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초 록

LSTM과 FHF를 사용한 원자력 발전소의 보호 기능

시스템을 위한 자율 운전 알고리즘

이 대 일

지도 교수 : 김 종 현

원자력공학과

조선대학교 대학원

최근 컴퓨터 성능의 증가와 새로운 인공지능 알고리즘의 등장으로 인공지능 기술에

기반한 높은 자동화 수준을 가진 자율 운전 시스템이 많은 산업분야에 적용되었다. 자

율 운전 알고리즘은 원자력 발전소 시스템의 기존에 전통적인 자동화 알고리즘보다 더

높은 수준의 개념을 가지고 있다. 자율 운전 시스템을 개발하기 위해서는 이미 기존에

자동된 하위 시스템들을 모니터링, 제어 및 진단할 수 있는 기능을 포함해야 한다. 따

라서 본 논문에서는 기능 기반 계층 프레임워크(FHF)와 장기-단기 기억장치(LSTM)

를 사용하는 NPP 안전 시스템에 대한 자율 운전 알고리즘을 제시한다. FHF는 NPP의

안전 목표, 기능, 시스템 및 구성 요소를 계층적으로 모델링을 하였다. 모델링된 안전

기능 시스템의 계층 프레임워크는 재귀 신경망 네트워크(RNN)의 진화 버전인 LSTM

네트워크로 변환됩니다. 이 접근법은 Westinghouse 930 MWe 3루프 가압경수로를 참

고 모델로 설계된 Compact Nuclear Simulator를 사용하여 네트워크의 훈련 및 검증을

하였다. 본 논문에서는 LSTM 네트워크의 자율 운전과 기존의 운전 전략의 비교를 통

하여 LSTM 네트워크의 성능을 검증하였다. 알고리즘의 검증 결과에 따르면 자율운전

알고리즘은 발전소의 안전 기능에 목표를 현재 자동화 및 운영자의 수동 제어보다 더

잘 관리할 수 있는 것을 확인하였다.
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Abstract

Autonomous Operation Algorithm for Safety Function

Systems of NPPs by Using LSTM and FHF

Dea-il Lee

Advisor : Prof. Jong-hyun Kim , Ph.D.

Department of Nuclear Engineering

Graduate Schoole of Chosun University

With the improvement of computer performance and the emergence of

cutting-edge artificial intelligence (AI) algorithms, an autonomous operation based

on AI is being applied to many industries. An autonomous algorithm is a

higher-level concept than conventional automatic operation in nuclear power plants

(NPPs). In order to achieve autonomous operation, the autonomous algorithm needs

to include superior functions to monitor, control and diagnose automated

subsystems. This study suggests an autonomous operation algorithm for NPP

safety systems using a function-based hierarchical framework (FHF) and a long

short-term memory (LSTM). The FHF hierarchically models the safety goals,

functions, systems, and components in the NPP. Then, the hierarchical structure is

transformed into an LSTM network that is an evolutionary version of a recurrent

neural network. This approach is applied to a reference NPP, a Westinghouse 930

MWe, three-loop pressurized water reactor. This LSTM network has been trained

and validated using a compact nuclear simulator. In this paper, the performance of

the LSTM network was verified by comparing the autonomous operation of the

LSTM network with the current operational strategy. The algorithm has
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demonstrated the effectiveness. The validation results showed that the autonomous

operation algorithm could manage the plant safety better than the current

automation and operator’s manual control.
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I. Introduction

An autonomous system is a system that has the power and capability in

performing functions for self-governance [1]. Autonomous systems can perform

control of a given environment over a long period of time without external

intervention, in order to perform this function, autonomous systems have highly

automated hardware and software. Autonomous control has a high level of

automation. It can be operated without the human operators that have no role in

operation strategy or are minimally involved in the operation [2].

For designing the system that has autonomy, the system, in some applications,

has used intelligent controller to utilize the high-level decision-making techniques as

the autonomous controller. The limitations of a classical control system in the past

are difficult to adapt to changing circumstances and cannot exclude human

decision-making processes. On the other hand, artificial intelligence (AI) fields

provide a useful methodology for making the higher-level decision making [1].

Traditionally, AI must fundamentally understand principles and patterns within a

given environment. In order to achieve understanding of the given problem, a

learner need to identify and isolate basic descriptive elements hidden in the

observed environment of low-level sensory data. [3]. In the early days, AI has

quickly addressed problems that were repetitive processes for humans. The problem

also could be described by a mathematical rules, list of formal [4]. In oder to solve

the problems, AI has traditionally used the classical control theory (e.g., If-then

logic), fuzzy logic, neural networks and genetic algorithms.

In particular, an artificial neural network method has shown significant

improvement in performance in AI field. Behind this growth is an explosion in the

performance of artificial neural network methods due to the increased speed of AI
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training through new AI algorithms (e.g., deep learning) and computer hardware

design, multiprocessor graphics cards or graphics processing units (GPUs).

Improved performance of computer software and hardware also improved the

performance of the automated system based on it. Nuclear power plants have been

able to increase the efficiency and safety of systems and reduce the burden of

operators by using automated systems. Current NPPs are generally operated

through a collaboration between the operators and the plant automatic system,

including the responsibilities of the operators for interacting, monitoring and

overriding automatic systems [5]. Based on Billing's definition of automation level

[2], automated systems with a low level of aumation in current NPPs require more

operator intervention than autonomous systems. The current automation level of a

nuclear power plant can be considered as shared control by the definition of

Billing.

When designing a new NPP compared to the current NPPs in operation, it is

increasing the automation level of the system. For example, GE-Hitachi stated that

"the control systems for the Economic Simplified Boiling Water Reactor (ESBWR)

have a high level of automation. All systems are automated unless regulation or

human factor engineering analysis results dictate otherwise" [6]. Similarly, remarking

on the conceptual design about the control for the U.S. Evolutionary Power Reactor

(US-EPR), it was stated that "because of the levels of automation inherent in the

I&C architecture, only one licensed operator will be required to be at the controls

during normal, at power operations." In addition, for future Generation IV reactors,

two to four operators may operate up to a twelve modular plants due to the

increased automation level [7].

Along with the trend of automation systems being applied to NPPs, interest in

the application of the autonomous operation in NPPs has increased for the same

purpose as the automation system. Upadhyaya et al. used a
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proportional-integral-derivative (PID) controller for designing an autonomous

operation system in a space reactor system [8]. Oak Ridge National Laboratory

suggested an autonomous operation decision-making framework for small and

modular reactors [9]. However, those studies focused on the level of the component

or controller in system. In order to apply to the extended operational scope of the

NPPs, the autonomous control system or even functions need to be studied.

The purpose of this study is to suggest an autonomous algorithm for safety

systems by using a long short-term memory (LSTM) network and a function-based

hierarchical framework (FHF). The safety goal, functions, systems and components

of the NPP were modelled hierarchically using the FHF. Then, the modeled

structure was transformed into the LSTM network that is an improved model of a

recurrent neural network (RNN). To test and validate the model, this study was

used on a simulator called a compact nuclear simulator (CNS) where the reference

NPPs is Westinghouse three-loop pressurized water (PWR) and 930 MWe. To train

the LSTM network, the train and validation data was collected in this simulator.

This paper is organized as follows. Section 2 introduces the FHF and LSTM briefly.

In Section 3, the safety systems and functions based on the reference plant are

modeled by using the FHF. Then, the process of designing a modeled structure

into an LSTM network is shown in Section 4. The data set (training and testing

data) are described in Section 5. The discussion and conclusion describes this work

in Sections 6 and 7.
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II. Methodology

A. Function-based Hierarchical Framework (FHF)

In this study, FHF is sugested for modeling safety systems in NPP. For NPP

safety systems, it is designed to include functions at preventing core damage and

keeping the plant safe. The FHF modeled the functions required in the design of

safety systems as a hierarchical structure.

Analyzing complex systems requires understanding the parent to child system

relationships. One way to analyze the system is to break down the parent system

into child systems through "authoritative relationships" between tiers and further

disassemble those child systems until they reach the lowest level [11]. In general,

hierarchical frame work provides a process of describing complex systems in terms

of the ability to break down abstract system functions into practical components.

These hierarchical controls are also desirable in designing autonomous controls that

require the architecture of sophisticated systems [12]. Applying hierarchical

framework to the NPP's safety systems helps the system systematically to identify

and understand the interactions between the child and parent system.

The FHF begins with a high level safety objective of the NPP and is subdivided

into the functions necessary to achieve the goal. The FHF is divided into goal,

function and system levels, as shown in Fig 1, and subdivided into the functions

necessary to achieve the goal, starting with the safety goals of the NPPs.

The goal level defines ultimately achievement by the entire system for ensuring

the health and the public safety by preventing or mitigating the result of postulated

accidents. The goal of nuclear safety in the system can be primarily defined as the
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damage prevention of the core. Core damage can cause radiation from outside the

NPP. In addition, the released radiation has a negative impact on the health (such

as long-term cancers or short-term injuries) of humans and soil pollution around

the NPPs. Thus, in this study, the goal level of NPP safety systems is defined as

damage prevention of the core.

The function level includes the functions that need to design achieving the goal.

The goal of NPP safety, which is the pressurized water reactors (PWRs), can be

accomplished as nine safety functions. These nine safety functions are intended to

contol or maintain a parameters or boundary important for preventing the release

of radioactive materials, and for assuring the plant's integrity.

In the FHF, the level of system identifies the systems, components, and

parameters of component’s input/output that are need to satisfy the function level.

For instance, in the reference NPP, the chemical and volume control system

(CVCS), which control the boron concentration and RCS inventory, the safety

injection system (SIS), which maintain the RCS inventory, can perform operations

that satisfy the RCS inventory control function. Then, those systems can be

subdivided into components. For example, in the case of SIS includes an SI tank, SI

pumps and SI valves. The output and input values of the components are also

defined as the system level in the FHF. These values are used for output/input

variable of the LSTM network. Input values are defined as the system/component

condition and the NPP physical variables. Output values are the conditions of the

components considered the inputs, such as pump and valve conditions. Fig. 1

presents an FHF for the goal, safety injection systems, RCS inventory control

function and related components, including the output and input values.
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Fig. 1. Function-based Hierarchical Framework

B. Long Short-Term Memory (LSTM)

This study applied the LSTM to development the autonomous control algorithm

for the NPP safety function. The FHF was converted to LSTM network that is an

advanced model of an RNN.

NPPs are non-linear systems and highly complex operated and monitored by

operators and automatic systems. When faced with a transient condition, such as an

equipment failure, accident, or an external disturbance in the system, operators have

to carry out corrective actions and diagnostic in response to a large volume of

information about the NPP's parameters. Thus, the autonomous operation system,

instead of the operates, may efficiently act the diagnostic and corrective actions. The

operator’s decision making and control is a complex logic that requires

consideration of the pass operational training experience and the previous plant

situation. The classic control controllers (e.g., PID controller), If-then controller, have

limitation to design the fully autonomous system.
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Several techniques about the non-linear pattern recognition are available in the

field of AI for solving this problem. For tackling the pattern recognition problems,

the artificial neural network (ANN) was used as one of the most popular tools

since an ANN can search the non-linear descriptions from the input domain into

the output domain, or search dependencies between several variables [13].

In scientific research, the ANN has a long history. Various neural network

models have been proposed for addressing different problems in the machine

learning and control fields. There has been a constant interest in the applcation of

ANNs to the adaptation and identification control of practical systems that are

characterized by communication constraints, uncertainty, nonlinearity and complexity

[14]. In addition, the ANN is a promising approach to implement the nonlinear

approximation for developing systems, such as NPPs. The LSTM method has been

improved from the RNN, which is kind of ANN, by using advanced cell. The

RNN has a power that can capture the dynamic behavior in the systems, represent

dynamic systems, and extract the information features in hidden layer [15].

An RNN includes input nodes, output nodes, hidden nodes and delay nodes to

reflect the condition of the previous system. In the case of RNN, it has delay

nodes that is different of existing neural networks. The delay node is calculated

from the hidden node t+1 and then from the time t, from the linear combination of

input data in the input node. These structural features allow the RNN to estimate

time series data. Examples of time series data application are voice recognition,

video recognition, dynamic system control, handwriting recognition, and translation.

However, when there are more than five layers [16] in RNN, RNN may have

problems with a gradient vanishing. The problem is that vanishes exponentially

quickly to zero or gradient value becomes too large while updating the weight in

hidden layers. Therefore, LSTM has been proposed to address this issue because it

limits the data set for long-term memory within the RNN.
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LSTM, based on the RNN model, is a neural network developed for processing

long-time sequences of data. LSTM combines rapid training with efficient learning

of tasks requiring sequential short-term memory for many time-steps during a trial

[15]. LSTM can learn to connect more than 1000 discrete time steps by applying

continuous error flow through "constant error carousels" (CECs) within a special

unit called cells. [17]. An LSTM cell shows in Fig. 2. The LSTM cell consists of

four main elements: the input gate, forget gate, output gate and a cell with a

recurrent connection called CECs.

LSTM cell

CEC
Forget gate

Input gate

Output gate

Output(t)

Input(t)

Output(t-1)

Output(t-1)

Output(t-1)

Fig. 2. LSTM structure

The LSTM cell consists of nodes that retain the condition across time-steps. The

LSTM cell has three types of specialized gate nodes (output, input, and forget

gates) that learn to utilize, protect, or destroy this condition appropriately. The
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equations below describe the memory block operation of the LSTM cell.

  
      (1)

  
           (2)

  
        (3)

  ∘    ∘ tanh     (4)

  ∘ tanh   (5)

In these equations, where  is the input to the LSTM block;  ,  ,  ,  and 

are the forget gate, input gate, cell state, output gate and output to the LSTM

block, respectively, at the current time step t;  ,  and  are the weights

between the input layer and the input gate, the input layer and the output gate,

abd the input layer and the forget gate, respectively;  ,  and  are the

weights between the hidden recurrent layer and the forget gate, the hidden

recurrent layer and the output gate of the memory block, and the hidden recurrent

layer and the input gate, respectively; ,  and  are the weights between

the cell state and the input gate, the cell state and the output gate, and the cell

state and the forget gate, respectively; and finally, ,  and  are the additive

biases of the input gate, the output gate, and the forget gate, respectively. The set

of activation functions includes the sigmoid function, the elementwise multiplication,

i.e., the hyperbolic activation function and inner product of vector, ∘ .

The gate updates the contents of the memory cell and provides a

context-sensitive method for protecting it from interference. The gate can also

protect the downstream units form subtle effects of stored information that is not

yet relevant. The input gate controls which part should be allowed to alter the

state in the cell and which part of the incoming information should be blocked.

Meanwhile, the output gate controls some of the output signals that may affect the

following cells. The forget gate modifies the recurrent connection process to decide
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which information it needs to remember and forget in the cell. In addition, the

weight is set to 1 to prevent gradients from exploding or vanishing [17, 18].

The LSTM has several special advantages for applying to NPP safety systems.

First, the LSTM is considering the ANN characteristics associated with non-linear

systems. Although a system or component may have a linear data feature at the

low level, but the overall NPP systems and functions can be considered as

non-linear systems. Second, as mentioned previously, the operation of the safety

systems are so dynamic that the LSTM are relevant for its autonomous operation.

Third, the past conditions of the plant are important in the control of an NPP. The

current control of systems and components in NPPs is influenced by the past

conditions of these components, systems, or parameters. The LSTM uses the

historical information in predicting the current output parameters, which are also

considered for application to the dynamic safety system.
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III. Safety System Modeling by Using the FHF

In this study, NPP safety systems are modeled by using an FHF. A Westinghouse

three-loop PWR 930 MWe is used as the reference plant. The modeled safety

system thorough FHF was used as an architectural framework for applying the

LSTM network.

In the previous section, the main goal of NPP safety is to protect the core in the

NPP and alleviate damage to the core from a severe accident. In this study,

Westinghouse 900 MWe, 3-loop PWR is used as the reference plant. Safety systems

of the reference plant were designed to satisfy nine safety functions. Then, each

safety function includes subsystems necessary to satisfy its function, and the

subsystem contains components (e.g., pumps and valves). Each component performs

automatic or manual controls (e.g., for termination, actuation, and regulation).

A. Goal and Function Levels

The FHF includes three levels as shown in Fig. 3. The top layer represents the

goal of NPP safety, which purpose at preventing core damage and mitigating the

consequences of accidents, the release of radiation to the public, as mentioned

above. Core damage has been assumed to be any condition of the core where the

core is uncovered, or the fuel temperature exceeds the design limitation. Core

damage can cause radiation from outside the NPP. In addition, the released

radiation has a negative impact on the health (such as long-term cancers or

short-term injuries) of humans and soil pollution around the NPPs.

Nine safety functions to satisfy the ultimate goal of NPP safety were identified

through the reference plant. Safety functions serve for verifying the high-level safety
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objectives and are defined in terms of a boundary and entity important to

preventing the release of radioactive materials and assuring the plant's integrity.

Nine safety functions are shown in Table 1 [19] and described in Fig. 3.

System
Level

Function 
Level

Goal Level

Reactivity 
Control

Function

RCS Inventory 
Control

Function

RCS Pressure 
Control

Function

RCS heat 
removal

Function

Core heat 
removal

Function

Containment 
Isolation

Function

Prevention of Core 
Damage

Goal

Maintenance 
of Vital 

Auxiliaries

Function

Hydrogen
Control

Function

Containment 
Environment

Function

DCRS

System

PPS

System

SIS

System

CVCS
(C&L)

System

PPCS

System

SDVS

System

MFWS

System

AFWS

System

RCS

System

CIS

System

AC/DCS

System

HMS

System

CCS

System

CFCS

System

Nuclear Power Plant

* Plant Protection System (PPS) * Digita l Control Rods System (DCRS) * Safety Injection System (SIS) * Chemical and volume control system (CVCS)
* Pressurizer Pressure Control System (PPCS) * Safety depressurization and vent system (SDVS) * Main Feed Water System (MFWS) * Aux Feed Water System (AFWS)
* Reactor Coolant System (RCS) * Containment Isolation System (CIS) * AC and DC Power System (AC/DCS) * Hydrogen Mitigation System (HMS)
* Containment Spray System (CSS) * Containment Fan Cooling System (CFCS)

Fig. 3. An FHF structure of an NPP safety systems
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No. Safety functions Purpose

1 Reactivity control
Shut reactor down to reduce the heat 

production

2
Reactor coolant system (RCS) 

pressure control

Maintain pressure of the reactor coolant 

system

3 RCS inventory control
Maintain mass or volume of reactor coolant 

system

4 Core heat removal Transfer the heat from the core to the coolant

5 RCS heat removal
Transfer heat out of the coolant system 

medium

6 Containment isolation Close valves penetrating containment

7
Containment temperature and 

pressure control
Maintain from damaging containment

8 Maintenance of vital auxiliaries
Maintain operability of the system needed to 

support safety systems

9 Hydrogen control Control hydrogen concentration

Table 1. Nine safety functions

1. Reactivity control

The purpose of the reactivity control function is to monitor and control the

nuclear reactions that occur within the core.

2. RCS inventory control

The RCS inventory control maintains the core covered with an coolant medium.

The function monitors the actions that maintain control over either the coolant mass

or volume. The RCS inventory control can control the continuous loss of coolant

mass and recover from the loss of coolant inventory events, and it also prevent
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loss of the ability to maintain the RCS coolant inventory. To satisfaction the RCS

inventory, it satisfy pressurizer water level between 17% and 92% according to the

reference plant.

3. RCS pressure control

The purpose of this function is to effectively manage cooling water by keeping

the RCS pressure below the designed value and the previously calculated RCS

pressure boundary conditions in order to archive the goal. The reactor cooling

water in the PWR should maintain the sub-cooling state to remove the heat

generated from the core properly. Therefore, high RCS pressure is maintained to

keep the cooling water at high temperature and to protect large boiling of the high

temperature in the loops.

4. Core heat removal

The purpose of the this function is to control the heat transformation from the

core to the primary cooling water for heat removal through the RCS. A loss of

core heat removal capability is alerted according to high core temperatures and/or

voiding in the hot leg areas and reactor vessel upper head.

5. RCS heat removal

The RCS heat removal is critical function for assuring the transfer of the stored,

generated, and decay heat from RCS to a secondary side. Thus, the purpose of the

RCS heat removal is to transfer the heat from RCS to the secondary side in the

steam generators (SGs). The transfer of heat between the core and feed water in

the SGs can be carried out by the RCS. Therefore, RCS heat removal system adjusts

the level of SGs within the allowable range.
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6. Containment isolation

The purpose of this function is to ensure proper isolation of the valves in the

piping path when isolation signals are generated on the containment vessel to

prevent radioactive releases outside the containment. Therefore, the containment

isolation function provides the isolation of fluid system that passes through the

containment penetration after an accident.

7. Containment pressure and temperature control

The purpose of this functions are to prevent the overstress of the containment

building. The containment integrity can be maintained by controlling both

containment pressure and temperature to prevent containment overpressure.

8. Hydrogen control

The purpose of the hydrogen control function is to control the concentration of

hydrogen that may explode after an accident. In Loss of Coolant Accident (LOCA),

hydrogen is generated due to the zirconium-water reaction of the fuel rod and

water.

9. Maintenance of vital auxiliaries

Maintenance of vital auxiliaries function is required to ensure operation of the

other safety functions. These systems provide the services as instrument air for

closing and opening valves, electic power for operating instruments and pumps,

and ultimate heat sink for transfer of RCS and core heat.
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B. System Level

In system level, it is defined as the system with nine safety functions and

components that make up a safety systems. Table 2 represents the systems and

components modeled to satisfy safety functions. For instance, safety injection system

(SIS), the plant protection system (PPS), and digital control rods system (DCRS) are

modeled to control reactivity. Further, the SIS consist of components such as the

safety injection (SI) tanks, SI valves, and SI pumps. The systems identified in Table

2 consists safety systems as well as non-safety systems. the CVCS and SIS can be

applied in the plant for the RCS inventory control. The SIS is classified as the

safety system for the reference plant, while the CVCS is classified as a non-safety

system.

The system level is also defined as the input/output parameters and component

condition to operate the components. Defined the input/output parameters in the

system level are used as input/ouput data in the LSTM network. Table 3 shows an

input/output parameter and component condition for the RCS inventory control

funtion as an example. In the reference plant, SI valve are operated by SI signal

that will be automatically actuated according to pressurizer level and RCS

temperature.
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Nine safety function System Component

Reactivity control

DCRS Control element drive mechanism

PPS Control element drive mechanism

SIS SI tanks, SI pumps, SI valves

RCS inventory control

SIS SI tanks, SI pumps, SI valves

Chemical and volume 

control system (CVCS)

Charging valve, charging pump, 

orifice valve, letdown valve

RCS pressure control

Pressureizer (PZR) 

pressure control system
PZR heater, PZR spray valve

Safety depressurization 

and vent system
Power operated relief valve (PORV)

RCS heat removal

Safety depressurization 

and vent system
SG PORV

Aux feedwater system Aux feedwater pump

Main feedwater system Main feedwater pump

Core heat removal Reactor coolant system Reactor coolant pump

Containment isolation
Containment isolation 

system
Containment isolation valve

Containment pressure 

and temperature 

control

Containment fan cooling 

system
Fan cooler

Containment spray 

system
Containment spray

Hydrogen control
Hydrogen mitigation 

system
Hydrogen ignitor

Maintenance of vital 

auxiliaries

DC and AC power 

system
Station batteries, Diesel generator

Table 2. Safety systems at the system level
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System Component Output parameters Input parameters

SIS SI tank SI tank valve position SI Signal

SI Valve to RCS Flow

SI Tank to RCS Flow

RCS Hot-leg 1, 2, 3 

Temperature

RCS Loop 1, 2, 3 Average 

Temperature

Pressurizer Pressure

Pressurizer Delta Level

Pressurizer Water Level

Reactor Vessel Water Level

SI valve SI valve position

SI pump SI pump 1,2,3 state

CVCS Charging valve Charging flow control valves 

position

Reactor Vessel Water Level

Pressurizer Pressure

Pressurizer Delta Level

Pressurizer Water Level
Letdown valve Letdown isolation valves 

position

Orifice valve 75 gpm, 60gpm. 45gpm 

orifice valves position

Charging pump The condition of charging 

pump 1,2,3

Table 3. An example of input/output for RCS inventory control
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IV. Modeling the LSTM network for Autonomous Control 

Safety Systems

This section shows the process of changing the FHF of safety systems modeled in

the previous section to the LSTM network in order to implement autonomous

control. Fig. 4 illustrates the transition of SIS, which is included in the RCS

inventory control function, from FHF to LSTM network. The input parameters of

LSTM network uses the physical parameters required for the state and operation of

components modelled in the FHF. The component states were transferred to the

output parameters of LSTM network.

RCS Inventory 
Control

Function

Safety Injection 
System (SIS)

System

SI Pump
Component

SI Tank
Component

SI Valve
Component

RCS Temp, 
Pressure, Level 

Input

SI Pump
State

Output

SI Tank 
Valve State

Output

SI Valve
State

Output

RCS Temp, 
Pressure, Level

Network Input

Network

SI Pump, SI Tank
SI Valve state

Network Output

LSTM

Network input

Network output

SI Pump, SI Tank
SI Valve state

Fig. 4. Transformation from the FHF to LSTM network

The LSTM network is based primarily on the neural network (NN) model and

are largely divided into input, hidden, and output layers. The input layer is used

to receive prepared input data and pass it to the hidden layer, as well as to

normalize the input data for training in the network. In the case of LSTM, the

input layer has the data shape that include the time and the plant condition



- 20 -

parameter to consider the data characteristic. The hidden layer serves the data

communication between the output and input layer, and calculates the results of

complex problems. The output layer contains the process to derive the computed

content from the hidden layer into the output values.

Fig. 5 shows the structure of the autonomous operation algorithm for safety

systems. The number of 168 input parameters, which includes 74 physical and 94

component condition from the NPP, were used as input values of the LSTM

network. The input values are transformed to be between from 0 to 1 by using the

preprocessing normalization. Then, the output processing was used to transfer the

output values of LSTM according to the range of plant control variables. The

elements of the LSTM algorithm are described in detail as follows.
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Autonomous control algorithm 
for safety system

LSTM Network

Input 
Pre-processing

Output
Processing

Time

Input layer

Hidden layer
: 2 layer
: 60 hidden nodes

Output layer

tt-1t-2t-7t-8

1
0.3

.

.

.
0.4

1
0.35

.

.

.
0.31

0
0.2 7

.

.

.
0.2 3

0
0.24

.

.

.
0.21

0
0.23

.

.

.
0.12

LSTM network input values
: 168 important  operation 
signals or state

LSTM network output values 
: 94 operation signals

Min-max normalization function

t-9 PPS

Control Input  Values

DCRS SIS CVCS SHRS PPCS SDVS MFWS AFWS RCS CIS
AC/
DCS

HMS CCS CFCS

t+1 PPS

Control output  values

DCRS SIS CVCS SHRS PPCS SDVS MFWS AFWS RCS CIS
AC/
DCS

HMS CCS CFCS

Regulation type (0~1) On/off type (0, 1)

Fig. 5. Autonomous operation algorithm for the safety system

A. Preprocessing of input values

This step in LSTM network preprocessed the input values to be adapted to the

LSTM input layer. It scaled the range of input values using a normalization tool.

To train the LSTM network, all the parameters in the network had to be scaled

from 0 to 1 to reduce the chance of getting trap in local optimization.
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For avoiding the local optimization, this study used the min-max scaling method

that can be able to scale the input parameters from the NPP for the input layers.

A linear transformation was performed on the original input data from the NPP,

and the input data were scaled to a range between from 0 to 1. This function is

executed throught the following equation [22]. m in and m ax are the minimum

and maximum input values, respectively.

   m in m ax m in  (6)

B. Training the LSTM Network

In order to train the LSTM network, input/output data were collected from a

CNS. The CNS was developed by the Korea Atomic Energy Research Institute

(KAERI) [20]. Fig. 6 shows a snapshot of reactor coolant system in the CNS.
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Fig. 6. CNS interface

CNS provides the parameter log file that collected with a sampling period of 1

sec. The operating data from the number of 206 scenarios were gathered by

graduate students by graduate students of nuclear engineering at Chosun

University. These students have knowledge about operation of the reference plant

and CNS. Table 4 shows the configuration of the all collected data and the number

of training sets to train data. Each scenario has a time length of 15 to 25 minutes.

The training set for operation data has been sampled for 10 seconds. For example,

if the scenario starts at 0 sec, the training set has been sampled from 0 to 10 sec,

and the second has been sampled from 1 to 11 sec. Thus, the total number of

training sets has been sampled as 244,982.

The initiating events included the typical the design basis accidents in the plant
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(e.g., steam generator tube rupture (SGTR) and LOCA). In addition, an additional

failure of components in safety system is also included in the initiating event, e.g.,

failure of safety injection. All the training scenarios consists of the different failure

location and break size. Each scenario included not only human action by the

graduate students following operating procedures but also the automatic actuation

of safety systems. As mentioned in the previous section, 168 operational parameters

were collected for the input values to the LSTM network, and 94 component

conditions were collected for the outputs values.

Initiating Events
Number of 

scenarios

Number of 

training sets

Loss of coolant accident (LOCA), safety injection 

failure
60 83,985

Loss of coolant accident (LOCA) 60 74,251

PZR safety valve failed-to-open, safety injection 

failure
10 13,616

PZR safety valve failed-to-open 10 13,008

Steam generator tube rupture (SGTR), safety injection 

valve failure
18 18,179

Steam generator tube rupture (SGTR) 18 15,128

Main steam line break (MSLB) 30 26,815

Total 206 244,982

Table 4. Database used for training LSTM network



- 25 -

C. Determination of optimized LSTM network structure

This section decide an optimized LSTM structure for the proposed autonomous

operation algorithm. Defining the structure of the hidden layer, the time length of

the input data, is the first step in designing an optimized LSTM network structure.

The time length of input data is the temporal length of the previous input data

that the LSTM can use to compute the output values. The structure of the hidden

layers and nodes can affect the network performance, and the determination of the

number of hidden layers as well as nodes according to the problem domain.

A typical way to determining the optimized parameters of the LSTM structure is

via trial-and-error and experiments [21]. In this study, the trial-and-error approach

is used to decide the optimal numbers of hidden nodes and layers and the optimal

input length. Therefore, the length of the various input sequences and the number

of hidden nodes and layers were trainband by using the data described in the

previous section. With limited computing capacity, the range of trial-end-error test

were limited to 2 hidden layers and 60 nodes. The LSTM network model was

implemented by using Tensorflow, an open source software library based on

Python code. This study used a desktop computer that includes an Intel Core

i7-6850k CPU and an NVIDIA GeForce GTX 1080 Ti.

In this paper, the root-mean-square error (RMSE) is used as a basis for

determining the structure of an optimized network. The network can be trained

through RMSE values. The RMSE value represents the gap between the output of

the network and the correct value, and having a small error means that training on

the network was successful. It also means that the network architecture is suitable

for current domain. Table 5 shows the RMSE of each network structure. Following

equation shows the RMSE:
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R M SE x′ x  


n



n  

N

x′n  xn 
 (6)

The equation uses the predicted power time series ′ and the measured power

time series . It is assumed that both time series have  samples. The results

represented that the minimum RMSE was obtained from a 2 hidden layers, 10

input sequences and 30 nodes on each layer.
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# of input sequences
# of hidden layers 

[# of hidden nodes in each layer]
RMSE

5
1 [60] 0.0378

2 [30, 30] 0.0276

6
1 [60] 0.0297

2 [30, 30] 0.0270

7
1 [60] 0.0285

2 [30, 30] 0.0265

8
1 [60] 0.0279

2 [30, 30] 0.0263

9
1 [60] 0.0279

2 [30, 30] 0.0258

10
1 [60] 0.0275

2 [30, 30] 0.0255

11
1 [60] 0.0269

2 [30, 30] 0.0255

12
1 [60] 0.0262

2 [30, 30] 0.0256

Table 5. Performance comparison between LSTM networks

D. Output processing

The output of the LSTM network has prediction value of the state of components

to control the system of the safety functions. The control type in NPPs can be
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divided into the continuous and discre controls. In the case of a continuous control,

it adjusts the component condition to satisfy the correct value of parameters. For

example, a control valve need to adjust the its position to control the water flow.

On the other hand, a discrete control has two component conditions, such as “fully

open or closed” or "on or off".

The output generated by the LSTM network can be any number ranging from 0

to 1. In the case of a continuous control component, this output value can be

directly converted to the component condition because the component condition can

also have any value between minimum (e.g., fully closed) and maximum (e.g., fully

open in a valve).

However, a discrete control component needs post-processing because the

component can have one or two states, e.g., off or on, but the LSTM can generate

any value between 0 and 1. Through output processing, the LSTM output is

converted to a discrete control signal.

Fig. 7 explains the LSTM algorithm with which the output processing changes the

LSTM output to the on/off discrete control condition. The component status of the

safety system changes when the predicted output value of the LSTM reaches 0.05

in the upward direction or 0.95 in the downward direction. The transition values

have been based on the average error in the training data sets. The average error

of on/off signals was 0.0434. According to this value, the transition values were

selected to 0.95 and 0.5.

In Fig. 7, the component condition at time = 0 is "on" because the network

generate an output values around "1". If the LSTM generate a number below 0.95

in the downward direction, the condition of the component will be changed to

"off." From the "off" condition, the condition of the component will be changed

when the LSTM generated an output values above 0.05 in the upward direction.
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Fig. 7. The algorithm of output processing for discrete control
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V. Validation

The autonomous operation algorithm with LSTM network was tested for LOCA

and SGTR scenarios. The two scenarios differ in the ratio of automatic and manual

control. For LOCA, automation systems perform more operations than manual

operator operations. On the other hand, the SGTR required relatively many manual

controls following the procedure, such as controlling the reactor coolant pumps,

auxiliary feedwater valves and PORVs. The main purpose of testing against two

scenarios is to compare the performance of the proposed autonomic algorithms with

of the automatic and manual control systems. The scenarios, which are not included

in the training, consist of an SG loop 3 SGTR scenario and a loop 2 hot-leg LOCA

scenario.

A. LOCA scenario

Fig. 8 and Fig. 9 compare the autonomous operation algorithm with automation

and operator’s manual control at the system level through the LOCA scenario. In

this scenario, the plant was tripped at 65 sec. Fig. 8 represents the charging valve

position for operating the RCS inventory. While the automation and operator’s

manual control closed the charging valve, the autonomous operation algorithm

controlled actively until the charging valve become closed. Fig. 9 shows the change

of the SI valve. The autonomous operation algorithm opened the SI valve 17

seconds earlier than the automation and operator’s manual control. It means that

the autonomous operation algorithm supplied more water to the RCS. However, it

is not possible to compare the performance of an autonomous operation algorithm

and an automation and operator’s manual control with only system level results.

Therefore, this study shows a comparison of the performance results of the

functional levels of each operation system. Fig. 10 shows the result of RCS
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inventory, core heat removal and RCS heat removal to compare the performance of

operation system. In the RCS heat removal and RCS inventory control, SG’s water

level and coolant level in the reactor are more desirable for safety, while faster

cooling is better for core heat elimination after a LOCA occurs. As the result, the

autonomous operation performed better management of safety functions than the

automation and operator’s manual control.

Fig. 8. Charging valve position
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Fig. 9. The change of SI valve position

(a). RCS Inventory – the water level in reactor
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(b) Core Heat Removal – the temperature of core exit

(c) RCS Heat Removal – SG water level

Fig. 10. Comparison of autonomous and automation and operator’s manual control for 

safety functions during a LOCA
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B. SGTR scenario

Fig. 11 shows the comparison of autonomous and automation and operator’s

manual controls at the system level for the reactor coolant pump (RCP), auxiliary

feedwater valve, and SG PORV in the SGTR scenario. The initiating event occurred

at 60 sec. The goal of controlling the SG PORVs is to eliminate heat from the RCS.

With automation and operator’s manual control, the operator choses and opens the

PORVs of the intact SGs. Fig. 11 (a) shown that the autonomous operation

algorithm started to open the PORV earlier and operated the positions of the PORV

valves more frequently than the automation and operator’s manual control. In the

case of auxiliary feedwater valve, the autonomous operation algorithm started to

open the valve that controls water to the SGs early. The control of the RCPs was

different between two control approaches. The automation and operator’s manual

control maintained the operation of the RCPs while the autonomous operation

algorithm stopped them after approximately 110 sec.

Fig. 12 compares the two control approaches at the function level. Similar to the

LOCA scenario, these results show that the autonomous operation algorithm

controled the accident in a safer way for three safety functions.
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(a) SG PORV position

(b) Auxiliary feedwater valve position
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(c) RCP condition

Fig. 11. Comparison of autonomous and automation and operator’s manual controls at the 

system level during an SGTR

(a) RCS Inventory – the water level in reactor
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(b) Core Heat Removal – the temperature of core exit

(c) RCS Heat Removal – SG water level

Fig. 12. Comparison of autonomous and automation and operator’s manual control for 

safety functions during an SGTR
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VI. Discussion

The validation results presents that the autonomous operation algorithm

performed better than the autonomous operation algorithm and automation and

operator’s manual control in managing the safety parameters in the two scenarios.

Table 6 shows a comparison of the safety functions for the two control approaches

at 1000 sec. There are a couple of plausible assumptions for this performance

difference. First, the LSTM predicted the component state by considering the plant

condition history, while the automation and operator’s manual control determined it

based on the present plant condition. The LSTM generated the output control signal

based on the input plant data of the previous 10 time steps. It can predict the

plant condition and control the plant component earlier. In the automatic system in

the reference plant, control signals were actuated according to the current set point

parameters, and the operating procedure also instructs operators to carry out the

actions based on the current plant values.

Second, the autonomous operation algorithm simultaneously supervised the safety

functions, while the human actions in the automation and operator’s manual control

are performed sequentially. Fig. 13 shows the difference between the two

approaches to operating safety functions during accidents. With the automation and

operator’s manual control, the emergency operating procedures are generally

organized to instruct the operators to control one safety function. The emergency

operating procedure is sequentially determined by accident urgency and importance,

as shown in Fig. 13 (a). This sequential operation strategy seeks to reduce human

errors due to the operator's limited capacity for addressing multiple tasks

simultaneously. However, the autonomous operation algorithm has no such

limitation in addressing multiple tasks because these algorithm is performed at the

computer environment. The parallel processing, as shown in Fig. 13 (b), enabled the

autonomous operation algorithm to respond to the accident faster than the
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automation and operator’s manual control.

In addition, if the training data sets are obtained from the operation by actual

operators, it can improve the quality of suggested autonomous operation algorithm.

The quality of the LSTM network largely depends on that of training data sets.

Therefore, if expertise can be included in the training data sets, the LSTM network

can be trained to be better tuned and then show the better capability of mitigating

the accident.

Scenarios Function Parameter
Autonomous 

control

Auto-Human 

control

LOCA

Core Heat Removal
Core exit 

temperature
230.73℃ 245.26℃

RCS Inventory
Reactor water 

level
6.06m 5.18m

RCS Heat Removal SG level 9.35m 7.67m

RCS Pressure
Pressurizer 

pressure
63.75 69.4

SGTR

Core Heat Removal
Core exit 

temperature
228.44℃ 242.89℃

RCS Inventory
Reactor water 

level
6.22m 5.48m

RCS Heat Removal SG level 8.64m 7.13m

RCS Pressure
Pressurizer 

pressure
97.02 97.6

Table 6. Comparison of the four safety functions for two approaches at 1000 sec
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Reactivity control

Maintenance of vital auxiliaries

Reactor coolant system (RCS) 
inventory control

Reactor coolant system (RCS) 
pressure control

Reactor coolant system (RCS) 
heat removal

Core heat removal

Containment pressure and 
temperature control

Containment isolation

Hydrogen control

(a) The sequential operation of safety functions in automation and operator’s manual control

Autonomous Control

(b) The parallel operation of safety functions in autonomous operation algorithm

Fig. 13. Differences in the operation strategies of the two approaches
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VII. Conclusions

This study suggested an autonomous operation algorithm for NPP safety

functions by using an FHF as well as LSTM network. For analyzing the NPP safety

systems, a hierarchical framework to model the NPP safety functions were

suggested. According to this framework, an autonomous operation algorithm based

on an LSTM network was modeled to control the safety functions. The LSTM

network was trained and validated by using a CNS. The algorithm has

demonstrated the effectiveness. The validation results showed that the autonomous

operation algorithm could manage the plant safety better than the current

automation and operator’s manual control.
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