch of the size  × to slide each pixel of the th image


′∈

 × , and subsequently reshape each  × matrix

- 46 -

into a column vector, followed by concatenation to obtain a

matrix:

     ⋯  ∈
× (72)

 where   denotes the th vectorized patch in . Thus, for all

input training images     , we can obtain the

following matrix.

   ⋯ ∈
 × (73)

   ⋯ ∈

×  (74)

【Step 2】 The first mean remove process.

 In this step, we subtract the patch mean from each patch and

obtain the following:

  

⋯

 ∈

×   (75)

 By subtracting each patch image from the above equation, we can

obtain the following expression.

   ∈


×  (76)

【Step 3】 The first PCA process with ICA

 In this step, the Eigenvalues and Eigenvectors of  are

calculated from equation (76) using the PCA algorithm. The

covariance is obtained by repeating the above equation from all

patches and images

- 47 -






 ×   (77)

where N is the number of images and L is the number of filters. The

Eigenvector can be obtained according to the following equation.

 ×



  (78)



×



   



 (79)

 


′  ′ 



 (80)

  


 (81)

    (82)

 


 (83)

     (84)

  means whitened process and centered feature vector. Let the

number of L be chosen as the Eigenvector obtained above. To apply the ICA

algorithm to estimate the independent component, we apply it to ICA based on

the feature vector. The first ICA centering and the whitening algorithm are

applied, and then the data normalization is performed. Then, the initial

weight is set randomly, and the initial weight and the data obtained from

the whitening are linearly combined. There are two methods of ICA (Kurtosis,

Negentropy) and Kurtosis method. Therefore, the expression is as follows.

Therefore, the expression is as follows.

   (85)

The values obtained above and whitening data are linearly combined and

normalized. Singular value decomposition is performed to remove the

correlation. Then, the delta value is obtained by carrying out the dot

- 48 -

product operation with the weight obtained from the singular value

decomposition and the initial weight obtained randomly and subtracting the

value from 1. If the delta value is greater than 0.000001, the data obtained

from the final weight and whitening are linearized, and this value is called

independent components. A linear combination of the obtained independent

components U and the center image of the zero-padded original image are

performed.

      (86)

s is the stage and the first stage is one.  means independent elements 1

to . By subtracting each patch image from the above equation, we can obtain

the following expression. For each input image ∈
 × , we obtain 

output images  
      

 ∈ ×  after the first stage of ICANet. We

denote   as

  
 ⋯  

 ⋯  
 ⋯ 

 ∈
 × (87)

3.2.2 Second Stage of ICANet2

A hashing code is generated based on the convoluted feature and the

weight map. The values generated by the hashing code are also projected onto

a weight map.

【Step 1】 The second patch sliding process.

 Almost repeating the same process as the first stage, as shown in

Figure 3.1, the second stage of ICANet1 also includes three

steps: Similar to step 1, we use a patch of size × to slide

each pixel of the th image  ′ ∈
×    and obtain a

matrix as follows:

    ⋯ ∈
×       (88)

- 49 -

 where   denotes the th vectorized patch in . Thus, for all

input training images     , we can obtain the

following matrix.

   ⋯∈
 × (89)

 We concatenate the matrices of all the  filters and obtain a

matrix

   ⋯ ∈


×   (90)

【Step 2】 The second mean remove process

 In this step, we subtract the patch mean from each patch and

obtain the following:

  

⋯

 ∈

×   (91)

 By subtracting each patch image from the above equation, we can

obtain the following expression.

   ∈


×  (92)

【Step 3】 The first PCA process with ICA

 In this step, the Eigenvalues and Eigenvectors of  are

calculated from equation (76) using the PCA algorithm. The

covariance is obtained by repeating the above equation from all

patches and images

- 50 -






 ×   (93)

where N is the number of images and L is the number of filters. The

Eigenvector can be obtained according to the following equation.

 ×



  (94)



×



   



 (95)

 


′  ′ 



 (96)

  


 (97)

    (98)

 


 (99)

     (100)

  means whitened process and centered feature vector. Let the

number of L be chosen as the Eigenvector obtained above. To apply the ICA

algorithm to estimate the independent component, we apply it to ICA based on

the feature vector. The first ICA centering and the whitening algorithm are

applied, and then the data normalization is performed. Then, the initial

weight is set randomly, and the initial weight and the data obtained from

the whitening are linearly combined. There are two methods of ICA (Kurtosis,

Negentropy) and Kurtosis method. Therefore, the expression is as follows.

Therefore, the expression is as follows.

   (101)

The values obtained above and whitening data are linearly combined and

normalized. Singular value decomposition is performed to remove the

correlation. Then, the delta value is obtained by carrying out the dot

product operation with the weight obtained from the singular value

- 51 -

decomposition and the initial weight obtained randomly and subtracting the

value from 1. If the delta value is greater than 0.000001, the data obtained

from the final weight and whitening are linearized, and this value is called

independent components. A linear combination of the obtained independent

components U and the center image of the zero-padded original image are

performed.

      (102)

s is the stage and the first stage is one.  means independent elements 1

to . By subtracting each patch image from the above equation, we can obtain

the following expression. For each input image ∈
 × , we obtain 

output images  
      

 ∈ ×  after the first stage of ICANet. We

denote   as

  
 ⋯ 

 ⋯ 
 ⋯ 

 ∈
 × (103)

3.2.3 Output Stage of ICANet2

Step 1 to Step 3 is the same as the previous PCANet algorithm. The

following lists the advantages of ICANet. There are PCANet algorithms, but

papers that have been studied with various structures of ICANet are a new

challenge.

【Step 1】 Binary quantization.

 In this step, we binarize the outputs of the second stage of

PCANet, and obtain

       
           (104)

【Step 2】 Weight and sum.

 Around each pixel, we view the vector of  binary bits as a

decimal number. This converts the binary images    back into

- 52 -

integer-valued images as follows:

  
  



      (105)

 We denote T as

    ⋯  ⋯   ⋯∈
 × (106)

【Step 3】 Block sliding.

 We use a block of size × to slide each of the  images

    , with overlap ratio R, and then reshape each ×

matrix into a column vector, which is then concatenated to obtain

a matrix

     ⋯   ⋯   ∈
× (107)

 We denote Z as

   ⋯  ⋯  ⋯  ∈
×  (108)

【Step 4】 Histogramming

 We compute the histogram (with 
 bins) of the decimal values in

each column of  and concatenate all the histograms into one

vector and obtain

     ⋯  ⋯    ⋯   ∈

 (109)

 which is the “feature” of the input image  and Hist(.)

denotes the histogram operation. We denote f as

- 53 -

   ⋯  ∈

 (110)

 The feature vector is then sent to a classifier, for example,

support vector machine (SVM), Euclidean distance, etc.

ICANet2 is also called a factorial ICANet, and a feature vector is

obtained through the intensive multiplication of the center matrix and the

Eigenvector. Unlike ICANet1, the Eigenvectors are linearly multiplied by the

covariance of the patch center image. Finally, the feature values are

extracted through the linear multiplication of the sum of the patch images

and the normalized Eigenvectors. This is different from ICANet1. ICANet2 has

the same number of features as ICANet1. Figure 3.11 shows the first stage of

ICANet2 and figure 3.12 shows feature CU-ECG database in the first stage of

ICANet2. Figure 3.13 indicates second and output stage of ICANet2 and

figure 3.14 shows feature CU-ECG database in second and output stage of

ICANet2.

The detailed description of the workflow is below:

(1) Perform PCA step like ICANet1.

(2) Patch sliding of all images is performed, and the average image and

the Eigen vector obtained from the PCA are convoluted.

(3) The Eigenvectors are updated through the normalization step using the

Eigenvectors, and then the convolution is performed using the average

image of all the images and the updated Eigenvectors. This is called

a feature vector.

(4) The center image is obtained from the basic data, and the zero padded

image and the independent Eigen feature vector obtained in (2) are

convoluted and the ICA convolution output value is extracted.

Steps (5) and (6) are the same as ICANet1.

- 54 -

Figure 3.11. First stage of ICANet2.

Figure 3.12. Feature CU-ECG database in first stage of ICANet2.

- 55 -

Figure 3.13. Second and output stage of ICANet2.

Figure 3.14. Feature CU-ECG database in second and output stage of ICANet2.

- 56 -

Algorithm 4 ICANet2

1. Reading: Image data or signal data

2. Initialization of variable

3. Stage 1 of ICANet2

- Patch mean-removal :    ∈

 × 

- Compute Eigenvector using PCA:

 


′  ′ 





 - Compute PCA feature vector using PCA:

  


 ,    ,  


 

- Compute convolution using ICA:

    

- Output :    

4. Stage 2 of ICANet2

- Patch mean-removal:    ∈

 × 

 - Compute PCA feature vector using PCA:

  


 ,    ,  


 

- Compute convolution using ICA:

    

- Output :    

5. Output layer
Binary hashing: compute the decimal-valued image

      
          

Histogram:

   ⋯  ⋯   ⋯   ∈



Output :    ⋯  ∈



- 57 -

Ⅳ. Experiment and Results

This section describes the data acquisition process and environment,

evaluates the data, and examines the similarities. In addition, we present

the performance assessment and the effectiveness of the ICANet.

4.1 Database

In this paper, we use databases obtained from various systems to

determine the suitability of the algorithm.

4.1.1 CU-ECG database

The CU-ECG DB is the data from Chosun University, Korea. The data

contains 100 people. The measurement time is 10 s for one measurement; 60

times was measured during three days for each individual. Measurements were

made when the participants were sitting in the chair in a relaxed state with

the data-sampling rate of 500,000 Hz. All acquired ECG are Lead1 type taken

with wet electrodes. We used a processor, an amplifier, a band-pass filter,

and a low-pass filter as the primary board and the sensor. The processor is

Atmega8; Analog to Digital (AD) converter uses 10-bit resolution. For

communication, we use USB to serial. The gain of the amplifier was 1000

times, and the signal was measured using a 5-V positive power source. To

acquire ECG data, the patient is seated in the chair in a relaxed state. The

patch shown in the picture below is attached to the arm and the data is

acquired. The acquired data is stored in the computer using universal

synchronous/asynchronous receiver/transmitter (USART) communication. Figure

4.1 shows a data acquisition environment for ECG biometrics and figure 4.2

indicates mainboard and experiment environment. Figure 4.3 shows

preprocessing using CU-ECG database and figure 4.4 indicates samples of

CU-ECG database with noise CU-ECG. Figure 4.5 shows samples of CU-ECG

database with size scale. Noise (White Gaussian) was used to determine the

robustness of ICA. In addition, additive white Gaussian noise (AWGN) is a

basic noise model used in Information theory to mimic the effect of many

random processes that occur in nature.

- 58 -

Figure 4.1. Data acquisition environment for ECG biometrics

Figure 4.2. Mainboard and experiment environment

(a) (b)

(c) (d)

Figure 4.3. Preprocessing using CU ECG database: (a) raw signal; (b) mean

variance; (c) spike removal; (d) R peak detection.

- 59 -

 (a) (b)

(c) (d) (e)

Figure 4.4. Samples of CU-ECG database with noise CU-ECG. (a) ECG

scalogram. (b) salt noise with ECG scalogram. (c) 1D raw-ECG signal. (d) noise

ECG signal. (e) Gaussian noise with ECG scalogram

 (a) (b) (c)

Figure 4.5. Samples of CU-ECG database with size scale. (a) 28 × 28. (b) 20

× 20. (c) 12 × 12

- 60 -

4.1.2 FERET face database

FERET DB is configured for the development of automatic face recognition

capabilities. It is a face image of 14051 8-bit grayscales. It also includes

facial images of various poses and presents the outlines of alternative

facial expressions and other illuminations. For some people, they include

face images with glasses and other hair lengths. Nevertheless, this DB is

one of the most known face databases since it contains many face images of

many people. Images of an individual were acquired in sets of 5 to 11

images, collected under relatively unconstrained conditions. Two frontal

views were taken (Fa and Fb); a different facial expression was requested

for the second frontal image. For 200 sets of images, a third frontal image

was taken with a different camera and different lighting (this is referred

to as the Fc image). Figure 4.6 shows example of different categories of

FERET images. Table 4.1 shows data information of FERET.

Figure 4.6. Example of different categories of FERET images. The duplicate 1

image was taken within one year of the Fa image and the duplicate 2 and Fc

images were taken at least one year apart.

Table 4.1. Data information of FERET

 Features

Database
Data Size Number of data per class

Fa 13500 X 1196 1 (1196 class)

Fb 13500 X 1195 1 (1196 class)

Fc 13500 X 194 1 (1196 class)

Duplicate1 13500 X 722 from 2 to 10 (243 class)

Duplicate2 13500 X 234 from 2 to 10 (75 class)

- 61 -

4.1.3 CU-Face Database

Deep learning is generally known for algorithms that use big data.

Therefore, the correlation between ICANet and small data can be confirmed by

applying the CU-Face database that is small data. The CU-Face data is data

acquired from Chosun University. The total number of participants is five,

and the training data is composed of 10 pieces per person and the testing

data is composed of 80 pieces of data. Therefore, verification data is 8

times more than learning. Moreover, the size of the learning data is 1800 *

50, and the size of the verification data is 1800 * 400. In order to show

the robustness of ICANet, we also experimented with data mixed with noise

(Gaussian noise). Figure 4.7 shows example of CU-Face data with noise.

Figure 4.7. Example of CU-Face data with noise

4.2 Experimental Results and Discussion

In this section, we show the classifier used for experiments and the

experimental results.

4.2.1 Classifier

Distance measurement is a method of calculating the distance between two

observations. In this paper, we show performance using (Euclidean, squared

Euclidean, city-block, Minkowski, cosine, correlation, and Spearman)

distance and SVM. Table 4.2 shows mathematical expression of classier.

- 62 -

Table 4.2. Mathematical expression of classier

Classifier Mathematical expression

Euclidean distance (ED) 
        

′

Squared Euclidean distance (SED) 
     

    


City-block distance (CBD)  
  



 

Minkowski distance (MKD)  



  



 


Cosine distance (CSD)   ′
′


′



Correlation distance (CLD)

         ′        ′
 
     

′



   






Spearman distance (SMD)

          ′        ′
 
     

′



   





 



4.2.2 Performance evaluation

TP is the number of correct predictions for the positive samples, TN is

the number of correct predictions for the negative samples, FN is the number

of incorrect predictions for the positive samples, and FP is the number of

incorrect predictions for the negative samples.

   


 (111)

4.2.3 Setting parameters

FERET data based parameters are set from three to five in terms of L, K

is set to two to eight, and H is set to 4 or 8 because of memory problem.

- 63 -

4.2.4 Experimental results and performance analysis

To show the performance of the proposed algorithm, performance is shown

through various classifiers. The feature extractor is PCANet, ICANet1 to

ICANet2. The classifiers are the Euclidean distance, the squared Euclidean

distance, the city-block distance, the Minkowski distance, the cosine

distance, the correlation distance, the spearman distance, SVM was used.

Performance analysis using FERET data showed similar performance to PCANet

when using Fb data. However, as the data was changed to Fc, Dup1, and Dup2,

it showed higher performance in ICANet1 and 2 than PCANet. If the training

data and the testing data are similar, the PCANet can have a good effect,

but if the non-similar of real-life data is used, the ICANet algorithm is

robust. Especially, when the Dup2 and noise ECG data is used, the robustness

of the ICANet2 algorithm is verified. In addition, the classifier has been

confirmed that the SVM algorithm works well. In addition, verification time

is important for ECG personal authentication. The verification time of

PCANet was about 0.2 seconds, ICANet1 was 0.2 seconds, similar to PCANet,

and ICANet2 was 0.15 seconds. Therefore, the effectiveness of the ICANet

algorithm for personal authentication has been demonstrated in terms of

classification time.

● Influence on the number of filters

The number of filters is an important factor for the recognition

performance in the convolution layer on ICANet, because there is the amount

of information increased when the number of filters in the first stage

gradually increased. Figure 4.8 shows the influence on the number of filters

in ICANet.

- 64 -

 (a) (b)

Figure 4.8. The influence on the number of filters in ICANet. (a) CU-ECG

database. (b) noise CU-ECG database.

● Influence on block size

Compared to the number of filters, the performance tends to decrease as

the block size increases. As the block size increases, the spacing of the

strides becomes wider, resulting in information loss of data and degradation

of performance. Figure 4.9 shows the influence on the block size in ICANet

and figure 4.10 shows correlation of PCANet, ICANet1, and ICANet2.

 (a) (b)

Figure 4.9. The influence on the block size in ICANet. (a) CU-ECG database.

(b) noise CU-ECG database.

- 65 -

(a) (b) ©

Figure 4.10. Correlation of PCANet, ICANet1, and ICANet2. (a) PCANet1. (b)

ICANet1. (c) ICANet2

To illustrate ICANet's feature distribution, Figure 4.11 shows a

distribution chart of feature in ICANet. Figure 4.12 shows performances of

CU-ECG using SVM and figure 4.13 performances of Gaussian noise CU-ECG using

SVM. When using CU-ECG data, it is similar to PCANet's performance, but

ICANet's robustness is proved when using noise mixed with white Gaussian

(signal to noise ratio = 30). Figure 4.14 to 4.17 shows a comparison of face

recognition rates on various methods on FERET (Fb, Fc, Dup1, and Dup2)

database. In the case of Fb data, the performance of PCANet 's algorithm

was high, but the performance of ICANet was higher than PCANet as Fc and

Dup1 and Dup2 data. The reason is that the performance of ICA is improved by

removing the correlation between the original vector, feature vector, and

covariance through the independent component analysis of ICA. Figure 4.18

shows performance of CU-Face database and figure 4.19 indicates performance

of CU-ECG. In addition, Figure 4.20 shows performance of CU-Face and figure

4.21 presents performance of FERET. In addition to figure 4.22 shows

performance of CU-ECG and figure 4.23 indicates performance of scale CU-ECG.

As shown in Figure 4.22, the processed data shows similar performance to

PCANet. However, the PCANet using Eigenvectors is weak against noise, and

the feature vector using statistical independence is robust against noise.

In addition, as shown in Figure 4.23, ICANet's classification rate did not

significantly decrease compared to PCANet even if information of data was

lost. In addition, as shown in Figure 4.19, the performance was higher than

- 66 -

the basic deep learning of auto-encoder and the classification time was

about 0.05 seconds faster than PCANet. In addition, as shown in Figure 4.21,

high performance was expected in face data as well as electrocardiogram

data, and it is shown that it is better than PCANet in small data as shown

in Figure 4.21. As a result of performance, ICANet showed higher performance

than PCANet when face data and ECG data were used. Especially, it showed

stronger than PCANet in noise data. Table 4.3 to 4.8 shows performance of

(PCANet, ICANet1, ICANet2) using CU-ECG and noise CU-ECG database. Table 4.9

to 4.24 shows Performance of (PCANet, ICANet1, ICANet2) using FERET database

(Fb, Fc, Dup1, Dup2).

 (a) (b)

(c)

Figure 4.11. Distribution chart of feature in ICANet. (a) ICANet1. (b) ICANet2.

- 67 -

Table 4.3. Performance of PCANet using CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

8 4 10 0.9760 10 4 8 0.9748

9 4 4 0.9830 10 4 9 0.9795

9 4 5 0.9813 10 4 10 0.9754

9 4 6 0.9819 4 5 4 0.9825

9 4 7 0.9836 4 5 5 0.9743

9 4 8 0.9830 4 5 6 0.9772

9 4 9 0.9737 4 5 7 0.9772

9 4 10 0.9801 4 5 8 0.9784

10 4 4 0.9825 4 5 9 0.9550

10 4 5 0.9819 4 5 10 0.9585

10 4 6 0.9807 5 5 4 0.9801

10 4 7 0.9807 5 5 5 0.9784

Table 4.4. Performance of ICANet1 using CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

8 7 4 0.9848 4 9 4 0.9848

8 7 6 0.9825 4 9 6 0.9772

8 7 8 0.9836 4 9 8 0.9684

8 7 10 0.9807 4 9 10 0.9480

8 7 12 0.9801 4 9 12 0.9456

10 7 4 0.9830 6 9 4 0.9836

10 7 6 0.9801 6 9 6 0.9813

10 7 8 0.9789 6 9 8 0.9801

10 7 10 0.9801 6 9 10 0.9708

10 7 12 0.9789 6 9 12 0.9754

12 7 4 0.9801 8 9 4 0.9813

12 7 6 0.9825 8 9 6 0.9836

- 68 -

Table 4.5. Performance of ICANet2 using CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

8 4 10 0.9760 10 4 8 0.9848

9 4 4 0.9830 10 4 9 0.9795

9 4 5 0.9813 10 4 10 0.9754

9 4 6 0.9819 4 5 4 0.9825

9 4 7 0.9836 4 5 5 0.9743

9 4 8 0.9830 4 5 6 0.9772

9 4 9 0.9737 4 5 7 0.9772

9 4 10 0.9801 4 5 8 0.9784

10 4 4 0.9825 4 5 9 0.9550

10 4 5 0.9819 4 5 10 0.9585

10 4 6 0.9807 5 5 4 0.9801

10 4 7 0.9807 5 5 5 0.9784

Table 4.6. Performance of PCANet using Gaussian noise CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

4 6 4 0.8643 5 6 9 0.7848

4 6 5 0.8368 5 6 10 0.8023

4 6 6 0.8304 6 6 4 0.9012

4 6 7 0.8187 6 6 5 0.8789

4 6 8 0.8316 6 6 6 0.8871

4 6 9 0.7269 6 6 7 0.8830

4 6 10 0.7351 6 6 8 0.8930

5 6 4 0.8942 6 6 9 0.8105

5 6 5 0.8667 6 6 10 0.8345

5 6 6 0.8690 7 6 4 0.9094

5 6 7 0.8596 7 6 5 0.8830

5 6 8 0.8637 7 6 6 0.8930

- 69 -

Table 4.7. Performance of ICANet1 using Gaussian noise CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

6 4 12 0.7327 12 8 4 0.9351

7 4 4 0.9275 12 8 8 0.9339

7 4 5 0.9170 12 8 12 0.9058

7 4 6 0.9058 4 12 4 0.8386

7 4 7 0.9041 4 12 8 0.8281

7 4 8 0.9211 4 12 12 0.7281

7 4 9 0.8526 8 12 4 0.9345

7 4 10 0.8673 8 12 8 0.9035

7 4 11 0.7468 8 12 12 0.8164

7 4 12 0.8018 12 12 4 0.9316

8 4 4 0.9187 12 12 8 0.9327

8 4 5 0.9170 12 12 12 0.9006

Table 4.8. Performance of ICANet2 using Gaussian noise CU-ECG database, R=0.5

Parameters
Performance

Parameters
Performance

     

4 4 8 0.8363 8 8 6 0.9363

4 4 12 0.8070 8 8 7 0.9257

4 4 16 0.7632 8 8 8 0.9123

8 4 4 0.9234 8 8 9 0.9082

8 4 8 0.9082 8 8 10 0.9140

8 4 12 0.8959 9 8 4 0.9322

8 4 16 0.8965 9 8 5 0.9345

12 4 4 0.9281 9 8 6 0.9211

12 4 8 0.9117 9 8 7 0.9146

12 4 12 0.9105 9 8 8 0.9175

12 4 16 0.9129 9 8 9 0.9135

4 8 4 0.8994 9 8 10 0.9199

- 70 -

Table 4. 9. Performance of PCANet using FERET database (Fb), R=0.5

ED SED CBD MKD CSD CLD SMD SVM L K H

0.8686 0.8686 0.8586 0.8686 0.9289 0.9297 0.9297 0.9054 3 4 4

0.9690 0.9690 0.9615 0.9690 0.9816 0.9816 0.9808 0.9649 3 4 8

0.8117 0.8117 0.8000 0.8117 0.9364 0.9356 0.9448 0.9665 4 4 4

0.9556 0.9556 0.9356 0.9556 0.9874 0.9883 0.9874 0.9732 4 4 8

0.8887 0.8887 0.8828 0.8887 0.9464 0.9473 0.9456 0.9741 3 6 4

0.9690 0.9690 0.9623 0.9690 0.9849 0.9849 0.9791 0.9766 3 6 8

0.8653 0.8653 0.8619 0.8653 0.9490 0.9490 0.9531 0.9766 4 6 4

0.9598 0.9598 0.9623 0.9598 0.9841 0.9858 0.9858 0.9808 4 6 8

0.9029 0.9029 0.8937 0.9029 0.9531 0.9548 0.9531 0.9816 3 8 4

0.9640 0.9640 0.9640 0.9640 0.9791 0.9791 0.9791 0.9824 3 8 8

0.8820 0.8820 0.8711 0.8820 0.9640 0.9640 0.9623 0.9824 4 8 4

0.9649 0.9649 0.9649 0.9649 0.9883 0.9874 0.9883 0.9841 4 8 8

Table 4.10. Performance of PCANet using FERET database (Fc), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.8918 0.8918 0.8711 0.8918 0.9536 0.9588 0.9536 0.9381

0.9794 0.9794 0.9639 0.9794 0.9845 0.9845 0.9845 0.9794

0.8505 0.8505 0.8402 0.8505 0.9588 0.9588 0.9639 0.9794

0.9742 0.9742 0.9639 0.9742 0.9897 0.9897 0.9897 0.9794

0.8814 0.8814 0.8763 0.8814 0.9485 0.9485 0.9485 0.9794

0.9433 0.9433 0.9330 0.9433 0.9742 0.9691 0.9742 0.9794

0.8660 0.8660 0.8608 0.8660 0.9639 0.9639 0.9588 0.9845

0.9691 0.9691 0.9639 0.9691 0.9845 0.9845 0.9845 0.9845

0.8608 0.8608 0.8454 0.8608 0.9330 0.9330 0.9330 0.9845

0.9227 0.9227 0.9021 0.9227 0.9639 0.9639 0.9588 0.9845

0.8505 0.8505 0.8454 0.8505 0.9639 0.9639 0.9639 0.9845

0.9278 0.9278 0.9227 0.9278 0.9742 0.9742 0.9794 0.9845

- 71 -

Table 4.11. Performance of PCANet using FERET database (Dup1), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.7382 0.7382 0.7175 0.7382 0.8587 0.8560 0.8587 0.8393

0.8421 0.8421 0.8338 0.8421 0.9086 0.9072 0.8934 0.8975

0.6274 0.6274 0.6011 0.6274 0.8837 0.8837 0.8726 0.9072

0.7895 0.7895 0.7452 0.7895 0.9349 0.9349 0.9363 0.9307

0.7271 0.7271 0.7161 0.7271 0.8615 0.8601 0.8587 0.9321

0.8407 0.8407 0.8199 0.8407 0.9017 0.9017 0.9030 0.9349

0.7050 0.7050 0.6856 0.7050 0.8837 0.8837 0.8767 0.9377

0.8089 0.8089 0.8006 0.8089 0.9224 0.9224 0.9141 0.9391

0.7105 0.7105 0.6994 0.7105 0.8518 0.8518 0.8504 0.9391

0.8047 0.8047 0.7950 0.8047 0.8809 0.8837 0.8864 0.9391

0.6842 0.6842 0.6704 0.6842 0.8767 0.8753 0.8740 0.9391

0.7936 0.7936 0.7687 0.7936 0.9141 0.9155 0.9086 0.9391

Table 4.12. Performance of PCANet using FERET database (Dup2), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.7137 0.7137 0.6838 0.7137 0.7991 0.7991 0.7991 0.7906

0.8077 0.8077 0.7949 0.8077 0.8761 0.8718 0.8462 0.8462

0.5812 0.5812 0.5470 0.5812 0.8376 0.8376 0.8333 0.8547

0.7521 0.7521 0.7094 0.7521 0.9017 0.9017 0.9103 0.8974

0.6923 0.6923 0.6752 0.6923 0.8120 0.8120 0.8120 0.9017

0.8120 0.8120 0.7906 0.8120 0.8590 0.8590 0.8547 0.9060

0.6581 0.6581 0.6624 0.6581 0.8376 0.8376 0.8333 0.9145

0.7821 0.7821 0.7521 0.7821 0.8803 0.8803 0.8675 0.9145

0.6709 0.6709 0.6581 0.6709 0.8248 0.8248 0.8205 0.9145

0.7991 0.7991 0.7778 0.7991 0.8419 0.8376 0.8504 0.9145

0.6538 0.6538 0.6410 0.6538 0.8419 0.8419 0.8419 0.9145

0.7821 0.7821 0.7650 0.7821 0.8889 0.8932 0.8889 0.9145

- 72 -

Table 4.13. Performance of ICANet1 using FERET database (Fb), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.7799 0.7799 0.7791 0.7799 0.9013 0.9013 0.9004 0.8762

0.9582 0.9582 0.9448 0.9582 0.9724 0.9732 0.9724 0.9456

0.7046 0.7046 0.6862 0.7046 0.9280 0.9297 0.9389 0.9490

0.9481 0.9481 0.9406 0.9481 0.9816 0.9816 0.9824 0.9682

0.7331 0.7331 0.7272 0.7331 0.9322 0.9314 0.9414 0.9682

0.9456 0.9456 0.9297 0.9456 0.9824 0.9824 0.9841 0.9782

0.8477 0.8477 0.8326 0.8477 0.9230 0.9238 0.9247 0.9782

0.9607 0.9607 0.9506 0.9607 0.9799 0.9799 0.9799 0.9782

0.7674 0.7674 0.7715 0.7674 0.9381 0.9381 0.9381 0.9782

0.9540 0.9540 0.9448 0.9540 0.9808 0.9808 0.9808 0.9782

0.8100 0.8100 0.7941 0.8100 0.9456 0.9456 0.9490 0.9782

0.9331 0.9331 0.9222 0.9331 0.9824 0.9824 0.9849 0.9782

0.8393 0.8393 0.8360 0.8393 0.9397 0.9397 0.9372 0.9782

0.9556 0.9556 0.9464 0.9556 0.9766 0.9757 0.9732 0.9782

0.8460 0.8460 0.8469 0.8460 0.9423 0.9431 0.9456 0.9782

0.9389 0.9389 0.9339 0.9389 0.9808 0.9808 0.9791 0.9791

0.7657 0.7657 0.7615 0.7657 0.9456 0.9456 0.9473 0.9791

0.9238 0.9238 0.9205 0.9238 0.9816 0.9816 0.9833 0.9791

Table 4.14. Performance of ICANet1 using FERET database (Fc), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.8247 0.8247 0.8196 0.8247 0.9536 0.9536 0.9485 0.9227

0.9742 0.9742 0.9485 0.9742 0.9845 0.9845 0.9845 0.9588

0.7680 0.7680 0.7680 0.7680 0.9536 0.9485 0.9691 0.9691

0.9948 0.9948 0.9948 0.9948 0.9948 0.9948 0.9948 0.9845

0.6804 0.6804 0.6598 0.6804 0.9742 0.9742 0.9742 0.9845

0.9381 0.9381 0.8866 0.9381 0.9948 0.9948 0.9948 0.9897

0.8866 0.8866 0.8557 0.8866 0.9381 0.9330 0.9227 0.9897

0.9794 0.9794 0.9845 0.9794 0.9948 0.9948 0.9948 0.9948

0.8711 0.8711 0.8505 0.8711 0.9742 0.9691 0.9691 0.9948

0.9536 0.9536 0.9381 0.9536 0.9845 0.9845 0.9897 0.9948

0.7165 0.7165 0.7165 0.7165 0.9794 0.9794 0.9794 0.9948

0.9124 0.9124 0.9021 0.9124 0.9948 0.9948 0.9948 0.9948

0.7990 0.7990 0.7784 0.7990 0.9485 0.9485 0.9433 0.9948

0.9639 0.9639 0.9536 0.9639 0.9897 0.9897 0.9845 0.9948

0.7268 0.7268 0.7062 0.7268 0.9433 0.9433 0.9485 0.9948

0.9175 0.9175 0.9072 0.9175 0.9948 0.9948 0.9897 0.9948

0.7268 0.7268 0.7165 0.7268 0.9433 0.9433 0.9536 0.9948

0.8711 0.8711 0.8608 0.8711 0.9948 0.9948 0.9897 0.9948

- 73 -

Table 4.15. Performance of ICANet1 using FERET database (Dup1), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.6247 0.6247 0.6039 0.6247 0.8546 0.8546 0.8504 0.8296

0.8380 0.8380 0.8186 0.8380 0.9058 0.9072 0.9003 0.8989

0.4931 0.4931 0.4612 0.4931 0.8753 0.8753 0.8684 0.9030

0.7812 0.7812 0.7535 0.7812 0.9280 0.9280 0.9238 0.9197

0.5249 0.5249 0.5028 0.5249 0.8435 0.8407 0.8518 0.9197

0.7396 0.7396 0.7091 0.7396 0.9294 0.9294 0.9155 0.9349

0.6136 0.6136 0.5873 0.6136 0.8227 0.8227 0.8172 0.9349

0.8338 0.8338 0.8116 0.8338 0.8961 0.8961 0.8892 0.9418

0.5235 0.5235 0.4958 0.5235 0.8837 0.8823 0.8726 0.9418

0.7742 0.7742 0.7604 0.7742 0.9252 0.9252 0.9155 0.9446

0.4792 0.4792 0.4765 0.4792 0.8670 0.8684 0.8670 0.9460

0.7355 0.7355 0.7230 0.7355 0.9169 0.9169 0.9086 0.9460

0.6537 0.6537 0.6385 0.6537 0.8407 0.8380 0.8241 0.9460

0.7659 0.7659 0.7576 0.7659 0.8864 0.8878 0.8795 0.9460

0.5360 0.5360 0.5166 0.5360 0.8476 0.8463 0.8546 0.9460

0.7078 0.7078 0.6939 0.7078 0.9114 0.9100 0.8989 0.9460

0.4086 0.4086 0.4086 0.4086 0.8504 0.8504 0.8463 0.9460

0.7299 0.7299 0.6994 0.7299 0.9030 0.9017 0.8906 0.9460

Table 4.16. Performance of ICANet1 using FERET database (Dup2), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.6410 0.6410 0.6111 0.6410 0.7906 0.7906 0.7692 0.7564

0.8077 0.8077 0.7821 0.8077 0.8803 0.8803 0.8675 0.8761

0.5684 0.5684 0.5299 0.5684 0.8376 0.8376 0.8333 0.8803

0.7863 0.7863 0.7436 0.7863 0.8889 0.8889 0.8675 0.8974

0.3889 0.3889 0.3547 0.3889 0.8462 0.8462 0.8547 0.9060

0.6880 0.6880 0.6325 0.6880 0.9145 0.9103 0.9103 0.9145

0.6282 0.6282 0.6026 0.6282 0.8077 0.8077 0.8162 0.9188

0.7778 0.7778 0.7735 0.7778 0.8590 0.8590 0.8504 0.9188

0.4530 0.4530 0.4487 0.4530 0.8162 0.8120 0.8034 0.9188

0.7863 0.7863 0.7692 0.7863 0.8761 0.8761 0.8590 0.9231

0.3974 0.3974 0.3718 0.3974 0.8504 0.8504 0.8376 0.9231

0.6923 0.6923 0.6880 0.6923 0.8718 0.8761 0.8718 0.9274

0.6239 0.6239 0.6111 0.6239 0.8077 0.8077 0.8034 0.9274

0.7692 0.7692 0.7564 0.7692 0.8504 0.8504 0.8376 0.9274

0.4744 0.4744 0.4701 0.4744 0.8248 0.8248 0.8205 0.9274

0.7051 0.7051 0.6880 0.7051 0.8675 0.8675 0.8675 0.9274

0.3547 0.3547 0.3675 0.3547 0.8291 0.8291 0.8376 0.9274

0.6325 0.6325 0.6282 0.6325 0.8889 0.8889 0.8803 0.9274

- 74 -

Table 4.17. Performance of ICANet2 using FERET database (Fb), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.8151 0.8151 0.8017 0.8151 0.9130 0.9121 0.9155 0.8795

0.9632 0.9632 0.9473 0.9632 0.9782 0.9782 0.9774 0.9573

0.8276 0.8276 0.8226 0.8276 0.9339 0.9322 0.9364 0.9598

0.9540 0.9540 0.9490 0.9540 0.9833 0.9833 0.9833 0.9690

0.7607 0.7607 0.7331 0.7607 0.9364 0.9364 0.9456 0.9699

0.9464 0.9464 0.9347 0.9464 0.9808 0.9799 0.9841 0.9741

0.8561 0.8561 0.8477 0.8561 0.9222 0.9222 0.9213 0.9741

0.9439 0.9439 0.9389 0.9439 0.9590 0.9598 0.9531 0.9749

0.7858 0.7858 0.7732 0.7858 0.9431 0.9431 0.9473 0.9749

0.9565 0.9565 0.9473 0.9565 0.9799 0.9799 0.9816 0.9757

0.7205 0.7205 0.7088 0.7205 0.9431 0.9431 0.9490 0.9757

0.9423 0.9423 0.9322 0.9423 0.9808 0.9808 0.9841 0.9766

0.8586 0.8586 0.8494 0.8586 0.9230 0.9213 0.9180 0.9766

0.9473 0.9473 0.9397 0.9473 0.9724 0.9724 0.9749 0.9766

0.7799 0.7799 0.7766 0.7799 0.9456 0.9456 0.9448 0.9766

0.9515 0.9515 0.9498 0.9515 0.9816 0.9816 0.9824 0.9774

0.7464 0.7464 0.7339 0.7464 0.9314 0.9314 0.9389 0.9774

0.9130 0.9130 0.9138 0.9130 0.9833 0.9833 0.9833 0.9782

Table 4.18. Performance of ICANet2 using FERET database (Fc), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.8505 0.8505 0.8402 0.8505 0.9536 0.9536 0.9433 0.9330

0.9742 0.9742 0.9536 0.9742 0.9845 0.9845 0.9794 0.9845

0.8608 0.8608 0.8196 0.8608 0.9639 0.9639 0.9588 0.9897

0.9948 0.9948 0.9742 0.9948 0.9948 0.9948 0.9948 0.9948

0.7938 0.7938 0.7629 0.7938 0.9588 0.9588 0.9742 0.9948

0.9742 0.9742 0.9536 0.9742 0.9948 0.9948 0.9948 0.9948

0.8196 0.8196 0.8093 0.8196 0.9433 0.9433 0.9381 0.9948

0.9742 0.9742 0.9588 0.9742 0.9897 0.9897 0.9897 0.9948

0.8299 0.8299 0.7938 0.8299 0.9485 0.9485 0.9588 0.9948

0.9536 0.9536 0.9433 0.9536 0.9845 0.9845 0.9845 0.9948

0.7680 0.7680 0.7629 0.7680 0.9536 0.9536 0.9588 0.9948

0.8814 0.8814 0.8660 0.8814 0.9897 0.9897 0.9897 0.9948

0.7784 0.7784 0.7784 0.7784 0.9330 0.9330 0.9278 0.9948

0.9588 0.9588 0.9330 0.9588 0.9845 0.9794 0.9691 0.9948

0.8041 0.8041 0.8041 0.8041 0.9433 0.9433 0.9433 0.9948

0.9330 0.9330 0.9227 0.9330 0.9897 0.9897 0.9845 0.9948

0.6907 0.6907 0.6495 0.6907 0.9433 0.9433 0.9433 0.9948

0.7216 0.7216 0.7165 0.7216 0.9845 0.9794 0.9794 0.9948

- 75 -

Table 4.19. Performance of ICANet2 using FERET database (Dup1), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.6759 0.6759 0.6524 0.6759 0.8560 0.8546 0.8504 0.8283

0.8075 0.8075 0.7978 0.8075 0.8975 0.8975 0.8837 0.8934

0.5776 0.5776 0.5485 0.5776 0.8670 0.8670 0.8657 0.8989

0.8075 0.8075 0.7881 0.8075 0.9141 0.9141 0.9155 0.9224

0.4224 0.4224 0.4169 0.4224 0.8684 0.8712 0.8767 0.9224

0.6842 0.6842 0.6662 0.6842 0.9391 0.9391 0.9377 0.9377

0.6828 0.6828 0.6648 0.6828 0.8296 0.8310 0.8296 0.9377

0.8061 0.8061 0.7936 0.8061 0.8920 0.8920 0.8823 0.9391

0.5166 0.5166 0.4931 0.5166 0.8781 0.8781 0.8629 0.9391

0.7618 0.7618 0.7424 0.7618 0.9224 0.9224 0.9183 0.9418

0.4349 0.4349 0.4197 0.4349 0.8698 0.8670 0.8670 0.9418

0.7271 0.7271 0.7064 0.7271 0.9169 0.9169 0.9127 0.9432

0.5554 0.5554 0.5443 0.5554 0.8463 0.8476 0.8407 0.9432

0.7770 0.7770 0.7645 0.7770 0.8947 0.8947 0.8864 0.9432

0.5485 0.5485 0.5499 0.5485 0.8449 0.8435 0.8352 0.9446

0.7244 0.7244 0.7188 0.7244 0.9017 0.9017 0.9030 0.9446

0.4058 0.4058 0.3947 0.4058 0.8560 0.8532 0.8560 0.9446

0.7036 0.7036 0.6898 0.7036 0.9100 0.9114 0.8906 0.9446

Table 4.20. Performance of ICANet2 using FERET database (Dup2), R=0.5

ED SED CBD MKD CSD CLD SMD SVM

0.5214 0.5214 0.5000 0.5214 0.7906 0.7906 0.7949 0.7692

0.7991 0.7991 0.7650 0.7991 0.8590 0.8590 0.8462 0.8718

0.5342 0.5342 0.5427 0.5342 0.8333 0.8333 0.8162 0.8761

0.7564 0.7564 0.7479 0.7564 0.8932 0.8974 0.8761 0.9359

0.4530 0.4530 0.4188 0.4530 0.8248 0.8248 0.8376 0.9359

0.7051 0.7051 0.6538 0.7051 0.9103 0.9103 0.9017 0.9444

0.6496 0.6496 0.6325 0.6496 0.8034 0.8034 0.8162 0.9444

0.8120 0.8120 0.7821 0.8120 0.8632 0.8632 0.8632 0.9444

0.5598 0.5598 0.5256 0.5598 0.8248 0.8248 0.8333 0.9444

0.7479 0.7479 0.7222 0.7479 0.8889 0.8889 0.8846 0.9444

0.3889 0.3889 0.3846 0.3889 0.8333 0.8333 0.8419 0.9444

0.7479 0.7479 0.7350 0.7479 0.9017 0.9017 0.8974 0.9444

0.5470 0.5470 0.5427 0.5470 0.8248 0.8248 0.8034 0.9444

0.7607 0.7607 0.7436 0.7607 0.8376 0.8376 0.8376 0.9444

0.5342 0.5342 0.5128 0.5342 0.8162 0.8162 0.8333 0.9444

0.7265 0.7265 0.6966 0.7265 0.8632 0.8675 0.8632 0.9444

0.3590 0.3590 0.3504 0.3590 0.8205 0.8205 0.8205 0.9444

0.6752 0.6752 0.6581 0.6752 0.8803 0.8803 0.8889 0.9444

- 76 -

Table 4.21. Performance of algorithms using FERET database (Fb), R=0.5

Networks

classifier
PCANet ICANet1 ICANet2

ED 0.9690 0.9607 0.9632

SED 0.9690 0.9607 0.9632

CBD 0.9649 0.9506 0.9498

MKD 0.9690 0.9607 0.9632

CSD 0.9883 0.9824 0.9833

CLD 0.9883 0.9824 0.9833

SMD 0.9883 0.9849 0.9841

SVM 0.9841 0.9791 0.9782

Table 4.22. Performance of algorithms using FERET database (Fc), R=0.5

Networks

classifier
PCANet ICANet1 ICANet2

ED 0.9794 0.9948 0.9948

SED 0.9794 0.9948 0.9948

CBD 0.9639 0.9948 0.9742

MKD 0.9794 0.9948 0.9948

CSD 0.9897 0.9948 0.9948

CLD 0.9897 0.9948 0.9948

SMD 0.9897 0.9948 0.9948

SVM 0.9845 0.9948 0.9948

- 77 -

Table 4.23. Performance of algorithms using FERET database (Dup2), R=0.5

Networks

classifier
PCANet ICANet1 ICANet2

ED 0.8421 0.8380 0.8075

SED 0.8421 0.8380 0.8075

CBD 0.8338 0.8186 0.7978

MKD 0.8421 0.8380 0.8075

CSD 0.9349 0.9294 0.9391

CLD 0.9349 0.9294 0.9391

SMD 0.9363 0.9238 0.9377

SVM 0.9391 0.9460 0.9446

Table 4.24. Performance of algorithms using FERET database (Dup2), R=0.5

Networks

classifier
PCANet ICANet1 ICANet2

ED 0.8120 0.8077 0.8120

SED 0.8120 0.8077 0.8120

CBD 0.7949 0.7821 0.7821

MKD 0.8120 0.8077 0.8120

CSD 0.9017 0.9145 0.9103

CLD 0.9017 0.9103 0.9103

SMD 0.9103 0.9103 0.9017

SVM 0.9145 0.9274 0.9444

- 78 -

Figure 4.12. Performances of CU-ECG using SVM

Figure 4.13. Performances of Gaussian noise CU-ECG using SVM

- 79 -

Figure 4.14. Performance of FERET database (Fb), R=0.5

Figure 4.15. Performance of FERET database (Fc), R=0.5

- 80 -

Figure 4.16. Performance of FERET database (Dup1), R=0.5

Figure 4.17. Performance of FERET database (Dup2), R=0.5

- 81 -

Figure 4.18. Performance of CU-Face database

Figure 4.19. Performance of CU-ECG

- 82 -

Figure 4.20. Performance of CU-Face

Figure 4.21. Performance of FERET

- 83 -

Figure 4.22. Performance of CU-ECG

Figure 4.23. Performance of scale CU-ECG

- 84 -

Ⅴ. Conclusion

In this paper, we have organized the ICANet1 algorithm to improve the

disadvantages of ICANet, and studied the new ICANet2 model. Experimental

results show that PCANet algorithm has low performance when using noise data

and small feature data. Normally, when processed data is used, it shows

similar performance to PCANet. However, the PCANet using Eigenvectors is

weak against noise, and the feature vector using statistical independence is

robust against noise. In addition, ICANet showed robustness compared to

PCANet, even with loss of data information. In addition, the performance was

better than the basic deep learning of auto-encoders and the classification

time was about 0.05 seconds faster than PCANet. We could expect to improve

the performance of face data as well as electrocardiogram data. ICANet was

superior to PCANet when all data were used. Especially, ICANet showed higher

performance than PCANet when using noise data. Finally, we used ECG and

facial data for personal identification security problem. ICANet algorithm

has been studied to improve the problem of deep learning (computational

complexity and composition method). ICANet 's effectiveness has been shown

to be superior to computational weight and time although the recognition

rate can be reduced due to shallow learning.

- 85 -

References

[1] H. Nguyen, L.M. Kieu, T. Wen, and C. Cai, “Deep learning methods in

transportation domain: a review,” IET Intell. Transp. Syst, vol.

12, pp. 998-1004, 2018.

[2] R. Mu, X. Zeng, and L. Han, “A Survey of recommender systems based

on deep learning,” IEEE Access, vol. 6, pp. 69009–69022, 2018.

[3] F. Celesti, A. Celesti, J. Wan, and M. Villari, “Why deep learning

is changing the way to approach NGS data processing: a review,”

IEEE Rev. Biomed. Eng, vol. 11, pp. 68–76, 2018.

[4] X. W. Chen and X. Lin, “Big data deep learning: challenges and

perspectives,” IEEE Access, vol. 2, pp. 514–525, 2014.

[5] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R.

Wald, and E. Muharemagic, “Deep learning applications and

challenges in big data analytics,” J. Big Data, vol. 2, no. 1, pp.

1–21, 2015.

[6] P. Angelov and A. Sperduti, “Challenges in deep learning,” Proc.

Eur. Symp. Artif. Neural Networks, no. 1, pp. 489–496, 2016.

[7] I. T. Jolliffe, “Principal component analysis. Second Edition,”

Springer Ser. Stat, vol. 98, pp. 487, 2002.

[8] N. N. Bui, S. H. Min, and J. Y. Kim, “Human detection in video using

poselet with articulated pose estimation and edge-based RPCA

foreground extraction,”Korean Society of Information Technology

Association, vol. 12, no. 3, pp. 51–60, 2014.

[9] Y. Byeon, W. Lim, J. Lee, H. Jeong, H. Han, and C. Kwak, “Individual

identification on electrocardiogram using third-order tensor-based

MPCA,”Journal of advanced engineering and technology, vol. 11, pp.

151-157, 2018.

[10] M. S. Park and S. Oh, “Nonlinear feature extraction using

class-augmented kernel PCA,” International Conference on Artificial

- 86 -

Neural Networks, 2011.

[11] B. Kim, S. Oh, and J. Kim, “Design of digit recognition system

realized with the aid of fuzzy RBFNNs and incremental,”Korean

Association of Intelligence Systems, vol. 1, no. 1, pp. 56-63, 2016.

[12] M. Jin, R. Li, J. Jiang, and B. Qin, “Extracting contrast-filled

vessels in X-ray angiography by graduated RPCA with motion coherency

constraint,” Pattern Recognit, vol. 63, no. 1, pp. 653–666, 2017.

[13] Y. Lu, Z. Lai, Z. Fan, J. Cui, and Q. Zhu, “Manifold discriminant

regression learning for image classification,” Neurocomputing, vol.

166, pp. 475–486, 2015.

[14] Y. Li, G. Liu, Q. Liu, Y. Sun, and S. Chen, “Moving object

detection via segmentation and saliency constrained RPCA,”

Neurocomputing, vol. 323, no. 1, pp. 352–362, 2019.

[15] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust

subspace learning: robust PCA, robust subspace tracking, and robust

subspace recovery,” IEEE Signal Process. Mag, vol. 35, no. 4, pp.

32–55, 2018.

[16] J. X. Liu, Y. Xu, C. H. Zheng, H. Kong, and Z. H. Lai, “RPCA-based

tumor classification using gene expression data,” IEEE/ACM Trans.

Comput. Biol. Bioinforma, vol. 12, no. 4, pp. 964–970, 2015.

[17] W. Sun and Q. Du, “Graph-regularized fast and robust principal

component analysis for hyperspectral band selection,” IEEE Trans.

Geosci. Remote Sens, vol. 56, no. 6, pp. 3185–3195, 2018.

[18] F. Zhong, L. Liu, and J. Hu, “Robust 2DLDA based on correntropy,”

Neurocomputing, vol. 316, no. 1, pp. 399–404, 2018.

[19] M. Yin, D. Zeng, J. Gao, Z. Wu, and S. Xie, “Robust multinomial

logistic regression based on RPCA,” IEEE J. Sel. Top. Signal

Process, vol. 12, no. 6, pp. 1144–1154, 2018.

[20] F. Kuang, W. Xu, and S. Zhang, “A novel hybrid KPCA and SVM with GA

model for intrusion detection,” Appl. Soft Comput. J, vol. 18, pp.

178–184, 2014.

- 87 -

[21] J. Liu, C. Zhang, and C. Zheng, “EEG-based estimation of mental

fatigue by using KPCA-HMM and complexity parameters,” Biomed.

Signal Process. Control, vol. 5, no. 2, pp. 124–130, 2010.

[22] A. Vinay, V. S. Shekhar, K. N. B. Murthy, and S. Natarajan, “Face

recognition using gabor wavelet features with PCA and KPCA - a

comparative study,” Procedia Comput. Sci, vol. 57, pp. 650–659,

2015.

[23] Q. Wang, “Kernel principal component analysis and its applications

in face recognition and active shape models,” Computer Vision and

Pattern Recognition, vol. 21, no. 10, pp. 1-9, 2012.

[24] A. Romero, C. Gatta, and G. Camps-Valls, “Unsupervised deep feature

extraction for remote sensing image classification,” IEEE Trans.

Geosci. Remote Sens, vol. 54, no. 3, pp. 1349–1362, 2016.

[25] J. Xia, N. Falco, J. A. Benediktsson, P. Du, and J. Chanussot,

“Hyperspectral image classification with rotation random forest via

KPCA,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, vol. 10, no.

4, pp. 1601–1609, 2017.

[26] F. Yuan, X. Xia, J. Shi, H. Li, and G. Li, “Non-linear

dimensionality reduction and gaussian process based classification

method for smoke detection,” IEEE Access, vol. 5, pp. 6833–6841,

2017.

[27] K. Hotta, “Local co-occurrence features in subspace obtained by

KPCA of local blob visual words for scene classification,” Pattern

Recognit, vol. 45, no. 10, pp. 3687–3694, 2012.

[28] Y. Xiao, H. Wang, W. Xu, and J. Zhou, “L1 norm based KPCA for

novelty detection,” Pattern Recognit, vol. 46, no. 1, pp. 389–396,

2013.

[29] S. Chaib, Y. Gu, H. Yao, and S. Zhao, “A VHR scene classification

method integrating sparse PCA and saliency computing,” Int. Geosci.

Remote Sens. Symp, vol. 2016, pp. 2742–2745, 2016.

[30] A. Mishra, N. S. Rajput, D. Singh,“An object linked intelligent

- 88 -

classification method for hyperspectral images,”2017 IEEE

International Geoscience and Remote Sensing Symposium (IGARSS),

pp. 3345-3348.

[31] P. H. Hsu and Y. H. Tseng, “Feature extraction for hyperspectral

Image,” Proc. 20th Asian Conf. Remote Sens, pp. 405–410, 1999.

[32] X. Xiao and Y. Zhou, “Two-Dimensional quaternion PCA and Sparse

PCA,” IEEE Trans. Neural Networks Learn. Syst, pp. 1–15, 2018.

[33] Z. Hu, G. Pan, Y. Wang, and Z. Wu, “Sparse principal component

analysis via rotation and truncation,” Adv. Princ. Compon. Anal.

Res. Dev, vol. 27, no. 4, pp. 1–18, 2017.

[34] A. De Pierrefeu, “Structured sparse principal components analysis

with the TV-Elastic net penalty,” IEEE Trans. Med. Imaging, vol.

37, no. 2, pp. 396–407, 2018.

[35] L. Wang, X. Xie, W. Li, Q. Du, and G. Li, “Sparse feature

extraction for hyperspectral image classification,” 2015 IEEE China

Summit Int. Conf. Signal Inf. Process, pp. 1067–1070, 2015.

[36] S. Chaib, Y. Gu, and H. Yao, “An informative feature selection

method based on sparse PCA for VHR scene classification,” IEEE

Geosci. Remote Sens. Lett, vol. 13, no. 2, pp. 147–151, 2016.

[37] F. Li, A. Wong, and D. A. Clausi, “Comparative study of feature

space projection methods for hyperspectral image classification,”

Int. Geosci. Remote Sens. Symp, pp. 3438–3441, 2014.

[38] S. B. Liu, Z. Y. Yuan, J. H. Zhao, and X. L. Wang, “An approach to

face recognition based on wavelet decomposition, spca and svm,”

Proc. 2009 Int. Conf. Mach. Learn. Cybern, vol. 2, no. 2, July, pp.

989–993, 2009.

[39] Y. T. Xi and P. J. Ramadge, “Separable PCA for image

classification,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal

Process, pp. 1805–1808, 2009.

[40] I. Dagher and R. Nachar, “Face recognition using IPCA-ICA

algorithm,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 28, no. 6,

- 89 -

pp. 996–1000, 2006.

[41] A. Rozza, G. Lombardi, and E. Casiraghi, “Novel IPCA-based

classifiers and their application to spam filtering,” Int. Conf.

Intell. Syst. Des. Appl, pp. 797–802, 2009.

[42] Y. Yuan, Y. Pang, J. Pan, and X. Li, “Scene segmentation based on

IPCA for visual surveillance,” Neurocomputing, vol. 72, no. 10, pp.

2450–2454, 2009.

[43] X. Qu and M. Yao, “Adaptive subspace incremental PCA based online

learning for object classification and recognition,”Int. Congr.

Image Signal Process. CISP 2011, vol. 3, pp. 1494–1498, 2011.

[44] C. Qing, S. Zhao, and X. Xu, “The incremental PCA tracking with

negative samples,” 2014 IEEE Int. Conf. Consum. Electron. pp. 1–4,

2014.

[45] Y. Wang, J. Zhou, Z. Li, Z. Dong, and Y. Xu,

“Discriminant-analysis-based single-phase earth fault protection

using improved PCA in distribution systems,” IEEE Trans. Power

Deliv, vol. 30, no. 4, pp. 1974–1982, 2015.

[46] Y. Yin, D. Xu, X. Wang, and M. Bai, “Online state-based structured

SVM combined with incremental PCA for robust visual tracking,” IEEE

Trans. Cybern, vol. 45, no. 9, pp. 1988–2000, 2015.

[47] A. A. Alorf, “Performance evaluation of the PCA versus improved PCA

(IPCA) in image compression, and in face detection and

recognition,” FTC 2016 - Proc. Futur. Technol. Conf, no. 1, pp. 537

–546, 2017.

[48] M. Bengherabi, L. Mezai, F. Harizi, A. Guessoum, and M. Cheriet,

“Score fusion of SVD and DCT-RLDA for face recognition,” 2008 1st

Int. Work. Image Process. Theory, Tools Appl. IPTA 2008, pp. 1–8,

2008.

[49] H. Yuan, Y. Y. Tang, Y. Lu, L. Yang, and H. Luo, “Spectral-spatial

classification of hyperspectral image based on discriminant

analysis,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, vol. 7,

- 90 -

no. 6, pp. 2035–2043, 2014.

[50] C. He, T. Zhuo, D. Ou, M. Liu, and M. Liao, “Nonlinear compressed

sensing-based LDA topic model for polarimetric SAR image

classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens,

vol. 7, no. 3, pp. 972–982, 2014.

[51] R. Zeng, J. Wu, L. Senhadji, and H. Shu, “Tensor object

classification via multilinear discriminant analysis network,”

ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process, vol. 2, pp.

1971–1975, 2015.

[52] S. J. Hong and Y. H. Cho, “Image recognition by using hybrid

coefficient measure of correlation and distance,” J. Korean Inst.

Intell. Syst, vol. 20, no. 3, pp. 343–347, 2011.

[53] J. S. Hwang, J. H. Kim, “A study on the estimation of modal

parameters using independent component analysis

method,”Architectural Institute of Korea, vol. 27, pp. 27-35,

2011.

[54] S. C. Baek, J. S. Hong, “Image classification based on

multi-resolution characteristic and independent component

analysis,”Proceedings of KIIT Conference, pp. 455-460, 2012.

[55] K. H. Kwon, J. D. Lim, “Dried pepper sorting using independent

component analysis on RGB images,” Korean society of computer and

information, vol. 1, pp. 59-65, 2012.

[56] K. S. Kang, H. J, Kim, J. S. Hwang, “Mode decomposition and

output-only system identification of lateral-torsionally coupled

structures using independent component analysis

method,”Architectural Institute of Korea, vol. 28, pp. 37-45, 2012.

[57] K. H. Kim, “Vibration source contribution analysis of plate

structure using independent component analysis,” Journal of the

Korea Maritime Engineering Association, vol. 26, pp. 70-76, 2012.

[58] K. Kim, J. J. Jun, D. S. Cho, J. H. Kim, and H. M. Kwon, “Vibration

source signal identification of structures using ICA,” J. Soc. Nav.

- 91 -

Archit. Korea, vol. 49, no. 6, pp. 498–503, 2013.

[59] X. Quan, K. S. Bae, “Frequency bin alignment using covariance of

power ratio of separated signals in multi-channel FD-ICA,”Korean

Association of Voice of Korea, vol. 6, pp. 149-153, 2014.

[60] C. G. Park, “Blind source separation using ICA and masking

operation in time-frequency domain,” Korea Inst. Inf. Technol. Rev,

vol. 11, no. 10, 2014.

[61] J. S. Hwang, “A novel mode decomposition method for non-classical

damping structure using acceleration responses,” J. Archit. Inst.

Korea Struct. Constr, vol. 31, no. 1, pp. 19–26, 2015.

[62] J. Lee and B. Lee, “Design of filter to remove motionartifacts of

photoplethysmography based on indepenent components analysis and

filter banks,”Korean Society of Information and Communication, vol.

20, pp. 1431-1437, 2016.

[63] C. Symposium, “Designed of partial discharge pattern classifier of

independent component analysis based fuzzy neural networks,”Korean

institute of electrical engineers, vol. 2017, no. 10, pp.142-143,

2017.

[64] M. Wu, J. Zhou, and J. Sun, “Multi-scale ICA texture pattern for

gender recognition,” Electron. Lett, vol. 48, no. 11, pp. 629,

2012.

[65] Z. L. Sun, C. H. Zheng, Q. W. Gao, J. Zhang, and D. X. Zhang,

“Tumor classification using eigengene-based classifier committee

learning algorithm,” IEEE Signal Process. Lett, vol. 19, no. 8, pp.

455–458, 2012.

[66] R. J. Martis, U. R. Acharya, and L. C. Min, “ECG beat

classification using PCA, LDA, ICA and Discrete Wavelet Transform,”

Biomed. Signal Process. Control, vol. 8, no. 5, pp. 437–448, 2013.

[67] X. Wang and X. P. Zhang, “An ICA mixture hidden conditional random

field model for video event classification,” IEEE Trans. Circuits

Syst. Video Technol. vol. 23, no. 1, pp. 46–59, 2013.

- 92 -

[68] C. Yu, Q. Qui, Y. Zhao, and X. Chen, “Satellite image

classification using morphological component analysis of texture and

cartoon layers,” IEEE Geosci. Remote Sens. Lett, vol. 10, no. 5,

pp. 1109–1113, 2013.

[69] N. Falco, J. A. Benediktsson, and L. Bruzzone, “A study on the

effectiveness of different independent component analysis algorithms

for hyperspectral image classification,” IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens, vol. 7, no. 6, pp. 2183–2199, 2014.

[70] A. X. Stewart, A. Nuthmann, and G. Sanguinetti, “Single-trial

classification of EEG in a visual object task using ICA and machine

learning,” J. Neurosci. Methods, vol. 228, no. 1, pp. 1–14, 2014.

[71] Y. Zhao, S. Wei, Y. Xiao, Z. Zhu, and Y. Wei, “Kernel

Reconstruction ICA for Sparse Representation,” IEEE Trans. Neural

Networks Learn. Syst, vol. 26, no. 6, pp. 1222–1232, 2014.

[72] R. H. R. Pruim, M. Mennes, D. van Rooij, A. Llera, J. K. Buitelaar,

and C. F. Beckmann, “ICA-AROMA: A robust ICA-based strategy for

removing motion artifacts from fMRI data,” Neuroimage, vol. 112,

no. 1, pp. 267–277, 2015.

[73] R. Mahajan and B. I. Morshed, “Unsupervised eye blink artifact

denoising of EEG data with modified multiscale sample entropy,

kurtosis, and wavelet-ICA,” IEEE J. Biomed. Heal. Informatics, vol.

19, no. 1, pp. 158–165, 2015.

[74] J. Coloigner, “A novel classification method for prediction of

rectal bleeding in prostate cancer radiotherapy based on a

semi-nonnegative ICA of 3D planned dose distributions,” IEEE J.

Biomed. Heal. Informatics, vol. 19, no. 3, pp. 1168–1177, 2015.

[75] M. Tao, F. Zhou, Y. Liu, and Z. Zhang, “Tensorial independent

component analysis-based feature extraction for polarimetric SAR

Data Classification,” IEEE Trans. Geosci. Remote Sens, vol. 53, no.

5, pp. 2481–2495, 2015.

[76] J. Bijsterbosch, “Hand classification of fMRI ICA noise

- 93 -

components,” Neuroimage, vol. 154, no. 1, pp. 188–205, 2016.

[77] R. Chai, “Driver Fatigue Classification with Independent Component

by Entropy Rate Bound Minimization Analysis in an EEG-Based

System,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 3, pp. 715

–724, 2017.

[78] M. Iwahashi, H. Arof, P. Cumming, N. Mokhtar, and C. Y. Sai,

“Automated Classification and Removal of EEG Artifacts With SVM and

Wavelet-ICA,” IEEE J. Biomed. Heal. Informatics, vol. 22, no. 3,

pp. 664–670, 2017.

[79] Y. Zhang, T. Geng, X. Wu, J. Zhou, and D. Gao, “ICANet: a simple

cascade linear convolution network for face recognition,” Eurasip

J. Image Video Process, vol. 2018, no. 1, 2018.

[80] C. Zhang, X. Wu, X. Gao, Y. Wang, and Z. Lv, “An ICA-based spatial

filtering approach to saccadic EOG signal recognition,” Biomed.

Signal Process. Control, vol. 43, no.1, pp. 9–17, 2018.

[81] R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba, “Learning with

hierarchical-deep models,” IEEE Trans. Pattern Anal. Mach. Intell,

vol. 35, no. 8, pp. 1958–1971, 2013.

[82] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based

classification of hyperspectral data,” IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens, vol. 7, no. 6, pp. 2094–2107, 2014.

[83] T. Dobhal, V. Shitole, G. Thomas, and G. Navada, “Human Activity

Recognition using Binary Motion Image and Deep Learning,” Procedia

Comput. Sci, vol. 58, no. 1, pp. 178–185, 2015.

[84] M. Hasan and A. K. Roy-Chowdhury, “A Continuous Learning Framework

for Activity Recognition Using Deep Hybrid Feature Models,” IEEE

Trans. Multimed, vol. 17, no. 11, pp. 1909–1922, 2015.

[85] Y. Du, Y. Fu, and L. Wang, “Representation Learning of Temporal

Dynamics for Skeleton-Based Action Recognition,” IEEE Trans. Image

Process, vol. 25, no. 7, pp. 3010–3022, 2016.

[86] N. Neverova, “Learning Human Identity from Motion Patterns,” IEEE

- 94 -

Access, vol. 4, no. 1 pp. 1810–1820, 2016.

[87] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. O. Ogunbona,

“Action Recognition from Depth Maps Using Deep Convolutional Neural

Networks,” IEEE Trans. Human-Machine Syst., vol. 46, no. 4, pp. 498

–509, 2016.

[88] M. Koohzadi and N. M. Charkari, “Survey on deep learning methods in

human action recognition,” IET Comput. Vis, vol. 11, no. 8, pp. 623

–632, 2017.

[89] Y. Kim and Y. Li, “Human Activity Classification with Transmission

and Reflection Coefficients of On-Body Antennas Through Deep

Convolutional Neural Networks,” IEEE Trans. Antennas Propag, vol.

65, no. 5, pp. 2764–2768, 2017.

[90] Y. Liu, Q. Wu, L. Tang, and H. Shi, “Gaze-Assisted Multi-Stream

Deep Neural Network for Action Recognition,” IEEE Access, vol. 5,

pp. 19432–19441, 2017.

[91] D. Holden, “Edinburgh Research Explorer Fast Neural Style Transfer

for Motion Data,” IEEE Computer Graphics and Applications, vol.

37. no. 4, pp. 42-47, 2017.

[92] H. Chen, J. Chen, R. Hu, C. Chen, and Z. Wang, “Action recognition

with temporal scale-invariant deep learning framework,” China

Commun, vol. 14, no. 2, pp. 163–172, 2017.

[93] Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, “A Comprehensive

Study on Cross-View Gait Based Human Identification with Deep

CNNs,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 39, no. 2, pp.

209–226, 2017.

[94] B. Ni, T. Li, and X. Yang, “Learning semantic-aligned action

representation,” IEEE Trans. Neural Networks Learn. Syst, vol. 29,

no. 8, pp. 3715–3725, 2018.

[95] H. Rahmani, A. Mian, and M. Shah, “Learning a Deep Model for Human

Action Recognition from Novel Viewpoints,” IEEE Trans. Pattern

Anal. Mach. Intell, vol. 40, no. 3, pp. 667–681, 2018.

- 95 -

[96] L. Wang, Y. Xu, J. Cheng, H. Xia, J. Yin, and J. Wu, “Human Action

Recognition by Learning Spatio-Temporal Features with Deep Neural

Networks,” IEEE Access, vol. 6, pp. 17913–17922, 2018.

[97] C. Yang, N. Tavassolian, “An Independent Component Analysis

Approach to Motion Noise Cancelation of,” IEEE Trans. Biomed. Eng.,

vol. 66, no. 3, pp. 784–793, 2019.

[98] Y. Zheng and X. Hu, “Interference Removal From Electromyography

Based on Independent Component Analysis,” IEEE Trans. Neural Syst.

Rehabil. Eng, vol. 27, no. 5, pp. 887–894, 2019.

[99] T. Chan and Y. Ma, “PCANet: A Simple Deep Learning Baseline for

Image Classification?,” IEEE Transactions on Image Processing, vol.

24, no. 12, pp. 5017-5032, 2015.

[100] J. Wu, “PCANet: An energy perspective,” Neurocomputing, vol. 313,

pp. 271–287, 2018.

- 96 -

List of publications

Paper

1. Jae-Neung Lee, Myung-Won Lee, Yeong-Hyeon Byeon, Won-Sik Lee,

Keun-Chang Kwak, "Classification of horse gaits using FCM-based

neuro-fuzzy classifier from the transformed data information of inertial

sensor", Sensors, vol. 16, Article ID 664, 2016.

2. Yeong-Hyeon Byeon, Myung-Won Lee, Jae-Neung Lee, Keun-Chang Kwak,

"Prediction of dinghy boom direction using intelligent predictor",

International Journal of Control Automation and Systems, vol. 16, no. 1, pp.

368-376, 2018.

3. Jae-Neung Lee, Yeong-Hyeon Byeon and Keun-Chang Kwak, “Design of

Ensemble Stacked Auto-Encoder for Classification of Horse Gaits with

MEMS Inertial Sensor Technology”, Micromachines, vol. 9, no. 8, pp. 1-17,

2018.

4. Yeong-Hyeon Byeon, Myung-Won Lee, Jae-Neung Lee, Keun-Chang Kwak,

“Multilinear EigenECGs and FisherECGs for Individual Identification from

Information Obtained by an Electrocardiogram Sensor”, Symmetry. vol. 10,

no. 10, pp. 1–21, 2018.

5. Jae-Neung Lee, Yeong-Hyeon Byeon, Sum Bum Pan, and Keun-Chang

Kwak, An EigenECG network approach based on PCANet for personal

identification from ECG signal”, Sensors. vol. 18, no. 11, pp. 1–25, 2018.

6. Jae-Neung Lee, Keun-Chang Kwak, “Personal identification using a robust

EigenECG netwrok based on time-frequency representations of ECG

signals”, IEEE Access, vol. 7, pp. 48392–48404, 2019.

7. 이재능, 곽근창, “셀프코칭 시스템을 위한 웨이블릿 패킷과 오토 엔코더 기반 승마

보법분류”, 한국정보기술학회논문지, vol. 15, no. 5, pp. 1-9, May 31. 2017.

- 97 -

List of publications

Conference

1. Jae-Neung Lee, Keun-Chang Kwak, "A Trend Analysis of Image Processing

Approaches in Unmanned Aerial Vehicle", International Conference on

Image Processing, Analysis and Computer Vision (IPACV), pp. 271-274,

Feb. 2014.

2. Jae-Neung Lee, Keun-Chang Kwak, "A Trends Analysis of Yatch Simulator

Dinghy", International Conference on Wireless and Mobile Networks

(ICWMN), pp. 1272-1275, Feb. 2015.

3. Jae-Neung Lee, Myung-Won Lee, Jung-Su Han, Sung-Bum. Pan,

Keun-Chang Kwak, "Yacht DB Construction Based on Five Essentials of

Sailing", International Conference on Soft Computing and Data Mining

(ICSCDM), pp. 1276-1279, Feb, 2015.

4. Jae-Neung Lee, Keun-Chang Kwak, "A Performance Comparison of

Auto-Encoder and Its Variants for Classification", International Conference

on Signals and Systems (ICSigSys), pp. 207-211, May, 2017.

5. Jae-Neung Lee, Sum Bum Pan, Keun-Chang Kwak, "IIndividual identification

Based on Cascaded PCANet from ECG Signal", 2019 International

Conference on Electronics, Information, and Communication (ICEIC), pp.

1-4, Jan, 2019.

7. 이재능, 곽근창, “다선형 PCA를 이용한 K-POP 댄스모션 분류”, 한국정보처리학

회, 건국대, 2018년 5월

8. 이재능, 곽근창, “Stacked 오토엔코더 기반 승마 보법 분류”, 한국정보처리학회 추

계학술발표대회, 부산대, 2016년 11월 5.

9. 이재능, 반성범, 곽근창, "요트 시뮬레이터와 모션 분석의 국내외 연구동향 분석",

한국정밀공학회 춘계학술대회논문집, pp 1053-1054, 2015년 5월 13.

- 98 -

10. 이재능, 곽근창, "관성센서 기반의 모션 캡쳐 슈트를 이용한 승마 모션 분석", 한

국정보기술학회 하계학술대회, 공주대, pp. 92-95, 2014년 5월.

11. 이재능, 곽근창, "국내 무인항공기 영상처리 동향분석", 한국스마트미디어학회 추

계학술대회, 군산대, pp 221-225, 2013년 11월.

12. 이재능, 곽근창, "스포츠 시뮬레이터의 국내외 연구개발 동향 분석", 순천 정원엑

스포 ICT 합동 학술대회 논문집, 순천대, pp. 141-143 2013년 6월

- 99 -

List of publications

Patent

1. Keun-Chang Kwak, Myung-Won Lee, Yeong-Hyeon Byeon, Jae-Neung Lee,

“Real-time coaching system based on three dimensional motion analysis of

horse rider“, 10-2013-0138335, 2013.

2. Jae-Neung Lee, Keun-Chang Kwak, Sum Bum Pan, Myung-Won Lee,

Yeong-Hyeon Byeon, “Dinghy yacht coaching system and method thereof”,

10-2016-0022355, 2016.

- 100 -

List of publications

S/W Registration

1. 변영현, 이명원, 이재능, 곽근창, “승마보법별 승마자의 자세분석 프로그램”, KR,

C-2013-009539 호, 2013.

2. 이재능, 곽근창, “앙상블 기반 스택트 오토엔코더”, KR, C-2017-033274 호,

2017.

3. 이재능, 곽근창, “앙상블 기반 ELM 알고리즘”, KR, C-2017-036615 호, 2017.

- x -

ABSTRACT

Deep Network Design based on Independent Component Analysis

and Application of User Recognition

Lee, Jae Neung

Advisor : Prof. Kwak, Keun Chang, Ph. D.

Dept. of Control and Instrumentation Eng.,

Graduate School of Chosun University

In this paper, we propose a systematic structure of ICANet1, a deep

network based on independent component analysis, and develop it into ICANet2

model. The proposed PCANet has smaller computational complexity and faster

speed than deep learning. However, there is a disadvantage in that the

performance is lowered according to the modification of data. The ICANet

algorithm is proposed to solve the problem. There are two structures for the

ICANet algorithm. The first stage of the ICANet1 algorithm is a step of mean

removal and obtaining a central image. Next, the covariance is obtained by

using the center image, the Eigenvector is obtained through the value, and

finally, the Eigenvector is used as the input of the independent component

analysis filter. Here, centering and whitening steps are performed, and an

optimal independent component matrix is obtained by updating the weights.

Using this matrix, a padding image obtained through the averaging step and

- xi -

convolution are calculated. This is the first step in ICANet2. ICANet2 does

not use Eigenvectors but uses PCA feature vectors. To remove the correlation

among the PCA feature vectors, the ICA algorithm is used to find that are

statistically independent. The use of statistically independent vectors can

help overcome the disadvantages of the PCA and improve the performance. The

second stage of the ICANet is almost identical to the first stage, and

because it uses the data from the first stage, only the number of dimensions

is reduced. It is used as an input to the output stage using the resultant

product data from Step 2. Here, the feature values of the independent

component analysis network can be obtained by using the hashing code step

and the histogram. The feature values obtained from the final histogram are

vectorized and used as an input to the classifier. By using ICANet, the

performance is lower than that of deep learning, but it is expected to be

superior to recognition speed, especially for mobile. The classifier shows

performance using Euclidean distance, squared Euclidean distance, city block

distance, Minkowski distance, cosine distance, correlation distance, and

Spearman distance, SVM. To verify the performance of the proposed method, we

used the FERET face, the CU-FACE, the CU-ECG, and the noise ECG database.

Experimental results show that ICANet1 and 2 have better performance than

PCANet for Dup1 and Dup2 data affected by time. In addition, when noise ECG

data were used, it showed better performance than PCANet. This proved the

validity of the ICANet algorithm.

	Ⅰ. Introduction
	1.1. Research background and review of papers
	1.2. Composition of paper

	Ⅱ. PCANet and its variance with ICA
	2.1. PCA
	2.2. ICA
	2.3. Deep Learning
	2.4. PCANet
	2.5. LBP

	Ⅲ. Proposed ICANet
	3.1. Statistically Independent Basis Image ICANet (ICANet1)
	3.2. Factorial ICANet (ICANet2)

	Ⅳ. Experimental and Results
	4.1. Database
	4.2. Experimental results and discussion

	Ⅴ. Conclusion
	References
	List of Publications

<startpage>14
Ⅰ. Introduction 1
 1.1. Research background and review of papers 1
 1.2. Composition of paper 6
Ⅱ. PCANet and its variance with ICA 7
 2.1. PCA 7
 2.2. ICA 8
 2.3. Deep Learning 13
 2.4. PCANet 17
 2.5. LBP 28
Ⅲ. Proposed ICANet 30
 3.1. Statistically Independent Basis Image ICANet (ICANet1) 33
 3.2. Factorial ICANet (ICANet2) 43
Ⅳ. Experimental and Results 57
 4.1. Database 57
 4.2. Experimental results and discussion 61
Ⅴ. Conclusion 84
References 85
List of Publications 96
</body>

