creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

[UCI]1804: 24011- 200000267440

August 2019

Doctor’s Degree Thesis

Deep Network Design based on
Independent Component Analysis and

Application of User Recognition

Graduate School of Chosun University

Dept. of Control and Instrumentation Engineering

Jae-Neung Lee

Deep Network Design based on
Independent Component Analysis and

Application of User Recognition

SYARENIL g VELD A4 2 48R 949 58

August 23, 2019

Graduate School of Chosun University

Dept. of Control and Instrumentation Engineering

Jae-Neung Lee

Collection @ chosun

Deep Network Design based on
Independent Component Analysis and

Application of User Recognition

Advisor: Prof. Keun—-Chang Kwak

This thesis is submitted to The Graduate School of Chosun
University in partial fulfillment of the requirements for the
Doctor’s degree in Control and Instrumentation Engineering

April 2019

Graduate School of Chosun University

Dept. of Control and Instrumentation Engineering

Jae-Neung Lee

Collection @ chosun

This is to certify that the Doctor’s Thesis of Jae—neung
Lee

has been approved by the Examining Committee for the thesis requirement
for the Doctors’s Degree in Control and Instrumentation Engineering

Committee Chairperson
Prof. Sung Bum Pan ! (Sign)

Committee Member

Prof. Hyun Sik Choi Hywm =5k Cho (Sign)
Committee Member P v

== i =i
Prof. Hong Gi Yeom ff% (Sign)

=4
Committee Member _
Prof. Do Hyung Kim mc YV (Sign)
Committee Member |
Prof. Keun Chang Kwak (Sign)
" AN i
June 2019

Graduate School of Chosun University

Collection @ chosun

Table of Contents

TAD1E© OF CONTENTS cooooomoomsessesiessessesesseseesessoesesses e |
LISt Of FIQUIES i iv
IR S T) o) - T vi
ADSTTaCT (KOF@AN) wrrrmrsmsssmssssessisessssessssessssessssssss e vi
ADSTract (ENGliSN) s x
| . INTTOAUCT 1 QN orevreererrrsmmmseesssmmsnscsssssssssssssssssssssssssssssssmssssssssssssssssssssssnees 1
1.1. Research background and review of papers - 1
1.2, COMPOSi 10N OF PADET wrrrrrmrorsomsmemiomiomsmsesiosiossosossososoe 5
Il . PCANet and its variance With [CA 7
D 4 PEA oo 7

D D [GA worereemssseeeeess s 8
2.3, DEEDP LBATNING rororrrmroromiomsmsesiesiosiossessesesiosossossossoesoesooso 13

D Z PCANGT oovvevrrerssmmsesemessssssssseesssssssssesess s 17
2.4.1 First Stage of PCANET - 19

2.4.2 Second Stage of PCANEt s o0

2.4.3 Qutput Stage Of PCANEt s o

Collection @ chosun

D 5 LBP e 28

1. PropoSed |CANET s 0
3.1. Statistically Independent Basis Image [|CANet
(ICANBET) oottt 33
3.1.1 First Stage of [CANETT e 34
3.1.2 Second Stage of [CANEt 1 s 37
3.1.3 Output Stage of [CANEt T s A1
3.2. Factorial ICANet (ICANEL2) s 43
3.2.1 First Stage of [CANET2 e 45
3.2.2 Second Stage of [CANEE2 s 48
3.2.3 Output Stage of [CANEL2 s 51
V. Experimental and ReSUltS - 57
A 1 DALADASE wooooeseereeeseeeersssssmsseeeeessssssssssssesssssssssssssess s 57
A 1 1 CUECG dAtADASE -wrrrrrresermoeeermmmsssssssesseeeessssssesseeeessssssneee 57
4 1 2 FERET FACE dAtaDASE wroreeesssessmsmmmmmiemmisssssesnnesssneneeenees 50
A 1.3 CU-FACE DALADASE -wwrrrrvrrrrrssmseesermmssessssssssseseeesssssssssssseeees 51
4.2. Experimental results and diSCUSSION s 61
A D 1 ClASS] FIO overrrmrrmsssssssiseeseeesssssssiissseeessesssssssssssssses oo 51
4 2 2 Performance evaluation e &

i

Collection @ chosun

4.2.3 Sett|ng parameters .. 62

4.2.4 Experimental results and performance

ana | yS | S rerereererereeereiii e 63
V . CONCIUSTON wererrrrrmmmersssmsessmsssssissssssssisssns 84
References85
Llst of Publ |Cat |ons .. 96

Collection @ chosun

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

List of Figures

ECG representatlon ... ‘]‘]
App| |Cat|ons of deep |earn|ng ... ‘]3

Simple deep learning architecture called stacked auto—encoder

14
IMage RECOGN i tiON USING DL rrerersrssrrresssssrrssssssssensssssssssssssssssssssesssasee 15
DIiagram Of PCANGE «rerrserrreessssrresssssssrrsssssssssssssssssssssss s 17
WOTKFIOW OF PCANGE +rrveeressserssressmssssssssssssssss s 18
EXAMDI@ Of DAtCN StEp swrreeessssrresssssmmrrsssssssrsssssssssssssssssssssssss e 01
Principle Of Dasic LBP rrrrsrrmmssnrrrsssssssssssssssssssssssssssssans o8
LBP applied face reCOgnition s rmmsrrmmissssssnesssseneeesd 9
SEIUCTUTE OF [CANBET woreersersseesssmsssssssssss s 30
AN iMage SYNtHESTS MO | wrrrrerrrrssrrremsssssrrsssssssssssssssssnsessssnssss 31
First stage of [CANEtT s 36
Feature CU-ECG database in first stage of [CANet1 «woereeeeeess 36
Second and output stage of [CANEtT rrererrrrrssmrmmmmsmmsesssnrnneennnns 40

Feature CU-ECG database in second and output stage of [CANet140

Hashing codes in output stage Of [CANEtT sreeessrrremmsmrrmmmsmmirrenennns 41
SEIUCTUTE OF [CANBTD wrererssrrsssemsssmsssssssssss sy 43
Image synthesis model in [CANEED rrrrsrrrrmmmmmrmmmsssnsnssssenneesssaees 44
Two architectures for performing [CA on images «wweeeeseeeenss 45
First stage of [CANETD e 54
Feature CU-ECG database in first stage of [CANEt2 «wereeeeeeeens 54
Second and output stage Of [CANETD «werrsrrerssmrrrmemmrerssssernesssnanes 55

Feature CU-ECG database in second and output stage of |CANet?2

Collection @ chosun

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure
Figure
Figure
Figure
Figure
Figure

Figure

e

Figure
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23

55

Data acquisition environment for ECG biometrics -« 58
Mainboard and exper iment eNVirOMMENt «rssrerrmeesssicreeessseee 58
Preprocessing Using CU ECG database s rremsssmrresssnsersssssnanes 58
Samples Of CU-ECG database «ressssrreesssmsrsssssssssssssssssssnssssssee 59
Samples of CU-ECG database with size scale - 59
Example of different categories of FERET images -wweeeereeeeeee: €0
Example of CU-Face data With NOiSe i 61
The influence on the number of filters in [CANet «weereeeeeeeeeee: 64
The influence on the block size in [CANEt e 64
Correlation of PCANet, ICANet1, and [CANET2 wreereesseesesesienee: €5
Distribution chart of feature in ICANEt e 6
Performances of CU-ECG USING SUM rrersssrrremsssmmmssessssensssssssssnnssnssd 78
Performances of Gaussian noise CU-ECG using SVM = -eeeeeeeeeeeeeeee: 78
Per formance of FERET database (Fb), R=0.5 wrrererrerreeememmeminiinesd 79
Performance of FERET database (FG), RE0.5 wrerrrerrerememneminiines) 79
Performance of FERET database (Dupl), R=0.5 ey 80
Performance of FERET database (Dup2), R=0.5 = wwerersersreseseneneness 80
Performance of CU=Face databas@ «-weermmmmmmmnisensnsenianns 81
Per fOrmance Of CU=ECG «rrrrrermmmmmmmsemmsesssisssssssssisssssssssssssnsesssnns 81
PEr fOrMmance Of CU—FAGCE wwrerrrmmmmmmimmssssssissssassssssssssssssssssnsss s 8
Per fOrmance Of FERET «reereesrmsmmmimmmmmssnssssssisssssssssssissssssssssssssssssaens 8
Per fOrmance Of CU=ECG «ewrermermmmmmimmsmmsssssisssssssssssssssssssssssssssssanes 83
Per formance of SCale CU=ECQ «rerrerrrmmmmmsmmmsinmssssinssnsssssssssissnaans 83
—y -

Collection @ chosun

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

na e T

4.20
4.21
4.22
4.23
4.24

List of Tables

The core parameters of PCANGt «rerreressrrrmmssmressssnsrnssesssssssssessecs 17
Data information Of FERET wrererrmmmmmmminissssssssssssnsssssssssnaans 80
Mathematical expression of Glassifiers s &2
Performance of PCANet using CU-ECG database «wweeeeeeeeeeeeenee: o7
Performance of [CANet1 using CU-ECG database «--weeeeesesenenenee: o7
Performance of [CANet2 using CU-ECG database «wweeeeeeseeeeeenee: 68

Per formance of PCANet using Gaussian noise CU-ECG database --68
Performance of |CANet1 using Gaussian noise CU-ECG database 69

Performance of |CANet2 using Gaussian noise CU-ECG database 69

Performance of PCANet using FERET database (Fb) «eeeeeeeeeeeees: 70
Performance of PCANet using FERET database (Fc) «eeeeeeeseeeees 70
Performance of PCANet using FERET database (Dupl) «wereerereeees 71
Performance of PCANet using FERET database (Dup2) «werereeees 71
Performance of ICANet1 using FERET database (Fb) «weeeeereereeeeess 72
Performance of ICANet1 using FERET database (Fc) «weeeeeeereeeees 72
Performance of ICANet1 using FERET database (Dupl) «eewerereeeees 73
Performance of ICANet1 using FERET database (Dup2) «wewereeeees 73
Performance of ICANet2 using FERET database (Fb) «weeeereeereeeees: 74
Performance of ICANet2 using FERET database (Fc) e 74
Performance of ICANet2 using FERET database (Dupl) «eewerereeeees 75
Performance of ICANet2 using FERET database (Dup2) «wewereeeees 75
Performance of algorithms using FERET database (Fb) -weeeerees 76
Performance of algorithms using FERET database (Fc) -eeeeee 76
Performance of algorithms using FERET database (Dupl) = 77
Performance of algorithms using FERET database (Dup2) -« 77
— Vi -

Collection @ chosun

—

[—

“XE M

ObXI
|CANet & 1) 2l
B M oA EHAH Ol

deep learning2l Hi

(-
=

XA A el
EHAH=

o

HEo et ds0l

=P

|

X
A

HIERZL! [CANet12
JIZ0 MIete! PCANet

. ofXI2t dlole <
2els9

4 AI21CH.
|CANet 1

S
[y

a2 ¢

a

20 UL

ICANet2 2

SHAEEY7IN g Y EYI A R ALA A4 &

ot1,
S0le 29t

F

(0]
[uit)

0l
il

-~ ol

ol

—_

Ll

IH

JU

012301 Ht=Z [CANet22

(whitening)
Ct.

SlOIEE

=l

(centering) 1t
| CANet22|

HIIA dBE

SHAHIOICH.

&I Ct.
=P

=
= MIA EHA

|

At
It

ol

CIAH =
o=

BHE 0ISE 22 M PCAS

=21
=

f==g=1]
=]

-

S
A

SAH

Ju
RK

11

w

5l

ol

4
Rr

40

ct

1

EAH=

= QUCH. ICANet2 2 IH
INE=1I DAL

o

H

HAOA €2 OI0IH

—

J

o
1o
0

1o

o
i

ioll

=

=2

C|

1

O,

¢}

o
=

=
S

At AHe
el Ct.

Ll

£ 0l

GloIE

HD
X0
0D

0l
ol

X

b

2EHH 0l A

= Vil -

o4 JI A
Collection @ chosun

S = U, 2S5 SIAEJZUHA 0 S& g2 HH 3ot 2712 52
E MEELC ICANetS MEE2ZMN, Eaid 20 2X2JF &) 20 452 2
o 2 = 2L, UMSBEAN ESe HE 201, Sol 2Ht2uAE AFE0]
ls & ez JItEl. 28Il R22& Hel, Ms=23ct Hel, TAES
Acl, YRTZAI] Hel, DA, af22AH el deld ALE Hel, SWME
OlZol ds= UEHCH. HMete 2ol ds= HSot)| <ol FERET =00l
B, CU-FACE OIOIE, CU-ECG OIOIEf, =0I= ECG HIOIEHIOIAE ALZSHAUCEH. &
g2 AlZH0 Sets 22 Dupl, Dup2CIOIEfel B ICANet1, 2Jt PCANet=2CH £
2 dss ML, L &8 48T HOIHE MEMUS [H PCANet=ZCH SFatE
dsS LE™O. OI2ZM [CANetZ212IES Rads SHotUL
— viii -

Collection @ chosun

| . Introduction

1.1 Research background and review of papers

Deep learning is defined as a set of machine learning algorithms that are
dependent on the derived neural network of machine learning and attempt a
high level of abstraction (a task that summarizes key content or functions
in large amounts of data or complex data) through a combination of several
nonlinear transformation techniques. It can also be said that it is a field
of machine learning that teaches computers how people think in a big frame.
When there is any data, it is expressed in the form that the computer
understands (for example, the pixel information is represented by a column
vector in the case of images). As a result of these efforts, various deep
learning techniques such as deep neural networks, convolutional neural
networks, and deep belief networks are used for computer vision, speech
recognition, natural language processing, It is applied to the field of
voice/signal processing and shows cutting-edge results [1-3]. However, there
is a limit to deep learning. For example, the problem of time and cost for
collecting big data, the efficiency problem that must be learned through
many repetitions, the theoretical verification of algorithm except slope
descent is poor, and the black box can be listed [4-6]. In other words, a
convolutional neural networks (CNN) is a basic deep learning architecture
that has been applied to text, image, and speech recognition. In many
industries, deep learning interest is constant. In addition, the most
important thing is that CNN can automatically extract and learn hidden
representations of data on a number of blocks consisting of a convolutional
layer, activation function layer, and max-pooling layer. However, how to
choose parameters and configurations, including the filter sizes, the number
of layers, and the pooling function, is a big challenge. Consequently, the
network structure such as AlexNet, ResNet and GooglLeNet are growing deeper.
Despite the great successes of deep learning, common researchers are not yet
solving its feature learning mechanism and optimal network configuration
problem. Accordingly, Chen studied the principle component analysis network

Collection @ chosun

(PCANet), which is a shallow and intensive deep learning network. Also, a
simple deep learning network, which have to be very easy, even trivial, to
train and to adapt to different database and tasks. Consequently, such a
basic network could serve as a good reference for researchers to justify the
use of more advanced processing components or more sophisticated
architectures for their deep learning networks empirically. Therefore, The
PCANet algorithm has been proposed by Chan. However, PCANet is still
correlated, and the ICANet algorithm has been proposed to remove the
correlation. Although the ICANet algorithm has appeared recently, it has not
been systematically generalized. Therefore, this paper aims to generalize
algorithms from I|CANet1 ~ 2 and extend the concept. In order to improve the
limitations of PCA in the face recognition field, various studies on |CA
have been conducted and we propose deep ICANetl, 2 algorithm that improves
the disadvantages of PCANet and generalized to improve performance using
practical data. In addition, we validate the |CANet algorithm by comparing
the performance with the existing PCANet algorithm and analyzing the
influence of the parameters. Lastly, the ECG data is applied for
authentication security, and the face data is used for comparing the
per formance of the algorithm.

The contribution of this paper is as follows. First, we generalized the
ICANet1 algorithm. The proposed [CANet1 algorithm is poorly explained
theoretically and structurally. Therefore, this paper improves the
theoretical lack of ICANet1's algorithm. Second, we modeled a new structure
called ICANet2. Third, the validity of the algorithm was verified by using
the electrocardiogram data and the image data obtained in real life. To
study ICANet algorithm, we list the trend of several algorithms as follows.

We first list the trends of PCA, which is the origin of the PCANet
algorithm. The PCA was proposed by Jolliffe in 2002 [7]. First, the derived
algorithms of PCA are listed in order of domestic and foreign. Chungnam
National University Bui [8] studied in-video human detection and pose
estimation using motion data based on RPCA algorithm. Chosun University [9]
performed personal identification using the electrocardiogram signal data
based on MPCA algorithm. The existing one dimensional electrocardiogram
signal was changed into three—dimensional shape to improve the recognition

Collection @ chosun

rate. Seoul National University Park [10] classifies images using kernel
principal component analysis with image database class. Kim [11] of Suwon
University used numerical incremental principal component analysis based on
handwr itten numerical data.

The following are overseas trends using RPCA. Jin [12] detected
contrast—filled vessels using X-ray data based on robust principal component
analysis (RPCA). Lu [13] was classified using face image and object data
based on RPCA. We use Li [14] image data based on RPCA to detect moving
objects. Vaswani [15] performed subspace tracking and restoration using RPCA
based on image data. Liu [16] performed tumor classification using RPCA
based on MRl data. Sun [17] wused geo-spatial classification using
Hyper—spectral data based on RPCA. Zhong [18] classified faces and numbers
using robust 2DLDA based on face and numerical data. Yan [19] face and
numerical data based on RPCA.

The following are trends using KPCA. Kuang [20] performed intrusion
detection using KPCA based on communication data. Liu [21] performed mental
fatigue estimation using KPCA-HMM based on EEG data. Vinay [22] performed
face recognition using face data based on KPCA. Quan [23] performed facial
recognition using face data based on KPCA. Romero [24] classified the images
using KPCA based on satellite image data. Xia [25] performed image
classification using KPCA based on hyper-spectral image data. Yuan [26]
studied smoke detection using image data based on KPCA. Hotta [27] performed
a scene classification using KPCA based on image data. Xiao [28] performed
novelty detection using KPCA based on image data of square, spiral, and
banana motifs.

The following are research trends of various SPCA. Chaib [29] performed a
scene classification using sparse PCA based on image data. Ashutosh [30]
classifies objects using standardized PCA based on hyper—spectral image
data. Uddin [31] classifies images using segmented PCA based on
hyper-spectral image data. Xiao [32] performed face recognition using face
data based on sparse PCA. Hu [33] performed leukemia analysis using sparse
PCA based on medical statistical data. Pierrefeu [34] analyzed mild
cognitive impairments using structured sparse PCA based on MRI medical data.
Wang [35] performed image classification using sparse PCA based on

Collection @ chosun

hyper-spectral image data. Chail [36] performed VHR scene classification
using hyper-spectral image data based on sparse PCA. Li [37] analyzed and
classified images using a supervised version of PCA based on hyper—spectral
image data. Liu [38] performed facial recognition using face data based on
symmetry PCA. Xi [39] uses numeric image data based on separable PCA for
number classification.

The following are research trends for various IPCA. Dagher [40] studied
face recognition using incremental PCA based on face data. Rozza [41]
studied spam filtering using isotropic PCA based on alphabetical data
obtained from e-mail. Yuan [42] performed scene separation for visual
monitors using incremental PCA based on scene data. Qu [43] performed object
recognition using incremental PCA based on object data. Qing [44] performed
face detection using incremental PCA based on scene data. Wang [45]
diagnosed the circuit breaker using Improved PCA based on feature data. Yin
[46] performed visual tracking using incremental PCA based on 3D image data.
Alorf [47] performed face detection and recognition using the improved PCA
based on face data. The following lists the algorithms derived from LDA.
Bengherabi [48] performed facial recognition using regularized LDA based on
facial data. Yuan [49] used terrain classification using spectral-spatial
LDA based on hyper-spectral data. He [50] classified the terrain using a
nonlinear compressed sensing—based LDA topic based on polarimetric synthetic
aperture radar image data. Zeng [51] classifies objects using a multi-linear
discriminant analysis network based on object data. The following lists [CA
algorithms and algorithms derived from ICA. First, Hong Seongjun [52] in
Korea performed facial expression recognition using face data based on [CA.
Hwang [53] studied mode separation of buildings using ICA based on sound
data. Baek [54] classifies images using ICA based on image data. Kwon [55]
used image data based on ICA to classify the red pepper images. Kang [56]
studied the translational-warping mode of dry matter using ICA based on
sound data. Kim [57] analyzed the vibration source contribution of plate
structures wusing vibration signal data [ICA. Kim [58] studied the
identification of vibration source signals of structures using |CA based on
sound data. Jeon [59] studied frequency binarization using frequency domain
ICA based on sound data. Park [60] studied blind signal separation using

Collection @ chosun

ICA based on voice data. Hwang [61] studied a new mode separation technique
using the acceleration response of structures using sound data based on [CA.
Lee [62] designed a dynamic noise reduction filter using ICA. Jung [63]
designed a partial discharge pattern classifier using ICA based on high -
dimensional data.

Overseas, Wu [64] performed gender recognition using multi-scale [CA
based on image data. Sun [65] performed tumor classification using
microarray data based on ICA. Martis [66] performed ECG beat classification
using the ECG data based on [ICA. Wang [67] performed video event
classification using ICA based on video data. Yu [68] performed image
classification based on image data and [CA. Falco [69] performed
hyper-spectral image classification using the effectiveness of different [CA
based on image data. Stewart [70] performed a single-trial classification
using ICA based on EEG data. Xiao [71] studied sparse representation using
image reconstruction ICA. Pruim [72] studied the removal of motion artifacts
using robust ICA based on MRI data. Ruhi [73] studied eye blink artifact
denoising using wavelet ICA based on EEG data. Coloigner [74] performed
cancer classification using semi—-nonnegative ICA based on image data. Tao
[75] performed SAR data classification using Tensorial ICA based on image
data. Griffanati [76] performed hand classification using fMRI data based on
ICA. Chai [77] performed driver fatigue classification using EEG data based
on entropy rate bound minimization analysis [CA. Sai [78] performed an
automated classification using wavelet-ICA based on EEG data. Zhang [79]
performed facial recognition using I|CANet based on image data. Lv [80]
recognized saccadic ECG signals using |CA based on EOG signal data.

The following is a research trend about deep learning. Because |CANet is
part of deep learning, a comparative analysis is needed. Ruslan [81]
classified images and motion using a hierarchical dirichlet process deep
Boltzmann machine based on motion data and image data. Chen [82] performed
hyper-spectral data classification using a stacked auto—encoder based on
image data. Dobhal [83] performed human activity recognition using binary
image data based on CNN. Hasan [84] performed activity recognition using
sparse auto-encoder based on video image data. Du [85] performed action
recognition using hierarchically bidirectional RNN based on skeleton data.

Collection @ chosun

Neverova [86] performed human identification using dense clockwork RNN based
on image data. Wang [87] performed action recognition using three channel
deep convolutional neural networks based on depth map image data. Koohzadi
[88] performed human action recognition using a CNN structure based on video
data. Kim [89] performed human activity classification using deep CNN based
on motion data. Liu [90] performed action recognition using two CNN based on
video data. Daniel [91] transformed the structure of CNN based on image data
to generate motion data and picture data. Chen [92] performed action
recognition using the structure of CNN based on image data. Wu [93]
performed human identification using CNN structure based on image data. Ni
[94] performed an action representation using a CNN structure based on video
data. Rahmani [95] performed human action recognition using robust
non-linear knowledge transfer model based on motion capture data. Wang [96]
performed human action recognition using a CNN structure based on image
data. Finally, there are studies on noise using ICA. Yang [97] proposed a
new framework for measuring sternal cardio-mechanical signals from moving
subjects using multiple sensor. Interference detection and removal method
with minimal distortion of the EMG was developed based on the independent
component analysis by Zheng [98] ICA is more resistant to noise than PCA.
In this paper, we demonstrate the superiority of [CANet by adding noise to
the data.

1.2 Composition of paper

This study is composed as follows. Section 1 describes the motivation for
ICANet's algorithm development and |ists the derived algorithms of the
PCANet algorithm that overcomes the shortcomings of deep learning. It shows
the emergence background of PCANet and ICANet. In Section 2, we show the
research trends of PCA, LDA, ICA and LBP algorithms, and show the proposed
methods of PCANet, LDANet, and ICANet algorithms. Section 3 presents |CANet1
and |CANet2. In Section 4, we prove the validity of the proposed algorithm
using face and ECG database and compare the effect of each parameter.
Finally, Section 5 present concludes.

Collection @ chosun

Il . PCANet and its variances with ICA
2.1 PCA

PCA is a method of identifying patterns in data and expressing the data
in such a method as to highlight their similarities and differences. Since
patterns in data could be hard to find in data of high dimension, where the
graphical representation is not available, PCA is a wuseful tool for
analyzing data.

One of the main advantage in PCA is that once we have found these
patterns in the data, and we compress the data, for example by reducing the
number of dimensions, without a lot of loss of information.

The PCA is a set of mutually orthogonal basis vectors indicating the
direction of maximum dispersion of data. PCA is widely used for image data.
The biggest problem in recognition problem using image data is the high
level of data. Dimensioning the high dimension can lead to efficient
features. It is a method of expressing an arbitrary image by orthogonal
basis image that expresses the overall characteristics of a learning image
using statistical characteristics of a learning image, that is, decomposing
into an Eigen image and linear combination of the inherent image. PCA was
applied to face recognition by Pentland in 1991,

Collection @ chosun

Algorithm 1 PCA
Input : a D-dimensional training set X=z,,2,,..,zy and

the new (lower) dimensionality d (with d<D)

. -1 8.
1. Computing the mean szle
i=1

1 N
2. Computing the covariance matrix Cov(z) = WZ oz), — ;)"
i=1
3. Finding the spectral decomposition of Cov (x), obtaining the
Eigenvectors Vi, V,,...,V,, and their corresponding Eigenvalues
A Ay Ap. Noting that the Eigenvalues are sorted, such that

M =X =0 e>)) >0

4. For any zERY | its new lower dimensional representation is:

y=W\(z—2),\ (z—z),.\] (z—=z))"=R" and the original x can be
approximated as
r=z+\N(@—2)\ + O\ (@—2) A+ o X (z—2))\,

2.2 ICA

In this section, we present the ICA algorithm used in the setting of
recognition problem and describe the procedure as it develops for several
different architectures.

Firstly, we address the motivation of ICA. Suppose that they are in a
room where two people are speaking at the same time. The room has two
microphones at different places, and we can get two voice signals which we
can denote by =z,(t) and z,(t), with =, and =z, the amplitudes, and t the time
index. The signal recorded by the microphone is the weighted sum of the
speech signals emitted by the two speakers, which we denote by s,(¢t) and
s,(t). We can express this as a linear equation:

Ty (t) =ay15; T app8, (1)

Collection @ chosun

IQ(t) =095, T Ay S, (2)

where a,,, a,, a,, and a, are parameters that depend on the distances of the
microphones from the speakers. It would be very useful if we could now
estimate the two original speech signals s,(t) and s,(t), using only the
recorded signals =,(¢t) and z,(t). In shortly, the motivation for developing
ICA is similar to the cocktail-party problem (CPP). In other words, it is a
method to independently select only the signal that the developer desires in
a lot of noise. Therefore, there is an advantage of being robust against

noise.

Secondly, we indicate the definition of ICA with an algorithm. To define
ICA, we could use a statistical “latent variables” model. Supposed that we
observe n linear mixtures, =z,,..., x, of n independent components.

T; =0a;8) +ajy8y+ ... +ay, s, forall j (3)

J .o n?

We have originally defined the time index t in the ICA algorithm, suppose
that each mixture, z; as well as each independent component, s, is a random
variable, instead of a suitable time signal. The observed data z;(t), the
microphone signals in the CPP, are then a sample of this random variable.
Without loss of generality, we could suppose that both the mixture variables
and the independent components have zero mean. |f this is not true, then
observable variables z; could always be centered by subtracting the sample
mean, which makes the model zero mean.

It is useful to use vector-matrix notation instead of the sums. Let x be
the random vector with =z,..z, elements; l|ikewise s is the random vector of
Generally, bold
lowercase letters indicate vectors, and bold upper—case letters denote
matrices. All vectors are understood as column vectors; thus z”, or the
transpose of x, is a row vector. Using this vector-matrix notation, the
above mixing model is written as

sp-ss, €lements. Let A be the matrix with elements g,

je

r=As (4)

Collection @ chosun

Sometimes we need the columns of matrix A; denoting them by a j the model
can be also written as

o=Yas, (5)
i=1

The statistical model in equation (4) is called independent component
analysis, or |ICA model. The ICA model is a generative model, which means it
describes how the observed data are generated in the process of mixing s;
components. The independent components are latent variables that mean they
cannot be observed directly. In addition, the mixing matrix is supposed to
be unknown. All we observe is the random vector x, and we have to estimate
both A and s with it. This should be done under as general assumptions as
possible. The independent components are latent variables, meaning that they
cannot be directly observed. Also, the mixing matrix is assumed to be
unknown. All we observe is the random vector x, and we must estimate both A
and s using it. This must be done under as general assumptions as possible.

The starting point for [CA is the very simple assumption that the
components s, are statistically independent. Statistical independence will be
rigorously defined in Section 3. It will be shown below that, we must also
assume that the independent component must have non—Gaussian distribution.
However, in the basic model, we do not assume these distributions to be
known (if they are, the problem can be considerably simplified.) For
simplicity, we also assume that the unknown mixing matrix is square. This
assumption, however, can be sometimes withdrawn, as will be shown in Section
4.5. Then, after estimating the matrix A, we can compute its inverse, set W,
and obtain the independent component simply by:

s=A'X=Wx (6)

As demonstrated earlier, the output Y=I[y,ys.y,]” is obtained by mapping
s through an invertible squashing function “f” that is

Y=f(s) (7)
- 10 -

Collection @ chosun

The obtained matrices s=l[s;,sy,5,]7 and Y=[y,y,,-y,]7 could be
interpreted as pre-synaptic and postsynaptic activation of neurons,
respectively. This is achieved by computing gradient ascent on the entropy
of the output taken with respect to W. We define the mutual information M
between “n” , random variables, y,,i=12,..n as follows:

M(y, y>..9,) = D3H(y,) — Hly,, 4p-9,,) (8)

where each H(y,) denotes a marginal entropy. The mutual entropy M is always
non-negative. Finally, the gradient update rule for the weight matrix W
assumes the standard form.

AWoe VuH Y WIW= (I+Ys) W (9)

where | is the identity matrix. Given the form of the logistic transfer
function, we get Y =(1-2Y).

On the other hand, the objective of the first architecture model is to
find a set of statistically independent basis images from Eigenvectors
obtained with the PCA method. Figure 2.1 shows the ECG representation of ith

face image obtained for this model.
- U X o Uiy ><- Uin ><

=byy >< blz ><

'.

Figure. 2.1. ECG representation. (a) ECG representation for the first
architecture (ICA1). (b) ECG representation for the second architecture (ICA2).

11

Collection @ chosun

The face—image representation for this architecture comes as a linear
combination of statistically independent basis images and a feature vector
b; =1b;p byns-by,) fOr ith face image. The feature vectors for training the image
set are obtained by the product of features found with PCA method and the
inverse of weight matrix being the results of the ICA. The purpose of the
second architecture model is to find a factorial face code. Here, the
face—image representation is represented by a linear combination of the
statistically independent feature vector w; =[u;,u;.-u;,, and the basis image.
As an example, figure 2.1 illustrates the face representation of the ith
face image for the second model. Here, the factorial codes for face images
are obtained by taking a product of a zero—mean matrix of the training image
set and the weight matrix produced from the ICA.

In short, ICA is related to the method called blind source separation
(BSS). The “source” indicates here the original signal, i.e. the
independent component, |ike the speaker in the cocktail party problem.

“Blind” means we know very little, if anything, about the mixing matrix,
and make little assumptions on the source signals. ICA is the probably the
most widely used method for BSS. Meanwhile, FastICA offers most of the
advantages of neural algorithms: It is parallel, distributed,
computationally simple, and requires |little memory. Stochastic gradient
methods seem to be preferable only when fast adaptivity in changing
environment is required.

Another advantage of the FastICA is that unlike ordinary ML algorithms,
which only work for a given class of distributions, it can estimate both
sub— and super—Gaussian independent components. Also, the FastICA algorithm
is the most widely used method for blind source separation problems, it is
computationally efficient and requires less memory than other blind source
separation algorithms. The other advantage is that independent components
can be estimated one by one that further decreases computational load.

12

Collection @ chosun

2.3 Deep Learning

Deep Learning (DL) is a subset of machine learning which is getting a lot
of attention for its recent success in solving particularly hard large-scale
problems in such areas as image classification, signal processing, natural
language processing, and motion classification. DL is a refinement of the
Artificial Neural Networks, which, as discussed earlier, “roughly” emulate
how the human brain learns and solves problems.

Before we dive into how deep learning works, it’ s important to
understand how Artificial Neural Networks (ANN) work. An ANN is made up of
interconnected group of neurons, |ike the neuron network in the human brain.
In a simple way, a neuron in a neural network is a unit that receives a
number of inputs (z;), computes them, and sends the output to the other nodes

or neurons in a simple deep learning network. Weights (w;), or parameters,
indicates the strength of the input connection and can be either positive or
negative. The inputs are multiplied by the associated weights (zuw,,
zow,, ..., z;w;) and the neuron adds the output from all inputs. At the last
step, the neuron performs a computation or activation function. The
activation function (sigmoid function and RelLU are popular) allows the ANN
to model complex nonlinear patterns. Figure 2.2 shows an example application

of deep learning.

dme &FE | o

Image classification ﬂmect detection Volce recognition Language transiation ﬁeco&gﬁgﬁation smotion classification

Natural language
processing

Computer Vision Speech & Audio

Figure 2.2. Applications of deep learning

13

{Z/Collection @ chosun

Encoder . Encoder . Decoder - Decoder

Figure 2.3. Simple deep learning architecture called stacked auto—-encoder

Figure 2.3 represents a simple deep learning architecture called stacked
auto—encoder. The first layer is the input layer, and this is where features
(z, z, zy) are inputted. The second layer is the hidden layer. Any layer that
is not an input or an output layer is a hidden layer. The term DL basically
means that there are multiple levels of hidden layers. Networks typically
contain more than three hidden layers, but in some cases, they can feature
more than 1,500 hidden layers. Hidden layers are essentially a hierarchical
grouping of different variables that provide a better—defined relationship.
Currently, most DL algorithms are supervised. Thus, DL models are trained
against the known truth.

The benefit of multiple hidden layers is that when a pattern needs deeper
investigation, this can be done with additional hidden layers. Image
classification is an example where DL can achieve high performance on very
hard visual recognition tasks (even exceeding human performance in certain
areas). We illustrate this point with an example of how additional hidden
layers help perform facial recognition. Figure 2.4 shows image recognition
using deep learning.

14

Collection @ chosun

Input Layer Hidden Layers Qutput Layer
{image pixels) 1

eyes (left and right)? -

nose in the middie?

=
» v
= L lsthisa
= face?
° ears (left and right)? =
teeth? S
// ,/:
) -
mouth? lips? /

gums?

Figure 2.4. Image Recognition using DL

When a picture is inputted into a DL network, it is first decomposed into
image pixels. The algorithm would look for patterns of shapes at certain
locations in the data. The first hidden layer tries to uncover specific
facial patterns: eyes, mouth, nose, ears. Adding an additional hidden layer
decomposes the discovered facial patterns into more granular attributes. For
example, the “mouth” can be further deconstructed into “teeth”

“lips” , “gums” , etc. Additional hidden layers can further evolve these
patterns to recognize subtlest nuances. In the end, a deep learning network
can break down a very complicated problem into a set of simple problems.
Deep learning also features a good performance in many areas. Below we
outline the disadvantages and advantages of the deep learning algorithms.

[Advantages]
- DL significantly outperforms other solutions in multiple domains,
including speech recognition, language and image processing, etc.
- With DL there is no need for feature engineering, which one of the
most time—consuming steps in machine learning applications.
- DL can be relatively easy adapted to new problems |ike computer
vision, time series processing, etc. where convolutional neural

15

Collection @ chosun

networks, recurrent neural networks, long short—-term memory, and the
| ike techniques are increasingly used.

[Disadvantages]

- DL requires a large amount of data - if we only have thousands of
sample, DL is not likely to outperform other algorithms.

- From computational perspective DL is extremely expensive to train;
complex models may take weeks to train using hundreds of machines
equipped with expensive GPUs.

- DL does not have much in the way of strong theoretical foundation,
which further leads to the next disadvantage.

- Determining topology/flavor/training method/hyper parameters for a
deep learning algorithm is rather an art than a science.

- What is learned is not always easy to comprehend. Other classifiers
(such as decision trees, logistic regression, etc.) vyield the
results, which are much easier to understand.

16

Collection @ chosun

2.4 PCANet

In this section, we first review the PCANet [99][100]. Its architecture
is shown in Figure 2.5 and can be divided into three stages that include 10
steps. Figure 2.6 shows the PCANet workflow of extracting the features from
the train dataset. Table 2.1 shows the core parameters of the PCANet.

Table 2.1 The core parameters of PCANet

Parameters definition
mxn The size of input image
N The number of data
The patch size. k, are k, odd integers and satisfy
ky X ky
1<k <m, 1<k <n
The number of filters of two stages.
L1L2
1< L, <kk, 1<L,<kk,
The block size.
hyhy
1<h <m, 1=<h, <n, Constraint: h, = [nh,/m]
The overlap ratio of block.
R

which means A varies from O to 0.9 with the interval 0.1

Mean PCA filters Mean PCA filters Binary Histogram
removal convolution removal convolution quantization generation

Figure 2.5. Diagram of PCANet.

17

Collection @ chosun

The detailed description of the workflow:

—
—_
~

The original input consists of training images, such as ECG and face.
|f Step (4) is performed before, the input image is the PCA output.
PCA filter bank extracts the PCANet filters.

The PCA filterbank outputs Eigenvectors.

Original images are convolved with the PCANet filters output for the
next step.

V is convolved with the PCANet filters output for the next step.
After two PCA steps, the output image is the PCANet output.

The output image is binarized and block-wise histograms are

— o~ —~
A~ w
—_ = —

~N O O

calculated. Here, we create a weight map and proceed with binary
guantization and weighted combination of the elements in the input

data.
Pirst stage
I T Cy Vs Xy Ouy
Sum of . Mean .
Mean. - Covariance || Elgenvectors > . Convolution
Input removal . ee removal with
with normalization . output
zero-padding
I
0y el K Cn Vs m Oun
Mean Sum of . Mean s
: [: - Eigenvectors |-4» : Convolution
Convolution removal ~ Covariance g removal with
output with normalization 5 output
zero-padding
I
Output stage
Hy Py Hy Vn
Hashing Patch Histogram Vectorization Classification
codes Sliding

Figure 2.6. Workflow of PCANet.

18

Collection @ chosun

Suppose we have N input training images I, =i=12,..N),[€R™" , and
the patch size (or 20 filter size), where k and k are odd integers
satisfying 1<k <m,1<k,<n. Further, the number of filters in the layer
is L,, i.e., L, is the first stage and L, is the second stage. In the
following, we describe the PCANet structure in detail. Let N input images
L.i=1i=1.2,.,N) be concatenated as follows:

I= [11[2 "'IN)ER"LXN" (10)

2.4.1 First Stage of PCANet
As shown in figure 2.6, the first stage of PCANet includes the following:

[Step 11 The first patch sliding process.

m+k, —1) X (n+k —1)

Before sliding the images are padded to L’ER(

out-of-range, input pixels are assumed zero. This ensures that
all weights in the filters reach the entire images. We use a
patch of the size k xk, to slide each pixel of the ith image

[eR™ ™ x U T and subsequent ly reshape each k, xk, matrix
into a column vector, followed by concatenation to obtain a

matrix:

X = [1711 Tig Iyzﬁmn] e Rk (11)

where =, ; denotes the jth vectorized patch in I. Thus, for all
input training images [I.,i=i=12,..,N), Wwe can obtain the
following matrix.

Figure 2.7 shows an example of the first patch sliding process.
The data of the square matrix are vectorized according to the
patch size. For example, if the patch size is [5 x 5], a square
matrix is set as. In figure 2.7, a CIFAR image is used as an
example. When there is an image of 32 = 32 = 3, a 5 » 5 patch
image is resized to a row vector of 25 = 1, and the patch is

moved to one image to obtain the mean removal value, which is

19

Collection @ chosun

also referred to as a center image in the PCA. The size of the
image X, after all patch slides is 25 * 784 25 784 (k2 x
(m—k,+1)(n—k,+1)). Then, patchX—patchX iS calculated to obtain

the central image.

X=X X - Xyl e gl < Nimn (12)

X = [X1 X2 X\r] E}%k,><(m*k,+1)(n*k,+1)N (13)

[Step 2] : The first mean remove process.
In this step, we subtract the patch mean from each patch and

obtain the following:

patchz _ [Xﬁi/#l}ij . X,imm] ERk, X (m—Fk, +1)(n—k, +1)N (14)

By subtracting each patch image from the above equation, we can
obtain the following expression.

X= patchX*patchZERk’ Hmh kY (15)

[Step 3] : The first PCA process.
In this step, the Eigenvalues and Eigenvectors of Xx are
calculated from equation (15) using the PCA algorithm. The
covariance is obtained by repeating the above equation from all
patches and images.

where N is the number of images and L is the number of filters.
The Eigenvector can be obtained according to the following

20

Collection @ chosun

equation.

T

XCov X XCov viZ)‘ivi (17)
‘XvC’ovT>< XCov(XCovTvi):)‘i(XCovTvi) (18)
v; =)_(Tv'i, sit. v, = X' (19)

Let the number of L be chosen as the Eigenvector obtained above.
The resulting Eigenvector is linearly combined with the center
image of the zero-padded original image.

I'i,l= v, X (20)

“*padding

s is the stage and the first stage is one. [means Eigenvectors 1
to {. By subtracting each patch image from the above equation, we
can obtain the following expression. For each input image

LER™™", we obtain L, output images I1=1,2,..L, [, ER™""

after the first stage of PCANet. We denote I’ as

I = [11571 ...If"Ll [me ...I&,LI]ER"LXNLIH (21)

25*1 25*784

32*32*3

l subtract
mean

1*784
== e & & =

Figure 2.7. Example of patch step

21

Collection @ chosun

2.4.2 Second Stage of PCANet
[Step 1] : The second patch sliding process.

Almost repeating the same process as the first stage, as shown
in figure 2.6, the second stage of PCANet also includes three
steps:

Similar to step 1, we use a patch of size k; <k, to slide each
pixel of the ith image I',,€R"™™ ™, 1=12..,1, and obtain a
matrix as follows:

ki ky X mn

Y, = [yi“,l‘,l Yz ~ yiJan]ER =12, L,i=1,2,..,N (22)

where y,,; denotes the jth vectorized patch in I} Therefore, for
all the input training images I, =i=1,2,..N), we can obtain the
fol lowing matrix.

Y, = [Yu ym XNJ] ERk‘kz x Nmin. (23)

2

We concatenate the matrices of all the L, filters and obtain a
matrix

Y=Y, YLl] e gl m=h 41—k 1N (24)

[Step 2] The second mean remove process
In this step, we subtract the patch mean from each patch and
obtain the following:

patchz _ [?]1?]2 ?] ERk’ X (m—k, +1)(n—k, +1)N (25)

i,mn

By subtracting each patch image from the above equation, we can
obtain the following expression.

22

Collection @ chosun

Y= patch Y*patchViERk’ Xm—k 1=k, +1) (26)

[Step 3] The second PCA process.
In this step, the Eigenvalues and Eigenvectors of v are
calculated from equation (26) using the PCA algorithm. The
covariance is obtained by repeating the above equation from all
patches and images.

where N is the number of images and L is the number of filters.
The Eigenvector can be obtained according to the following
equation.

YC()'U X YC()'U Vi=)\/v/ (28)
YC()'U ! X YC()Y;(YC()'U Tv/) -)\/ (Y(Y()'U Tvi) (29)
v; = YW, st ,=Y v (30)

Let the number of L be chosen as the Eigenvector obtained above.
The resulting Eigenvector is linearly combined with the center
image of the zero—padded original image.

Iil=vX (31)

padding

S is the stage and the first stage is one. ! means Eigenvectors 1
to [. By subtracting each patch image from the above equation, we
can obtain the following expression. For each input image

SER™TT, we obtain L, output images

TLot=1,2,.., Ly, L, ER™T" after the second stage of PCANet.

23

Collection @ chosun

Thus, we obtain

NL,L,
I:ii‘;,l’ l: 1323"'3L13L: 1,2 ~..,L2,i

= 1’2’...’N’Ii ERTILX"
second stages. We denote I°% as

image
after and

§§ __ 58 58 58
= [11,1,1 Il.,l.,L2 I1.,L1.,1 :

b Ils’(zl’LZ (32)
1\5;11 IVILZ I\?LJ I\sstle
2.4.3 Output Stage of PCANet
[Step 1] Binary quantization.
In this step, we binarize the outputs of the second stage of
PCANet, and obtain
P, =HI;,),1=12,..L; 1=12,..,L2 i—1,2,..,N (33)

where H(e-) is Heaviside step function whose value

is one for
positive entries and zero otherwise. We denote P as

P = [P1,1,1 P1,1,L2 P1,L1,1 P1.,L1.,L2 (34)

PN.,I.,I PN,LL2 PN.,LI.,I PN.,LI.,LZ]

[Step 2] Weight and sum.

Around each pixel, we view the vector of L, binary bits as a

decimal number. This converts the binary images P,,, back into
integer—-valued images as follows:

L2

T, = 2 P, (35)
=1

We denote T as

T= [T\, - Typ, - Ty oo TN,LI]ERMXNLI"

24

Collection @ chosun

[Step 3] Block sliding.
We use a block of size h;xh, to slide each of the L; images
T,,l=1,...,L;, with overlap ratio R, and then reshape each h, xh,
matrix into a column vector, which is then concatenated to obtain
a matrix

hihy X B

(37)

Zy= 240 2100 23] ER

where z;,

denotes the jth vectorized patch in T7;,l=1,...L, B is
the number of blocks when using a block of size hyxh, to slide
each T;,l=1,...,L,;, which overlap ratio R and given by

B=[1+(m+k —1—h,)/stridel] (38)
e 1+ (n+ky)—1—hy)/stride2],

where stridel and stride?2 are vertical and horizontal steps,
respectively,

stridel = 0((1—R) « hy) (39)
stride2 = 0((1—R) « hy)

and a(.) means round off. As we can see from equation (39), the
number of blocks B is increasing as the overlap ratio R is
increasing. For L, images, we concatenate Z to obtain a matrix

hihy X LB

i=1,2,....N (40)

2

7 = [th,l e 2y Zi,B]ER

We denote Z as

Z; = [2’1,1 CCUZyB AN T ZN,B]ERhIhZXLIBN (41)

25

Collection @ chosun

[Step 4] Histogramming

We compute the histogram (with 2 bins) of the decimal values in
each column of Z, and concatenate all the histograms into one

vector and obtain
L)
fl == [Hist(zi7171) e HZSt(Z“LB) cee Hist(zi7L171) cee HZSt(Z“LPB)]ER(Q LIB (42)

which is the “feature” of the input image I and Hist(.)
denotes the histogram operation. We denote f as

fi=1lf1 -~ fN)ER(QwLIBN (43)

The feature vector is then sent to a classifier, for example,
support vector machine (SVM), Euclidean distance, etc.

26

Collection @ chosun

Algorithm 2 PCANet
. HP N
1. | npUt - traini ng data x,»ZI, X, ER™", Ly, Ly, The patch sizeis ky X kyi

2. Reading: Image data or signal data

3. Initialization of variable:
The size of the patch < select the size of the patch in PCANet
The number of filters <« select the number of filters in PCANet

4. Stage 1 of PCANet
~ Patch mean-removal: ¥ = patchY —patch Y, €R"

m—k,+1)(n—k,+1)

— Compute convolution using PCA:

- OUtDUt : Iszal: viXpadding

5. Stage 2 of PCANet
~ Patch mean-removal: Y = patchY —patchY,ER" "'

m—k,+1)(n—k,+1)

— Compute convolution using PCA:

- OUtDUt : Iszal: viXpadding

6. Output layer
— Binary hashing: compute the decimal-valued image

P,,,=H(I},),l=12,.,L1; t=12,..,L2; i—1,2,...N

- Histogram:

(2™'L.B

fi= [Hist(z;) Hist(z;,) Hist(zi7L171) Hist(ziyLlyB)] ER

(2%'L,BN

- Qutput = f, = [f, -~ fx)ER

27

Collection @ chosun

2.5 LBP

The LBP (local binary pattern) is a feature developed for classifying the
original image texture and is used for other image recognition applications
such as face recognition. The local binary pattern (LBP) is a value
calculated for every pixel of the image, and is an index value obtained by
coding the relative brightness change of the surrounding 3 x 3 region of
each pixel in binary (If the pixel is brighter than the center pixel, it has
a value of 1; if it is dark, it is coded as 0, and then, the binary
connected with these values is used as an index for the local texture).
Figure 2.8 shows the principle of basic LBP.

Binary : 11001011

Decimal : 203 [“:[

1 1 0 851991 21
Threshold

1 1| < | 54|54} 86

1 0 0 5711214 13

Figure 2.8. Principle of basic LBP

It is the original LBP application that uses this histogram as a texture
model for the corresponding image area after obtaining the histogram for the
index value calculated through each pixel (for the purpose of classifying
the texture of lawn, forest, land, wall, etc).

In the following example of using LBP for face recognition, the face

28

Collection @ chosun

region is divided into cells of a certain size. Then, a histogram for LBP is
obtained for each cell (a histogram of LBP index values belonging to the
cell). There is a method of using the vector obtained by connecting the
histograms obtained in a row as a final feature

A pixel located at the center in a 3x3 cell and a neighboring eight
pixels are compared with each other. In figure 2.8, the value of the center
pixel is 54, so if the neighboring pixel value is greater than or equal to
54, it isset to 1, and if it is less than 54, the threshold value is set to
zero. |If you list them in order, we get a binary value like 11001011,
Calculating the binary value as a decimal value is 203. Possible values are
the number of 256 cases from O to 255 in total. We calculate this for all
pixels and make a histogram. It is not simply a histogram of pixel values,
but a histogram of LBP values. Then a total of 256 bins will be filled. The
texture of one image is represented by 256 numbers. These primitive LBP have
robust characteristics even when the brightness of the image changes. Figure
2.9 shows the LBP applied face recognition.

LBP

LBP

Face The face image is LBP histogram Feature
image divided into blocks from each block histogram

Figure 2.9. LBP applied face recognition

29

Collection @ chosun

I1l. Proposed |CANet

This section presents |CANet, the proposed method of this paper.

3.1 Statistically independent basis image |CANet
(1CANet1)

ICANet1 (statistically independent basic image Net) is a modified
algorithm from [ICA1, which is an algorithm that extracts independent
components through ICA filter using Eigenvectors obtained from PCA. The
first stage is a simple deep learning type in which the PCA and [CA
algorithms form a network in the form of a cascade. In the second step,
three algorithms, PCA, ICA, and LBP, are performed using image patch data.
Finally, the hashing code step similar to LBP and the feature using the
histogram is vectorized. Finally, the final classification is done using
SWM. Figure 3.1 below shows the structure of ICANet1.

Iy X Cy z X, O
Bl — Sum of —»| Eigenvectors |5»| Mean Convolution
Input removal Covaniance, £e removal with
with normalization with ICA : output
zero-padding
[
0, o Xy Gy Zs Xy Oy
Mean Sum of . Mean .
Convolution —* Covariance || Elgenvectors |- : Convolution
\%) o . removal with
output removal with normalization with ICA . output
zero-padding
[
Output stage
L Hy Py Hy Vw
Hashing Patch Histogram Vectorization Classification
codes Sliding

Figure 3.1. Structure of ICANetl.

30

Collection @ chosun

To find a statistically independent basic image set according to a set of
faces, the independent components of the face image are separated based on
the image synthesis model shown in the figure below. Since existing
Eigenvectors are not statistically independent, it is the goal of ICANet1 to
find Eigenvectors that are statistically independent using [CA. The face
image of X is assumed a linear mixture of an unknown set of statistically
independent source images S, where A is an unknown mixing matrix. The source
is reconstructed by a W learning filter matrix producing a statistically
independent output. The image consists of a row of input matrix X. |Is
provided as a set of independent base images for the face, using the input
images in the row of X, where the ICA output in the row of U is the images.
Such a base image may be regarded as a statistically independent set of
facial features, wherein the pixel values of each feature image are
unpredictable in the pixel values of the other feature images. The ICA
expression consists of. The coefficients for the linear combination of the
independent basic images of the U that make up each face image as shown in
Fig. In this model, the coefficient matrix B is obtained from the mixing
matrix A=W, '. Each row of A contains a coefficient b for one image x.

Figure 3.2 shows an image synthesis model .

S X U
Ll " |
N b -
4 = Lﬂ
.——- = &
Sources Unknown ECG Learned Separated
Mixing Scalogram Weights Qutputs

Process

Figure 3.2. An image synthesis model.

31

Collection @ chosun

P_ is represented by a matrix containing the first m principal component

m

axes in the column. We perform ICA through P and generate a matrix of m

m

independent source images in the row of U. Here, the coefficients b for the
| inear combination of the base images in U constituting the face images of X
is determined as follows. The principal component representation of the

zero—mean image sets in P, based X is defined as R, =X*P,. The least

n 1t

square error approximation value of X,,.=R *P' is obtained by X. The ICA

m

algorithm produces the following matrix W, = W*Ww,

wW;*Pl=U -P'=w;'U (44)

m

X"(ﬁ(ﬁ = RTH,*PT *)X"(i(" = RTH,* W7 ! U <45)

m

| =

where W, is the sphering matrix defined as W, =2*< XX'> 2 Thus, the

row of R, *W; ' includes the least-square error approximation of the |inear
combination coefficient of X, which is statistically independent of U,
constituting X,.. as in PCA. Since U 1is an independent component
representation of a face image based on statistically independent sets of m

feature images, U is given by the rows of the matrix.
B=R,*W; ' (46)

To obtain the R,.,, =X,..,*p,, We can obtain the test image by using the
principal component representation based on the training image and
calculating the B,.,, =R, ,*W; . The ICA representation of the face did not

require a PCA step and was used to meet the purpose. The purpose is as
fol lows:
1. Reducing the number of sources to a manageable number.
2. Providing a convenient way to calculate the representation of a test
image. Without wusing the PCA step, the length of the U-row,

B,.., =X, U", can be normalized to normalize U and U to obtain

B=W; "' and B,,, without computing the pseudo-inverse.

32

Collection @ chosun

3.1.1 First Stage of [CANet1
[Step 1] The first patch sliding process.
Before sliding the images are padded to [eg" ™ V<0l
out-of-range, input pixels are assumed zero. This ensures that
all weights in the filters reach the entire images. We use a
patch of the size k xk, to slide each pixel of the ith image
m+k171)><(n+szl)’

LQEI%(and subsequently reshape each k <k, matrix

into a column vector, followed by concatenation to obtain a
matrix:

Ky ky X mn

X, = [37111712 e ER

(47)

i,mn

where z,; denotes the jth vectorized patch in I,. Thus, for all
input training images I, =i=12,..,N), we can obtain the
fol lowing matrix.

ki ky X Nmn

X=[X X, Xy]ER

X = [X1 X2 . X\r] ERk’ X (m—k,+1)n—k, +1)N (49)

[Step 2] : The first mean remove process.

In this step, we subtract the patch mean from each patch and
obtain the following:

patchz _ [X,;J}];g . X,] ER/«, X (m—k, +1)(n—k,+1)N (50)

i,mn

By subtracting each patch image from the above equation, we can
obtain the following expression.

X= patchX*patchZERk’ k) nk (51)

33

Collection @ chosun

[Step 3] The first PCA process with [CA
In this step, the Eigenvalues and Eigenvectors of X are
calculated from equation (51) using the PCA algorithm. The
covariance is obtained by repeating the above equation from all
patches and images.

NL

Xep= 2 (X xXT) (52)

N=1

where N is the number of images and L is the number of filters.
The Eigenvector can be obtained according to the following
equation.

Xeow X Xeon 02\, (53)

Koo X Xeow Ko) =N (X 03) (54)
v, =)_(Tv/i, st v, = X (55)
U= Wicavipea) (56)

Let the number of L be chosen as the Eigenvector obtained above.
To apply the ICA algorithm to estimate the independent component,
we apply Eigenvectors to ICA. The first ICA centering and the
whitening algorithm is applied, and then the data normalization
is performed. Then, the initial weight is set randomly, and the
initial weight and the data obtained from the whitening are
linearly combined. There are two methods of ICA (Kurtosis,
Negentropy) and Kurtosis method. Therefore, the expression is as
fol lows.

kurt(y) = Ey4|*3(Ey2)2 (57)

The values obtained above and whitening data are |linearly
combined and normalized. Singular value decomposition is

34

Collection @ chosun

performed to remove the correlation. Then, the delta value is
obtained by carrying out the dot product operation with the
weight obtained from the singular value decomposition and the
initial weight obtained randomly and subtracting the value from
1. If the delta value is greater than 0.000001, the data obtained
from the final weight and whitening are linearized, and this
value is called independent components. The obtained independent
components U and the linear image of the center image of the zero
padded original image are combined. A linear combination of the
obtained independent components U and the center image of the
zero—padded original image are performed.

Pil= UX, .4 (58)
i“*padding

s is the stage and the first stage is one. [means independent
elements 1 to [. By subtracting each patch image from the above
equation, we can obtain the following expression. For each input
image LER™", we obtain L, output images

I’i=1.2,..L,I;,R™"" after the first stage of |[CANet. We

denote I° as

Is: []—1371 "'If,Ll 1}1 .“IXLLI]ERMXNLIH, (59)

Figure 3.3 shows first stage of I|CANet1 and PCA and ICA are cascaded. In
the first stage, a two—dimensional convolutional output is obtained. Figure
3.4 shows feature CU-ECG database in the first stage of [CANet1.

35

Collection @ chosun

First stage PCA

* ;s
28 10 | i 48748 484 48784
3 I N X Covy Vs L X
Mean Lyl SumA of ol Mean | b xapris
28| Tnput | removal Covriance [~¥| Elgenvectors || | U 2828, 40(N*4)
s with normalization .
(n— kg + 1)(n— ks +1) . zero-paddmg
} ¥
}) 4 ICANet]
l 48*48 48*48 48%48 484 convoiution | CONVOlution output
Cy Wty Wy Wy
Centering Whitening ggidgaﬁte — i?;:ﬁj:ii‘;t |

ICA

Figure 3.3. First stage of ICANetl.

Sum of covariance with
normalization in first stage

e
| =

a T a
Ay =

=" '

'l 1

Sum of covariance with
normalization in second stage ICA Convolution Output of first stage

Figure 3.4. Feature CU-ECG database in first stage of ICANetl.

One covariance is generated for each image, and the second stage is
affected by the number of filters to generate 40 covariance (L,L,=4),

resulting in 40 convolution outputs in the first stage.

36

{Z/Collection @ chosun

3.1.2 Second Stage of |CANet1
A hashing code is generated based on the convoluted feature and the

weight map. The values generated by the hashing code are also projected onto
a weight map.

[Step 1] The second patch sliding process.
Almost repeating the same process as the first stage, as shown in
Figure 3.1, the second stage of [|CANet1 also includes three
steps: Similar to step 1, we use a patch of size k; <k, to slide

each pixel of the ith image 1',,=R"™"™, 1=12..I, and obtain a
matrix as follows:
Fiky) .
Yu = [Z/i,m Yisa "~ yi,Jan]ER anv 1=12,.,L,i=12,...N (60)

where =, ; denotes the jth vectorized patch in . Thus, for all
input training images I.,i=i=12,..,N), Wwe can obtain the

3

fol lowing matrix.
Y, :[yu YZJ"'XVJ]ERMMXM"" (61)

We concatenate the matrices of all the L, filters and obtain a
matrix

Yy = [le YVQ YLl] ERk,X(m*k,+1)(n*k,+1)N (62)

[Step 2] The second mean remove process

In this step, we subtract the patch mean from each patch and
obtain the following:

patchz _ [?,;#1?,;#2 . ?] ERk’ X (m—k, +1)(n—k,+1)N (63)

i,mn

37

Collection @ chosun

By subtracting each patch image from the above equation, we can
obtain the following expression.

Y= patch Y*patch?iERk’ k) nk (64)

[Step 3] The second PCA process with [CA
In this step, the Eigenvalues and Eigenvectors of Y are
calculated from equation (51) using the PCA algorithm. The
covariance is obtained by repeating the above equation from all
patches and images.

where N is the number of images and L is the number of filters.
The Eigenvector can be obtained according to the following

equation.
Yoo X Yoo Tvvzz)\ﬂ’v: (66)
Yan % Yau (Yo 01) =XYoo v) (67)
v; = ?Tv/,;, st v, = Yy (68)
U= WicaVitpea) (69)

A linear combination of the obtained independent components U and
the center image of the zero-padded original image are performed.

rijl= UX, (70)

adding

s is the stage and the first stage is one. [means independent
elements 1 to [. By subtracting each patch image from the above

38

Collection @ chosun

equation, we can obtain the following expression. By subtracting
each patch image from the above equation, we can obtain the

following expression. For each input image I, €R™™", we obtain
L, output images I:7,t=1,2,....L, I;;, ER™"" after the second
stage of PCANet . Thus, we obtain NL,L, image
5, 1=12,..,L,.=12,....L,,i=1,2,...NLER™ " after and

second stages. We denote I°° as

s — [Ifj,1 If',(s'l.,Lz]'187(2171 Ili(szz (71)

S8 S8 S8 S8
IN,1,1 IN,LL2 J:V,Ll,l J:V,LI,LZ]

Figure 3.5 shows the second stage of ICANet1 and it is a cascade of PCA,
ICA, and LBP algorithms. The second stage processes the data for each image,
updating the FEigenvectors and independent Eigenvectors accordingly.
Therefore, the feature values of the output stage also show different
feature values. Figure 3.6 shows the CU-ECG database in the second stage of
ICANet1. The number of Eigenvectors is increased based on the number of
filters (L, =4), and four feature values are extracted from one image.

The detailed description of the workflow is below:

(1) In the PCA phase, the center image is obtained, and the Eigenvector
is obtained by using the normalization of the covariance.

(2) Perform the centering and whitening process in the ICA stage, and
obtain an independent Eigenvector using updated weights.

(3) The center image is obtained from the basic data and convolution is
performed with the zero padded image and the independent Eigenvector
obtained from ICANet (2), and the ICA convolution output value is
extracted.

(4) In LBP step, feature value is extracted through hashing code step,
patch sliding step, histogram, and step.

(5) Finally, the feature obtained in (4) is vectorized, and
classification is performed using the feature value.

39

Collection @ chosun

PeA

1 I N Xn Covy Ve m
' Mean Sum of I T— Mean -
28 Input % removal Wi;;:;::ﬁ;:t. removal with 28%28, 40(N*4)
(m—k, + 1)(n—k, +1) ﬂ ﬁ Zero-padding 0L
] . N
} x ICA Convolution
1 'E 6*1 6 I 6*’1 6 1 6*1 6 1 6*4 Convelution Qutput
Cy Wty Wy W
Centering Whitening Upfiate s i{ldependen{
weight eigenvector H

icA

; 28*28, 160 16*169, 160 16%169%4, 40 10816*1, 40
Hy Py Hy Vv
Hashing Patch Histogram Vectorization Classification
codes Sliding I | (SVM)

Local binary pattern.

Figure 3.5. Second and output stage of ICANetl.

Nst image

e o o
First

. stage
1st image of 1CANet] convolution output 2st image of ICANet] convolution ontput

1st image of hashing code and histogramming 2stimage of hashing code and histogramming Nstimage of hashing code and histogramming

Figure 3.6. Feature CU-ECG database in second and output stage of ICANetl.

40

+/Collection @ chosun

0w

3.1.3 Output Stage of |CANet1
Step 1 to Step 3 is the same as the previous PCANet algorithm. The
following lists the advantages of ICANet. There are PCANet algorithms, but
papers that have been studied with various structures of [CANet are a new
chal lenge.

Convolution cutput

i 32x32 double
1 2 3 4 S 6 7

122.0452 1343256 1462949 846935 174060 224595

1388481 1494325 1264518 137.3354 523952 -39.3785 -21.0168

1

2

3 1824508 1325714 524322 80.5745(-2.5563 -104.9824 -67.5875 |
4 192.4056 49.3554 I -91.0668 -101948 -469812 -1363245 -81.5125 '
S
6
7

162.2851 -782595 -2506784 -757663 -409223 -1186254 -62.3213

1068801 -211.8396 -384.0662 -99.9872 101781 -61.1631 -20.8481 1, o =10
447846 -313.0968 -4587166 -819275 822835 1.1066 58216 1 ‘ R
Hiz}=¢ 5. =10
0, x<0.
y
1
.
Hashing codes
[t 32x32 double N
1 2 3 4 5 6 7 f)‘;’ &
i 1 1 1 1 1 1 1
2 1 1 1 1 1 0 0
3 1 1 1 1 0 0 0}
4 1 L | 0 0 0 0 o]
5 1 [0 0 0 0 0
6 1 0 0 0 1 0 0
7 1 0 0 0 1 1 1

Figure 3.7. Hashing codes in output stage of ICANetl.

The hashing code is similar to the local binary patterns. It is a binary
algorithm that codes zero if the feature value is less than zero, and one if
the feature value is bigger than zero, as in figure 3.7. Therefore, the
independence component obtained from [CA is simplified to zero and one.
Figure 3.7 shows the hashing codes in the output stage of ICANet1.

[Advantage of ICANet]
(1) The network structure is simple and computationally efficient.
(2) The ICA filter is trained with an unsupervised algorithm using
unlabeled samples, which is practical.
(3) Compared to deep learning models, each layer parameter in |CANet
can be easily trained.

41

Collection @ chosun

Algorithm 3 [CANet1

1. Reading: Image data or signal data

2. Initialization of variable:

The size of the patch < select the size of the patch in [CANet1
The number of filters < select the number of filters in [CANet1

3. Stage 1 of ICANet1
- Patch mean-removal: Y = patchY —patchY, € R™ <" H D=k

— Compute Eigenvector using PCA:

— Compute convolution using ICA:

U= Wicav;

Ypca)

- Qutput: I’i,l= UX,

adding

4. Stage 2 of [CANet
~ Patch mean-removal: Y = patchY —patchY, € g™ <" H D=kl

— Compute Eigenvector using PCA:

— Compute convolution using ICA:

U = WICAvi(P(t4>
- Qutput: I’i,l= UX,

adding

5. Output layer
— Binary hashing: compute the decimal-valued image

pP,,, =HI;,),l=12,..L1; .=12,..,L2 i—1,2,.,N
- Histogram:

L,)
fi= [Hist(z;) Hist(z;,) Hist(zMPl) Hist(zi7L17B)]ER(2 LB

L,)
Output: f, = [f; "'fN)ER(Q L,BN

42

Collection @ chosun

3.2 Factorial ICANet (ICANet2)

ICANet2 is a modified algorithm in [CANet. It extracts independent
components by applying feature vectors obtained from PCA to ICA filters. To
find a statistically independent basic image set according to a set of ECG.
Since existing feature vectors are not statistically independent, it is the
goal of ICANet2 to find feature vectors that are statistically independent
using ICA. Figure 3.8 shows the structure of [CANet2.

First stage
In Xn Cy Flg ZXx Oun
Mean Sum of Peature Mean .
- Covariance |~ Vectors -5 . Convolution
Input removal L (PCA) removal with
with normalization et . output
with ICA zero-padding
I
Second stage
O vin Xy Cy Flg ZXy Op
: Mean | | = Sumof | I\Z:tl;: o~ Mean Convolution
Convolution removal . Lovanance v (PCA) removal with
output with normalization) . output
with ICA zero-padding
i
i Cutput stage f
Hy Py Hy Vy
Hashing Patch Histogram Vectorization Classification
codes Sliding

Figure 3.8. Structure of ICANet?2.

The [CA in Architecture 1 finds the weight vector in the direction of
statistical dependence at the population of the face image at the pixel
location. Projecting the data to these weights creates an independent set of
images that cannot predict the pixel gray value of one image in the gray
value of another image. These independent images span the subspace of the
face image defined by the first 75 PCA Eigenvectors and each face represents
a measure of the linear combination of these independent template images

43

Collection @ chosun

that make up each face image.

The base image obtained in Architecture 1 was space—independent, but the
coefficients coding each face are not. By changing the architecture of the
independent component analysis, the coefficients were defined as
statistically independent of the second representation. In other words, the
second |CA architecture finds the factorial code for the face image. Changes
to the architecture are consistent with transposing the input. Each facial
image was treated as a coded observation with a gray value at each pixel
location. ICA in Architecture 2 finds the weight vector in the direction of
statistical dependency in the face code across the face set. Projecting the
data to these weights produces a set of independent coding variables that
will replace the "pixel location" where the value of a particular coding
variable cannot be predicted by other coding variables. Each face is
represented by the value taken by this new set of independent coding
variables. The similarity of |CA-factorial representation (ICA2) and
principal component representation is straightforward. The principal
component coefficients constitute uncorrelated facial codes, while [CA2
coefficients constitute independent face codes. Figure 3.9 shows an image
synthesis model in |CANet2 and figure 3.10 shows two architectures for
performing ICA on images.

>

B =
|

|
SIRIRERE
o 3
> W
l

S
- »
— aN Ly —
Unknown Unknown ECG Learned Separated
sources basis scalogram filters souces

image

Figure 3.9. Image synthesis model in ICANet2.

44

Collection @ chosun

Architecture 1 Architecture 2

Image Sources of Face i
Pixel i Pixel i

O

Sources of
Face i

Face 1

Face 2
. U 14
Face n
Image 1 Pixel 1
1 @« Pixel i @« Image i
® -0 ® -0
L2 L L2 ®
o G /o @9
S eey, S ee,
Image 2 = Pixel 2
gf//,// L e
Image 3 Pixel 3

Figure 3.10. Two architectures for performing ICA on images.

3.2.1 First Stage of |CANet2

The first stage of ICANet?2 is similar to the first stage of |CANet1, but
there is a difference in the third step.

[Step 1] The first patch sliding process.
Before sliding the images are padded to [epg™*h V<0V

out-of-range, input pixels are assumed zero. This ensures that
all weights in the filters reach the entire images. We use a
patch of the size k xk, to slide each pixel of the ith image

[er"™h kTl and subsequent |y reshape each k, xk, matrix

45

Collection @ chosun

into a column vector, followed by concatenation to obtain a
matrix:

X' = [Ii,#l ILZ Iiﬂnn] eRklkzxmn <72)

(3

where =, ; denotes the jth vectorized patch in . Thus, for all
input training images I.,i=i=12,..,N), Wwe can obtain the

3

fol lowing matrix.

X = [Xl X2 .- ‘X:V] ERklkz X Nmn (73)

X = [Xl X2 AXVN] E}%k;><(77L71¢;+1)(71,71¢;+1)N (74)

[Step 2] The first mean remove process.
In this step, we subtract the patch mean from each patch and

obtain the following:

patchz _ [?(y,;"l},;#g . X,] ERk, X (m—k, +1)(n—k,+1)N (75)

i,mn

By subtracting each patch image from the above equation, we can
obtain the following expression.

X= patchX*patchZERk’ Hmh kY (76)

[Step 3] The first PCA process with [CA
In this step, the Eigenvalues and Eigenvectors of X are
calculated from equation (76) using the PCA algorithm. The

covariance is obtained by repeating the above equation from all
patches and images

46

Collection @ chosun

where N is the number of images and L is the number of filters. The
Eigenvector can be obtained according to the following equation.

XC()'U X XC()Y;TviZ)\iv/ (78)

XC()'U ! X XC()Y;(XC()Y; Tvi) =)\/ (XC()Y; Tvi) (79)

v; = ?(Tv/,;, st v, = X" (80)
X'o'u

Vi=—7 Ui (81)

V, =normalized(V,) (82)
XC()'U

FI=—=V; (83)

U= WicaFIpca) (84)

FLpcy) Means whitened process and centered feature vector. Let the
number of L be chosen as the Eigenvector obtained above. To apply the ICA
algorithm to estimate the independent component, we apply it to ICA based on
the feature vector. The first ICA centering and the whitening algorithm are
applied, and then the data normalization is performed. Then, the initial
weight is set randomly, and the initial weight and the data obtained from
the whitening are linearly combined. There are two methods of ICA (Kurtosis,
Negentropy) and Kurtosis method. Therefore, the expression is as follows.
Therefore, the expression is as follows.

kurt(y) = Ey4|*3(Ey2)2 (85)

The values obtained above and whitening data are linearly combined and
normalized. Singular value decomposition is performed to remove the
correlation. Then, the delta value is obtained by carrying out the dot

47

Collection @ chosun

product operation with the weight obtained from the singular value
decomposition and the initial weight obtained randomly and subtracting the
value from 1. If the delta value is greater than 0.000001, the data obtained
from the final weight and whitening are linearized, and this value is called
independent components. A linear combination of the obtained independent
components U and the center image of the zero—padded original image are
per formed.

ISZ., l - Uvap(L(l(li"g <86)

s is the stage and the first stage is one. [means independent elements 1
to 1. By subtracting each patch image from the above eqguation, we can obtain
the following expression. For each input image LER™™", we obtain L,

output images I,l=1,2,...L,,I;;€R™"" after the first stage of ICANet. We

denote I° as

Is: []—1371 "'If;Ll .]:7:[1 '..L;;ﬁLI]ERmXNLln (87)

3.2.2 Second Stage of |CANet2
A hashing code is generated based on the convoluted feature and the
weight map. The values generated by the hashing code are also projected onto
a weight map.

[Step 1] The second patch sliding process.
Almost repeating the same process as the first stage, as shown in
Figure 3.1, the second stage of [|CANet1 also includes three
steps: Similar to step 1, we use a patch of size k; <k, to slide

each pixel of the ith image 1',,=R"™ ™, 1=12..I, and obtain a
matrix as follows:
kiky] .
Yu = [yi,m Yira "~ yi,Jan]ER anv 1=1,2,.,L,i=12,..N <88)

48

Collection @ chosun

where =, ; denotes the jth vectorized patch in . Thus, for all
input training images I.,i=i=12,..,N), Wwe can obtain the

3

fol lowing matrix.

Y, = [Yu ym XNJ] ERk‘kz x Nmin. (89)

2

We concatenate the matrices of all the L, filters and obtain a
matrix

Yy = [le YVQ YLl] ERk,X(m*k,+1)(n*k,+1)N (90)

[Step 2] The second mean remove process
In this step, we subtract the patch mean from each patch and
obtain the following:

patchf,; _ [?7;#1?7;#2 . ?m’m] ER/«, X (m—k, +1)(n—k,+1)N (91)

By subtracting each patch image from the above equation, we can
obtain the following expression.

Y= patch Y*patch?iERk’ k) nk (92)

[Step 3] The first PCA process with [CA
In this step, the Eigenvalues and Eigenvectors of X are
calculated from equation (76) using the PCA algorithm. The

covariance is obtained by repeating the above equation from all
patches and images

49

Collection @ chosun

NL
Xep= VX:JI(X xx7) (93)

where N is the number of images and L is the number of filters. The
Eigenvector can be obtained according to the following equation.

XC()'U X XC()Y;TviZ)\ivi (94)

XC()'U ! X XC()Y;(XC()Y; Tvi) =)\/ (XC()Y} Tvi) (95)

v; = ?(Tv/,;, st v, = X (96)
Xco'u

V/ - N i (97)

V, =normalized(V,) (98)
XC()'U

FI=—=V; (99)

U= WicaFIipca) (100)

FLpcy) Means whitened process and centered feature vector. Let the
number of L be chosen as the Eigenvector obtained above. To apply the ICA
algorithm to estimate the independent component, we apply it to ICA based on
the feature vector. The first ICA centering and the whitening algorithm are
applied, and then the data normalization is performed. Then, the initial
weight is set randomly, and the initial weight and the data obtained from
the whitening are linearly combined. There are two methods of ICA (Kurtosis,
Negentropy) and Kurtosis method. Therefore, the expression is as follows.
Therefore, the expression is as follows.

kurt(y) = By'l—-3(Ey*)’ (101)

The values obtained above and whitening data are linearly combined and
normalized. Singular value decomposition is performed to remove the
correlation. Then, the delta value is obtained by carrying out the dot
product operation with the weight obtained from the singular value

50

Collection @ chosun

decomposition and the initial weight obtained randomly and subtracting the
value from 1. If the delta value is greater than 0.000001, the data obtained
from the final weight and whitening are linearized, and this value is called
independent components. A linear combination of the obtained independent
components U and the center image of the zero—padded original image are
per formed.

ISZ., l = Uvap(L(l(li"g (102)

S is the stage and the first stage is one. [means independent elements 1
to [. By subtracting each patch image from the above equation, we can obtain
the following expression. For each input image LER™™", we obtain L,
output images I,l=1,2,...L,,I;;€R™"" after the first stage of ICANet. We

denote I° as

Is: [Ils,l "'Ils,Ll .]:{[1 '..L;;ﬁLI]ERmXNLln (103)

3.2.3 Output Stage of [CANet2
Step 1 to Step 3 is the same as the previous PCANet algorithm. The
following lists the advantages of ICANet. There are PCANet algorithms, but
papers that have been studied with various structures of [CANet are a new
chal lenge.

[Step 1] Binary quantization.
In this step, we binarize the outputs of the second stage of
PCANet, and obtain

P, =HI;,),1=12,.,L; t=12,..,12 i—1,2,...,.N (104)

[Step 2] Weight and sum.
Around each pixel, we view the vector of L, binary bits as a
decimal number. This converts the binary images P,,, back into

51

Collection @ chosun

integer-valued images as follows:

L2
T, = 22,71]3%’ (105)
=1
We denote T as
T= [TLI TLL1 oo Ty oo TN,LI]ERmXNLI" (106)

[Step 3] Block sliding.
We use a block of size h;xh, to slide each of the L; images
T,,1=1,..,L;, with overlap ratio R, and then reshape each h, xh,

matrix into a column vector, which is then concatenated to obtain
a matrix

o hihy X B
Ziy = lzigq o 2100 2Bl ER

We denote Z as

Z;, = [2’1,1 2Bt AN ZN,B]ER}LI’LZXLIBN
[Step 4] Histogramming
We compute the histogram (with 2™ bins) of the decimal values in

each column of Z, and concatenate all the histograms into one
vector and obtain

L)
fl == [Hist(zi7171) e HZSt(Z“LB) cee Hist(zi7L171) cee HZSt(Z“LPB)]ER(Q LIB (109)

which is the “feature” of the input image I and Hist(.)
denotes the histogram operation. We denote f as

52

Collection @ chosun

(110)

The feature vector is then sent to a classifier, for example,
support vector machine (SVM), Euclidean distance, etc.

ICANet2 is also called a factorial I[CANet, and a feature vector is
obtained through the intensive multiplication of the center matrix and the
Eigenvector. Unlike ICANet1, the Eigenvectors are linearly multiplied by the
covariance of the patch center image. Finally, the feature values are
extracted through the linear multiplication of the sum of the patch images
and the normalized Eigenvectors. This is different from ICANet1. ICANet2 has
the same number of features as ICANet1. Figure 3.11 shows the first stage of
ICANet2 and figure 3.12 shows feature CU-ECG database in the first stage of
ICANet2. Figure 3.13 indicates second and output stage of [CANet2 and
figure 3.14 shows feature CU-ECG database in second and output stage of
|CANet2.

The detailed description of the workflow is below:

(1) Perform PCA step like ICANet.

(2) Patch sliding of all images is performed, and the average image and

the Eigen vector obtained from the PCA are convoluted.

(3) The Eigenvectors are updated through the normalization step using the
Eigenvectors, and then the convolution is performed using the average
image of all the images and the updated Eigenvectors. This is called
a feature vector.

(4) The center image is obtained from the basic data, and the zero padded
image and the independent Eigen feature vector obtained in (2) are
convoluted and the ICA convolution output value is extracted.

Steps (5) and (6) are the same as |CANet.

53

Collection @ chosun

First stage

RS
28 10 48*625 48*48 48*48 48+784

377 N E T Covy FVs

Xy

Mean Sum of Featin i Mean e
= . — Feature vector)
28 Input w2z removal Covariance. removal with 28+28, 40(N*4)
d with normalization| ddi
=k + D —k; +1) E Zero-padding Oy
] X Convolution
| 4848 4848 oo
Cy Wiy
Centering [Whitening Ir}dependent
eigenvector

Sum of covariance with
normalization in first stage

Sum of covariance with
normalization in second stage ICA Convolution Output of first stage

Figure 3.12. Feature CU-ECG database in first stage of ICANet2.

54

{=/Collection @ chosun

-

28 40 16%625 16*16 16*4 16*784
v | &
N Xy Covy FVg iy
Mean |) Smd 1, Feature vector Mean ="
28/ Tnput «2a| Temoval withcr?::ri:l?;:t' removal with 28*28, 40(N*4)
1 =k + D=k + 1) ‘ zero-padding 7 Oy
5
= = J 3 | Convolution
1 1 6 1 6 ’E 6 ‘E 6 1 6 1 6 1 6 4 Corwolution Output
Cy Wty Wy Wy
Centering | Whitening Update | | Independent
weight eigenvector Fr
on
| e
¥28%28, 160 16*169, 160 16%169%4, 40 10816*1,40
Hy Py Hy Vy
Hashing Patch Histogram Vectorization Classification
codes Sliding L
{{m— #}/stride + 112

Local binary pattern

Figure 3.13. Second and output stage of ICANet2.

L T
"

Ist image of 2st image of stage Nst image of
ICANet2 convolution output ICANet2 convolution output ICANet2 convolution output

e o o
Second
stage
1st image of 2st image of
ICANet2 convolution output ICANet2 convolution output
e o o
Output
: . stage) -
Ist image of 2st image of Nist image of
hashing code and histogramming hashing code and histogramming hashing code and histogramming

Figure 3.14. Feature CU-ECG database in second and output stage of ICANet2.

55

ZICollection @ chosun

Algorithm 4 [CANet?2

1. Reading: Image data or signal data
2. Initialization of variable

3. Stage 1 of |CANet2
~ Patch mean-removal : Y= patchY—patchY,ER" "'

m—k,+1)(n—k,+1)

— Compute Eigenvector using PCA:

— Compute PCA feature vector using PCA:

X

cov

X ov
C V.

V.: N i

; N Vi V, = normalized(V;), FI=
— Compute convolution using ICA:

U= WicaFLpca)

- Output : I’i,l= UX,

adding

4. Stage 2 of [CANet2
— Patch mean-removal: Y = patchY —patch¥, =R" "'

m—k,+1)(n—k,+1)

— Compute PCA feature vector using PCA:

X(J() v

V.= XC()'UV
i~ TN Vi N Vi

V,= normalized(Vi) , FI=

— Compute convolution using ICA:

U= WicaFLpca)

- Output : I’i,l= UX,

adding

5. Output layer
Binary hashing: compute the decimal-valued image

P, =H(I,),1=1,2,...[1; t=1,2,....,[2; i—1,2,...N

Histogram:
(2"'L,B

fi= [Hist(z;) Hist(z;,) Hist(zi7L171) Hist(ziyLlyB)] ER

2™, BN

OUtDUt : f,: [f1 "'fN)ER(

56

Collection @ chosun

IV. Experiment and Results

This section describes the data acquisition process and environment,
evaluates the data, and examines the similarities. In addition, we present
the performance assessment and the effectiveness of the [CANet.

4.1 Database

In this paper, we use databases obtained from various systems to
determine the suitability of the algorithm.

4.1.1 CU-ECG database

The CU-ECG DB is the data from Chosun University, Korea. The data
contains 100 people. The measurement time is 10 s for one measurement; 60
times was measured during three days for each individual. Measurements were
made when the participants were sitting in the chair in a relaxed state with
the data-sampling rate of 500,000 Hz. All acquired ECG are Leadl type taken
with wet electrodes. We used a processor, an amplifier, a band-pass filter,
and a low-pass filter as the primary board and the sensor. The processor is
Atmega8; Analog to Digital (AD) converter uses 10-bit resolution. For
communication, we use USB to serial. The gain of the amplifier was 1000
times, and the signal was measured using a 5-V positive power source. To
acquire ECG data, the patient is seated in the chair in a relaxed state. The
patch shown in the picture below is attached to the arm and the data is
acquired. The acquired data is stored in the computer using universal
synchronous/asynchronous receiver/transmitter (USART) communication. Figure
4.1 shows a data acquisition environment for ECG biometrics and figure 4.2
indicates mainboard and experiment environment. Figure 4.3 shows
preprocessing using CU-ECG database and figure 4.4 indicates samples of
CU-ECG database with noise CU-ECG. Figure 4.5 shows samples of CU-ECG
database with size scale. Noise (White Gaussian) was used to determine the
robustness of ICA. In addition, additive white Gaussian noise (AWGN) is a
basic noise model used in Information theory to mimic the effect of many
random processes that occur in nature.

57

Collection @ chosun

Hardware

Operational
amplifier

Laovw anch
hugh Filters

ECG Coeult

'
t
t
'
t
'
I
E‘- ;
1
'
1
'
'
i
1
%

K

Preprovessmng
e 1 (Repeak and
median filter

}._

Fiducial

segmentation

i
1
1
1
)
1
)
1
l i
1
1
I
1
I
1
I
I
1

< Toation
using SYM

Feature extmction
using RPCANet

302
©

Identification

Figure 4.2. Mainboard and experiment environment

1.5 1.5
1 1
- 2
0.5 # 05
= &
a o
05 ~05
a H500 1000 1500 2000 2800 3000 o 500 1000 1800 2000 2500 3000
number of samples rumber of samples
(a) (b)

2.8 1
2.8
2.4
@ 22

2

= 2
1.8
1.6

0.4

500 1000 1500 2000 2500 3000 o SO0 1000 1500 2000 2500 3000

number of samples number of samples

(c) (d)
Figure 4.3. Preprocessing using CU ECG database: (a) raw signal; (b) mean

variance; (c) spike removal; (d) R peak detection.

58

Collection @ chosun

OO O OAO O

Murmber of samples

(a) (b)

£ 5

— r0cessed swga\
= = =noise signal

A
(c) (d)
Figure 4.4. Samples of CU-ECG database with noise CU-ECG. (a) ECG

scalogram. (b) salt noise with ECG scalogram. (c) 1D raw-ECG signal. (d) noise

ECG signal. (e) Gaussian noise with ECG scalogram

(a) (b) (c)

Figure 4.5. Samples of CU-ECG database with size scale. (a) 28 X< 28. (b) 20
X 20. (c) 12 X 12

59

Collection @ chosun

4.1.2 FERET face database

FERET DB is configured for the development of automatic face recognition
capabilities. It is a face image of 14051 8-bit grayscales. It also includes
facial images of various poses and presents the outlines of alternative
facial expressions and other illuminations. For some people, they include
face images with glasses and other hair lengths. Nevertheless, this DB is
one of the most known face databases since it contains many face images of
many people. Images of an individual were acquired in sets of 5 to 11
images, collected under relatively unconstrained conditions. Two frontal
views were taken (Fa and Fb); a different facial expression was requested
for the second frontal image. For 200 sets of images, a third frontal image
was taken with a different camera and different lighting (this is referred
to as the Fc image). Figure 4.6 shows example of different categories of
FERET images. Table 4.1 shows data information of FERET.

fa fb fc duplicate1 duplicate?
Figure 4.6. Example of different categories of FERET images. The duplicate 1

image was taken within one year of the Fa image and the duplicate 2 and Fc

images were taken at least one year apart.

Table 4.1. Data information of FERET

Features .
Data Size Number of data per class
Database

Fa 13500 X 1196 1 (1196 class)

Fb 13500 X 1195 1 (1196 class)

Fc 13500 X 194 1 (1196 class)
Duplicatel 13500 X 722 from 2 to 10 (243 class)
Duplicate?2 13500 X 234 from 2 to 10 (75 class)

—_ 60 —_

Collection @ chosun

4.1.3 CU-Face Database

Deep learning is generally known for algorithms that use big data.
Therefore, the correlation between I|CANet and small data can be confirmed by
applying the CU-Face database that is small data. The CU-Face data is data
acquired from Chosun University. The total number of participants is five,
and the training data is composed of 10 pieces per person and the testing
data is composed of 80 pieces of data. Therefore, verification data is 8
times more than learning. Moreover, the size of the learning data is 1800 *
50, and the size of the verification data is 1800 * 400. In order to show
the robustness of [CANet, we also experimented with data mixed with noise
(Gaussian noise). Figure 4.7 shows example of CU-Face data with noise.

Sample Data Gaussian noise Salt noise

Figure 4.7. Example of CU-Face data with noise

4.2 Experimental Results and Discussion

In this section, we show the classifier used for experiments and the
experimental results.

4.2.1 Classifier
Distance measurement is a method of calculating the distance between two
observations. In this paper, we show performance using (Euclidean, squared
Euclidean, city-block, Minkowski, cosine, correlation, and Spearman)
distance and SVM. Table 4.2 shows mathematical expression of classier.

61

Collection @ chosun

Table 4.2. Mathematical expression of classier

Classifier Mathematical expression
Euclidean distance (ED) dit =(z,—y)z, —y,)
Squared Euclidean distance (SED) || &%, = (z, —y,)*(z, — v,)
City-block distance (CBD) d,, = ZI:USJ-—yUI
=1
Minkowski distance (MKD) dy, =4 .lexsj—ytﬂp
/=
xsy,t
Cosine distance (CSD) dy =(1— —F—m—m—w
(‘rs - ‘rs)(yf - gf)
d,, = (1— — — — —
\/(‘rs - ‘rs)(‘rs - ‘rs) \/(yf Y)(yf - yf)
Correlation distance (CLD) _
st. r,=— 5
Tl
(ry=r), —7,)
dst = 1_ (: : — 7)

Spearman distance (SMD)

4.2.2 Performance evaluation
TP is the number of correct predictions for the positive samples, TN is
the number of correct predictions for the negative samples, FN is the number
of incorrect predictions for the positive samples, and FP is the number of
incorrect predictions for the negative samples.

TP+ TN
TP+ TN+ FP+ FN

Accuracy =

4.2.3 Setting parameters
FERET data based parameters are set from three to five in terms of L, K
is set to two to eight, and H is set to 4 or 8 because of memory problem.

62

Collection @ chosun

4.2.4 Experimental results and performance analysis

To show the performance of the proposed algorithm, performance is shown
through various classifiers. The feature extractor is PCANet, I[CANet1 to
ICANet2. The classifiers are the Euclidean distance, the squared Euclidean
distance, the city-block distance, the Minkowski distance, the cosine
distance, the correlation distance, the spearman distance, SVM was used.
Performance analysis using FERET data showed similar performance to PCANet
when using Fb data. However, as the data was changed to Fc, Dupl, and Dup?2,
it showed higher performance in |CANet1 and 2 than PCANet. If the training
data and the testing data are similar, the PCANet can have a good effect,
but if the non-similar of real-life data is used, the [CANet algorithm is
robust. Especially, when the Dup2 and noise ECG data is used, the robustness
of the ICANet2 algorithm is verified. In addition, the classifier has been
confirmed that the SVM algorithm works well. In addition, verification time
is important for ECG personal authentication. The verification time of
PCANet was about 0.2 seconds, ICANet1 was 0.2 seconds, similar to PCANet,
and |CANet?2 was 0.15 seconds. Therefore, the effectiveness of the [CANet
algorithm for personal authentication has been demonstrated in terms of
classification time.

® Influence on the number of filters

The number of filters is an important factor for the recognition
performance in the convolution layer on |CANet, because there is the amount
of information increased when the number of filters in the first stage
gradual ly increased. Figure 4.8 shows the influence on the number of filters
in |CANet.

63

Collection @ chosun

0.986 0.93 o
o S s
N 0927 v ~ o
0.984 I 1 B---g’ o
.’ 0.91 L’
8 ‘ “ l' 8 ’
£ 0.882 p % - | ..
2 ’ ‘ 5§ 08 w-
g ’ . P E ’
(e ! .y {o] |
% oes /] o g 088 .
(=% s o r
o 0881
ogrgt _- A
- 0871
T .
0.976 0.868 :
4 & 8 7 8 g 10 4 5 6 7 8 2] 10
number of filter number of filier
(a) (b)

Figure 4.8. The influence on the number of filters in ICANet. (a) CU-ECG
database. (b) noise CU-ECG database.

® Influence on block size

Compared to the number of filters,

the block size

increases. As the block size

increases,

the performance tends to decrease as

the spacing of the

strides becomes wider, resulting in information loss of data and degradation

of performance. Figure 4.9 shows the influence on the block size in |CANet
and figure 4.10 shows correlation of PCANet, ICANetl, and ICANetZ2.
.68 093“
n o+ Y
098F ~. . - L "1
[- Bl -a, 0.91 o ',' \‘
g 097 | S) fal B '
% “\ 0.8 .
% .96 Yo 589 - \\
g R :
2 095¢ LR : ass v
‘\‘ 087 b X i
084+ ~ 1 ,
“k 088 \‘ ,,’
095 ass i e
5 & 7 8 g 10 4 2 . 7 g k]
size of block size of block

(a)

(b)

Figure 4.9. The influence on the block size in ICANet. (a) CU-ECG database.
(b) noise CU-ECG database.

Collection @ chosun

64

LanelationHatix Comefation Hatiix Canelationtatl

E:
W 4 fEir i S
% i o E E]

(a) (b) ©
Figure 4.10. Correlation of PCANet, ICANetl, and ICANet2. (a) PCANetl. (b)
ICANetl. (c) ICANet2

To illustrate [CANet's feature distribution, Figure 4.11 shows a
distribution chart of feature in ICANet. Figure 4.12 shows performances of
CU-ECG using SVM and figure 4.13 performances of Gaussian noise CU-ECG using
SVM. When using CU-ECG data, it is similar to PCANet's performance, but
ICANet 's robustness is proved when using noise mixed with white Gaussian
(signal to noise ratio = 30). Figure 4.14 to 4.17 shows a comparison of face
recognition rates on various methods on FERET (Fb, Fc, Dupl, and Dup2)
database. In the case of Fb data, the performance of PCANet 's algorithm
was high, but the performance of I|CANet was higher than PCANet as Fc and
Dup1 and Dup?2 data. The reason is that the performance of ICA is improved by
removing the correlation between the original vector, feature vector, and
covariance through the independent component analysis of |CA. Figure 4.18
shows performance of CU-Face database and figure 4.19 indicates performance
of CU-ECG. In addition, Figure 4.20 shows performance of CU-fFace and figure
4.21 presents performance of FERET. In addition to figure 4.22 shows
per formance of CU-ECG and figure 4.23 indicates performance of scale CU-ECG.

As shown in Figure 4.22, the processed data shows similar performance to
PCANet. However, the PCANet using Eigenvectors is weak against noise, and
the feature vector using statistical independence is robust against noise.
In addition, as shown in Figure 4.23, ICANet's classification rate did not
significantly decrease compared to PCANet even if information of data was
lost. In addition, as shown in Figure 4.19, the performance was higher than

65

Collection @ chosun

the basic deep learning of auto—encoder and the classification time was
about 0.05 seconds faster than PCANet. In addition, as shown in Figure 4.21,
high performance was expected in face data as well as electrocardiogram
data, and it is shown that it is better than PCANet in small data as shown
in Figure 4.21. As a result of performance, ICANet showed higher performance
than PCANet when face data and ECG data were used. Especially, it showed
stronger than PCANet in noise data. Table 4.3 to 4.8 shows performance of
(PCANet, ICANet1, ICANet2) using CU-ECG and noise CU-ECG database. Table 4.9
to 4.24 shows Performance of (PCANet, ICANet1, ICANet2) using FERET database
(Fb, Fc, Dupt, Dup2).

x10* . . . g x10°

10 15 10 15

(a) (b)
g 10"
4l
!
0

0 2 4 6 8 10 12
(c)
Figure 4.11. Distribution chart of feature in ICANet. (a) ICANetl. (b) ICANet?2.

66

Collection @ chosun

Table 4.3. Performance of PCANet using CU-ECG database, R=0.5

Parameters Parameters
7 e I Performance 7 e I Performance
8 4 10 0.9760 10 4 8 0.9748
9 4 4 0.9830 10 4 9 0.9795
9 4 5 0.9813 10 4 10 0.9754
9 4 6 0.9819 4 5 4 0.9825
9 4 7 0.9836 4 5 5 0.9743
9 4 8 0.9830 4 5 6 0.9772
9 4 9 0.9737 4 5 7 0.9772
9 4 10 0.9801 4 5 8 0.9784
10 4 4 0.9825 4 5 9 0.9550
10 4 5 0.9819 4 5 10 0.9585
10 4 6 0.9807 5 5 4 0.9801
10 4 7 0.9807 5 5 5 0.9784

Table 4.4. Performance of ICANet1 using CU-ECG database, R=0.5

Collection @ chosun

Parameters Parameters
I i T Performance I i T Performance
8 7 4 0.9848 4 9 4 0.9848
8 7 6 0.9825 4 9 6 0.9772
8 7 8 0.9836 4 9 8 0.9684
8 7 10 0.9807 4 9 10 0.9480
8 7 12 0.9801 4 9 12 0.9456
10 7 4 0.9830 6 9 4 0.9836
10 7 6 0.9801 6 9 6 0.9813
10 7 8 0.9789 6 9 8 0.9801
10 7 10 0.9801 6 9 10 0.9708
10 7 12 0.9789 6 9 12 0.9754
12 7 4 0.9801 8 9 4 0.9813
12 7 6 0.9825 8 9 6 0.9836
- 67 -

Table 4.5. Performance of ICANet? using CU-ECG database, R=0.5

Parameters Parameters
7 e I Performance 7 e I Performance
8 4 10 0.9760 10 4 8 0.9848
9 4 4 0.9830 10 4 9 0.9795
9 4 5 0.9813 10 4 10 0.9754
9 4 6 0.9819 4 5 4 0.9825
9 4 7 0.9836 4 5 5 0.9743
9 4 8 0.9830 4 5 6 0.9772
9 4 9 0.9737 4 5 7 0.9772
9 4 10 0.9801 4 5 8 0.9784
10 4 4 0.9825 4 5 9 0.9550
10 4 5 0.9819 4 5 10 0.9585
10 4 6 0.9807 5 5 4 0.9801
10 4 7 0.9807 5 5 5 0.9784

Table 4.6. Performance of PCANet using Gaussian noise CU-ECG database, R=0.5

Parameters Parameters
7 e I Performance 7 e I Performance
4 6 4 0.8643 5 6 9 0.7848
4 6 5 0.8368 5 6 10 0.8023
4 6 6 0.8304 6 6 4 0.9012
4 6 7 0.8187 6 6 5 0.8789
4 6 8 0.8316 6 6 6 0.8871
4 6 9 0.7269 6 6 7 0.8830
4 6 10 0.7351 6 6 8 0.8930
5 6 4 0.8942 6 6 9 0.8105
5 6 5 0.8667 6 6 10 0.8345
5 6 6 0.8690 7 6 4 0.9094
5 6 7 0.8596 7 6 5 0.8830
5 6 8 0.8637 7 6 6 0.8930

68

Collection @ chosun

Table 4.7. Performance of [CANet1 using Gaussian noise CU-ECG database, R=0.5

Parameters Parameters
7 i I Performance 7 i I Performance
6 4 12 0.7327 12 8 4 0.9351
7 4 4 0.9275 12 8 8 0.9339
7 4 5 0.9170 12 8 12 0.9058
7 4 6 0.9058 4 12 4 0.8386
7 4 7 0.9041 4 12 8 0.8281
7 4 8 0.9211 4 12 12 0.7281
7 4 9 0.8526 8 12 4 0.9345
7 4 10 0.8673 8 12 8 0.9035
7 4 A 0.7468 8 12 12 0.8164
7 4 12 0.8018 12 12 4 0.9316
8 4 4 0.9187 12 12 8 0.9327
8 4 5 0.9170 12 12 12 0.9006

Table 4.8. Performance of [CANet? using Gaussian noise CU-ECG database, R=0.5

Parameters Parameters
I i T Performance I i T Performance
4 4 8 0.8363 8 8 6 0.9363
4 4 12 0.8070 8 8 7 0.9257
4 4 16 0.7632 8 8 8 0.9123
8 4 4 0.9234 8 8 9 0.9082
8 4 8 0.9082 8 8 10 0.9140
8 4 12 0.8959 9 8 4 0.9322
8 4 16 0.8965 9 8 5 0.9345
12 4 4 0.9281 9 8 6 0.9211
12 4 8 0.9117 9 8 7 0.9146
12 4 12 0.9105 9 8 8 0.9175
12 4 16 0.9129 9 8 9 0.9135
4 8 4 0.8994 9 8 10 0.9199
-89 -

Collection @ chosun

Table 4. 9. Performance of PCANet using FERET database (Fb), R=0.5
ED SED CBD MKD CSD CLD SMD SVM Ll K| H
0.8686 | 0.8686 | 0.8586 | 0.8686 | 0.9289 | 0.9297 | 0.9297 | 0.9054 | 3| 4| 4
0.9690 | 0.9690 | 0.9615 | 0.9690 | 0.9816 | 0.9816 | 0.9808 | 0.9649 | 3| 4| 8
0.8117 1 0.8117 | 0.8000 | 0.8117 | 0.9364 | 0.9356 | 0.9448 | 0.9665 | 4| 4| 4
0.9556 | 0.9556 | 0.9356 | 0.9556 | 0.9874 | 0.9883 | 0.9874 | 0.9732 | 4| 4| 8
0.8887 | 0.8887 | 0.8828 | 0.8887 | 0.9464 | 0.9473 | 0.9456 | 0.9741 | 3| 6| 4
0.9690 | 0.9690 | 0.9623 | 0.9690 | 0.9849 | 0.9849 | 0.9791 | 0.9766 | 3| 6| 8
0.8653 | 0.8653 | 0.8619 | 0.8653 | 0.9490 | 0.9490 | 0.9531 | 0.9766 | 4| 6| 4
0.9598 | 0.9598 | 0.9623 | 0.9598 | 0.9841 | 0.9858 | 0.9858 | 0.9808 | 4| 6| 8
0.9029 | 0.9029 | 0.8937 | 0.9029 | 0.9531 | 0.9548 | 0.9531 | 0.9816 | 3| 8| 4
0.9640 | 0.9640 | 0.9640 | 0.9640 | 0.9791 | 0.9791 | 0.9791 | 0.9824 | 3| 8| 8
0.8820 | 0.8820 | 0.8711 | 0.8820 | 0.9640 | 0.9640 | 0.9623 | 0.9824 | 4| 8| 4
0.9649 | 0.9649 | 0.9649 | 0.9649 | 0.9883 | 0.9874 | 0.9883 | 0.9841 | 4| 8| 8
Table 4.10. Performance of PCANet using FERET database (Fc), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.8918 | 0.8918 | 0.8711 | 0.8918 | 0.9536 | 0.9588 | 0.9536 | 0.9381
0.9794 | 0.9794 | 0.9639 | 0.9794 | 0.9845 | 0.9845 | 0.9845 | 0.9794
0.8505 | 0.8505 | 0.8402 | 0.8505 | 0.9588 | 0.9588 | 0.9639 | 0.9794
0.9742 | 0.9742 | 0.9639 | 0.9742 | 0.9897 | 0.9897 | 0.9897 | 0.9794
0.8814 | 0.8814 | 0.8763 | 0.8814 | 0.9485 | 0.9485 | 0.9485 | 0.9794
0.9433 | 0.9433 | 0.9330 | 0.9433 | 0.9742 | 0.9691 | 0.9742 | 0.9794
0.8660 | 0.8660 | 0.8608 | 0.8660 | 0.9639 | 0.9639 | 0.9588 | 0.9845
0.9691 | 0.9691 | 0.9639 | 0.9691 | 0.9845 | 0.9845 | 0.9845 | 0.9845
0.8608 | 0.8608 | 0.8454 | 0.8608 | 0.9330 | 0.9330 | 0.9330 | 0.9845
0.9227 | 0.9227 | 0.9021 | 0.9227 | 0.9639 | 0.9639 | 0.9588 | 0.9845
0.8505 | 0.8505 | 0.8454 | 0.8505 | 0.9639 | 0.9639 | 0.9639 | 0.9845
0.9278 | 0.9278 | 0.9227 | 0.9278 | 0.9742 | 0.9742 | 0.9794 | 0.9845
- 70 -

Collection @ chosun

Table 4.11. Performance of PCANet using FERET database (Dup1), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.7382 | 0.7382 | 0.7175 | 0.7382 | 0.8587 | 0.8560 | 0.8587 | 0.8393
0.8421 | 0.8421 | 0.8338 | 0.8421 | 0.9086 | 0.9072 | 0.8934 | 0.8975
0.6274 | 0.6274 | 0.6011 | 0.6274 | 0.8837 | 0.8837 | 0.8726 | 0.9072
0.7895 | 0.7895 | 0.7452 | 0.7895 | 0.9349 | 0.9349 | 0.9363 | 0.9307
0.7271 | 0.7271 | 0.7161 | 0.7271 | 0.8615 | 0.8601 | 0.8587 | 0.9321
0.8407 | 0.8407 | 0.8199 | 0.8407 | 0.9017 | 0.9017 | 0.9030 | 0.9349
0.7050 | 0.7050 | 0.6856 | 0.7050 | 0.8837 | 0.8837 | 0.8767 | 0.9377
0.8089 | 0.8089 | 0.8006 | 0.8089 | 0.9224 | 0.9224 | 0.9141 | 0.9391
0.7105 | 0.7105 | 0.6994 | 0.7105 | 0.8518 | 0.8518 | 0.8504 | 0.9391
0.8047 | 0.8047 | 0.7950 | 0.8047 | 0.8809 | 0.8837 | 0.8864 | 0.9391
0.6842 | 0.6842 | 0.6704 | 0.6842 | 0.8767 | 0.8753 | 0.8740 | 0.9391
0.7936 | 0.7936 | 0.7687 | 0.7936 | 0.9141 | 0.9155 | 0.9086 | 0.9391
Table 4.12. Performance of PCANet using FERET database (Dup2), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.7137 | 0.7137 | 0.6838 | 0.7137 | 0.7991 | 0.7991 | 0.7991 | 0.7906
0.8077 | 0.8077 | 0.7949 | 0.8077 | 0.8761 | 0.8718 | 0.8462 | 0.8462
0.5812 | 0.5812 | 0.5470 | 0.5812 | 0.8376 | 0.8376 | 0.8333 | 0.8547
0.7521 | 0.7521 | 0.7094 | 0.7521 | 0.9017 | 0.9017 | 0.9103 | 0.8974
0.6923 | 0.6923 | 0.6752 | 0.6923 | 0.8120 | 0.8120 | 0.8120 | 0.9017
0.8120 | 0.8120 | 0.7906 | 0.8120 | 0.8590 | 0.8590 | 0.8547 | 0.9060
0.6581 | 0.6581 | 0.6624 | 0.6581 | 0.8376 | 0.8376 | 0.8333 | 0.9145
0.7821 | 0.7821 | 0.7521 | 0.7821 | 0.8803 | 0.8803 | 0.8675 | 0.9145
0.6709 | 0.6709 | 0.6581 | 0.6709 | 0.8248 | 0.8248 | 0.8205 | 0.9145
0.7991 | 0.7991 | 0.7778 | 0.7991 | 0.8419 | 0.8376 | 0.8504 | 0.9145
0.6538 | 0.6538 | 0.6410 | 0.6538 | 0.8419 | 0.8419 | 0.8419 | 0.9145
0.7821 | 0.7821 | 0.7650 | 0.7821 | 0.8889 | 0.8932 | 0.8889 | 0.9145
- 71 -

Collection @ chosun

Table 4.13. Performance of |CANet1 using FERET database (Fb), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.7799 | 0.7799 | 0.7791 | 0.7799 | 0.9013 | 0.9013 | 0.9004 | 0.8762
0.9582 | 0.9582 | 0.9448 | 0.9582 | 0.9724 | 0.9732 | 0.9724 | 0.9456
0.7046 | 0.7046 | 0.6862 | 0.7046 | 0.9280 | 0.9297 | 0.9389 | 0.9490
0.9481 | 0.9481 | 0.9406 | 0.9481 | 0.9816 | 0.9816 | 0.9824 | 0.9682
0.7331 | 0.7331 | 0.7272 | 0.7331 | 0.9322 | 0.9314 | 0.9414 | 0.9682
0.9456 | 0.9456 | 0.9297 | 0.9456 | 0.9824 | 0.9824 | 0.9841 | 0.9782
0.8477 | 0.8477 | 0.8326 | 0.8477 | 0.9230 | 0.9238 | 0.9247 | 0.9782
0.9607 | 0.9607 | 0.9506 | 0.9607 | 0.9799 | 0.9799 | 0.9799 | 0.9782
0.7674 | 0.7674 | 0.7715 | 0.7674 | 0.9381 | 0.9381 | 0.9381 | 0.9782
0.9540 | 0.9540 | 0.9448 | 0.9540 | 0.9808 | 0.9808 | 0.9808 | 0.9782
0.8100 | 0.8100 | 0.7941 | 0.8100 | 0.9456 | 0.9456 | 0.9490 | 0.9782
0.9331 | 0.98331 | 0.9222 | 0.9331 | 0.9824 | 0.9824 | 0.9849 | 0.9782
0.8393 | 0.8393 | 0.8360 | 0.8393 | 0.9397 | 0.9397 | 0.9372 | 0.9782
0.9556 | 0.9556 | 0.9464 | 0.9556 | 0.9766 | 0.9757 | 0.9732 | 0.9782
0.8460 | 0.8460 | 0.8469 | 0.8460 | 0.9423 | 0.9431 | 0.9456 | 0.9782
0.9389 | 0.9389 | 0.9339 | 0.9389 | 0.9808 | 0.9808 | 0.9791 | 0.9791
0.7657 | 0.7657 | 0.7615 | 0.7657 | 0.9456 | 0.9456 | 0.9473 | 0.9791
0.9238 | 0.9238 | 0.9205 | 0.9238 | 0.9816 | 0.9816 | 0.9833 | 0.9791
Table 4.14. Performance of |CANet1 using FERET database (Fc), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.8247 | 0.8247 | 0.8196 | 0.8247 | 0.9536 | 0.9536 | 0.9485 | 0.9227
0.9742 | 0.9742 | 0.9485 | 0.9742 | 0.9845 | 0.9845 | 0.9845 | 0.9588
0.7680 | 0.7680 | 0.7680 | 0.7680 | 0.9536 | 0.9485 | 0.9691 | 0.9691
0.9948 | 0.9948 | 0.9948 | 0.9948 | 0.9948 | 0.9948 | 0.9948 | 0.9845
0.6804 | 0.6804 | 0.6598 | 0.6804 | 0.9742 | 0.9742 | 0.9742 | 0.9845
0.9381 | 0.9381 | 0.8866 | 0.9381 | 0.9948 | 0.9948 | 0.9948 | 0.9897
0.8866 | 0.8866 | 0.8557 | 0.8866 | 0.9381 | 0.9330 | 0.9227 | 0.9897
0.9794 | 0.9794 | 0.9845 | 0.9794 | 0.9948 | 0.9948 | 0.9948 | 0.9948
0.8711 | 0.8711 | 0.8505 | 0.8711 | 0.9742 | 0.9691 | 0.9691 | 0.9948
0.9536 | 0.9536 | 0.9381 | 0.9536 | 0.9845 | 0.9845 | 0.9897 | 0.9948
0.7165 | 0.7165 | 0.7165 | 0.7165 | 0.9794 | 0.9794 | 0.9794 | 0.9948
0.9124 | 0.9124 | 0.9021 | 0.9124 | 0.9948 | 0.9948 | 0.9948 | 0.9948
0.7990 | 0.7990 | 0.7784 | 0.7990 | 0.9485 | 0.9485 | 0.9433 | 0.9948
0.9639 | 0.9639 | 0.9536 | 0.9639 | 0.9897 | 0.9897 | 0.9845 | 0.9948
0.7268 | 0.7268 | 0.7062 | 0.7268 | 0.9433 | 0.9433 | 0.9485 | 0.9948
0.9175 | 0.9175 | 0.9072 | 0.9175 | 0.9948 | 0.9948 | 0.9897 | 0.9948
0.7268 | 0.7268 | 0.7165 | 0.7268 | 0.9433 | 0.9433 | 0.9536 | 0.9948
0.8711 | 0.8711 | 0.8608 | 0.8711 | 0.9948 | 0.9948 | 0.9897 | 0.9948
—_ 72 —_

Collection @ chosun

Table 4.15. Performance of I|CANet1 using FERET database (Dupl), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.6247 | 0.6247 | 0.6039 | 0.6247 | 0.8546 | 0.8546 | 0.8504 | 0.8296
0.8380 | 0.8380 | 0.8186 | 0.8380 | 0.9058 | 0.9072 | 0.9003 | 0.8989
0.4931 | 0.4931 | 0.4612 | 0.4931 | 0.8753 | 0.8753 | 0.8684 | 0.9030
0.7812 | 0.7812 | 0.7535 | 0.7812 | 0.9280 | 0.9280 | 0.9238 | 0.9197
0.5249 | 0.5249 | 0.5028 | 0.5249 | 0.8435 | 0.8407 | 0.8518 | 0.9197
0.7396 | 0.7396 | 0.7091 | 0.7396 | 0.9294 | 0.9294 | 0.9155 | 0.9349
0.6136 | 0.6136 | 0.5873 | 0.6136 | 0.8227 | 0.8227 | 0.8172 | 0.9349
0.8338 | 0.8338 | 0.8116 | 0.8338 | 0.8961 | 0.8961 | 0.8892 | 0.9418
0.5235 | 0.5235 | 0.4958 | 0.5235 | 0.8837 | 0.8823 | 0.8726 | 0.9418
0.7742 | 0.7742 | 0.7604 | 0.7742 | 0.9252 | 0.9252 | 0.9155 | 0.9446
0.4792 | 0.4792 | 0.4765 | 0.4792 | 0.8670 | 0.8684 | 0.8670 | 0.9460
0.7355 | 0.7355 | 0.7230 | 0.7355 | 0.9169 | 0.9169 | 0.9086 | 0.9460
0.6537 | 0.6537 | 0.6385 | 0.6537 | 0.8407 | 0.8380 | 0.8241 | 0.9460
0.7659 | 0.7659 | 0.7576 | 0.7659 | 0.8864 | 0.8878 | 0.8795 | 0.9460
0.5360 | 0.5360 | 0.5166 | 0.5360 | 0.8476 | 0.8463 | 0.8546 | 0.9460
0.7078 | 0.7078 | 0.6939 | 0.7078 | 0.9114 | 0.9100 | 0.8989 | 0.9460
0.4086 | 0.4086 | 0.4086 | 0.4086 | 0.8504 | 0.8504 | 0.8463 | 0.9460
0.7299 | 0.7299 | 0.6994 | 0.7299 | 0.9030 | 0.9017 | 0.8906 | 0.9460
Table 4.16. Performance of I|CANet1 using FERET database (Dup2), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.6410 | 0.6410 | 0.6111 | 0.6410 | 0.7906 | 0.7906 | 0.7692 | 0.7564
0.8077 | 0.8077 | 0.7821 | 0.8077 | 0.8803 | 0.8803 | 0.8675 | 0.8761
0.5684 | 0.5684 | 0.5299 | 0.5684 | 0.8376 | 0.8376 | 0.8333 | 0.8803
0.7863 | 0.7863 | 0.7436 | 0.7863 | 0.8889 | 0.8889 | 0.8675 | 0.8974
0.3889 | 0.3889 | 0.3547 | 0.3889 | 0.8462 | 0.8462 | 0.8547 | 0.9060
0.6880 | 0.6880 | 0.6325 | 0.6880 | 0.9145 | 0.9103 | 0.9103 | 0.9145
0.6282 | 0.6282 | 0.6026 | 0.6282 | 0.8077 | 0.8077 | 0.8162 | 0.9188
0.7778 | 0.7778 | 0.7735 | 0.7778 | 0.8590 | 0.8590 | 0.8504 | 0.9188
0.4530 | 0.4530 | 0.4487 | 0.4530 | 0.8162 | 0.8120 | 0.8034 | 0.9188
0.7863 | 0.7863 | 0.7692 | 0.7863 | 0.8761 | 0.8761 | 0.8590 | 0.9231
0.3974 | 0.3974 | 0.3718 | 0.3974 | 0.8504 | 0.8504 | 0.8376 | 0.9231
0.6923 | 0.6923 | 0.6880 | 0.6923 | 0.8718 | 0.8761 | 0.8718 | 0.9274
0.6239 | 0.6239 | 0.6111 | 0.6239 | 0.8077 | 0.8077 | 0.8034 | 0.9274
0.7692 | 0.7692 | 0.7564 | 0.7692 | 0.8504 | 0.8504 | 0.8376 | 0.9274
0.4744 | 0.4744 | 0.4701 | 0.4744 | 0.8248 | 0.8248 | 0.8205 | 0.9274
0.7051 | 0.7051 | 0.6880 | 0.7051 | 0.8675 | 0.8675 | 0.8675 | 0.9274
0.3547 | 0.3547 | 0.3675 | 0.3547 | 0.8291 | 0.8291 | 0.8376 | 0.9274
0.6325 | 0.6325 | 0.6282 | 0.6325 | 0.8889 | 0.8889 | 0.8803 | 0.9274
—_ 73 —_

Collection @ chosun

Table 4.17. Performance of |CANet2 using FERET database (Fb), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.8151 | 0.8151 | 0.8017 | 0.8151 | 0.9130 | 0.9121 | 0.9155 | 0.8795
0.9632 | 0.9632 | 0.9473 | 0.9632 | 0.9782 | 0.9782 | 0.9774 | 0.9573
0.8276 | 0.8276 | 0.8226 | 0.8276 | 0.9339 | 0.9322 | 0.9364 | 0.9598
0.9540 | 0.9540 | 0.9490 | 0.9540 | 0.9833 | 0.9833 | 0.9833 | 0.9690
0.7607 | 0.7607 | 0.7331 | 0.7607 | 0.9364 | 0.9364 | 0.9456 | 0.9699
0.9464 | 0.9464 | 0.9347 | 0.9464 | 0.9808 | 0.9799 | 0.9841 | 0.9741
0.8561 | 0.8561 | 0.8477 | 0.8561 | 0.9222 | 0.9222 | 0.9213 | 0.9741
0.9439 | 0.9439 | 0.9389 | 0.9439 | 0.9590 | 0.9598 | 0.9531 | 0.9749
0.7858 | 0.7858 | 0.7732 | 0.7858 | 0.9431 | 0.9431 | 0.9473 | 0.9749
0.9565 | 0.9565 | 0.9473 | 0.9565 | 0.9799 | 0.9799 | 0.9816 | 0.9757
0.7205 | 0.7205 | 0.7088 | 0.7205 | 0.9431 | 0.9431 | 0.9490 | 0.9757
0.9423 | 0.9423 | 0.9322 | 0.9423 | 0.9808 | 0.9808 | 0.9841 | 0.9766
0.8586 | 0.8586 | 0.8494 | 0.8586 | 0.9230 | 0.9213 | 0.9180 | 0.9766
0.9473 | 0.9473 | 0.9397 | 0.9473 | 0.9724 | 0.9724 | 0.9749 | 0.9766
0.7799 | 0.7799 | 0.7766 | 0.7799 | 0.9456 | 0.9456 | 0.9448 | 0.9766
0.9515 | 0.9515 | 0.9498 | 0.9515 | 0.9816 | 0.9816 | 0.9824 | 0.9774
0.7464 | 0.7464 | 0.7339 | 0.7464 | 0.9314 | 0.9314 | 0.9389 | 0.9774
0.9130 | 0.9130 | 0.9138 | 0.9130 | 0.9833 | 0.9833 | 0.9833 | 0.9782
Table 4.18. Performance of |CANet2 using FERET database (Fc), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.8505 | 0.8505 | 0.8402 | 0.8505 | 0.9536 | 0.9536 | 0.9433 | 0.9330
0.9742 | 0.9742 | 0.9536 | 0.9742 | 0.9845 | 0.9845 | 0.9794 | 0.9845
0.8608 | 0.8608 | 0.8196 | 0.8608 | 0.9639 | 0.9639 | 0.9588 | 0.9897
0.9948 | 0.9948 | 0.9742 | 0.9948 | 0.9948 | 0.9948 | 0.9948 | 0.9948
0.7938 | 0.7938 | 0.7629 | 0.7938 | 0.9588 | 0.9588 | 0.9742 | 0.9948
0.9742 | 0.9742 | 0.9536 | 0.9742 | 0.9948 | 0.9948 | 0.9948 | 0.9948
0.8196 | 0.8196 | 0.8093 | 0.8196 | 0.9433 | 0.9433 | 0.9381 | 0.9948
0.9742 | 0.9742 | 0.9588 | 0.9742 | 0.9897 | 0.9897 | 0.9897 | 0.9948
0.8299 | 0.8299 | 0.7938 | 0.8299 | 0.9485 | 0.9485 | 0.9588 | 0.9948
0.9536 | 0.9536 | 0.9433 | 0.9536 | 0.9845 | 0.9845 | 0.9845 | 0.9948
0.7680 | 0.7680 | 0.7629 | 0.7680 | 0.9536 | 0.9536 | 0.9588 | 0.9948
0.8814 | 0.8814 | 0.8660 | 0.8814 | 0.9897 | 0.9897 | 0.9897 | 0.9948
0.7784 | 0.7784 | 0.7784 | 0.7784 | 0.9330 | 0.9330 | 0.9278 | 0.9948
0.9588 | 0.9588 | 0.9330 | 0.9588 | 0.9845 | 0.9794 | 0.9691 | 0.9948
0.8041 | 0.8041 | 0.8041 | 0.8041 | 0.9433 | 0.9433 | 0.9433 | 0.9948
0.9330 | 0.9330 | 0.9227 | 0.9330 | 0.9897 | 0.9897 | 0.9845 | 0.9948
0.6907 | 0.6907 | 0.6495 | 0.6907 | 0.9433 | 0.9433 | 0.9433 | 0.9948
0.7216 | 0.7216 | 0.7165 | 0.7216 | 0.9845 | 0.9794 | 0.9794 | 0.9948
—_ 74 —_

Collection @ chosun

Table 4.19. Performance of |CANet2 using FERET database (Dupl), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.6759 | 0.6759 | 0.6524 | 0.6759 | 0.8560 | 0.8546 | 0.8504 | 0.8283
0.8075 | 0.8075 | 0.7978 | 0.8075 | 0.8975 | 0.8975 | 0.8837 | 0.8934
0.5776 | 0.5776 | 0.5485 | 0.5776 | 0.8670 | 0.8670 | 0.8657 | 0.8989
0.8075 | 0.8075 | 0.7881 | 0.8075 | 0.9141 | 0.9141 | 0.9155 | 0.9224
0.4224 | 0.4224 | 0.4169 | 0.4224 | 0.8684 | 0.8712 | 0.8767 | 0.9224
0.6842 | 0.6842 | 0.6662 | 0.6842 | 0.9391 | 0.9391 | 0.9377 | 0.9377
0.6828 | 0.6828 | 0.6648 | 0.6828 | 0.8296 | 0.8310 | 0.8296 | 0.9377
0.8061 | 0.8061 | 0.7936 | 0.8061 | 0.8920 | 0.8920 | 0.8823 | 0.9391
0.5166 | 0.5166 | 0.4931 | 0.5166 | 0.8781 | 0.8781 | 0.8629 | 0.9391
0.7618 | 0.7618 | 0.7424 | 0.7618 | 0.9224 | 0.9224 | 0.9183 | 0.9418
0.4349 | 0.4349 | 0.4197 | 0.4349 | 0.8698 | 0.8670 | 0.8670 | 0.9418
0.7271 | 0.7271 | 0.7064 | 0.7271 | 0.9169 | 0.9169 | 0.9127 | 0.9432
0.5554 | 0.5554 | 0.5443 | 0.5554 | 0.8463 | 0.8476 | 0.8407 | 0.9432
0.7770 | 0.7770 | 0.7645 | 0.7770 | 0.8947 | 0.8947 | 0.8864 | 0.9432
0.5485 | 0.5485 | 0.5499 | 0.5485 | 0.8449 | 0.8435 | 0.8352 | 0.9446
0.7244 | 0.7244 | 0.7188 | 0.7244 | 0.9017 | 0.9017 | 0.9030 | 0.9446
0.4058 | 0.4058 | 0.3947 | 0.4058 | 0.8560 | 0.8532 | 0.8560 | 0.9446
0.7036 | 0.7036 | 0.6898 | 0.7036 | 0.9100 | 0.9114 | 0.8906 | 0.9446
Table 4.20. Performance of |CANet2 using FERET database (Dup2), R=0.5
ED SED CBD MKD CSD CLD SMD SVM
0.5214 | 0.5214 | 0.5000 | 0.5214 | 0.7906 | 0.7906 | 0.7949 | 0.7692
0.7991 | 0.7991 | 0.7650 | 0.7991 | 0.8590 | 0.8590 | 0.8462 | 0.8718
0.5342 | 0.5342 | 0.5427 | 0.5342 | 0.8333 | 0.8333 | 0.8162 | 0.8761
0.7564 | 0.7564 | 0.7479 | 0.7564 | 0.8932 | 0.8974 | 0.8761 | 0.9359
0.4530 | 0.4530 | 0.4188 | 0.4530 | 0.8248 | 0.8248 | 0.8376 | 0.9359
0.7051 | 0.7051 | 0.6538 | 0.7051 | 0.9103 | 0.9103 | 0.9017 | 0.9444
0.6496 | 0.6496 | 0.6325 | 0.6496 | 0.8034 | 0.8034 | 0.8162 | 0.9444
0.8120 | 0.8120 | 0.7821 | 0.8120 | 0.8632 | 0.8632 | 0.8632 | 0.9444
0.5598 | 0.5598 | 0.5256 | 0.5598 | 0.8248 | 0.8248 | 0.8333 | 0.9444
0.7479 | 0.7479 | 0.7222 | 0.7479 | 0.8889 | 0.8889 | 0.8846 | 0.9444
0.3889 | 0.3889 | 0.3846 | 0.3889 | 0.8333 | 0.8333 | 0.8419 | 0.9444
0.7479 | 0.7479 | 0.7350 | 0.7479 | 0.9017 | 0.9017 | 0.8974 | 0.9444
0.5470 | 0.5470 | 0.5427 | 0.5470 | 0.8248 | 0.8248 | 0.8034 | 0.9444
0.7607 | 0.7607 | 0.7436 | 0.7607 | 0.8376 | 0.8376 | 0.8376 | 0.9444
0.5342 | 0.5342 | 0.5128 | 0.5342 | 0.8162 | 0.8162 | 0.8333 | 0.9444
0.7265 | 0.7265 | 0.6966 | 0.7265 | 0.8632 | 0.8675 | 0.8632 | 0.9444
0.3590 | 0.3590 | 0.3504 | 0.3590 | 0.8205 | 0.8205 | 0.8205 | 0.9444
0.6752 | 0.6752 | 0.6581 | 0.6752 | 0.8803 | 0.8803 | 0.8889 | 0.9444
— 75 —

Collection @ chosun

Table 4.21. Performance of algorithms using FERET database (Fb), R=0.5

Networks

PCANet ICANet1 ICANet2

classifier

ED 0.9690 0.9607 0.9632
SED 0.9690 0.9607 0.9632
CBD 0.9649 0.9506 0.9498
MKD 0.9690 0.9607 0.9632
CSD 0.9883 0.9824 0.9833
CLD 0.9883 0.9824 0.9833
SMD 0.9883 0.9849 0.9841
SVM 0.9841 0.9791 0.9782

Table 4.22. Performance of algorithms using FERET database (Fc), R=0.5

Networks
PCANet ICANet1 ICANet2
classifier

ED 0.9794 0.9948 0.9948
SED 0.9794 0.9948 0.9948
CBD 0.9639 0.9948 0.9742
MKD 0.9794 0.9948 0.9948
CsD 0.9897 0.9948 0.9948
CLD 0.9897 0.9948 0.9948
SMD 0.9897 0.9948 0.9948
SVM 0.9845 0.9948 0.9948

Collection @ chosu

n

76

Table 4.23. Performance of algorithms using FERET database (Dup2), R=0.5

Networks
PCANet ICANet1 ICANet2
classifier

ED 0.8421 0.8380 0.8075
SED 0.8421 0.8380 0.8075
CBD 0.8338 0.8186 0.7978
MKD 0.8421 0.8380 0.8075
CSD 0.9349 0.9294 0.9391
CLD 0.9349 0.9294 0.9391
SMD 0.9363 0.9238 0.9377
SVM 0.9391 0.9460 0.9446

Table 4.24. Performance of algorithms using FERET database (Dup2), R=0.5

Networks
PCANet ICANet1 ICANet2
classifier
ED 0.8120 0.8077 0.8120
SED 0.8120 0.8077 0.8120
CBD 0.7949 0.7821 0.7821
MKD 0.8120 0.8077 0.8120
CSD 0.9017 0.9145 0.9103
CLD 0.9017 0.9103 0.9103
SMD 0.9103 0.9103 0.9017
SVM 0.9145 0.9274 0.9444
— 77 —

Collection @ chosun

_____ N
: 0.9848 0.9848
:
1
1
£08% |
I
1
1
l
0.9787

PCANet ICANet1 ICANet2

Figure 4.12. Performances of CU-ECG using SVM

A2.5%

PCANet ICANet1 ICANet2

Figure 4.13. Performances of Gaussian noise CU-ECG using SVM

78

{“/Collection @ chosun

0.99 T [cBD M csD M SND
I sED I vkD T cLD [SVM

0.98

0.97

0.95r] T
094 r
0.93

PCANet ICANet1 ICANet2

performance
o
©
()]
T

Figure 4.14. Performance of FERET database (Fb), R=0.5

BN ED [ceD @ csp I SMD
N sED N vkD [T cLD N svM |

M

PCANet ICANet1 ICANet2

0.995 -

0.99 r

0.985 -

performance
o

o © o

[{e} ~l [(e}

~ (@)} [e3)
T

0.965

0.96 -

0.955 -

0.95

Figure 4.15. Performance of FERET database (Fc), R=0.5

79

{“ICollection @ chosun

B Cs>0 Ec o [svo I svM

performance

PCANet ICANet1 ICANet2
Figure 4.16. Performance of FERET database (Dupl), R=0.5

085

B CsD [CLO [svo ([SVM
0.945

0.94

performance
< o -
v 2 v 92 o
& 8 B 8 &

o
©
poct

6.805

0.9

PCANet ICANet1 ICANet2

Figure 4.17. Performance of FERET database (Dup2), R=0.5

80

{=/Collection @ chosun

CU FACE GAUSSIAN NOISE SALT NOISE

m PCANet m|CANet1 m|CANet2

Figure 4.18. Performance of CU-Face database

0.9848
0.9787

EELM AE PCANet ICANet2

0.8989

(*ICollection @ chosun

Figure 4.19. Performance of CU-ECG

81

BPCANst mICANetl mICANet2

(T3]
a =
S -
- =1
. a
2 - -
u
u
o
=2 g
aF
(1]
o
a a
a a
m m
[=3] [=)]
a a
CU FACE GAUSSIAN NOISE SALTHOISE
Figure 4.20. Performance of CU-Face
B FPCAMNet ®mICANetl mICANet2
L |
[) [:] =
) I T
(=1 L=} =]
— a []
o
m
o
=
o
M~
o4
[=y]
=
un
g
—
o
=
DUP1 DUP2

(*ICollection @ chosun

Figure 4.21. Performance of FERET

82

mFCANet mICANetl mlCANetd

no3 3 :r
O B R
a = = m ‘:"!
= a =
T @
u a
w B
[} =1} a
[1}] m
rm (]
o =
o a
a
(]
[=3]
| I I
IT_DATA GAUSSIAN MOISE SALTHOISE
Figure 4.22. Performance of CU-ECG
mPCANet mICANetl mICAMNet2
o
2
o T @ @
m a [vu) [vu)
I @ a a
o un . [ine =] =]
Fu P = e
rm o o m
g = - g
o
=
o
[=)]
L
(=)
=
12x12 0% 20 28 % 28

(*ICollection @ chosun

Figure 4.23. Performance of scale CU-ECG

83

V. Conclusion

In this paper, we have organized the |CANet1 algorithm to improve the
disadvantages of |[CANet, and studied the new [CANet2 model. Experimental
results show that PCANet algorithm has low performance when using noise data
and small feature data. Normally, when processed data is used, it shows
similar performance to PCANet. However, the PCANet using Eigenvectors is
weak against noise, and the feature vector using statistical independence is
robust against noise. In addition, |CANet showed robustness compared to
PCANet, even with loss of data information. In addition, the performance was
better than the basic deep learning of auto-encoders and the classification
time was about 0.05 seconds faster than PCANet. We could expect to improve
the performance of face data as well as electrocardiogram data. |CANet was
superior to PCANet when all data were used. Especially, |CANet showed higher
performance than PCANet when using noise data. Finally, we used ECG and
facial data for personal identification security problem. [CANet algorithm
has been studied to improve the problem of deep learning (computational
complexity and composition method). ICANet 's effectiveness has been shown
to be superior to computational weight and time although the recognition
rate can be reduced due to shallow learning.

84

Collection @ chosun

References

[1] H. Nguyen, L.M. Kieu, T. Wen, and C. Cai, “Deep learning methods in
transportation domain: a review,” /ET Intell. Transp. Syst, vol
12, pp. 998-1004, 2018.

[2] R. Mu, X. Zeng, and L. Han, “A Survey of recommender systems based
on deep learning,” /EEE Access, vol. 6, pp. 69009-69022, 2018.

[3] F. Celesti, A. Celesti, J. Wan, and M. Villari, “Why deep learning
is changing the way to approach NGS data processing: a review,”
|EEE Rev. Biomed. Eng, vol. 11, pp. 68-76, 2018.

[4] X. W. Chen and X. Lin, “Big data deep learning: challenges and
perspectives,” /EEE Access, vol. 2, pp. 514-525, 2014.

[5] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R.
Wald, and E. Muharemagic, “Deep learning applications and

challenges in big data analytics,” J. Big Data, vol. 2, no. 1, pp.

1-21, 2015.

[6] P. Angelov and A. Sperduti, “Challenges in deep learning,” Proc.
Eur. Symp. Artif. Neural WNetworks, no. 1, pp. 489-496, 2016.

[7]1 1. T. Jolliffe, “Principal component analysis. Second Edition,”

Springer Ser. Stat, vol. 98, pp. 487, 2002.

[8] N. N. Bui, S. H. Min, and J. Y. Kim, “Human detection in video using
poselet with articulated pose estimation and edge—-based RPCA
foreground extraction,” Korean Society of Information Technology
Association, vol. 12, no. 3, pp. 51-60, 2014.

[9] Y. Byeon, W. Lim, J. Lee, H. Jeong, H. Han, and C. Kwak, “Individual
identification on electrocardiogram using third-order tensor-based
MPCA,” Journal of advanced engineering and technology, vol. 11, pp.
151-157, 2018.

[10]M. S. Park and S. Oh, “Nonlinear feature extraction using

class—augmented kernel PCA,” /International Conference on Artificial

85

Collection @ chosun

Neural Networks, 2011.

[11]B. Kim, S. Oh, and J. Kim, “Design of digit recognition system
realized with the aid of fuzzy RBFNNs and incremental,” Korean
Association of Intelligence Systems, vol. 1, no. 1, pp. 56-63, 2016.

[12] M. Jin, R. Li, J. Jiang, and B. Qin, “Extracting contrast-filled
vessels in X-ray angiography by graduated RPCA with motion coherency
constraint,” Pattern Recognit, vol. 63, no. 1, pp. 653-666, 2017.

[13]Y. Lu, Z. Lai, Z. Fan, J. Cui, and Q. Zhu, “Manifold discriminant
regression learning for image classification,” Neurocomputing, vol.
166, pp. 475-486, 2015.

[14]Y. Li, G. Liu, Q. Liu, Y. Sun, and S. Chen, “Moving object
detection via segmentation and saliency constrained RPCA,”
Neurocomputing, vol. 323, no. 1, pp. 352-362, 2019.

[15] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust
subspace learning: robust PCA, robust subspace tracking, and robust

subspace recovery,” [EEE Signal Process. Mag, vol. 35, no. 4, pp.

32-55, 2018.
[16] J. X. Liu, Y. Xu, C. H. Zheng, H. Kong, and Z. H. Lai, “RPCA-based
tumor classification using gene expression data,” [EEE/ACM Trans.

Comput. Biol. Bioinforma, vol. 12, no. 4, pp. 964-970, 2015.

[17]W. Sun and Q. Du, “Graph-regularized fast and robust principal
component analysis for hyperspectral band selection,” /EEE Trans.
Geosci. Remote Sens, vol. 56, no. 6, pp. 3185-3195, 2018.

[18] F. Zhong, L. Liu, and J. Hu, “Robust 2DLDA based on correntropy,”
Neurocomputing, vol. 316, no. 1, pp. 399-404, 2018.

[19]M. Yin, D. Zeng, J. Gao, Z. Wu, and S. Xie, “Robust multinomial
logistic regression based on RPCA,” /EEE J. Sel. Top. Signal
Process, vol. 12, no. 6, pp. 1144-1154, 2018.

[20] F. Kuang, W. Xu, and S. Zhang, “A novel hybrid KPCA and SVM with GA
mode! for intrusion detection,” App/. Soft Comput. J, vol. 18, pp.
178-184, 2014.

86

Collection @ chosun

[21] J. Liu, C. Zhang, and C. Zheng, “EEG-based estimation of mental
fatigue by using KPCA-HMW and complexity parameters,” Biomed.
Signal Process. Control, vol. 5, no. 2, pp. 124-130, 2010.

[22] A. Vinay, V. S. Shekhar, K. N. B. Murthy, and S. Natarajan, “Face
recognition using gabor wavelet features with PCA and KPCA - a
comparative study,” Procedia Comput. Sci, vol. 57, pp. 650-659,
2015.

[23] Q. Wang, “Kernel principal component analysis and its applications
in face recognition and active shape models,” Comouter Vision and
Pattern Recognition, vol. 21, no. 10, pp. 1-9, 2012.

[24] A. Romero, C. Gatta, and G. Camps-Valls, “Unsupervised deep feature
extraction for remote sensing image classification,” /EEE Trans.
Geosci. Remote Sens, vol. 54, no. 3, pp. 1349-1362, 2016.

[25] J. Xia, N. Falco, J. A. Benediktsson, P. Du, and J. Chanussot,

“Hyperspectral image classification with rotation random forest via
KPCA,” |EEE J. Sel. Top. Appl. Earth Obs. Remote Sens, vol. 10, no.
4, pp. 1601-1609, 2017.

[26] F. Yuan, X. Xia, J. Shi, H. Li, and G. Li, “Non-linear
dimensionality reduction and gaussian process based classification
method for smoke detection,” /EEE Access, vol. 5, pp. 6833-6841,
2017.

[27] K. Hotta, “Local co-occurrence features in subspace obtained by
KPCA of local blob visual words for scene classification,” Pattern
Recognit, vol. 45, no. 10, pp. 3687-3694, 2012.

[28] Y. Xiao, H. Wang, W. Xu, and J. Zhou, “L1 norm based KPCA for
novelty detection,” Pattern Recognit, vol. 46, no. 1, pp. 389-39%,
2013.

[29] S. Chaib, Y. Gu, H. Yao, and S. Zhao, “A VHR scene classification
method integrating sparse PCA and saliency computing,” /nt. Geosci.
Remote Sens. Symp, vol. 2016, pp. 2742-2745, 2016.

[30] A. Mishra, N. S. Rajput, D. Singh, “An object linked intelligent

87

Collection @ chosun

classification method for hyperspectral images,” 2017 |EEE
International Geoscience and Remote Sensing Symposium (1GARSS),
pp. 3345-3348.

[31]P. H. Hsu and Y. H. Tseng, “Feature extraction for hyperspectral
Image,” Proc. 20th Asian Conf. Remote Sens, pp. 405-410, 1999.

[32] X. Xiao and Y. Zhou, “Two-Dimensional quaternion PCA and Sparse
PCA,” |EEE Trans. Neural Networks Learn. Syst, pp. 1-15, 2018.

[33]Z. Hu, G. Pan, Y. Wang, and Z. Wu, “Sparse principal component
analysis via rotation and truncation,” Adv. Princ. Compon. Anal.
Res. Dev, vol. 27, no. 4, pp. 1-18, 2017.

[34] A. De Pierrefeu, “Structured sparse principal components analysis
with the TV-Elastic net penalty,” /EEE Trans. Med. Imaging, vol.
37, no. 2, pp. 396-407, 2018.

[35] L. Wang, X. Xie, W. Li, Q. DOu, and G. Li, “Sparse feature
extraction for hyperspectral image classification,” 20715 /EEE China
Summit Int. Conf. Signal Inf. Process, pp. 1067-1070, 2015.

[36] S. Chaib, Y. Gu, and H. Yao, “An informative feature selection
method based on sparse PCA for VHR scene classification,” /EEE
Geosci. Remote Sens. Lett, vol. 13, no. 2, pp. 147-151, 2016.

[37]F. Li, A. Wong, and D. A. Clausi, “Comparative study of feature
space projection methods for hyperspectral image classification,”
Int. Geosci. Remote Sens. Symp, pp. 3438-3441, 2014.

[38]S. B. Liu, Z. Y. Yuan, J. H. Zhao, and X. L. Wang, “An approach to
face recognition based on wavelet decomposition, spca and svm,”
Proc. 2009 Int. Conf. Mach. Learn. Cybern, vol. 2, no. 2, July, pp.
989-993, 2009.

[39]Y. T. Xi and P. J. Ramadge, “Separable PCA for image

classification,” ICASSP, [EEE Int. Conf. Acoust. Speech Signal
Process, pp. 1805-1808, 2009.
[40] |. Dagher and R. Nachar, “Face recognition wusing IPCA-ICA

algorithm,” /EEE Trans. Pattern Anal. Mach. Intell, vol. 28, no. 6,

88

Collection @ chosun

pp. 996-1000, 2006.

[41] A. Rozza, G. Lombardi, and E. Casiraghi, “Novel IPCA-based
classifiers and their application to spam filtering,” /nt. Conf
Intell. Syst. Des. App!, pp. 797-802, 2009.

[42] Y. Yuan, Y. Pang, J. Pan, and X. Li, “Scene segmentation based on

IPCA for visual surveillance,” MNeurocomputing, vol. 72, no. 10, pp.
2450-2454, 2009.

[43] X. Qu and M. Yao, “Adaptive subspace incremental PCA based online
learning for object classification and recognition,” /nt. Congr.
Image Signal Process. CISP 20711, vol. 3, pp. 1494-1498, 2011.

[44] C. Qing, S. Zhao, and X. Xu, “The incremental PCA tracking with
negative samples,” 2014 |EEE Int. Conf. Consum. Electron. pp. 1-4,
2014.

[45]Y. Wang, J. Zhou, Z. Li, Z. Dong, and Y. Xu,
“Discriminant-analysis-based single-phase earth fault protection
using improved PCA in distribution systems,” /EEE Trans. Power
Deliv, vol. 30, no. 4, pp. 1974-1982, 2015.

[46] Y. Yin, D. Xu, X. Wang, and M. Bai, “Online state-based structured
SUWM combined with incremental PCA for robust visual tracking,” /EEE
Trans. Cybern, vol. 45, no. 9, pp. 1988-2000, 2015.

[47] A. A. Alorf, “Performance evaluation of the PCA versus improved PCA
(IPCA) in image compression, and in face detection and
recognition,” FTC 2016 — Proc. Futur. Technol. Conf, no. 1, pp. 537
-546, 2017.

[48] M. Bengherabi, L. Mezai, F. Harizi, A. Guessoum, and M. Cheriet
“Score fusion of SVD and DCT-RLDA for face recognition,” 2008 Ist
Int. Work. Image Process. Theory, Tools Appl. [PTA 2008, pp. 1-8,
2008.

[49] H. Yuan, Y. Y. Tang, Y. Lu, L. Yang, and H. Luo, “Spectral-spatial
classification of hyperspectral image based on discriminant
analysis,” JEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, vol. 7,

89

Collection @ chosun

no. 6, pp. 2035-2043, 2014.

[50] C. He, T. Zhuo, D. Ou, M. Liu, and M. Liao, “Nonlinear compressed
sensing-based LDA topic model for polarimetric SAR image
classification,” [EEE J. Sel. Top. Appl. Earth Obs. Remote Sens,
vol. 7, no. 3, pp. 972-982, 2014.

[51]R. Zeng, J. Wu, L. Senhadji, and H. Shu, “Tensor object
classification via multilinear discriminant analysis network,”
[CASSP, |EEE Int. Conf. Acoust. Speech Signal Process, vol. 2, pp.
1971-1975, 2015.

[52] S. J. Hong and Y. H. Cho, “lImage recognition by using hybrid
coefficient measure of correlation and distance,” J. Korean /Inst.
Intell. Syst, vol. 20, no. 3, pp. 343-347, 2011.

[53] J. S. Hwang, J. H. Kim, “A study on the estimation of modal
parameters using independent component analysis

method,” Architectural Institute of Korea, vol. 27, pp. 27-35,

2011.
[54]S. C. Baek, J. S. Hong, “Image classification based on
multi-resolution characteristic and independent component

analysis,” Proceedings of KIIT Conference, pp. 455-460, 2012.

[55] K. H. Kwon, J. D. Lim, “Dried pepper sorting using independent
component analysis on RGB images,” Korean society of computer and
information, vol. 1, pp. 59-65, 2012.

[56] K. S. Kang, H. J, Kim, J. S. Hwang, “Mode decomposition and
output-only system identification of lateral-torsionally coupled
structures using independent component analysis
method,” Architectural Institute of Korea, vol. 28, pp. 37-45, 2012.

[57] K. H. Kim, “Vibration source contribution analysis of plate
structure using independent component analysis,” Journal of the
Korea Maritime Engineering Association, vol. 26, pp. 70-76, 2012.

[58] K. Kim, J. J. Jun, D. S. Cho, J. H. Kim, and H. M. Kwon, “Vibration

source signal identification of structures using ICA,” J. Soc. Nav.

90

Collection @ chosun

Archit. Korea, vol. 49, no. 6, pp. 498-503, 2013.

[59] X. Quan, K. S. Bae, “Frequency bin alignment using covariance of
power ratio of separated signals in multi-channel FD-ICA,” Korean
Association of Voice of Korea, vol. 6, pp. 149-153, 2014.

[60]C. G. Park, “Blind source separation using ICA and masking
operation in time-frequency domain,” Korea Inst. Inf. Technol. Rev,
vol. 11, no. 10, 2014.

[61] J. S. Hwang, “A novel mode decomposition method for non-classical
damping structure using acceleration responses,” J. Archit. Inst.
Korea Struct. Constr, vol. 31, no. 1, pp. 19-26, 2015.

[62] J. Lee and B. Lee, “Design of filter to remove motionartifacts of
photoplethysmography based on indepenent components analysis and
filter banks,” Korean Society of Information and Communication, vol.
20, pp. 1431-1437, 2016.

[63] C. Symposium, “Designed of partial discharge pattern classifier of
independent component analysis based fuzzy neural networks,” Korean
institute of electrical engineers, vol. 2017, no. 10, pp.142-143,
2017.

[64]M. Wu, J. Zhou, and J. Sun, “Multi-scale ICA texture pattern for
gender recognition,” Electron. Lett, vol. 48, no. 11, pp. 629,
2012.

[65]Z. L. Sun, C. H. Zheng, Q. W. Gao, J. Zhang, and D. X. Zhang,

“Tumor classification using eigengene-based classifier committee
learning algorithm,” /EEE Signal Process. Lett, vol. 19, no. 8, pp.
455-458, 2012.

[66]R. J. Martis, U. R. Acharya, and L. C. Min, “ECG beat
classification using PCA, LDA, ICA and Discrete Wavelet Transform,”
Biomed. Signal Process. Control, vol. 8, no. 5, pp. 437-448, 2013.

[67] X. Wang and X. P. Zhang, “An ICA mixture hidden conditional random
field model for video event classification,” /EEE Trans. Circuits
Syst. Video Technol. vol. 23, no. 1, pp. 46-59, 2013.

91

Collection @ chosun

[68]C. Yu, Q. Qui, Y. Zhao, and X. Chen, “Satellite image
classification using morphological component analysis of texture and
cartoon layers,” /EEE Geosci. Remote Sens. Lett, vol. 10, no. 5,
pp. 1109-1113, 2013.

[69] N. Falco, J. A. Benediktsson, and L. Bruzzone, “A study on the
effectiveness of different independent component analysis algorithms
for hyperspectral image classification,” [EEE J. Sel. Top. Appl.
Earth Obs. Remote Sens, vol. 7, no. 6, pp. 2183-2199, 2014.

[70] A. X. Stewart, A. Nuthmann, and G. Sanguinetti, “Single-trial
classification of EEG in a visual object task using ICA and machine
learning,” J. Neurosci. Methods, vol. 228, no. 1, pp. 1-14, 2014.

[71]Y. Zhao, S. Wei, Y. Xiao, Z. Zhu, and Y. Wei, “Kernel
Reconstruction ICA for Sparse Representation,” /EEE Trans. Neural
Networks Learn. Syst, vol. 26, no. 6, pp. 1222-1232, 2014.

[72] R. H. R. Pruim, M. Mennes, D. van Rooij, A. Llera, J. K. Buitelaar,
and C. F. Beckmann, “ICA-AROMA: A robust ICA-based strategy for
removing motion artifacts from fMRI data,” MNeuroimage, vol. 112,
no. 1, pp. 267-277, 2015.

[73] R. Mahajan and B. |. Morshed, “Unsupervised eye blink artifact
denoising of EEG data with modified multiscale sample entropy,
kurtosis, and wavelet-ICA,” /EEE J. Biomed. Heal. Informatics, vol.
19, no. 1, pp. 158-165, 2015.

[74] J. Coloigner, “A novel classification method for prediction of
rectal bleeding in prostate cancer radiotherapy based on a
semi-nonnegative ICA of 3D planned dose distributions,” /EEE J.
Biomed. Heal. Informatics, vol. 19, no. 3, pp. 1168-1177, 2015.

[75]M. Tao, F. Zhou, Y. Liu, and Z. Zhang, “Tensorial independent
component analysis-based feature extraction for polarimetric SAR
Data Classification,” /EEE Trans. Geosci. Remote Sens, vol. 53, no.
5, pp. 2481-2495, 2015.

[76] J. Bijsterbosch, “Hand classification of fMRI ICA noise

92

Collection @ chosun

components,” Neuroimage, vol. 154, no. 1, pp. 188-205, 2016.

[77]R. Chai, “Driver Fatigue Classification with Independent Component
by Entropy Rate Bound Minimization Analysis in an EEG-Based
System,” /EEE J. Biomed. Heal. Informatics, vol. 21, no. 3, pp. 715
=724, 2017.

[78] M. Iwahashi, H. Arof, P. Cumming, N. Mokhtar, and C. Y. Sai,

“Automated Classification and Removal of EEG Artifacts With SVM and
Wavelet-ICA,” /EEE J. Biomed. Heal. Informatics, vol. 22, no. 3,
pp. 664-670, 2017.

[79] Y. Zhang, T. Geng, X. Wu, J. Zhou, and D. Gao, “ICANet: a simple
cascade linear convolution network for face recognition,” Eurasip
J. Image Video Process, vol. 2018, no. 1, 2018.

[80] C. Zhang, X. Wu, X. Gao, Y. Wang, and Z. Lv, “An ICA-based spatial
filtering approach to saccadic EOG signal recognition,” Biomed.
Signal Process. Control, vol. 43, no.1, pp. 9-17, 2018.

[81] R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba, “lLearning with
hierarchical-deep models,” /EEE Trans. Pattern Anal. Mach. Intell,
vol. 35, no. 8, pp. 1958-1971, 2013.

[82] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based
classification of hyperspectral data,” /[EEE J. Sel. Top. Appl.
Earth Obs. Remote Sens, vol. 7, no. 6, pp. 2094-2107, 2014.

[83] T. Dobhal, V. Shitole, G. Thomas, and G. Navada, “Human Activity
Recognition using Binary Motion Image and Deep Learning,” Procedia
Comput. Sci, vol. 58, no. 1, pp. 178-185, 2015.

[84] M. Hasan and A. K. Roy-Chowdhury, “A Continuous Learning Framework
for Activity Recognition Using Deep Hybrid Feature Models,” /EEE
Trans. Multimed, vol. 17, no. 11, pp. 1909-1922, 2015.

[85] Y. Du, Y. Fu, and L. Wang, “Representation Learning of Temporal
Oynamics for Skeleton-Based Action Recognition,” /EEE Trans. Image
Process, vol. 25, no. 7, pp. 3010-3022, 2016.

[86] N. Neverova, “Learning Human ldentity from Motion Patterns,” /EEE

93

Collection @ chosun

Access, vol. 4, no. 1 pp. 1810-1820, 2016.
[87] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. 0. Ogunbona,
“Action Recognition from Depth Maps Using Deep Convolutional Neural
Networks,” /EEE Trans. Human-Machine Syst., vol. 46, no. 4, pp. 498
-509, 2016.

[88] M. Koohzadi and N. M. Charkari, “Survey on deep learning methods in
human action recognition,” /ET Comput. Vis, vol. 11, no. 8, pp. 623
-632, 2017.

[89] Y. Kim and Y. Li, “Human Activity Classification with Transmission
and Reflection Coefficients of On-Body Antennas Through Deep
Convolutional Neural Networks,” /EEE Trans. Antennas Propag, vol.
65, no. 5, pp. 2764-2768, 2017.

[90] Y. Liu, Q. Wu, L. Tang, and H. Shi, “Gaze-Assisted Multi-Stream
Deep Neural Network for Action Recognition,” /EEE Access, vol. 5,
pp. 19432-19441, 2017.

[91]D. Holden, “Edinburgh Research Explorer Fast Neural Style Transfer
for Motion Data,” |EEE Computer Graphics and Applications, vol.
37. no. 4, pp. 42-47, 2017.

[92] H. Chen, J. Chen, R. Hu, C. Chen, and Z. Wang, “Action recognition
with temporal scale-invariant deep learning framework,” China
Commun, vol. 14, no. 2, pp. 163-172, 2017.

[93] Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, “A Comprehensive
Study on Cross-View Gait Based Human |Identification with Deep
CNNs,” /EEE Trans. Pattern Anal. Mach. Intell, vol. 39, no. 2, pp.
209-226, 2017.

[94]B. Ni, T. Li, and X. Yang, “lLearning semantic-aligned action
representation,” /EEE Trans. Neural Networks Learn. Syst, vol. 29,
no. 8, pp. 3715-3725, 2018.

[95] H. Rahmani, A. Mian, and M. Shah, “Learning a Deep Model for Human
Action Recognition from Novel Viewpoints,” /EEE Trans. Pattern
Anal. Mach. Intel/, vol. 40, no. 3, pp. 667-681, 2018.

94

Collection @ chosun

[96] L. Wang, Y. Xu, J. Cheng, H. Xia, J. Yin, and J. Wu, “Human Action
Recognition by Learning Spatio-Temporal Features with Deep Neural
Networks,” /EEE Access, vol. 6, pp. 17913-17922, 2018.

[97] C. Yang, N. Tavassolian, “An Independent Component Analysis
Approach to Motion Noise Cancelation of,” /EEE Trans. Biomed. Eng.,
vol. 66, no. 3, pp. 784-793, 2019.

[98] Y. Zheng and X. Hu, “Interference Removal From Electromyography
Based on Independent Component Analysis,” /EEE Trans. Neural Syst
Rehabil. Eng, vol. 27, no. 5, pp. 887-894, 2019.

[99] T. Chan and Y. Ma, “PCANet: A Simple Deep Learning Baseline for
Image Classification?,” /EEE Transactions on Image Processing, vol.
24, no. 12, pp. 5017-5032, 2015.

[100] J. Wu, “PCANet: An energy perspective,” Neurocomputing, vol. 313,
pp. 271-287, 2018.

95

Collection @ chosun

List of publications
Paper

1. Jae-Neung Lee, Myung-Won Lee, Yeong-Hyeon Byeon, Won-Sik Lee,

Keun-Chang Kwak, "Classification of horse gaits using FCM-based
neuro—fuzzy classifier from the transformed data information of inertial
sensor", Sensors, vol. 16, Article ID 664, 2016.

2. Yeong-Hyeon Byeon, Myung-Won Lee, Jae—Neung Lee, Keun-Chang Kwak,

"Prediction of dinghy boom direction wusing intelligent predictor",
International Journal of Control Automation and Systems, vol. 16, no. 1, pp.
368-376, 2018.

3. Jae-Neung Lee, Yeong-Hyeon Byeon and Keun-Chang Kwak, “Design of

Ensemble Stacked Auto—Encoder for Classification of Horse Gaits with
MEMS Inertial Sensor Technology”’, Micromachines, vol. 9, no. 8, pp. 1-17,
2018.

4. Yeong—-Hyeon Byeon, Myung-Won Lee, Jae—Neung Lee, Keun-Chang Kwak,
“Multilinear EigenECGs and FisherECGs for Individual Identification from
Information Obtained by an Electrocardiogram Sensor’, Symmetry. vol. 10,
no. 10, pp. 1-21, 2018.

5. Jae—Neung Lee, Yeong-Hyeon Byeon, Sum Bum Pan, and Keun-Chang

Kwak, An EigenECG network approach based on PCANet for personal
identification from ECG signal’, Sensors. vol. 18, no. 11, pp. 1-25, 2018.

6. Jae-Neung Lee, Keun-Chang Kwak, “Personal identification using a robust

EigenECG netwrok based on time-frequency representations of ECG
signals”, IEEE Access, vol. 7, pp. 48392-48404, 2019.

7. O|AE, BtA, “AX A A|AES 93 Yo]EE IFly Q8 <=y 7wk Ful
HHERES 2R 7|&8s]=FX], vol. 15, no. 5, pp. 1-9, May 31. 2017.

96

Collection @ chosun

List of publications

Conference

1. Jae—Neung Lee, Keun—-Chang Kwak, "A Trend Analysis of Image Processing

Approaches in Unmanned Aerial Vehicle", International Conference on
Image Processing, Analysis and Computer Vision (IPACV), pp. 271-274,
Feb. 2014.

2. Jae—Neung Lee, Keun-Chang Kwak, "A Trends Analysis of Yatch Simulator

Dinghy", International Conference on Wireless and Mobile Networks
(ICWMN), pp. 1272-1275, Feb. 2015.

3. Jae-Neung Lee, Myung-Won Lee, Jung-Su Han, Sung-Bum. Pan,

Keun-Chang Kwak, "Yacht DB Construction Based on Five Essentials of
Sailing", International Conference on Soft Computing and Data Mining
(ICSCDM), pp. 1276-1279, Feb, 2015.

4. Jae—Neung Lee, Keun-Chang Kwak, "A Performance Comparison of

Auto-Encoder and Its Variants for Classification", International Conference
on Signals and Systems (ICSigSys), pp. 207-211, May, 2017.

5. Jae-Neung Lee, Sum Bum Pan, Keun—-Chang Kwak, "lIndividual identification
Based on Cascaded PCANet from ECG Signal", 2019 International
Conference on Electronics, Information, and Communication (ICEIC), pp.
1-4, Jan, 2019.

7. olAl%, BEF, OGP PCAZ ol §8 K-POP W=RA ¥R, #5919
3, A=), 20184 5¢

8. o|AlE, -, “Stacked QLEAMNFIY 7|0k Ful WY BT g W 2] ks >+
Alleerxglg], FAkdg), 20161d 11€ 5.

0. olA%, WM, BP, "AE ABdolEG BH B e ATEF B4,
Sty 3 e)s] ==t 3]v=5, pp 1053-1054, 2015 59 13.

97

Collection @ chosun

=

oA, HEE, "wAAA Ve BA A FEES o
%Z@ﬂ? }5] SpAel=ls], 35, pp. 92-95, 2014

o . .
sk Sk A EAY ¢
[

54,

&
ksl

)

11, olAs, 23, S RAFET] Ga

o SR’ sEavEeas) F
1

Allelg], w2kl pp 221-225, 20131 114,
1, =d G

12 olAls, H2F, "2Ex AEUelE Fus) AT B BAY,
22X ICT 3¢ =08 =F, <A, pp. 141-143 2013 6¢

98

Collection @ chosun

List of publications
Patent

1. Keun-Chang Kwak, Myung-Won Lee, Yeong-Hyeon Byeon, Jae—Neung Lee,

“Real-time coaching system based on three dimensional motion analysis of
horse rider”, 10-2013-0138335, 2013.
2. Jae-Neung Lee, Keun-Chang Kwak, Sum Bum Pan, Myung-Won Lee,

Yeong-Hyeon Byeon, “Dinghy yacht coaching system and method thereof”,
10-2016-0022355, 2016.

99

Collection @ chosun

List of publications
S/W Registration

L W94, o|¥d, olAs, &%, “Srt¥E svbAe] AAEY IR, KR,

Rile

C-2013-009539 &, 2013.
2. oA, T, “dAE 7w ~®E 9 ECIH” KR, C-2017-033274 3,

2017.
3. olAlE, &, “FE 7Nk ELM ¢aE]E”, KR, C-2017-036615 =, 2017.

- 100 -

Collection @ chosun

ABSTRACT

Deep Network Design based on Independent Component Analysis

and Application of User Recognition

Lee, Jae Neung

Advisor : Prof. Kwak, Keun Chang, Ph. D.
Dept. of Control and Instrumentation Eng.,
Graduate School of Chosun University

In this paper, we propose a systematic structure of I[CANet1, a deep
network based on independent component analysis, and develop it into [CANet2
model. The proposed PCANet has smaller computational complexity and faster
speed than deep learning. However, there is a disadvantage in that the
performance is lowered according to the modification of data. The [CANet
algorithm is proposed to solve the problem. There are two structures for the
ICANet algorithm. The first stage of the ICANet1 algorithm is a step of mean
removal and obtaining a central image. Next, the covariance is obtained by
using the center image, the Eigenvector is obtained through the value, and
finally, the Eigenvector is used as the input of the independent component
analysis filter. Here, centering and whitening steps are performed, and an
optimal independent component matrix is obtained by updating the weights.
Using this matrix, a padding image obtained through the averaging step and

Collection @ chosun

convolution are calculated. This is the first step in ICANet2. |CANet2 does
not use Eigenvectors but uses PCA feature vectors. To remove the correlation
among the PCA feature vectors, the ICA algorithm is used to find that are
statistically independent. The use of statistically independent vectors can
help overcome the disadvantages of the PCA and improve the performance. The
second stage of the I[CANet is almost identical to the first stage, and
because it uses the data from the first stage, only the number of dimensions
is reduced. It is used as an input to the output stage using the resultant
product data from Step 2. Here, the feature values of the independent
component analysis network can be obtained by using the hashing code step
and the histogram. The feature values obtained from the final histogram are
vectorized and used as an input to the classifier. By using |CANet, the
performance is lower than that of deep learning, but it is expected to be
superior to recognition speed, especially for mobile. The classifier shows
performance using Euclidean distance, squared Euclidean distance, city block
distance, Minkowski distance, cosine distance, correlation distance, and
Spearman distance, SVM. To verify the performance of the proposed method, we
used the FERET face, the CU-FACE, the CU-ECG, and the noise ECG database.
Experimental results show that [CANet1 and 2 have better performance than
PCANet for Dupl and Dup?2 data affected by time. In addition, when noise ECG
data were used, it showed better performance than PCANet. This proved the
validity of the ICANet algorithm.

Xi

Collection @ chosun

	Ⅰ. Introduction
	1.1. Research background and review of papers
	1.2. Composition of paper

	Ⅱ. PCANet and its variance with ICA
	2.1. PCA
	2.2. ICA
	2.3. Deep Learning
	2.4. PCANet
	2.5. LBP

	Ⅲ. Proposed ICANet
	3.1. Statistically Independent Basis Image ICANet (ICANet1)
	3.2. Factorial ICANet (ICANet2)

	Ⅳ. Experimental and Results
	4.1. Database
	4.2. Experimental results and discussion

	Ⅴ. Conclusion
	References
	List of Publications

<startpage>14
Ⅰ. Introduction 1
 1.1. Research background and review of papers 1
 1.2. Composition of paper 6
Ⅱ. PCANet and its variance with ICA 7
 2.1. PCA 7
 2.2. ICA 8
 2.3. Deep Learning 13
 2.4. PCANet 17
 2.5. LBP 28
Ⅲ. Proposed ICANet 30
 3.1. Statistically Independent Basis Image ICANet (ICANet1) 33
 3.2. Factorial ICANet (ICANet2) 43
Ⅳ. Experimental and Results 57
 4.1. Database 57
 4.2. Experimental results and discussion 61
Ⅴ. Conclusion 84
References 85
List of Publications 96
</body>

