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ABSTRACT

Revisiting Concurrent Error Detection Through Implication
Selection Scheme

Abdus Sami Hassan

Advisor: Prof. Lee, Jeong-A, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

High operating reliability is a common in-demand trait for digital systems. The

technique of Concurrent error detection (CED) is an answer to this need where

inspection for computational errors on run-time in parallel to circuit operation

is performed. The CED methodology typically comprises of a module which

independently predicts certain special characteristic of system output for each

input sequence. The checker module establishes that if the special characteristic

of the output originally produced by the system in retort to input sequence is the

identical as the prediction and produces an error signal in case of occurrence of

disparity. Recently, the concept of using implications for online error detection

was introduced. The concept revolved around automatic identification of gate-

level invariant relationships, called implications, that need to be realized for

the proper operation of circuit. Since thousands of implication relations can

exist in a circuit, it is not practicable to check all the relationships, as then the

supplementary checker hardware would consequence in massive area and delay

overheads. Nevertheless, picking only few valuable implications for checking

can assist in revelation of maximum number of errors. If these abridged set of

implications are recognized precisely, it can be a powerful tool for low cost error

detection.

vi



As implication-based CED does not assure 100% error coverage, it is vastly

beneficial for those applications where a perfect function is anticipated but not

necessary. Utilization of implications for CED is considerably flexible, since a

number of existing literatures, deliberate upon auxiliary methods for enhancing

Pdetection by procedural inclusion of additional implications. These works due to

their heuristic algorithms cannot assure a lossless Pdetection.

This thesis presents a technique for CED where automatic test patterns are

used to select the most valuable implications. A new input-aware implication

selection algorithm is developed with the help of ATPG which reduces loss

on Pdetection. Moreover, the thesis also presents method on ATPG for fast and

thoughtful estimation of Pdetection.

Proposed algorithm carefully evaluates the detectability of errors for each

candidate implication using error prone vectors. The evaluation results are then

used to select the most efficient candidates for achieving optimal Pdetection. The

simulation results on 15 MCNC characteristic combinatorial benchmark suite

show that the implications chosen from our algorithm attain better Pdetection

in evaluation to the state of the art. The proposed method also offers better

performance. We are able to improve impact-level by 41.10%, which is the ratio

of achieved Pdetection to the implication count. The execution of our algorithm is

also 4.5 times faster on average.

vii
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I. INTRODUCTION

A. An Overview of CED

In electronic circuits, for acquiring lower power and higher frequencies, the

prevailing method is to explore the aggressive scaling of semiconductors [1].

However, this method to reduce the feature size also introduces a number of

reliability related problems such as defects and single event upsets. Although,

mission-critical applications in space, automotive and medicine need a high

operating reliability [2]. Hence, an error detection method is needed for ensuring

the correctness of results. Concurrent error detection (CED) approaches can fulfill

this need by scrutiny for computational errors on run-time in parallel to circuit

operation. In the case of an error, CED schemes warn the operator by triggering

an error flag or activate an automatic system repair technique.

CED approaches are widely utilized to enhance system dependability. Almost

all CED approaches function in accordance with the following principle: Let us

assume that the considered system realizes a function f and generates an output

f(i) in reply to an input sequence i. A CED technique generally encompass

another unit that independently predicts some special characteristic of system-

output f(i) for every input sequence i. Lastly, a checker unit determines if the

special characteristic of the output really generated by the system in response to

input sequence i is the same as the forecast and generates an error signal when a

disparity occurs. Some instances of the characteristics of f(i) are: f(i), its parity,

1’s count, 0’s count, transition count, etc. General CED scheme is illustrated

through the architecture shown in Figure 1. Any CED method is illustrated by the

class of failures in the occurrence of which system data integrity is maintained

[3]. By data integrity, its meant that the system either generates correct outputs or
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detects erroneous situations when incorrect outputs are generated. In the existing

literature on fault-tolerance, this property is known as fault-secure property.

Notice that the general architecture of a CED technique for example Figure 1

depends on use of hardware redundancy (predictor and checker circuits) aimed at

error-detection. Time redundancy schemes such as alternate recomputation and

data-retry with shifted operands can be utilized for concurrent error detection.

Time redundancy directly impacts the system performance though the hardware

cost is typically less than that of hardware redundancy.

Function f

Output

Characteristics

Predictor

Checker

Input

Output

Predicted

Output

Characteristics

Error

Figure 1: General architecture for concurrent error detection scheme [3].
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B. Motivation

The work of Alves et al. [13] introduced the notion of using implications for

online error detection. The proposed technique automatically identifies gate-level

invariant relationships, known as implications, which are required to be fulfilled

for the circuit to be operating properly. Invariant relationships are logic value

implications between various wires in a circuit. The arbitrary combinational logic

is tested with invariant relationships on runtime. Accurate operation is certain

as long as these relationships are fulfilled during operation. For example, think

of an AND gate; if any input is logic-0, logic-0 is implied at the gate output.

Upon occurrence of error occur during normal operation, implication’s checker

can notify the user.

Figure 2 illustrates the parallel error detection though implications. Error

signals are formed by the checkers checking these implications whenever

implication associations are violated. As thousands of implication relations can

exist in a circuit, it is not feasible to check all the relationships, since then the

additional checker hardware would result in huge area and delay overheads [4].

Though, selecting only few valuable implications for checking can aid in

detection of maximum number of errors. If these reduced set of implications

are identified accurately, it can turn into a powerful tool for low cost error

detection. Another advantage of using implications for CED is that identification

of invariant relationships need no knowledge of high-level behavioral constraints.

As implication-based CED does not guarantee 100 % error coverage, it is

highly useful for those applications where a perfect function is desirable but not

necessary. Using implications for CED is much flexible, as few existing studies

[4], [5] discuss additional methods for enhancing Pdetection by methodological

3



inclusion of more implications.

Figure 2: Parallel error detection with implications.

Nevertheless, in opting for reduced set of valuable implications, the current

works are unable to reflect each of the errors in a circuit, which are noticeable

at the outputs due to cogitating only a subgroup of the total input space of the

indented circuit. Hence, in this work, we present a method using automatic test

patterns to more precisely target those invariant relationships which are pondered

esteemed for the total input space.

C. Preliminaries

This section begins from background on implications and then to the selection

for valued implications. The implications are believed valuable when they can

perceive most of the errors which disseminate to the output.

1. Implications

Implications are invariant relations between diverse wires in a logic circuit.

Consider an OR gate for instance; if any of its input is logic-1, logic-1 is inferred

4



at the output. Such relations can also be discovered amongst wires at diverse logic

levels or even between wires of distinct logic cones.

The example combinational circuit in Figure 3 shows that, logic-0 is

employed at N13, N12 and N11 when when N3 is at logic-0. As a result,

whenever N3 is at logic-0, N24 is at logic-0. This implication is signified as

follows.

I1 : N3(0)! N24(0)

Figure 3: An example combinational circuit for implications.

The wire on the right is called the implicand while the left side is called the

implicant. An implication is enabled when the condition defined for the affiliation

is valid. Thus, it is enable when the implicant wire is at the specific logic value.

For instance, logic-0 is implied at N24 whenever when N3 is at logic-0, and

implication I1 is believed to be enabled.

Implications can be used for concurrent error detection when they are enable.

Consider the subsequent scenario where N8, N3 and N5 are at logic-1, logic-0 and

logic-0, respectively. This drive N15 and N11 to logic-0. Let us adopt that a stuck-

at-1 fault transpires at N11 changing its state from 0 to 1. This roots an erroneous

output to be detected at N24. Implication I1 is defied in this case and a checker

checking I1 can notice this error. Checker circuits to check violations of two-wire

5



implications are specified in [4]. For example, the checker for N3(0)! N24(0)

can be realized as shown in Figure 4. Checkers are intended to raise violation flag

only when the particular implication is enable and a disruption occurs.

Figure 4: Circuit diagram to check N3(0)! N24(0) implication.

2. Direction of Implications

An implication is a provisional statement and, according to formal logic, any

provisional proposition has a contrapositive which is shaped by contradicting

both the theory and the deduction and switching their positions. Implications

can be of two categories: backward implications and forward implications. For

ease of readers, consider the forward implication A(0) ! Y (0), its backward

implication interpretation to the definition given above is attained by switching

the positions of the implicant and implicand among each other and negating them

both i.e., Y (1) ! A(1). For an implication to notice a disruption, a fault must

only disturb the implicand. If a fault upsets both the implicant and the implicand,

the implication is cogitated ineffective. This condition is mostly existent in case

of backward implications once both the implicant and the implicand wires are

located on the same path to the output. If a fault disturbs the implicand wire,

then it will also disturb the implicant wire since the implicand wire is situated at

a subordinate logic level than implicant wire. Removing backward implications

will also decrease the computational resources and effort needed in the valuable

implications selection step [6].

Backward implications are not studied in this work, similar to [4], [6], since

6



they are not useful in improving Pdetection.

3. Probability of Error Detection (Pdetection)

Pdetection is calculated as the fraction of the total number of detected errors to

generated errors.

Pdetection =
Number of Detected Errors

Total Number of Generated Errors

To compute an exact Pdetection, all input patterns should be applied thoroughly

to the given circuit which is impossible. If all the implications in a circuit are

included, even then a 100% Pdetection is not probable. Moreover, checking all

implications in the circuit results in great hardware overheads [4] which makes it

unreasonable to include all implications in the checker hardware. Thus, the goal

is to select least number of implications such that a adequately high Pdetection

is attained. We select, one implication per fault which perceives the maximum

number of errors for set fault like [13]. While essential implications for each

fault such that the maximum number of detectable errors can be increased for

each fault were added by [4]. This somewhat increases the achieved Pdetection

with rise in the hardware overheads.

The amount of errors that an implication can discover for a specified fault

is termed detectability of the implication for that fault. The approach used to

guesstimate the detectability of each implication in [4] is founded on simulating

the circuits using 32,000 pseudo random test vectors. This method does not

assure a very precise detectability estimation for all implication since all of the

input vectors are not studied. Hence, it may assign a elevated detectability to an

implication when in deed that implication could have a low detectability. This

7



is true, particularly in the case of circuits with a huge input space. Thus, it is

vital to consider preferably all the input vectors in detectability estimation of

implications.

D. Related Works

For Concurrent Error Detection (CED) in instance of memories, usually, error-

correcting codes (ECC) are used [7]. However, detecting errors parallelly in

logic circuits is hard as they realize complex boolean functions. Triple Modular

Redundancy (TMR) and Dual Modular Redundancy (DMR) are two very well-

known error detection approaches [8] for logic circuits. In theory, TMR and DMR

provide 100% likelihood of error detection (Pdetection) at the expense of 200%

and 100% area overheads, correspondingly. For reducing the enormous hardware

overheads suffered by TMR, some recent works emphasize on approximating the

TMR for trading-off cost of mitigation with the circuit reliability [9]–[11].

In [12], full ATMR was promoted as an answer for drastic area

overhead reduction. Slightly modified Boolean factoring algorithm was used in

Approximate functions for ATMR of [12], [13]. The Boolean factoring algorithm

was founded upon functional composition paradigm. The method of [12] needs

investigation of a variety of approximate circuits to find the optimal ATMR circuit

structure. Anyhow, no clear criteria for extracting the optimal ATMR by bringing

together approximate modules from the list of approximate candidates was

mentioned. In FPGAs, for trading off reliability with the cost of mitigation, partial

TMR circuits utilizing approximate logic circuits were proposed as a scalable

technique with fine granularity in [14] while in Alves et al. [13] implications

based methods for error detection were introduced. In [14] the scheme of line

8



substitution was adopted, where some of the lines of the circuit are replaced

with logic constants and the logic primarily used to implement the substituted

line is eliminated. Though Full-ATMR generally leads to better improvement in

terms of decrease in area overhead, this technique cannot be utilized to generate

a full-ATMR. Furthermore, it was established by [15] that the approach of [14]

is only meant for programmable systems because of the need of the under/over-

approximations. Two novel voting schemes were proposed by [15], IDMR with

TMR (ITDMR) and inexact double modular redundancy (IDMR). ITDMR and

IDMR use approximate criteria during comparison and assessment of the outputs

of at least two modules for the purpose of reliable computing. However, these

schemes [15] have limitations, since they depend on taking averages of inputs.

Hence, they are only appropriate for data flow applications. It was concluded in

[15] that taking averages of inputs for control-flow dominated applications may

lead to chaos. A method in [16] considers the failure probabilities of gates. Cubes

are ranked where the best cube is chosen for addition to approximate function

(F or H). Only chosen gates of the function will receive fault coverage. Hence,

selective fault tolerance is carried out, as not all input vectors of G are provisioned

with fault coverage. Though the author maintains that the technique is scalable,

the given results are only for up to 14 input functions. Local observability don’t-

cares are utilized to exploit a richer number of approximations in [17]. This does

not guarantee correctness of the solution. A satisfiability (SAT) algorithm must

be applied to detect incorrect approximations that should be discarded [18]. The

authors claim that the technique is scalable, but do not show results for different

approximations. Selective fault tolerance for TMR is focused by [18] and [13],

[19]. The area overhead of TMR is decreased by [18] through provision of fault

tolerance for particular input signals. The technique ensures that a subset of all

9



possible inputs has the same fault tolerance as that of TMR whilst the remaining

subset is not fault tolerant. A heuristic approach is presented in [19] which allows

the applicability of selective fault tolerance for industrialized designs.

Existing literature proposes a number of methods for effective concurrent

detection of errors in logic circuits. A self-checking technique using parity for

concurrent error detection was given by [20]. In [3], simulation results comparing

various parity-based CED systems based on their area overhead are accessible.

Pdetection of parity-based error detection technique is limited as only odd number

of errors are detectable [4]. Few of the previous studies have proposed Register

Transfer (RT) level CED schemes[21], [22]. Nevertheless, a problem with this

method is that the RT-level information might not be accessible in the case of a

third-party design [4].

In [23], the authors explore the applicability of Duplication-based CED

for asynchronous circuits and illustrate that comparison synchronization can

be carried out using a modified comparator that exploits local synchronization

protocols which exist in many asynchronous circuits. In [24], a CED method

for Quasi Delay-Insensitive circuits is proposed based on unordered codes.

In [25], the designing VLSI decoders to implement the Completion-Detection

(CD) test on asynchronous buses is studied. In [26], an activity monitoring CD

method is presented that detects completion if no transitions are noticed in the

circuit during a time period and a transition-monitoring CD technique which

guarantees the detection of all glitches in completion logic. Lastly, an efficient

and systematic technique for performing CD by multioutput threshold logic is

proposed in [27]; an in-depth investigation on various CD strategies can be found

in [28]. CED techniques have also been proposed for asynchronous circuits by

the use of the Differential Cascade Voltage Switch (DCVS) logic [29], [30],

10



that is utilized to generate handshaking signals for interacting asynchronous

modules. In [29], the authors use the handshaking signals of the DCVS logic to

implement a self-checking majority voter. A CED method used for asynchronous

interfaces in globally asynchronous locally synchronous circuits is explained

in [31]. Asynchronous controllers shows different characteristics that limit the

effectiveness and applicability of CED methods developed for their synchronous

counterparts. Work [32] explains effective CED in Asynchronous Burst-Mode

Machines, which requires a synchronization method that appropriately enables

the checkers in order to avoid false alarms. The new paradigm of online error

detection in [13] focused on utilization of implications.

E. Contribution

The existing works do not reflect for every error in a circuit that can propogate

to the outputs because of cogitating only a subgroup (32,000) of the total input

space of the circuit under test. Hence, the thesis targets the problem of selecting

implications for achieving minimal loss on Pdetection for CED. To this end, we

make the following contributions.

1. A scheme based on Automatic Test Pattern Generation (ATPG) for

defining the number of errors detected by every implication, which allows

an enhanced selection of a condensed valuable set of implications for

achieving maximum Pdetection is presented.

2. Circuits implemented on Field Programmable Gate Arrays (FPGAs) for

investigation, which makes the testing more illustrative of how implications

would achieve in an implemented circuit rather than working on netlists

based in simple logic gates is implemented.
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3. We present a technique based on ATPG for fast and thoughtful guesstimate

of Pdetection.

4. To perceive the implication selection impact on Pdetection we propose a new

metric called impact-level (IL).

F. Thesis Layout

The thesis is structured as follows. In Chapter I, we present an overview of the

Concurrent Error Detection, the motivation behind the work and preliminaries

containing the relevant terminologies such as Implication. Chapter I, also,

provides the related work, our contribution and thesis layout. Then in Chapter II,

we introduce the concept of input vulnerability aware error detection followed by

the proposed methodology. Next in Chapter III, we put foward the experimental

methododlogy for proposed CED technique and evaluate by means of various

metrics systematically. And Finally, we conclude the thesis in Chapter IV.

12



II. INPUT VULNERABILITY-AWARE

ERROR DETECTION

A. Input Vulnerability-Aware Detection

As stated in the preceding segment, to proficiently select a compact set of

implications, all of input space must be cogitated in the evaluation. However,

this, is unfeasible when there are a huge number of input vectors for an aimed

circuit.

It should be noticed that the whole input space does not hold equivalent

significance as some portion of input space is more susceptible to errors than the

rest [33], [34] (i.e., the slice of input space which makes the greatest number of

errors noticeable at the primary outputs). During process of producing 32,000

pseudo random vectors for assigning detectability to every implication, some

of vectors could be nominated from the portion of input space, which is less

susceptible to errors. The, implication selection will be biased then, regarding

those implications which perform well for the arbitrarily selected 32,000 input

vectors. This means that, implication which is being reflected as having the

maximum detectability for the fault may not be the best choice for that fault.

Instead of using 32,000 random vectors in comprehension of prime

implications, we explore use of an identified input space [33] that is utmost

vulnerable to errors. Input-aware vectors in compact form can be attained for

every fault using a ATPG like ATALANTA [35] which is a freely available ATPG

tool built on fan-out oriented (FAN) algorithm. For larger circuits, FAN algorithm

confines an ATPG’s search space to lower its computation time [36]. Using

ATALANTA’s test initiation system, we can produce all possible test patterns
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for every fault, as shown in the Figure 5, to classify the most vulnerable areas

of circuit. ATALANTA generates all the test vectors in a compressed form after

doing fault simulations on every node of the circuit which can also be treated in

their condensed form.

Figure 5: Proposed flow to obtain input-aware vectors.

Vectors that make the errors linked with a fault noticeable at the primary

outputs (POs) are produced using ATALANTA, the ATPG tool. For every

probable fault in circuit, we consider these input patterns for the more precise

selection of implications. This method thus permits us to highlight only those

input vectors for every fault that make all errors due to this fault visible at the

POs which aids in an accurate detectability evaluation for every implication.

Table 1 indicates how implications are chosen using the example case of a

3 input circuit. The PO is identified as O. We need to select one implication

out of subsequent two implications, I1 : A(1) ! O(0) and I2 : B(1) ! O(0),

where B and A are somewhat two wires in circuit. Lets assume that stuck-at-1

(s.a.1) fault on some inner wire transmits to the output O by the input vectors

000,011,110. Our target is to select a implication which has highest detectability

in this situation. Among I1 and I2, I1 is capable to detect the given fault when the

related error is noticeable at the output, while I2 cannot detect the error noticeable

at 110, as I2 is not enabled on this input vector. Obviously, I1 is desirable for the

assumed s.a.1 fault. The hitch lies in only exploiting a random set of vectors in

ranking the implications. With an arbitrary set of vectors, we may select I2 above

I1. Which also acts well but does not have highest detectability for the respective
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fault under consideration for the total input space. This is as, for circuits with a

huge input space, use of pseudo random vectors does not assure that the bulk of

fault-aware vectors are used in allotting the detectability to the implication.

Table 1: Example: Selection of implication in a 3 input circuit.

A B O

1 1 0

0 0 0

0 1 0

1 1 0

0 0 1

0 0 1

1 0 0

1 1 0

B. Proposed Methodology

The primary step in implications centered concurrent error detection is to

essentially find invariant relationships amongst different wires of a circuit.

As wholly considering these implications would result in massive hardware

overheads, we need to only select utmost valued implications such that a high

Pdetection is realized at least hardware costs. This marks implication selection

the most vital step in implications enabled CED. Furthermore, the purpose of

exercising implications in the first place is to aid CED at least hardware costs.
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Figure 6: Flow chart for implication generation.
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The proposed system guarantees selection of most valued implications

precisely through automatic test pattern generation gears rather than trusting on

32,000 pseudo random vectors centered circuit simulation. The course of our

algorithm is presented in Figure 6 which comprises of following steps.

1. Recognize implication relations through good circuit simulation.

2. Eliminate potentially weak implications.

3. Prudently select the most valued implications from the residual ones such

that the highest Pdetection attainable is ensured.

1. Implication Identification

Primarily, logic values of all wires in a circuit are logged in a good circuit

simulation over 32,000 pseudo random input vectors. The simulation outputs

are then processed to obtain all the potential implications. As the implications

identified until this point are only potential as our good circuit simulation is

not exhaustive, we must distinct valid implications from invalid implications. To

windup, a formal method based on Boolean Satisfiability (SAT) is applied to list

of potential implications.

The goal of this SAT based authentication is to check for any occasion

from the input space where implication under test is void. If no such state

exists, then implication under test is considered valid, i.e., no such input vector

occurs for which implication relationship is defied. The circuit is changed

into conjunctive normal form (CNF) [37] and every implication is tested by

restraining the circuit CNF with its violating condition and checking in SAT

engine whether there occurs an input state for which this CNF constrained with
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the certain implication’s violating condition is satisfiable. For instance, consider

an implication n1(1) ! n2(1), circuit CNF is compelled with its violating

condition n1 = 1 and n2 = 0. If SAT solver fails to discover a satisfying solution,

this implication is nonvoidable for any input and thus is a valid implication.

2. Weak Implications Removal

For elimination of weak implications, a probability strainer is applied to validated

implications for speedily identifying and eliminating weak implications. In a

weak implication, implicant wire has low probability of being excited with

appropriate signal value for which implication relationship stands. Implications

whose implicant node has probability fewer than 5% of having the appropriate

logic signal according to simulation results are rejected. This onset value can be

adjusted for every circuit, though, it is kept persistent for all circuits in order to

speedily process list of established implications.

3. Implication Selection

For a certain set of input vectors, it is checked that whether the fault will

disseminate to the output and how many times a definite implication can sense

the error at the POs. A bit-flip fault on FPGA when articulated as an error can

act just like a stuck-at fault. Therefore, implication detection is presented as a

number which mirrors how many times the implication under test is defied when

stuck-at fault is noticeable at the POs. The essential methodology is same as

citealves2010cost which is to choose one implication for every possible stuck-at

fault in circuit. This set of implications is termed as prime implications.

Algorithm 1 illustrates the proposed method for a more accurate selection

18



Algorithm 1 Algorithm for implication selection.
Input: network, imp set , faults
Output: best imps

1: for f ault in f aults: do

2: test vectors = ATALANTA(network,fault)
3: best Detectability = 0
4: for imp in imp set: do

5: new Detectability = HOPE (network,fault,test vectors,imp set)
6: if (new Detectability > best Detectability) then

7: best Detectability = new Detectability
8: best imp = imp
9: end if

10: end for

11: best imps[fault] = (best imp,best Detectability)
12: end for

13: return best imps

of prime implications. This algorithm processes all implications and chooses the

best implication for every fault based on their implication detactabilities. In this

algorithm, several specific data structures are used, which are given in Table 2.

The implication selection procedure operates in an iterative way over every fault.

As defined in Algorithm 1, for every fault, we reckon all those vectors which

make the errors related with the given fault noticeable at the POs where, these

vectors are called test vectors for particular fault. These vectors can be acquired

in compact wild-card patterns from ATPG like ATLANTA [35]. For instance,

a wild card *11 signifies both 011 and 111 vectors. These wild card items for

every fault are then used in fault simulation of given fault for calculating the
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implication detectabilities new Detectability exploiting HOPE [38]. HOPE can

process test vectors in their condensed pattern form. For every fault, it considers

all implications and selects a sole implication that has the maximum detectability

best Detectibility for the particular fault. This implication identifier jointly with

its number of detections is saved beside the fault identifier as best imps.

Table 2: Data structure to store information.

Name

Type Single Entity Size

Description

(Data Type) (Bytes)

imp set List 72 List of all candidate implication

faults List 72 List of all stuck-at faults

best imps Dictionary 288 Best Implications against corresponding faults

test vectors List 72 List of all the vectors where faults are observable at POs

The selected implications are organized in descending order rendering to their

associated fault detection. The implications comprised in this well-ordered list

are titled as the prime implications. Top-candidates from list are more probable

to deliver better fault coverage than implications situated at the bottom of the

list. Lastly, with the ordered list, it is now feasible to select a subclass of

these implications starting from top that fulfills a certain hardware budget to

incorporate in the checker logic.

Based on the similar methodology, test patterns produced through

ATALANTA for every fault are then used for accurate estimation of the selected

implications in the computation of Pdetection. Algorithm 2 illuminates in detail our

scheme for Pdetection calculation. Instead of employing 32,000 random vectors,

only test vectors in compressed shape are applied. The implication checker

hardware is then added to netlist and this netlist along with fault list and test

vectors for each fault are postulated to HOPE in order to compute Pdetection. In
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Algorithm 2, TP and TM denote True Positive and True Miss, correspondingly.

Algorithm 2 Algorithm for implication testing.
Input: network , faults, test vectors, best imps
Output: Pdetection

1: TP = 0
2: TM = 0
3: for f ault in f aults: do

4: test vectors = ATALANTA(network,fault)
5: detection = HOPE(network,fault,test vectors,best imps)
6: if (detection == True) then

7: TP = TP + 1
8: else

9: TM = TM + 1
10: end if

11: end for

12: Calculate (Pdetection)
13: return Pdetection
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III. RESULTS AND ANALYSIS

A. Experimental Methodology for CED

The methods described formerly were applied to a group of combinatorial MCNC

benchmarks. Implication centered CED can also be functional for sequential

circuits [4], [13], though, we have limited ourselves to just combinational circuits

in this work since the tenacity is only to equate amongst our algorithm with that in

[13]. The main apprehension with respect to implication based CED on sequential

logic is that of its applicability. Afterwards, the next apprehension is concerning

achieving adequate Pdetection in sequential circuits. Both problems have already

been assessed in [4], [13]. Implication centered CED can be applied to sequential

circuits just by opening all the feedback registers and turn them into primary

circuit inputs, efficiently changing the sequential circuit into a combinational

circuit for processing resolutions [13].

We used FPGA-based netlists synthesized by means of the Xilinx

Synthesizer Tool (XST) in the experimentations. The FPGA realized post-

synthesis netlists are used so that the enactment of implication-based CED

becomes more illustrative of realized circuits unlike netlists based in ingenuous

logic gates, as used in [4], [13]. It should be distinguished that the

results attained by implications enabled CED contrast depending upon the

specified circuit implementation. In FPGAs only, there could be numerous

circuit implementations according to type of gates in the particular library.

Consequently, the Pdetection results would differ even among different FPGA

types. Yet, the expected performance enhancement of our method comparative

to [13] would stay applicable on any circuit implementation. The profiles of

circuits used in this thesis-work comprising their primary inputs (PIs), primary
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Table 3: Circuit profiles.

Circuit PI PO LUT

in5 24 14 70
in6 33 23 63

sao2 10 4 22
br1 12 8 29
br2 12 8 27
luc 8 27 46

alcom 15 38 38
al2 16 47 47

dk17 10 11 29
dk27 9 9 14
dk48 15 17 33
ibm 48 17 49

signet 39 8 66
t481 16 1 21
x6dn 38 5 93

outputs and the quantity of look-up tables (LUTs) disbursed on the Xilinx Virtex-

5 XCVLX100T device are provided in Table 3.

Now, we describe how the algorithm rationalized in Section. III-E is realized.

Foremost, Icarus Verilog [39] is employed for a good circuit simulation of the

post-synthesis Xilinx verilog format netlist for a size of 32,000 random vectors.

The logic values for every wire are logged in during this period of circuit

simulation. A Python driver is used to explore for potential implications after

the good circuit simulation output records. The potential implications are then

established in the SAT engine. We have used PicoSAT [40] solver for implication

authentication. The output of this stage is a list of confirmed implications. The

implications whose implicant node have probability of less than 6% of taking

the appropriate logic value essential for enabling the implication are detached
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according to good circuit simulation output. The output is list of candidate

implications to choose prime implications from. The netlist is then transformed

from a Xilinx verilog structure to BENCH format. During transformation, the

names of wires in original LUT-based netlist are well-preserved so that merely

faults on those wires will be handled in the following steps. Subsequently, for

every stuck-at fault in circuit, ATALANTA is used to harvest the test vectors

in compressed pattern form. The fault simulator HOPE [38] is then provided

with fault list, the test vectors for every fault and the circuit netlist with checkers

for every candidate implication. HOPE is capable to process the test vectors in

compressed form. The output of this phase is a simulation output for every fault

containing report about the detectabilities of all candidate implication checkers

for that fault. Therefore, the finest implication for every fault is elected based on

this output from HOPE.

The best implications for every fault are called prime implications. Following,

we insert the checkers for all these prime implications to original circuit netlist

and send the modified netlist along with list of all the potential stuck-at faults in

the circuit and their test vectors to HOPE. Then we use HOPE’s fault simulation

output towards calculation of Pdetection attained by the prime implications.

We have associated our results with state-of-the-art implication selection

algorithm from [13]. In our thesis-work, the algorithm from [13] was also

comprehended using the same tools. The model in [13] varies against this thesis-

work in that the implication selection phase uses 32,000 random vectors in its

place of the exact test vectors for every fault. All boolean algebra functions in

this work were implemented using the Python pyEDA module [41].
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Table 4: Execution times for the implication selection step.

Circuit
Proposed [13]

Time (min) Time (min)

in5 0.11 1.72
in6 0.07 1.77

sao2 0.01 0.08
br1 0.03 0.4
br2 0.02 0.36
luc 0.04 1.94

alcom 0.06 1.74
al2 0.05 2.25

dk17 0.04 0.52
dk27 0.01 0.2
dk48 0.04 1.43
ibm 1.77 0.59

signet 1.1 0.91
t481 0.04 0.08
x6dn 0.12 2.38

1. Execution Time Evaluation

The evaluation of total execution time in the selection of prime implications

for the benchmark circuits studied is shown in Table 4. The simulations were

executed on a linux system running a 3.300 Ghz quad-core with sixteen GB

DDR3 memory. Methodical generation of condensed input patterns which are

used to test the implications makes the performance of the proposed algorithm

quicker; in fact, proposed algorithm takes 0.234 min on average compared to the

1.09 min by the technique in [13].

In Table 4, we notice that 2 test circuits ibm and signet explicitly have higher

execution times in the our algorithm. This is owing to an enlarged number of

test vectors produced by the ATPG. Since there are numerous faults that do not
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Table 5: Compression rate for implication count.

Circuit Validated
Selected Selected

Implications [Proposed] Implications [13]

in5 617 68 78
in6 472 69 79

sao2 62 8 11
br1 286 38 41
br2 240 35 27
luc 485 53 53

alcom 412 121 100
al2 534 94 83

dk17 356 39 40
dk27 152 11 27
dk48 603 39 49
ibm 86 41 42

signet 232 68 68
t481 86 11 11
x6dn 232 86 98

collapse into further faults, the ATPG yields a lengthier time in producing the test

vectors for a greater number of faults.

2. Compression Rate Evaluation

Table 5 displays the results of implication reduction for the numerous

benchmarks. Column two gives the total number of authenticated implications

after processing potential implications in a SAT engine. Column three offers

our total number of selected prime implications while Column four provides the

number of prime implications selected by [13].

The compression rates fluctuate depending upon the benchmark circuit under

consideration. On highest, the amount of selected implications will be identical
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Figure 7: A set of wires covered in a LUT.

to the total number of potential stuck-at faults in circuit since only a sole

implication deemed best for a particular fault is selected. Though, when the

similar implication is selected for numerous faults, the selected implications total

will be lesser than the highest possible.

Now, we can spot the difference among operating on a post-synthesis

FPGA realized netlist. Compared to basic logic gates-based netlists in [13],

where authenticated implications total is typically in thousands, the validated

implications total on FPGA circuits is much lesser. This is since there are less

wires in a LUT-based circuit netlist matched to logic-gate based netlists. As

presented in Figure 7, wires x1 and x2 have been enclosed by the LUT and

realized in memory thus decreasing the number of wires accessible to search

candidate implications from.

The compression rate varies with specific benchmark, though on average a

decent comparable reduction can be seen in proposed method. It can be seen that

up-to 59.2% drop in implication total is achieved as in case of dk27.

3. Pdetection Evaluation

For every fault, its test vectors are applied to circuit under test and the retort is

categorized into one of the following 4 cases :

1. No Effect.
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2. True Positive (TP): Faults transpire at the internal node and are noticed and

visible at PO.

3. False Positive (FP): Faults transpire at the internal node and are noticed but

never altered any PO.

4. True Miss (TM): Unnoticed and altered a PO.

The false positive retort is detected either when the checker hardware itself

is disturbed by a fault or when an error transpires in the circuit under test but

progresses logically masked and therefore is not seen at the PO. In the calculation

of Pdetection, we have likewise used the ratio (i.e., T P/[T P+T M]), as it has been

used in [13].

Figure 8: Pdetection plots for the proposed method and [13].

The Pdetection metric for our approach and for the approach in [13] are

equated in Figure 8. When best implications are selected for every fault using
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our method, it does not promise that Pdetection will increase radically, particularly

in this circumstance of FPGA circuits where the total authenticated implications

count is already a limited hundred in all of specified circuits. Still the technique

based on the selection of implications from pseudo-random vectors [13] performs

fine, since it comprises a heuristic step, the attained Pdetection cannot be deemed

lossless. Conversely, in proposed method, it is certain based on the competence

of the ATPG tool which produces the test vectors for every fault, that the attained

Pdetection could be optimum. This can be checked by observing for an instance

where the method advised in [13] picks a number of prime implications less than

our proposed technique and accomplishes a higher Pdetection. By seeing Figure 8

and Table 5, we comprehend that no such instance occurs. In deed, in very cases,

the Pdetection attained by our algorithm is either higher than [13] or it is almost

the identical for both techniques. Furthermore, it was presented with a case study

in [4] that even 1% degradation in Pdetection could trigger millions of unnoticed

errors thus highlighting the importance of even minor gains in Pdetection.

This reveals the improved accurateness of the proposed scheme. Note that the

trivial decrease in Pdetection in some instances is due to accuracy of the yield of

ATPG. For example, dk27 and dk48 have just 1.2% and 1.1% higher Pdetection

for [13], correspondingly, than the proposed system. In FAN algorithm, tests are

produced for every testable fault using backtracks. Due to a restricted number

of tries in backtracking, the algorithm halts when a given threshold is surpassed

for a fault. Thenceforth, such faults are indicated as aborted faults. For circuits

such as br1, in6, dk48, dk48 and ibm, there are definite untestable faults due

to which their exact test vectors are unobtainable. It was presented by [42],

that the yield attained of faults that are tested using FAN is typically 95.74–

99.52%. Yet, the average (avg) Pdetection of proposed methodology is improved
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in comparison to [13]. Besides, FAN can be substituted with more competent test

pattern generation algorithms for further reducing any loss on Pdetection.

Therefore, the proposed approach is flexible and not merely it can achieve a

improved average Pdetection, it is assured to be optimal particular the accurateness

of the ATPG employed.

4. Area and Delay Overheads

Figure 9: Area overhead comparison between the proposed method and [13].

All circuits were synthesized by means of the Xilinx XST tool for a Virtex-5

FPGA device. In Figure 9, we display the area overhead for every benchmark we

have studied when the checkers for implications selected by both approaches are

included. The area overhead is considered in terms of the number of LUTs taken

on the device. On average our technique outperforms the method in [13]. We have

attained a better average Pdetection while our average area overhead is also inferior

than the scheme in [13]. We must state here that the focus of this thesis-work is
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to reduce the loss on Pdetection and the same procedure can also be applied to the

choice of essential implications in [4].

Figure 10: Circuit delays for the proposed method and the method in [13].

In Figure 10, the delay of the circuits following the addition of the checker

circuitry is equated. We witness that in those cases where the technique in [13] has

attained a higher circuit delay such as al2, br1, dk48 and dk17, the difference is

very noteworthy. On the other hand, in circuits such as alcom, in6, signet and ibm,

where our method attains a higher delay, the increase is only very small. Thus, we

do get a lower circuit delay on average. It must still be noted that in this thesis-

work, we do not reflect circuit delays as a restriction in the implication selection

procedure, adequately only the detectabilities of implications are pondered. For

instance, the circuit in6 shows a marginally higher delay with our method, yet the

number of implications selected by proposed algorithm are considerably lower

than that in [13]. This is as, despite a lesser implication count, there are more

implications on critical path of the circuit causing an rise in the circuit delay

compared to the technique in [13]. It is doable to contain the circuit delay as a
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constraint in the implication selection phase so that a set of implications adjusted

with regards to circuit delay is obtained as shown in delay-optimized implication

selection results [13].

5. Relationship between Pdetection and Selected Implications

To perceive the implication selection impact on Pdetection, we insinuate a new

metric called impact-level (IL). We define IL as the fraction of Pdetection to

selected prime implications count. Evidently, a higher value of IL is appropriate

and translates into a improved implication selection. It can be comprehended

from Figure 11 that the proposed scheme has a higher impact-level. In fact, in

some circumstances, it is much improved than [13]. For dk27, with a substantial

decrease in area overhead, we are able to increase IL by 41.10% compared to

[13]. On average, IL of proposed method is enhanced for the given benchmark

circuits.

Figure 11: Relationship between Pdetection and implication-count.
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IV. CONCLUSION

In this thesis, with the aim of providing higher reliabilty to mission ciritical

applications, we have focussed on Concurrent Error Detection (CED) through

implications. As implications are gate-level invariant relationships for a circuit,

they can even exist in thousands. To opt for reduced set of valuable implications,

the existing works do not reflect for every error in a circuit that can propogate to

the outputs because of cogitating only a subgroup of the total input space of the

circuit under test. Hence, the thesis targets the problem of selecting implications

for achieving minimal loss on Pdetection for CED.

To select the most valuable implication candidates, we have proposed an

algorithm that operates on an input-aware approach. The proposed methodology

provides a better insight for a judicious grading of implications based on their

error detectabilities estimated from Automatic Test Pattern Generation (ATPG)

algorithms. ATPG helps in defining the number of errors identified by every

implication, which permits an improved selection of a abridged valuable set of

implications for attaining maximum Pdetection .

The experimental results have validated the efficiency of the proposed

approach. It achieves a minimal loss on Pdetection at reduced hardware overheads.

We have achieved up to 41.10% improvement in terms of the proposed

impact-level metric compared to state-of-the-art approach. The execution of our

algorithm is also 4.5 times faster on average. Using the same fault-aware test

vectors based approach, we are also able to estimate the Pdetection in a fast and

more exact way.
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gaXejDaQeuOtyJld32oYgA==&APPLNO=1020160138097.

3. J. A. Lee, T. Arifeen, A. S. Hassan, et al., “Accurate adder consists

of 14 transistors and DSP integrated with the adder”, pat., Korea

Patent 1020160135953, 2019. [Online]. Available: http : / / link .

kipris . or . kr / link / main / sharePage _ EN . jsp ? reg _ key =

gaXejDaQeuOtyJld32oYgA==&APPLNO=1020160135953.

4. J. A. Lee, T. Arifeen, A. S. Hassan, et al., “Apprpximate adder consists

of 6 transistors has TED of 3 and DSP integrated with the adder”, pat.,

Korea Patent 1020160137438, 2018. [Online]. Available: http://link.

kipris . or . kr / link / main / sharePage _ EN . jsp ? reg _ key =

gaXejDaQeuOtyJld32oYgA==&APPLNO=1020160137438.

5. J. A. Lee, T. Arifeen, A. S. Hassan, et al., “Systematic methodology

for development of approximate circuits for triple modular redundancy

modules and triple modular redundancy modules thereof”, pat., Korea

Patent 1020160107927, 2017. [Online]. Available: http : / / link .

kipris . or . kr / link / main / sharePage _ EN . jsp ? reg _ key =

gaXejDaQeuOtyJld32oYgA==&APPLNO=1020160107927.

6. J. A. Lee, T. Arifeen, A. S. Hassan, et al., “Accurate adder consists of

18 transistors and DSP integrated with the adder”, pat., Korea Patent

1020160135758, 2018.
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