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Abstract

Integration of Trusted K nearest Bayesian 
Estimation and Pedestrian Dead 

Reckoning for Indoor Positioning System

Rohan Kumar Yadav

Advisor: Prof. Jae-Young Pyun

Department of Information and 

Communication Engineering

Graduate School of Chosun University

Location based services are emerging as an important aspect of modern 

civilization. GPS technology has embraced many areas to provide navigation 

in outdoor environment, but it has not been quite accepted in the indoor 

environment due to the interference of the signal. Hence, indoor positioning 

systems have got more attention because of its wide range of applications. 

However, this positioning system also suffers from huge error in localization 

and has less solidity. The main approaches widely used for indoor 

localization are based on Inertial Measurement Unit (IMU), Bluetooth, Wi-

Fi, and Ultra Wide Band (UWB). Specifically among them, the major 

problem with Bluetooth based fingerprinting is inconsistency in radios signal 
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strength (RSS), while IMU based localization has drift error that accumulates

with time. 

To overcome these shortcomings, we concentrate on enhancing the accuracy 

of the indoor positioning system with integration of two positioning 

algorithms. This thesis introduces a novel positioning system that integrates

IMU sensors and Bluetooth Low Energy (BLE) beacon using fuzzy logic 

Kalman Filter named Trusted K nearest Bayesian Estimation (TKBE). We 

propose BLE beacon based positioning using K nearest neighbor (KNN) and 

Bayesian Estimation where as IMU based positioning uses Pedestrian Dead 

Reckoning. 

Our experiment shows that the proposed BLE beacon based positioning 

increases the accuracy by 25% as compared to existing KNN based 

positioning and proposed fuzzy logic based Kalman Filter additionally 

enhances the accuracy by 15%. Overall, the proposed TKBE gives error less 

than a meter in our experimental environments.
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한글요약

보행자 추측 항법과 블루투스 비컨을

활용한 실내 측위 시스템
로한 쿠마르 야다브

지도교수 :변재영

조선대학교대학원,

정보통신공학과

위치 기반 서비스는 현대 사회에서 중요한 기술로 자리잡고 있다. GPS 

기술은 야외 환경에서 내비게이션 서비스를 비롯한 다양한 분야에서

활용되어 왔으나, 신호의 간섭과 수신 제한으로 인해 실내 환경에서는

사용이 제한되어 왔다. 때문에, 실내 측위 시스템이 실내 환경에서

다양하게 응용될 수 있는 대안으로 주목받고 있다. 그러나, 실내 측위

시스템 또한 높은 측위 오차와 낮은 신뢰성이라는 문제로부터

자유롭지 못하다. 오늘날 실내 측위에서 주로 사용되고 있는

접근법으로 관성 측정장치 (IMU), 블루투스, 와이파이, 초광대역

무선기술(UWB) 등이 있다. 이들 중에서 블루투스를 기반으로 하는
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핑거프린팅 측위 방식은 일정치 않은 무선 신호 세기에 의한 문제점을, 

IMU 기반의 측위 방식은 시간이 지나면서 누적되는 드리프트 오차에

의한 문제점을 지니고 있다.

이러한 단점들을 극복하기 위해, 우리는 두 가지 측위 알고리즘을

결합하여 실내 측위 시스템의 정확도를 향상시키는 방법에

주목하였다. 본 논문에서는 TKBE (Trusted K nearest Bayesian 

Estimation)라는 퍼지 로직 칼만 필터를 사용하여 IMU 센서와 저전력

블루투스 (BLE) 기반의 비콘을 결합한 새로운 측위 시스템을 제안한다. 

제안 시스템은 BLE 비콘 기반 측위에 K-최근접 이웃(KNN)과 베이지안

추정을 이용하고 IMU 기반 측위에는 보행자 추측 항법을 이용한다.

본 논문에서는 실험을 통해 제안 된 BLE 비콘 기반 측위가 기존 KNN 

기반 위치 인식과 비교할 때 정확도를 25% 가량 증가시키고 제안 된

퍼지 로직 기반 칼만 필터는 정확도를 15% 가량 향상시킴을 보여주고

있다. 전반적으로, 제안 된 TKBE 는 실험 환경에서 1 미터 미만의 측위

오차를 보이고 있음을 알 수 있었다.
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1. Introduction

1.1 Motivation

Indoor Positioning System (IPS) is a technology used to locate the user in the 

indoor environment. Unlike Global Positioning System (GPS) that works in 

outdoor navigation, it is suitable for indoor localization where GPS is unable 

to track the target due to signal blockade. The extensive use of indoor 

positioning system in smart buildings, shopping mall, indoor parking, airports,

and hospitals has made it quite popular technology in recent market. 

People spend their most of the time in indoor environment thus it becomes an 

important factor for Internet of Thing (IoT) era. Various research has been 

carried out to provide better performance of IPS using Wi-Fi[1][2], Bluetooth 

Low Energy (BLE)[3][4], ultra wideband (UWB)[5], Inertial Measurement 

Unit (IMU)[6] and radio frequency identification (RFID)[7] and many more.

Although, various technologies have come up to refine and stable the 

performance of indoor positioning system, there still exists some drawbacks 

due to some trade off considered during designing the model. There is still not 

ideal indoor localization technique that locates user flawlessly and with better 

stability. Hence, it is always desirable to improve the positioning performance 

by exploring various machine learning techniques.

1.2 Objectives

The major objective of this research is to study the conventional methods used 

in indoor positioning system and identify potentials for improvements. We 

also aim to discuss various smartphone based sensors used in IPS. 
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Additionally, we propose novel integration algorithm that can improve the 

overall accuracy and performance of IPS.

1.3 Contributions

In this thesis, we design an indoor positioning system with Bluetooth Low 

Energy (BLE) beacons and IMU sensors of the smartphone which are based 

on probabilistic approach of fingerprinting technique and Pedestrian Dead 

Reckoning (PDR) respectively. These two methods are combined together 

through fuzzy logic Kalman filter called Trusted K nearest Bayesian 

Estimation (TKBE) algorithm.

1.4 Thesis Layout

The reminder of this thesis is organized as follows. Chapter 2 provides the 

theory and background overview sensors used as well as algorithms associated 

with it. Chapter 3 discusses relevant previous work in the field of IPS. Chapter 

4 describe the algorithms of our proposed IPS independently for each sensors 

and its fusion. Chapter 5 provides an overview of the experimental setup in 

the testbeds and its performance evaluation based on obtained results to

evaluate our proposed algorithm. Finally, chapter 6 concludes the thesis and 

presents summary of further research based on the presented work.
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2. Theory and Background

2.1 Indoor Positioning System

The market for location-based services (LBSs) has expanded in recent times. 

Because global positioning system technology cannot play the vital role in 

indoor environments owing to complications in the line of sight (LOS), many 

technologies have been proposed to overcome such adverse effects, e.g., 

Bluetooth, RFID, ultra-wideband (UWB), ZigBee, the wireless local area 

network, and the inertial measurement unit (IMU) [1], [2]. These techniques 

make use of wireless signals for location extraction. Some of the methods for 

extracting the distance of the user are the Time of Flight, Time of Arrival 

(ToA), and received signal strength indicator (RSSI). For example, ToA uses 

the packet transmission to estimate the time lags between wireless devices. 

This method has high precision, but its high hardware costs and 

implementation difficulties limit its applications. On the other hand, the RSSI 

usually depends on the environment and surrounding structure and has limited 

accuracy. Because there is always a tradeoff between accuracy and 

practicability in designing an LBS, the RSSI, being a very cost-effective 

method with reasonable accuracy, is currently the most widely used technique 

for indoor positioning systems. 

RSSI-based position estimation for an indoor tracking system is designed 

using propagation models to estimate the distance between devices [3], [4]. 

Usually, the propagation models do not take obstacles into consideration; 

hence, this is not considered an effective method for obtaining the position. 

However, this problem can be rectified by using fingerprinting techniques, i.e., 
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by matching the trained positioning data with the real-time observed data. In 

the fingerprinting method, reference points are assigned with the collection of 

unique signal strengths called fingerprints. The fingerprints are stored in a 

database and used in the localization phase through pattern recognition and 

machine-learning algorithms. These techniques can be useful for both 

deterministic and probabilistic methods [12]. A most common approach like 

K nearest neighbor can be used as a deterministic approach for indoor 

positioning system, which is enhanced using the variance in RSSI [13]. 

Generally, the probabilistic approach introduces mathematical analysis 

considering the variance of the signal strength to obtain a better result than the 

deterministic approach. 

Another approach for enhancing the indoor positioning system employs IMUs, 

which consist of an accelerometer, a gyroscope, a magnetometer, and a 

barometer. The most common approach using IMU sensors for navigation is 

pedestrian dead reckoning (PDR). Here, the accelerometer is used to estimate 

the displacement of the user, while the gyroscope and magnetometer are used 

to calculate the heading direction. PDR is a very low-cost system and does not 

require additional devices. However, there are drawbacks; e.g., the initial 

position of the user is required, and the drift error accumulates with time.  

To overcome these obstacles, RSSI fingerprinting and IMU-assisted 

positioning can be combined to eliminate the drawbacks of each method. 

There are various filtration methods, e.g., the Kalman filter, the Particle filter, 

and their variants [6], [7]. The Kalman filter is generally used with linear and 

Gaussian models, whereas the particle filter is used with nonlinear models. 

The particle filter provides significantly better estimation of the position in 
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noisy and inaccurate measurements. However, it requires higher computation 

power and is more complex than the Kalman filter [16]. Because minimum 

computation and complexity are preferred in smartphone environments, 

considering the memory use and power consumption, the Kalman filter is 

widely used for removing noise and accurately estimating the location.

2.2 Sensors

Features of smartphones have been improved continuously. Most of them are 

embedded with multiple sensors that provides various facilities required in 

daily life. Inertial Measurement Unit (IMU) sensors are essential sensors 

present in recent smartphones. It helps to estimate the motion and the position 

of the device that can be used for IPS. These IMU sensors are worth 

mentioning in this thesis. IMU consist of Accelerometer, Gyroscope, and 

Magnetic field sensor.

2.2.1 Accelerometer

Accelerometer is one of the IMU sensors and almost all the android devices 

are provided with three-axis accelerometers. The copious availability of such 

sensors makes it captivating sensor to consider in various navigation 

techniques. Accelerometer measures data with respect to its device. An output 

pattern of accelerometer is shown in Figure 1. The measurement of 

accelerometer is along x, y and z–axis. Despite of its dependency on 

orientation of device, there is gravitational force of approximately 9.81 m/s2

that remains similar in any orientation. Accelerometer has various application 

like measuring orientation of the phone, obtain speed and distance travelled 

by integrating the accelerometer value double over time.
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2.2.2 Gyroscope

A gyroscope is another IMU sensor that is embedded in most of the android 

devices. It measures the angular velocity and can be valuable along with the 

accelerometer and magnetic field sensors to obtain high accurate motion 

information. It measures the three-axial data which measures the angular 

velocity in all three axes along the device. Its unit is radians per second (rad/s) 

with respect to its device coordinate system.
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Figure 1. Accelerometer data obtained from Samsung Note 8 by randomly 

moving device. 
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Figure 2. Gyroscope data obtained from Samsung Note 8 by randomly 

changing its orientation. 



17

Gyroscope is important sensors if used along with magnetic field sensor to 

detect the change in rotation of device. Gyroscope cannot provide the initial 

orientation hence cannot replace the magnetic field sensor. For this both has 

to be utilized to get long term overall orientation of the device. The typical 

output of the gyroscope is given in Figure 2.

2.2.3 Magnetic Field

A magnetic field sensor is one of IMU sensors that measures the orientation 

of the device with respect to the magnetic north. Values measured using this 

sensors are in Earth’s magnetic field in each direction namely x, y, and z-axis. 

These axes are used to detect the orientation of device with respect to the 

Earth’s surface. Its unit is µT (micro-Tesla). The magnetic sensor of 

smartphones is very sensitive to the disturbances in the environment which 

can be unstable and unreliable. Several electronic devices and structural part 

of the buildings can disturb the pattern of magnetic field. Such disturbances 

can be used in localization [17]. This sensors is useful factor that provides 

necessary input during Pedestrian Dead Reckoning (PDR) system.

2.3 Wireless Technologies

Communication through wireless technologies are ruling the world and is most 

fundamental need of current development. As of many applications, IPS also

depends on the wireless communication technologies. These technologies are 

principally designed for communication between various technologies and has 

various use in academic and industries. However, these characteristics are now 

frequently used in indoor positioning techniques. Each technologies has its 
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own advantages of localization. Recently, some of the technologies used in 

IPS are Wi-Fi, BLE, and UWB. These are briefly explained in this section.

2.3.1 Wi-Fi

Wi-Fi is most commonly used local area networking techniques around the 

globe. Wireless Access Point (AP) establishes a local network that connects 

different devices on the network. In terms of LBS, Wi-Fi makes use of either 

RSSI or angle of arrival (AOA). Commonly, RSSI based positioning is used 

as wireless positioning techniques[18]. There exists a relation between RSSI 

and the distance between transmitter and receiver as shown in Figure 3. It 

states that signal strength decreases with the increase in distance. This relation 

is known as path loss model and is given by 

0 10

0

( ) 10 log ,
d

RSSI PL d A
d

= - h + (1)

where 0( )PL d is the path loss at particular reference distance (normally 0d = 

1m), d is distance from the sensor, h is path loss exponent, and A is a 

Gaussian random variable with zero mean and variance 2s [19].

Figure 3. Relationship between RSSI and distance measured.
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2.3.2 BLE

Bluetooth Low Energy has evolved from Bluetooth technology precisely to 

provide service with low energy consumption than the classic Bluetooth. 

Specifically, it is designed to be applicable in wearable technology, IoT and 

beacons. Its main function is to broadcast short messages to the nearby 

Bluetooth enabled devices. Due to its low power consumption and longer 

battery life, it has become quite popular choice for IPS[20]. Although Wi-Fi 

are easily available in public areas, it is quite tough to get the location of access 

points that limits the indoor localization techniques. Hence, the use of BLE 

based beacons are growing in recent market since, it can be installed in desired 

place with minimal effort of installation.

2.3.3 UWB

Ultra wideband radio is one of the technology that has capabilities of high 

bandwidth communication over short distances. It is also very low energy 

consuming technology that is used in many applications that require high bit 

rate at short range. Its main benefit is that it transmits the short pulses with the 

sharp transition without any carrier or baseband. A carrier is modulated by a 

conventional radio giving a narrow spectral peak. However, it can also be used 

at medium to long ranges which require low bit rate due to its power 

characteristics. UWB makes use of short pulse over spectrum of large 

frequency to send the data. This characteristics have been proven to be very 

useful for high precision data. UWB is popular because of its less vulnerability 

to reflections when passing through the obstacles compared to other 

technologies using smaller bandwidth[21].
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2.4 Estimation Techniques

IPS has various estimation techniques based on RSSI. Some of them are 

trilateration, proximity, and fingerprinting. Most of them are based on 

calculating distance of the user to various APs whereas fingerprinting 

approach is carried on by pattern recognition and machine learning techniques.

2.4.1 Trilateration

Trilateration method uses the RSSI, frequency, MAC address and real 

coordinates of APs. The RSSI obtained from APs are used to calculate 

distance between the receiver and the AP. Since, the signal strength decreases 

exponentially with increase in distance, this property can be considered for 

trilateration based positioning. The distance obtained from RSSI is represented 

as a circle with radius around the AP. Hence, the trilateration refers to the 

intersection of three such circle from three different APs. So at least three APs 

are needed for trilateration. This can be shown by equations given below

��
� =	 (� − ��)

� + (� − ��)
� (2)

��
� =	 (� − ��)

� + (� − ��)
�	 (3)

��
� =	 (� − ��)

� + (� − ��)
�, (4)

where (��, ��), (��, ��), and (��, ��) are the coordinates of AP1, AP2, and 

AP3 where as �� , �� , and �� are the estimated distance. The model of 

trilateration is shown in Figure 4.

Wi-Fi and BLE based beacons are most commonly used technologies for 

trilateration based indoor localization. Recently, LTE has been approached for 

using trilateration but it lacks the precision because of the long distance 

between the base stations.
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d1

d2

d3

Figure 4. Concept of trilateration, position estimation using intersection of 

three circle created by the distance between receiver and APs. 

2.4.2 Proximity

It is a technique that is used to estimate the device’s location as the same 

location of AP that it receives. It gives the position as the location of AP rather 

than providing the location in coordinates. It is only preferred to locate an 

object because of its low accuracy. Various Wi-Fi, Bluetooth, BLE beacons

can be used to estimate the position of object near its AP using proximity [22].

Actually, fingerprinting can be considered as the approach for proximity based 

positioning. Hence, acoustic sound can be used as information in some indoor 

localization as shown in [23].

2.4.3 Fingerprinting

The fingerprinting technique is widely used approach in IPS. It is based on 

two phases: offline phase and online phase[24]. 

Offline phase: RSSI along with various distinctive features are measured at 

referenced positions and these measured value and the location of its 
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referenced position are stored in the database. This stored database is called as 

fingerprinting map. 

Online Phase: In this phase, the localization of the target takes place. The 

target at any location sends the current measured RSSI along the distinctive 

features to the database and then various machine learning algorithms are used 

to estimate the current location based on how close the measured value are 

with compared to stored fingerprinting map [25]. The procedure of 

fingerprinting is shown in Figure 5.

{RSSI1, RSSI2, RSSI3,…   Loc1}
{RSSI1, RSSI2, RSSI3,…   Loc2}
{RSSI1, RSSI2, RSSI3,…   Loc3}
{RSSI1, RSSI2, RSSI3,…   Loc4}
{RSSI1, RSSI2, RSSI3,…   Loc5}

DATABASE

{RSSI1, RSSI2, RSSI3,…  }
Machine Learning 

Algorithm
Estimated 
Location

Offline Phase

Online Phase

Figure 5. Procedure of fingerprinting technique.

Recently, there are various kinds of machine learning algorithms that are used 

for estimating the positon of the target. Mostly these matching algorithms can 

be classified into two methods. They are deterministic approach and 

probabilistic approach.

2.4.4 Pedestrian Dead Reckoning (PDR)

Pedestrian Dead Reckoning, also referred as PDR, is a navigation technique 

that estimates the position of the user obtained from the data of IMU sensors. 

The IMU sensors like accelerometer, gyroscope and magnetic field sensors are 
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utilized to calculate the current position of the user. It is based on step 

detection, step length and heading estimation. Step detection and step length 

is estimated by accelerometer data and heading is estimated using gyroscope 

and magnetic field data.

2.5 Estimation Methods 

IPS has been adapted in various industries as well as academic field. Hence, 

various approaches have been developed to achieve better accuracy day by 

day. These approaches are divided into two categories. They are probabilistic 

and deterministic approaches. Deterministic approach deals with the pattern 

matching algorithms to estimate the location whereas the probabilistic 

approach deals with finding the occurrence probability of the target based on 

its stored data as well as its variance.

2.5.1 K nearest Neighbor (KNN)

A KNN is probably the most common and straight forward method of indoor 

localization one can use. It can have very good results in the environment 

where dense amount of AP are installed. The KNN is basically a nearest 

neighbor (NN) when K =1. It shows the user’s location is at one of the 

reference points of AP. It is based on the characteristics of RSSI since, RSSI 

degrades with distance.

This methods has been quite popular since it does not need any kind of signal 

modelling but other techniques like trilateration which estimate distance 

between transmitter and receiver for location estimation requires the signal 

modelling. However, KNN’s performance is deteriorated with decreasing 

number of APs. If the number of APs are limited, it does not provide 
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reasonable accuracy. The number of K in KNN depends on the number of APs 

available. Since, both less and more number of K can swing the accuracy both 

ways.

2.5.2 Bayesian Estimation

Bayesian estimation is foundation of formulation of statistical inference issue.

It combines the evidence accommodates in the signal with knowledge of prior 

probability distribution to estimate the random process in an observation 

signal. This methodology consists of classical estimators like minimum mean 

square error (MMSE), maximum a posteriori (MAP), maximum likelihood 

(ML) and minimum mean absolute value of error (MAVE). One of the 

example of Bayesian model is hidden Markov model that is used widely in 

statistical signal processing. It depends on the available information and on 

the estimator’s efficiency.

Estimation theory deals with the determination of unknown parameter vector 

and its best estimation from observation signal. While estimating or predicting 

the state of the process, Bayesian estimation involves both prior probability of 

the process and information in the observation signal. Let us consider the value 

of random parameter vector, given observation vector x. Then, according to 

Bayes’ rule, the posterior probability density function of φ given x, ( )xf xj| j |

is expressed as

( ) ( )
( )

( )

x

x

x

f x f
f x

f x

j| j

j|

| j j
j | = , (5)

where ( )xf x is a constant and only responsible for normalizing effect.

( )xf xj| | j is the likelihood of the signal x was generated by the vector φ and 
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( )fj j is the prior probability of the vector having value φ. The likelihood 

( )xf xj| | j and prior probability ( )fj j effects the posteriori probability density 

function ( )xf xj| j | on the basis of the shape of the function.

2.6 Kalman Filter

The Kalman filter is one of the most successful implementation of a Bayesian 

filter and often used as estimation method of a state [26]. This filter provides 

prediction and correction in an alternate step. Kalman filter is regarded as the 

method to represent an estimation problem by using predictor and corrector 

structure. In the prediction system also known as the time update is estimated 

using the previous known system and properties of state transition. In the 

correction system also known as measurement update, the weighted 

observation is used to correct the predicted values. The state equation ky and 

measurement model kz are given by

1 1k k k ky Ay Bu w- -= + + (6)

k k kz Hy v= + , (7)

where 1kw - and kv are represented as process and measurement noise 

respectively and are assumed to be independent of each other having the 

normal probability distributions as given below in equations 8 and 9.

( ) (0, )

( ) (0, ).

p w N Q

p v N R

~

~

(8)

(9)

Generally, the process noise covariance Q and measurement noise covariance 

R changes with the time of measurement step. The matrix A, B, and H are state 

transition matrix. Mostly matrix A is considered as constant or can be changed 
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with respect to time. Matrix B is the component that is related to control input 

u at time k-1. The overall process of Kalman filter is shown in Figure 6.

Time Update
(“Predict”)

Measurement 
Update

(“Correct”)

Figure 6. Kalman Filter cycle which shows the time update projects the current 

state estimation ahead on time. The measurement update adjusts the projected 

estimate by an actual measurement at that time.

2.7 Related Works

In this section, we examine the various existing indoor positioning techniques, 

among which fingerprinting is the most common and favored [5]. Two types 

of approaches—deterministic and probabilistic—are the major methods using 

pre-assembled RSSI fingerprints to estimate the current location. Santosh et 

al. identified the important factor for reducing the number of reference points 

using fingerprinting and weighted centroid localization [27]. In another study, 

the recent methods of localization using probabilistic methods were 

demonstrated to be more efficient than the orthodox techniques, such as 

trilateration [28]. Rui et al. used weighted fusion with a probabilistic approach 

[29]. Because the fingerprint dataset can be large for an extensive environment, 

Loizos et al. showed an efficient way of filtering initial fingerprints with 

respect to the BLE devices [30]. Zhiliang et al. proposed an algorithm that 

minimizes the computation complexity and does not require an optimization 
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search using the Gaussian radial function in a support vector machine [31]. 

Recent advances in indoor positioning with Wi-Fi were reported in [32]. An 

error of approximately 2 m can be obtained in Wi-Fi/BLE-based localization.

Another very popular technique of indoor positioning is PDR using an IMU 

for the navigation. This is a relative navigation process that predicts the 

position of the user according to the previous location. It does not require extra 

devices and is thus considered as the most simple and effective navigation 

method. However, this method has the drawback of locating the initial position 

of the user. Pavel et al. presented the various methods of navigation using PDR 

[33]. In another study, PDR navigation was performed by enhancing the 

heading estimation [34]. Additionally, a map-matching algorithm for 

improving the performance was reported [35]. A SmartPDR-based 

localization technique was implemented in a real-time scenario by combining 

a magnetometer and a gyroscope to obtain a more accurate heading direction 

[36].

Integrated positioning algorithms have been introduced for improving the 

accuracy in indoor positioning. Various algorithms have been derived for the 

integration of PDR, Wi-Fi, and UWB. Linear and nonlinear filtration methods, 

such as the Kalman filter, particle filter, and extended Kalman filter, are the 

most widely used approaches for removing noise and enhancing the 

localization accuracy. PDR and Wi-Fi were combined with the Kalman filter 

[37], where weighted centroid localization was used for Wi-Fi, which 

eliminates the burden of fingerprint training data. The particle filter, which 

uses a probabilistic approach for estimating the position, is another choice for 

data fusion. The complexity and performance of the particle filter were 
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examined in [38]. Another probabilistic approach also involves non-

parametric analysis of the RSSI for indoor positioning [21]–[23]. Trust Chain 

Positioning Fusion (TCPF), which eliminates the Wi-Fi interference by using 

Trust State and Trust Point Determination, was detailed in [41]. In this study, 

we use BLE beacons for the RSSI-based positioning because it makes the 

installation and operation stable for a long period of time and is considered to 

be efficient with regard to power consumption.
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3. Proposed algorithm for IPS

Different localization techniques have different drawbacks in real 

environments. RSSI-based localization has a performance limitation due to its 

signal fluctuation, depending on the environment. Its accuracy decreases with 

the change of the environment and the fading effect. On the other hand, 

localization using PDR is precise in a short range, provided the initial position. 

However, as the distance increases, the location from PDR drifts from the 

walking path. Hence, we propose a TKBE algorithm that handles the signal 

fluctuations and drift errors using a fuzzy-logic Kalman filter.

3.1 Enhanced BLE based positioning

Fingerprinting techniques usually consist of two stages: the offline phase and 

the online phase. Although this approach is considered as time-consuming, it 

has been widely used owing to its higher accuracy compared with other 

techniques. This algorithm surpasses the performance of various techniques, 

such as trilateration and weighted centroid localization. The effect of RSSI 

fluctuation in localization can be reduced by using the K-nearest neighbor 

(KNN) to some extent. [42]. The KNN works in a deterministic way and is 

based on the shortest physical distance between the reference points and the 

target position. However, it does not consider the variance of the RSSI. Large 

variance of the RSSI cannot be ignored for positioning, necessitating a 

probabilistic approach. The RSSI varies with changes in the surroundings, 

LOS, and antenna orientation. This limits the localization performance. Owing 

to these features, the fluctuation in RSSI is seen even at the same location with 

different points of time. Figure 7 (a) shows the variation of the RSSI at 

different locations of the room, where one BLE beacon is installed at one 
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corner of the room at a particular point of time t1. Figure 7 (b) and (c) show 

the variations of the RSSI of the same beacon at two different points of time: 

t2 and t3, respectively
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Figure 7. RSSI variation with respect to time (a) at time t1, (b) at time t2, and 

(c) at time t3.

From the above figures, we observe that the RSSI at several locations may be 

indistinguishable or heterogeneous [43]. It is complicated to find the 

occurrence of reference points based on the given RSSI. Additionally, if the 
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test corridor is large and a large number of training data are present, the 

Bayesian estimation can be groundless because the prior probabilities of all 

the reference points are considered to be the same throughout the positioning. 

However, the priori probabilities of all the reference points are not the same 

in real time. This can be overcome by applying the KNN for selecting the 

nearest reference points in terms of the signal strength for the Bayesian 

estimation, which helps to select a favorable number of reference points whose 

prior probability is considered as 1; the rest are ignored. This approach deals 

with the uncertain behavior of the signal strength at various locations.

3.1.1 K nearest Neighbor (KNN)

Let N be the number of reference point in the test area. Each reference points 

is denoted with where i = (1, 2, 3, 4, 5…… N). Here represents 2-dimensional 

location of the reference point, i.e. [ , ]T
i i iX x y= . There are total M numbers of 

BLE beacons used in the testbed. In offline phase, a radio map is constructed 

and stored in the Database. The radio map is given by equation 10.

[ , , ] ,i i ij jR X S= s (10)

where ijS   is the mean of RSSI obtained from the thj   BLE beacons at thi   

reference point and js is the standard deviation of measurement noise of each 

BLE beacon M is the number of BLE beacons.

During the online phase, Euclidean distance between the target position and 

the reference points is calculated by equation 11.

2

1

( ) ( ) ,
M

i j ij
j

Euclidean Distance E S S
=

= -å
(11)
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where jS   is the RSS vector obtained from thj BLE beacon at the online phase. 

The Euclidean distance is sorted in ascending order. In conclusion, a reference 

point closer to the online target position has a smaller Euclidean distance. In 

this study, 15 neighboring reference points that have a small Euclidean 

distance are taken for further estimation (K=15).

3.1.2 Bayesian Estimation

Bayes’ theorem is the outcome in probability theory that shows the connection 

among conditional probabilities. It is considered as an effective structure for 

reasoning and decision making under variability. The probability  ( )P A B|   

represents the likelihood of event B occurring given that A is true and the 

individual probabilities of A and B. It is given by

( ) ( )
( ) .

( )

P A P B A
P A B

P B

|
| =

(12)

This conditional probability can be used to find the probability of the location 

based on the given set of RSSI as explained in Xu et al. [44]. Generally, in 

probabilistic approach, the location of the target is computed by maximizing 

the conditional posterior probabilities given by ( )i jP R S| .

The posterior probability of being at location iX given the RSSI obtained in 

the online phase is given by equation 13.

( ) ( )
( ) .

( ) ( ) ( )

j i i

i j

j i i i

P S R P R
P R S

P S R P R d R

|
| =

|ò
(13)
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Because the RSSI signals are obtained from different BLE beacons, they are 

considered as independent random variables; hence, their probabilities 

( )j iP S R| can be multiplied. ( )iP R is the prior probability of reference points, 

which is generally considered to be the same for all reference points, but this 

is not applicable in the real environment. To deal with this, a certain number 

of reference points are selected using the KNN, and the prior probability of 

these points is considered as 1, neglecting other points that are distant from 

the user. This eliminates the other reference points from consideration in 

Bayesian estimation and increases the likelihood of the nearest points. Thus 

equation 13 becomes

1 ( )
( ) .

( ) ( )

M

j j i

i j

j i i

P S R
P R S

P S R d R

=Õ |
| =

|ò

(14)

The distribution of RSS measurement is considered as Gaussian which can be 

observed at any particular point of location. This is shown by Kolmogorov 

Smirnov test [45]. This test gives the means of comparison of the sample 

distribution and theoretical distribution. It is used as test of good fit and is best 

suited for small sample of data. It helps to compare the cumulative distribution 

function for RSSI with specific distribution. The value of test statistic D is 

calculated by

| ( ) ( ) | ,oD Maximum F S F s= - (15)

where 

· ( )oF S = cumulative distribution observed from a random samples of 

100 RSSI observation.
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· ( ) ( ) / ( )o

k
F S number of observation S Total number of observation

n
= = £

· ( )F S = the theoretical frequency distribution.

The critical value of D is obtained from the K-S table for one sample test. 

There are two conditions for K-S test. They are

· Acceptance Condition: calculated criticalD D<

· Rejection Condition: calculated criticalD D>

Here, D is calculated by collecting 100 samples of RSSI and evaluating the 

cumulative frequencies. From equation 15, 

| ( ) ( ) |

0.104236

oD Maximum F S F s

D

= -

=

The table of D at 5% significance level is given by

0.05

0.05

1.36
, 100

0.136

D where n
n

D

= =

=

Since D < D0.05, it fails to reject the null hypothesis, we conclude that the data 

is a reasonably good fit with Gaussian distribution.

number of samples (n) 100

mean -66.21

standard deviation 2.6791187

Dmax 0.1042362

Dcritical 0.13581
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Here, the distribution of 100 samples of RSSI is evaluated and plotted the in 

Figure 8.
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Figure 8. Gaussian distribution of the RSSI.

By using Gaussian distribution, the probability ( )j iP S R| can be calculated 

from equation 16.

2

2

( )

2

2

1
( ) exp ,

2

j ij

j

S S

j i

j

P S R

-
-

s
| =

ps

(16)

Using (14), ( )i jP R S| is obtained. Minimum mean square error is applied over 

the conditional density probability that is acquired from Bayes theorem to 

achieve the location of the target bleX . This is demonstrate as equation 17.

[ ] ( ) ( ) .ble i j i i j iX E R S X P R S d R= | = × |ò (17)

The proposed algorithm limits the number of reference points with the KNN 

and maximizes the location probabilities around the true position. Figure 9

shows the step of the proposed BLE beacon-based positioning with the KNN 

and Bayesian estimation. The performance of different methods—BLE 
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beacon-based positioning with only the KNN, with only Bayesian estimation, 

and with the KNN and Bayesian estimation—is shown in Figure 10.
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Figure 9. Performance of various BLE beacon-based positioning algorithms.
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Offline phase

Calculate Euclidean distance

Find K Nearest Neighbor (K = 15 
in this work)

Assign prior probability of 
selected reference points as 1.

End

Location X is obtained as
X =   ∫X · P(R|S) d(R)

Find the Bayesian Estimation of K 
reference points 

P(R|S)

Figure 10. Proposed BLE beacon-based positioning algorithm with KNN and 

Bayesian Estimation.
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3.2  Pedestrian Dead Reckoning Based Localization

PDR is the method of tracking the current position of a pedestrian by using 

previously determined position. In the PDR, the initial position can be 

obtained from the RSSI based positioning. There are three components for 

target navigation i.e., step detection, step length, and heading direction. These 

fundamental components are obtained by three sensors of the smartphone. An 

accelerometer is used for computing the step detection and step length, 

whereas the heading direction is acquired by magnetometer and gyroscope. 

Let us assume the initial position ( , )k kx y , then the position after a step 

1 1( , )k kx y+ + is calculated by:

1 cosk k k kx x SL q+ = + (18)

1 sin ,k k k ky y SL q+ = + (19)

where kSL is the step length at step k and kq is the heading angle at thk step. 

Since PDR is effectively applicable for short distance, it can be combined with 

other approaches for full area positioning.

3.2.1 Step Detection

Among the methods for detecting steps, peak detection is a fundamental way 

to achieve good step-detection performance by using the accelerometer. This 

method involves the vertical acceleration generated by the vertical strike when 

the foot hits the floor. Because the vertical acceleration is affected by the 

tilting of the smartphone, we consider the magnitude of the acceleration ( )maga . 

A step is detected when it satisfies the following two conditions:

mag tha g a| - |³
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,thTime stamp t tD ³

where g is the gravity of Earth, tha is the threshold acceleration, and tht is the 

time threshold for the acceleration measurement time period tD . The 

acceleration threshold tha   is used to restrict the false step detection, and the 

time threshold tht restricts the detection of steps to a finite duration of time. 

The acceleration and threshold level are shown in Figure 11.
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Figure 11. Acceleration and its threshold for step detection.

3.2.2 Step Length Estimation

Step length alters from individual to individual. Moreover, some individuals 

may have different step length while walking. Therefore, it is very hard to 

estimate a precise step length. There are various forms of step length 

calculation [46]. They can be classified into static and dynamic estimations. 

The static method usually assumes the length of the step is constant throughout 

the process and only variable based on individual feature as follows:

* ,SL height k= (20)
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where k is fixed for the men or women and height is adjusted according to 

each individual.

Dynamic methods are popular because they allow a different step length in 

every step. A dynamic approach called the Weinberg approach is used in this 

study for estimating the step length [47]. This method uses the vertical 

acceleration due to the impact of running or walking. The value of the vertical 

acceleration is obtained from the accelerometer. Then, the step length is given 

as

4
max min ,SL k a a= - (21)

where maxa and mina are maximum and minimum vertical accelerations, 

respectively. In our experiment, the value of k is obtained as 0.35 by testing 

people with different heights.

3.2.3 Heading Estimation

The most common method for determining the heading direction is by using 

the magnetometer readings, but the magnetometer is easily affected by other 

metals and electronic devices present in the environment. Hence, another 

approach is considered, which employs the angular velocity obtained from the 

gyroscope. However, the gyroscope suffers from the problem of sensor noise 

that accumulates with the integration. To eliminate this drift, a Kalman filter 

is used with magnetometer and gyroscope readings [48]. The heading estimate 

is converted into the coordinate system of the testbed. It is assumed that the 

user holds the smartphone in the hand while walking. 
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The proposed state transition and measurement equation for Kalman Filter are 

given by:

1t t ttV-a = a + D + j (22)

,t tZ q= a + (23)

Here, ta   is the walking direction, tV   is the gyroscope reading, tZ   is the 

direction of the heading obtained from the magnetometer, tD is the time index 

for the gyroscope measurement, j is the Gaussian error with zero mean and 

variance P, and θ is the Gaussian error with zero mean and variance Q. Figure 

12 shows the turns observed in our experiment via the proposed heading 

estimation.
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Figure 12. Heading direction estimation using magnetometer and gyroscope.

3.3 Proposed Trusted K nearest Bayesian Estimation 
(TKBE) Algorithm

In this section, the proposed fusion algorithm is explained. The method obtains 

the locations from the BLE beacon and PDR-based positioning and then 

combines them using a fuzzy-logic Kalman filter for estimation of the position. 

The fusion process is composed of three sections: the fuzzy-logic Kalman 
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filter, clustering of next reference points, and PDR drift elimination. The 

framework of the proposed method is shown in Figure 13.

3.3.1 Integration with Fuzzy Logic based Kalman Filter

The Kalman filter is the most widely used filter for sensor fusion and position 

estimation. It keeps track of the estimated state of the system and the variance. 

Additionally, it yields rigorous results compared with other filters used in 

recent times, with reasonable computational power. The Kalman filter is based 

on the estimation of the process and the measurement noises [49].
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Measurement 
Update(“Correct”)
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Figure 13. Framework of the Proposed Trusted K Nearest Bayesian Estimation 

(TKBE) algorithm.

Let tL be the 2 dimension coordinate expressed as [ , ]Tx y . Also, the state 

transition and measurement function are given by:

1t t tL AL Bu w-= + + (24)

,t tZ CL v= + (25)
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where [cos sin ]k k k T
tu SL q q= obtained from step estimations of PDR based 

positioning and tZ is the 2-dimensional coordinate obtained from beacon 

based positioning. A, B and C are the identity matrix. The variables w and v

symbolize the process and measurement noises with normal probability 

distributions.

( ) (0, )p w N Q~ (26)

( ) (0, ) .p w N Q~ (27)

Here, Q is the covariance matrix of the Gaussian noise of the PDR approach 

with zero mean, and R is the covariance matrix of the Gaussian noise of the 

BLE beacon-based algorithm with zero mean. The Kalman filter algorithm 

consists of the following two processes.

Predicting:

1t t tL AL Bu-= + (28)

1 1 .T
t t t tP AP A Q| - | -= + (29)

Updating:                  

1
1 1( )T T

t t t t tK P C CP C R -
| - | -= + (30)

1 1( )t t t t t t t tL L K Z CL| | - | -= + - (31)

1( ) .t t t t tP I K C P| | -= - (32)

Here, A, B, and C are the identity matrix; P is the process covariance matrix 

which represents the estimation error; and K is the Kalman gain of the system, 

which ranges from 0 to 1. When the Kalman gain is higher, the measurements 

are more accurate, and the estimates are unstable. When the Kalman gain is 

lower, the estimates are more accurate, and the measurement are unstable. 

There are two estimation errors: the priori estimation error and the posterior 
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estimation error. These errors are the difference between the estimated value 

and the actual value and are given as follows:

Priori estimate error ˆ( )=k k kE L L- -- (33)

                          Posteriori estimate error ˆ( ) ,k k kE L L= - (34)

where kL is actual value, ˆ
kL- is priori estimated value, and ˆ

kL is posteriori 

estimated value. The priori estimate error covariance kP- and posteriori 

estimate error covariance kP are given as:

[ ]T
k k kP E E E- - -= (35)

[ ] .T
k k kP E E E= (36)

Let the priori estimated value be the 2D location from the PDR approach and 

the posteriori measured value be the 2D location from the BLE beacon-based 

positioning. If these two values are close to the actual value (true position), 

the estimated error is small. In our experiment, the priori estimated value is 

assumed to be close to the actual value ˆ( )k kL L-» because if the initial position 

is provided correctly, the PDR shows the minimum drift in a short distance. 

We see from 31 that the difference between the priori estimated and measured 

values, along with the Kalman gain, affects the estimation of the location. The 

process and measurement noises are considered as a constant in real-time 

application [50]. As the Kalman gain eventually depends on both the process 

and measurement noises, assuming that both parameters are constant 

throughout the process does not yield correct estimation, because of the 

difference between the actual and estimated values. For any sensor, if the noise 

covariance is unknown, i.e., Q = 0 and R = 0, the Kalman filter returns an 

optimal estimate of tL , which minimizes the mean of the squared error. 
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However, if the noise covariance is assumed to be constant throughout the 

process, Kalman filter provides the estimate according to A, B, and C, which 

are identity matrices in this system. We attempt to compensate for the 

uncertainty in the process and measurement noise for each step of estimation. 

1t tP | - is initial process covariance matrix and is computed only once because 

the priori estimated value is assumed to be the actual value. We experimentally 

initialize the process noise matrix with small value, 
0.225 0

0 0.225
Q

æ ö
= ç ÷

è ø
, and the 

initial process covariance matrix, 1 1

1 0

0 1
t tP- | -

æ ö
= ç ÷

è ø
.

PDR based tracking system lacks the detection of initial positioning and 

suffers from the heading error which cannot be fully recovered using any 

optimization techniques. However if the initial position is precise and heading 

drift error is eliminated using Kalman Filter, the PDR can assure better relative 

positioning for shorter period of time. Hence if RSSI based approach can 

provide the initial position to PDR and be used for short period of time, it 

yields better result of positioning.

The role of measurement noise matrix R and process noise matrix Q is to adjust 

the gain of the filter in a way which controls bandwidth as the state and varies 

the measurement error. During updating process of Kalman filtering, we 

design measurement update that continuously changes the measurement noise 

matrix R according to the value of posteriori estimate error kE . Therefore, 

matrix R is defined by:
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0
,

0

y
R

y

æ ö
= ç ÷

è ø

(37)

where y is a variable obtained from set of basic fuzzy logic system designed 

to assign R to the measurement update of Kalman Filter which is given by

0.675 0   Low Error)

1.125   edium Error) .

1.575        igh Error)

k

k

k

if

y if

if

£| E |< 1 (ì
ï

= £| E |< 2 (Mí
ï | E |³ 2 (Hî

(38)

There are three conditions of kE obtained from fuzzy logic system:

· Low Error: Estimated and measurement values are close and reliable. 

Hence, R is less.

· Medium Error: Estimated and measurement values are apart by more 

than 2 units and less than 4 units. In this case both value are equally 

likely. Hence R is slightly higher.

· High Error: Estimated and measurement values are apart by more than 

4 units. In this case measurement value is less reliable than estimated 

value. Hence, R is higher which shifts the calculation towards 

estimated value.

Experimentally, the matrix 
0.675 0

0 0.675
R

æ ö
= ç ÷

è ø
gives the fair estimation of the 

system but varying the measurement noise R in accordance with the posteriori 

estimate error kE yields better result overall.

3.3.2 Clustering of next reference points

Owing to the large number of reference points and the unpredicted behavior 

of the RSSI, the measured Euclidean distance between radiofrequency devices 
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may not yield the desired reference points that need to be selected for 

positioning. However, this issue can be alleviated by creating a cluster of 

reference points as candidates for the next step of positioning. The area is 

created by feeding back the final position to the database and creating a trusted 

zone [51]. If [ , ]x y is the final location, it is fed to the database, and 

[( ) ( ), ( ) ( )]x n x x n y n y y n- £ £ + - £ £ + is the bounded area for the next step 

of positioning, where n = 9 m in our testbed. This prevents the selection of 

false reference points in the KNN due to interference.

3.3.3 PDR drift elimination

Generally, the PDR error drifts with distance owing to the integration process 

of the acceleration signal. However, the PDR positioning error can be reduced 

by resetting the current location with the location obtained from the RSSI 

approach. In this work, the location of PDR is reset every 10 steps.
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4. Experimental results and performance 
evaluation

4.1 Experimental Setup

Two experiments were conducted in the computer laboratory and the corridor 

of the 8th floor of the IT Building of Chosun University in South Korea. The 

corridor had dimensions of 100 × 2.25 m2, and the laboratory had dimensions 

of 7 × 7 m2. The beacons were placed with a distance of 6.75 m between them 

and at a height of 2.6 m in both the testbeds. The experiments were performed 

using Estimote iBeacons, and the application was developed on the Android 

platform. The device used for the positioning was a Samsung Galaxy Note 8 

(API 27).

Figure 14 (a) and (b) show the corridor and the computer laboratory, 

respectively. The red circles indicate the positions where the beacons were 

installed. The beacons were placed at opposite sides along the corridor and in 

the four corners of the laboratory. A total of 35 beacons were used for the 

positioning. In the testbeds, 100 RSSI samples were collected at each 

reference point in four directions. The reference points were assigned at a 

distance of 1.8 m for both the testbeds. The information of the collected RSSIs 

was stored in a SQLite database on the Android device during the offline phase. 

We used two sets of fingerprint data for both the computer laboratory and the 

corridor.
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(a)

(b)
Figure 14. Testbed for experiments of (a) Computer Laboratory, (b) Corridor

4.2 Initial Location of BLE based positioning/PDR 
initialization

The initial position is a major factor giving a big impact on the localizing the 

target. As PDR is a relative navigation based on the previous location, the 

initial position should be more accurate to carry the position accuracy 

throughout the process. When the initial position obtained from RSSI 

positioning with KNN and Bayesian estimation is given, several test were 

done and checked the average error between the real locations and obtained 

the location in both laboratory and corridor as shown in Figure 15 and 16. 
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From the result, it was found that the average error while obtaining initial 

position was below 2 meters in the computer laboratory and the corridor.

Figure 15. Performance of initial position in coordinate system of computer 

laboratory.

Figure 16. Performance of initial position in coordinate system of corridor.

4.3 Positioning Error and Cumulative Distribution Function

An experiment was performed in the testbed to evaluate the cumulative 

distribution function of the error. The target stood still in several locations, 

and >50 location samples were collected. Figure 17 shows the cumulative 

distribution of the error in the computer laboratory, and Figure 18 shows that 

in the corridor. Here, the solid line indicates the error of the traditional 
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positioning algorithm using both BLE with KNN and PDR (called TRAD1). 

The dashed dotted line indicates the error of TKBE positioning with the 

conventional Kalman filter, and the dashed line indicates the error of TKBE 

positioning with the fuzzy-logic Kalman filter. In all the cases, we observe that 

the proposed positioning method yields a better result than the TRAD1 using 

the conventional Kalman filter. We also observe that the variable 

measurement noise matrix reduces the error rather than keeping it constant 

throughout the process. The error of the proposed algorithm was <1 m for 80% 

of the experiment time.

Table 1. Comparison of positioning methods in a computer laboratory
Fingerprint 

Database Set
Algorithm

Average 

Error     

Standard 

Deviation

1 TRAD1 (Kalman filter) 1.09 0.670

TRAD2 (Kalman filter) 0.85 0.623

      TKBE(Kalman filter) 0.65 0.423

TKBE (fuzzy-logic Kalman filter) 0.55 0.327

2 TRAD1 (Kalman filter) 1.29 0.486

TRAD2 (Kalman filter) 1.11 0.484

TKBE(Kalman filter) 0.85 0.453

TKBE (fuzzy-logic Kalman filter) 0.70 0.444

Table 2. Comparison of positioning methods in a corridor
Fingerprint 

Database Set
Algorithm Mean     

Standard 

Deviation

1 TRAD1 (Kalman filter) 1.16 0.577

TRAD2 (Kalman filter) 1.10 0.556

      TKBE(Kalman filter) 1.01 0.490

TKBE (fuzzy-logic Kalman filter) 0.82 0.453

2 TRAD1 (Kalman filter) 1.35 0.398

TRAD2 (Kalman filter) 1.15 0.452

TKBE(Kalman filter) 0.82 0.475

TKBE (fuzzy-logic Kalman filter) 0.65 0.286
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(a)                                                      (b)

Figure 17. Comparison of cumulative distribution function of the error for 

Computer Laboratory (a) data set 1, (b) data set 2.
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Figure 18. Comparison of cumulative distribution function of the error for 

the corridor (a) data set 1, (b) data set 2.

Tables 1 and 2 show the results of the performance comparison between the 

algorithms. In the computer laboratory, the proposed TKBE algorithm had an 

average error of 0.65 m, whereas TRAD1 exhibited an error of 1.09 m. In the 

corridor, TKBE and TRAD1 had mean errors of 0.82 and 1.16 m, respectively. 



52

Under the same conditions, the traditional positioning algorithm using both 

BLE with Bayesian estimation and PDR (called TRAD2) exhibited slightly 

better performance than TRAD1 but worse performance than the proposed 

TKBE method. The positioning of the proposed algorithm was further 

enhanced by the changing measurement noise R with respect to the posteriori 

estimation error, yielding slightly better performance than a constant R. Hence, 

we can obtain approximately 25% better performance than existing algorithms 

by using the TKBE algorithm.

4.4 Walking Trajectory Performance Analysis

This result was obtained by measuring the location of the user walking through 

the testbed. The experiment was performed in both the computer laboratory 

and the corridor. The location of the user was stored every 5 s. In Figure 19 

and 20, SP and EP denote the starting point and end point, respectively. The 

user moved in the order of 1 to 13 in the computer lab and in the order of 1 to 

18 in the corridor. The red dotted line and blue dashed dotted line indicate the 

real and estimated trajectories, respectively. 

      

                           (a)                                                                                  (b)
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(c)

Figure 19. Performance comparison of the positioning algorithms for the 

computer laboratory, when a person moves along the path. (a) TKBE, (b) 

TRAD1, and (c) TRAD2

(a)

(b)
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(c)

Figure 20. Performance comparison of the positioning algorithms for the 

corridor, when a person moves along the path. (a) TKBE, (b) TRAD1, and

(c) TRAD2

4.5 Computational Complexity Analysis

The experiments were performed using an Android application (Java) running 

on a Samsung Galaxy Note 8 with Samsung Exynos 9 octa 8895 and a 1.7-

GHz octa-core processor. Because the processing time of any algorithm 

depends on the processor specifications, we computed the runtime of various 

algorithms on the same device to compare the computational complexity.

As shown in Figure 21 (a), the runtime of the TRAD1 algorithm was slightly 

longer than that of TRAD2. Therefore, it is clear that the Bayesian estimation 

is preferred over the KNN because of its high accuracy and lower 

computational complexity. The proposed TKBE algorithm had a slightly 

longer computational time than the TRAD1 and TRAD2 algorithms. Because 

the TKBE combines the KNN and Bayesian methods, it exhibited higher 

performance than each of these two methods, with slightly higher 

computational complexity, as shown in Figure 21 (b). The proposed TKBE 

algorithm had approximately 30% longer computational runtime than other 

two. However, the accuracy of the TKBE method was more than 25% higher 
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than those of the other algorithms. This tradeoff appears to be acceptable, as 

the runtime of the algorithm depends on the size of the fingerprinting database.

(a)

(b)

Figure 21. Comparison of (a) run time and (b) error of the algorithms.
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5. Conclusion

A method for enhancing the accuracy of indoor localization based on BLE 

beacons and IMUs is proposed and localization algorithm with BLE beacon is 

designed using KNN-based Bayesian estimation, whereas IMUs employ PDR. 

The BLE based positioning and PDR based positioning were combined using 

fuzzy-logic Kalman Filter. The proposed TKBE algorithm consists of three 

components: enhanced positioning using BLE beacons, PDR, and fusion 

performed by the fuzzy-logic Kalman filter. The BLE-based positioning is 

enhanced by selecting KNNs and then estimating its probability density 

function. This minimizes the error in the estimation caused by the unstable 

RSSI in a large testbed and enhances the accuracy of the existing basic KNN 

and PDR algorithms by ≥25%. A fuzzy logic-based Kalman filter was 

designed using a fuzzy-logic set of values assigned to the measurement update 

based on the posteriori estimation error kE . This set of values adjusts the 

Kalman gain toward either prior estimated values or the posteriori measured 

value. The proposed algorithm exhibited accuracy improvements of by 15% 

to 20% compared with the conventional Kalman filter. The error of the 

proposed algorithm was <1 m for most of the experiments (>80%). Moreover, 

although this algorithm had slightly longer runtime than the TRAD1 and 

TRAD2 algorithms, it is feasible for a real-time smartphone-based application 

and provides higher accuracy by mitigating the effects of the RSSI instability

and the PDR drift error.

As this paper uses KNN for selecting most probable reference points whose 

prior probability is considered as 1, it can be made more accurate by 

calculating exact prior probability of nearest reference points. But, this can 
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cause the complexity to increase in smartphone based LBS. Hence we will be 

working on efficient algorithm to calculate more accurate prior probability. As 

the computational running time is slightly higher, we will continue to work on 

reducing it to make indoor positioning system reliable and effective for daily 

uses for the people.
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