

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

 February 2019

 Doctor of Philosophy Degree Thesis

High-Performance Ternary Content

Addressable Memory Architecture for

FPGAs

Graduate School of Chosun University

Department of Computer Engineering

Inayat Ullah

F
e
b
r
u
a
r
y

2
0
1
9

P
h
D
﹂
s

D
e
g
r
e
e

T
h
e
s
i
s

H
igh

-P
erform

an
ce T

ernary C
ontent A

d
dressab

le M
em

ory

A
rch

itecture for F
P

G
A

s
Inayat

U
llah

[UCI]I804:24011-200000267064

High-Performance Ternary Content

Addressable Memory Architecture for

FPGAs

February 2019

Graduate School of Chosun University

Department of Computer Engineering

Inayat Ullah

High-Performance Ternary Content

Addressable Memory Architecture for

FPGAs

 FPGA 기반 고성능 TCAM 구조

Supervised by Professor Jeong-A Lee

A thesis submitted in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy in Computer Engineering

25, February 2019

Graduate School of Chosun University

Department of Computer Engineering

Inayat Ullah

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS iv

ABSTRACT ix

한글요약 xii

I. INTRODUCTION 1

A. Background . 1

B. Problem Statement . 3

C. Motivations . 6

D. Thesis Contributions . 7

E. Related Work . 8

F. Thesis Organization . 11

II. MULTIPUMPING ENABLED MULTIPORTED SRAM-BASED

TCAM ARCHITECTURE 13

A. Multipumping-Enabled Multiported SRAM 13

1. Basic Idea . 14

2. Proposed Partitioning of Traditional TCAM Table . . . 16

3. Basic Architecture of the Proposed TCAM Memory . . 17

4. Modular Architecture 19

5. Effect of Multipumping SRAM on the Memory Usage

and Throughput . 20

B. Implementation Setup and Results 20

C. Performance Evaluation & Comparison 21

1. SRAM Memory Utilization 22

i

2. Throughput . 23

3. Performance per Memory 24

III.PRE-CLASSIFICATION- BASED ENERGY-EFFICIENT SRAM-

BASED TCAM ARCHITECTURE 28

A. Proposed Classification Scheme 28

B. EE-TCAM Proposed Architecture 34

C. EE-TCAM FPGA Implementation & Results 37

D. EE-TCAM Performance Evaluation & Comparison 38

1. Scalability of EE-TCAM 38

2. Performance Trade-Off with Increase in the Number of

TCAM Sub-Tables (M) 41

3. Power Consumption 43

4. Power Consumption Per Performance Comparison . . . 44

IV. DYNAMICALLY RE-CONFIGURABLE ENERGY- AND

RESOURCE- EFFICIENT TCAM ARCHITECTURE FOR FPGAS 49

A. Hardware Architecture of Proposed TCAM: DURE 49

1. Basic Idea . 49

2. Building Blocks of DURE on FPGA 49

3. Architecture of the Proposed DURE 53

4. Dynamic Update . 55

B. FPGA Implementation and Results 56

C. DURE Performance Evaluation and Comparison 58

1. Scalability of DURE 58

2. Search Latency . 64

3. Update Rate . 65

ii

4. FPGA Resource Utilization 66

5. Performance per Area 69

6. Energy-Delay Product 74

V. CONCLUSIONS & FUTURE WORK 79

REFERENCES 89

ACKNOWLEDGEMENTS 90

iii

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application-specific integrated circuit

CAM Content-addressable memory

BCAM Binary Content-addressable memory

TCAM Ternary content-addressable memory

SRAM Static-random access memory

FPGA Field-programmable gate array

BRAM Block RAM

SL Search line

MA Match Address

ML Match line

MLSA Match line sense amplifier

PE Priority encoder

LUT Look-up table

LUTRAM Look-up table RAM

CLB Configurable logic block

SR Slice register

TLB Translation look-aside buffer

MDB Maximum depth bound

ST Sub table

EDP Energy-delay product

iv

LIST OF FIGURES

1 A 4×3 TCAM: (MLSAs: Match line sense amplifiers). 2

2 SRAM-based implementation of a 4 × 3 TCAM: (PE: priority

encoder, and MA: match address) 3

3 Multipumping-based multiported memory: the SRAM block is

clocked at an integral multiple of P, allowing P access during

one external clock cycle. 13

4 (a) A conventional TCAM of 1×8; (b) An 16×1 SRAM without

multipumping emulating 1×4 TCAM; (c) An 16×1 SRAM with

a multipumping factor of P = 2 emulating 1×6 TCAM; (d) An

16× 1 SRAM with a multipumping factor of P = 4 emulating

1×8 TCAM. 14

5 Proposed partitioning of the traditional TCAM table. 16

6 Basic architecture of the proposed TCAM memory. 17

7 Organization of the proposed TCAM memory units for a large

storage capacity: (IW : input word, PE: priority encoder, OPE:

overall priority encoder) . 18

8 Timing diagram for the search operation in our proposed TCAM

with a multipumping factor P = 2: (IW : input word, RW : SRAM

word read, MW : match word) 19

9 Example of the proposed classification algorithm: (a) Description

of Classification based on set of bit positions S1 = {b0,b1}.

(b) Description of Classification based on set of bit positions

S2 = {b1,b3}. 29

v

10 Example of mapping proposed classiifcation scheme constructed

TCAM-subtables to SRAM: (a) Mapping TCAM sub-tables

contents to SRAM constructed based on set of bit positions

S1 = {b0,b1}. (b) Mapping TCAM sub-tables contents to SRAM

constructed based on set of bit positions S2 = {b1,b3}. 31

11 Architecture of the pre-classifier unit: (S: Select lines for

extracting the pre-classification bits, log2W : Number of bits in

the , log2M: Number of pre-classifier bits, M: Number of enable

control bits for the M rows of SRAM blocks). 35

12 Proposed overall architecture: (M: Number of rows of SRAM

blocks, V: Number of SRAM blocks in a row, PE: priority

encoder unit, MA: matching address, log2RD: Address bits of the

configured SRAM blocks, (
⌊

D
MRW

⌋
+α)RW : Configured SRAM

blocks words width). 35

13 Trade-Off between the Number of TCAM Sub-Tables (M) and

Power Consumption Performance 42

14 A simplified implementation of DURE. 50

15 Architecture of the basic memory block of DURE for

implementing an 1×18 TCAM on FPGA. 51

16 Partitioning TCAM table contents into 6-bit chunks. 52

17 Architecture of the proposed DURE. 53

18 LUTRAM utilization trend for increasing TCAM depth (D) and

width (W). 59

19 Slice registers usage trend for increasing TCAM depth (D) and

width (W). 60

20 Clock rate trend for increasing TCAM depth (D) and width (W). 61

vi

21 Power consumption trend for increasing TCAM depth (D) and

width (W). 62

22 Update rate trend for increasing TCAM depth (D) and width (W). 63

23 Search latency comparison. 64

24 Update rate comparison. 65

vii

LIST OF TABLES

1 List of basic notations used. 11

2 FPGA resource utilization of the proposed design. 21

3 Performance per memory comparison of the proposed TCAM

with previous approaches. 26

4 A TCAM table of size 6 × 6. 29

5 FPGA resource utilization of EE-TCAM on Xilinx Virtex-6. . . 38

6 Performance trend for increasing EE-TCAM depth (D), width

(W) in various configurations. 40

7 Comparison of the power consumption per performance with

previous works. 46

8 A 3×4 TCAM table . 49

9 FPGA resource utilization for proposed DURE 58

10 FPGA resource utilization for implementing various TCAM

architectures . 68

11 Performance per area comparison with existing FPGA-based

TCAM architectures . 72

12 Energy-delay product (EDP) comparison for various FPGA-

based TCAM solutions . 76

viii

ABSTRACT

High-Performance Ternary Content Addressable Memory
Architecture for FPGAs

Inayat Ullah

Advisor: Prof. Lee, Jeong-A, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

Ternary content-addressable memory (TCAM) is widely employed to design

high-speed search engines and has applications in networking, artificial

intelligence, and to accelerate various database search primitives. TCAMs are

built either as application-specific integrated circuits (ASIC) natively or static

random-access memory (SRAM)-based field-programmable gate arrays (FPGAs)

are used to emulate TCAM by addressing the SRAM with TCAM contents. The

search space demands of TCAM applications are constantly rising. However,

existing realizations of TCAM on FPGAs suffer from storage inefficiency.

Native TCAMs and SRAM-based TCAMs both have a high power consumption

drawback. The SRAM-based TCAMs offer promising lookup performance,

however, the update process in a TCAM table poses significant challenges

to their efficient employment. SRAM-based TCAMs for FPGAs, suspend

search operations during an already high-latency update operation rendering

them infeasible in applications that require high-frequency updates. This thesis

presents three approaches to overcome the aforementioned limitations in existing

ix

FPGA-based TCAMs i.e. storage inefficiency, higher power consumption, and

high-latency blocking updates.

We first propose a multipumping-enabled multiported SRAM-based TCAM

design on FPGAs to achieve efficient SRAM utilization. Existing SRAM-based

TCAM solutions reduce the impact of the increase in the traditional TCAM

pattern width from an exponential growth in memory usage to a linear one

with the use of cascaded block RAMs (BRAMs) on FPGA. However, BRAMs

on state-of-the-art FPGAs have a minimum depth limitation, which limits the

storage efficiency for TCAM bits. Our proposed solution avoids this limitation

by mapping the traditional TCAM table divisions to shallow sub-blocks of

the BRAMs towards memory-efficient TCAM design. Using the multipumping

technique, the proposed solution operates the simple dual-port BRAMs of the

design as multiported SRAM by clocking them with a higher internal clock

frequency to access the sub-blocks of the BRAM in a single system cycle. We

implemented the proposed design on a Virtex-6 FPGA device and compared with

the existing FPGA-based TCAM designs, our proposed method achieves up to

2.85 times better performance per memory.

A pre-classifier-based architecture for a low-power SRAM-based TCAM is

also presented. The first classification stage divides the TCAM table into several

sub-tables of balanced size. The second SRAM-based implementation stage maps

each of the resultant TCAM sub-tables to a separate row of SRAM blocks in the

architecture. The proposed design selectively activates at most one row of SRAM

blocks for each incoming TCAM word. Compared with the existing SRAM-

based TCAM designs on FPGAs, the proposed design consumes significantly

lower energy as it activates only a part of SRAM memory being used for lookup

rather than the entire SRAM memory. We implemented the proposed approach on

x

a Xilinx Virtex-6 FPGA and our experimental results showed that the proposed

design achieved at least three times lower power consumption per performance

than other SRAM-based TCAM architectures.

A dynamically updateable energy- and resource-efficient TCAM design

(DURE) based on FPGAs is also presented in this thesis. DURE exploits the

distributed RAM resources in FPGAs, more specifically, the look-up table RAMs

(LUTRAMs) available in SLICEM resources are configured as quad-port RAM,

which constitutes the basic memory (BM) block in the implementation of DURE.

The contents of the TCAM table are divided into chunks of equal size and are

mapped onto the LUTRAMs of the proposed BM blocks. DURE implements

dynamic updates by reconfiguring the LUTRAMs of only those BM blocks that

are associated with the word being updated, thereby allowing search and update

operations to be performed simultaneously. Compared with existing SRAM-

based TCAMs, DURE has a smaller single cycle search latency and achieves

at least 2.5 times more energy-delay product efficiency and a 67% higher

performance per area.

In this thesis, we have presented three high-performance TCAM architectures

which achieve higher memory efficiency, better energy-delay product efficiency,

and implement dynamic updates. Our proposed solutions are general and can be

adapted in many applications. In the future, we will explore the adoption of these

designs in various applications for further evaluation.

xi

한글요약

FPGA기반고성능 TCAM구조

인야앳울라

지도교수:이정아

컴퓨터공학과

대학원,조선대학교

TCAM (Ternary Content-Addressable Memory)은고속검색을필요로하는네

트워킹,인공지능등다양한분야에서핵심엔진으로이용된다. TCAM은주문

형반도체(ASIC)로바로구현될수있으나전력소모가많은단점이있었으며,

TCAM내용을 SRAM의주소로이용하여 FPGA로구현될수있었으나,대용량

검색의 요구가 늘어감에 따라, 전력소모 증가와 스토리지 비효율성이란 문제

가있었다.그리고 SRAM기반으로설계된 TCAM은빠른검색을가능하게하

나, TCAM테이블의업데이트가필요한경우,검색이중단되는문제점이있었

으며,잦은업데이트가발생하는응용에서는활용이어려웠다.본논문에서는

기존의 FPGA기반 TCAM 구조의 문제점인 스토리지 비효율, 높은 전력소비,

그리고업데이트발생시검색중단으로인한대기시간증가를극복하기위한

세가지해결방안을제시한다.

첫 번째로 SRAM 기반 TCAM 구조에서 SRAM 메모리의 효율적인 활용

을 위하여, 멀티펌핑 가능한 멀티포트 TCAM 구조를 제시한다. TCAM 검색

워드 크기가 증가함에 따라 필요한 SRAM 메모리가 폭발적으로 증가하는 문

제를 해결하기 위한, 기존의 해결책은 FPGA의 연결식 블록 RAM(BRAM)을

사용하는 것이었다. 그러나 최첨단 FPGA의 BRAM은 최소깊이 제한이 있어

TCAM비트의저장효율성을제한한다.본논문에서는이러한한계를피하기

xii

위하여, 기존의 TCAM 테이블영역을 구성된 BRAM의 얕은 하위블록에 매핑

하여 메모리 효율적인 TCAM 메모리설계를 구현한다. 제안된 솔루션은 단일

시스템 사이클에서 BRAM의 하위블록에 액세스하기 위해 보다 높은 내부 클

록주파수로클러킹함으로써다중펌핑기술을사용하여멀티포트 SRAM으로

구성된 BRAM을 작동시킨다. 제안된 디자인을 Xilinx Virtex-6 FPGA에 구현

하여, 기존의 FPGA 기반 TCAM 설계와 비교하여 제안 된 방법이 메모리 당

최대 2.85배의성능을달성함을보였다.

그리고 SRAM 기반 TCAM 구조의 높은 전력소모를 해결하는 방안으로,

사전 분류기 기반 TCAM 구조를 제시한다. 첫 번째 분류를 통하여 TCAM 테

이블을 균형 잡힌 크기의 몇 개의 서브-테이블로 분할한다. 이렇게 분할된 서

브-테이블을 SRAM 블록의 분리된 개별 행에 매핑하여 구현한다. 본 구조는

TCAM워드검색시전체가아닌일부에해당하는하나의 SRAM블록행만을

선택적으로 활성화하기 때문에 기존의 SRAM 기반 TCAM 구조와 비교할 때

에너지 소비를 크게 줄인다. 제안된 구조를 Xilinx Virtex-6 FPGA에 구현하여

기존의 SRAM기반 TCAM구조에비하여성능당적어도 3배이상낮은전력

소비를달성함을보였다.

세 번째로 검색을 하면서 동적 업데이트가 가능한 에너지 및 자원 효율적

인 DURE TCAM 구조를 제시한다. DURE 구조에서는 FPGA의 분산 RAM인

SLICEM리소스의룩업테이블 RAM (LUTRAM)을활용하여,쿼드포트 RAM

으로 구현된 LUTRAM들을 기본 메모리(BM) 블록으로 이용한다. TCAM 테

이블의 내용은 동일한 크기로 분할 되어 제안 된 BM 블록에 있는 LUTRAM

에매핑된다. DURE는 업데이트 되는 워드와 연관된 BM 블록의 LUTRAM만

을 재구성하여 동적 업데이트를 구현하므로 검색 및 업데이트 작업을 동시에

수행할수있다.기존의 SRAM기반 TCAM구조와비교할때, DURE는검색소

요시간이짧으며에너지와수행시간를모두고려한효율이기존에비하여 2.5

배이상향상되고,면적당 67%더높은성능을달성한다.

xiii

본 논문에서는 FPGA 기반 고성능 TCAM 구조를 다양하게 제시하여, 메

모리효율을높이고,에너지와수행시간을모두고려한효율을향상시켰으며,

동적업데이트를가능하게하였다.본논문에서제안된구조는범용적인것으

로다양한어플리케이션에적용이가능하며,이와관련된연구를추후진행할

예정이다.

xiv

I. INTRODUCTION

A. Background

Content addressable memory (CAM) selects a word among stored data based

on its contents. CAM compares an input word with its entire stored data in

parallel and outputs the matched word’s address in a single cycle. CAM is mainly

categorized into two: Binary CAM (BCAM) that store only two states, “0” and

“1”, and ternary CAM (TCAM) that also store and compare an additional third

state, known as the “don’t care state x”. The don’t care state “x” is used to store

wild card entries in TCAM words.

TCAMs designed as a dedicated system in the application-specific integrated

circuit (ASIC) are known as traditional TCAMs. It compares the search key

with the entire stored TCAM words in parallel and outputs the address of the

matching word in one cycle. The circuitry of a TCAM cell store and compare

three states: “0”, “1”, and don’t-care state “x”. TCAM architecture is composed

of an array of TCAM cells and a priority encoder (PE). Each TCAM cell

comprises two SRAM cells storing a ternary bit and an associated comparison

circuitry. Search lines (SLs) provide search key bits to the corresponding cells

of the TCAM words. The comparison results of each TCAM word are placed

on the match lines (MLs). In case the matching of the search key is successful

with more than one TCAM word, the PE selects the matching address with the

highest priority. Figure 1 shows a sample design of 4× 3 traditional TCAM.

For example, an input word of 101 is applied to the search lines of a 4 × 3

traditional TCAM shown in Figure 1. The TCAM words of Row 1 and 3 are

found to match completely and the corresponding match lines ML1 and ML3

remain high. The PE selects the address of ML1 as the match address based on

1

1 11

0 x1

1 01

x 1x

00

PE

MLSAs

Match

Input word

ML0

ML2

ML3

01

10

11

1 0 1

ML1

SL 0SL
0 SL

1
L�S 1 SL

2
LS 2

01

address

Figure 1: A 4×3 TCAM: (MLSAs: Match line sense amplifiers).

priority. CAM is widely employed to design perform high-speed search engines

for a variety of emerging applications, in the areas of networking as look-up

table [1, 2, 3, 4], in microprocessors as translation-look-aside buffer (TLB) cache

[5, 6, 7, 8], in big-data analytics as database accelerators [9, 10, 6], and in image

processing, pattern recognition, and DNA sequence matching as Local binary

patterns recognition system [11, 12, 13, 14, 6]. The Internet-of-things and big-

data processing devices employ TCAM as a filter when storing signature patterns,

and achieve a substantial reduction in energy consumption by reducing wireless

data transmissions of invalid data to cloud servers [9, 15].

Static random-access memory (SRAM)-based implementations of TCAM

consist of an SRAM memory and a PE as shown in Figure 2. All the data of

the original TCAM is mapped to the SRAM memory. For a TCAM table of size

A×B (A words of B bits width), the SRAM-based implementation requires 2B

words of A bits width. Figure 2 shows the SRAM-based implementation of a

4×3 TCAM. It comprises of a 23 SRAM words of 4-bits each. The SRAM words

2

Address SRAM words

000

001

010

011

100

101

110

111

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 1

0 1 0 0

0 1 0 1

0 0 1 0

1 0 0 1

1

0

1

0

1

0

1

PE

SRAM Memory

Match vector MAInput word

Figure 2: SRAM-based implementation of a 4 × 3 TCAM: (PE: priority encoder, and

MA: match address)

store the match/ mismatch information on comparison with the TCAM words of

all locations of the original TCAM for all possible combinations of input words.

Bit positions 0, 1, 2, and 3 of the 1st SRAM word stores the match/mismatch

information of the input word 000 with TCAM words of all four locations 0,

1, 2, and 3 respectively. Likewise, the SRAM words 0, 1, 2, ..., 7 store the

match/mismatch information of all eight possible input words with TCAM words

of all four locations at bit positions 0, 1, 2, and 3. The input word 101 matches

successfully with TCAM words at locations 1 and 3. Accordingly, the SRAM

memory for the 4 × 3 TCAM implementation stores high bits at bit positions 1

and 3 of the input word’s 101 addressed location.

B. Problem Statement

Field-programmable gate arrays (FPGAs) emulate TCAM using SRAM, by

addressing SRAM with TCAM contents. Each SRAM word corresponds to a

3

specific TCAM pattern, and stores information on its existence for all possible

data of the TCAM table. The increase in the number of TCAM pattern bits results

in an exponential growth in memory usage. This exponential growth in memory

usage has been reduced to linear growth by cascading multiple SRAM blocks in

the design of TCAM on FPGA in previous work [16, 17].

Contemporary FPGAs implement block-RAM (BRAM) in the silicon

substrate and offer a high speed. For example, Xilinx Virtex-6 xc6vlx760 FPGA

contains 720 BRAMs of size 36 Kb [18], and provide operating frequencies of

greater than 500 MHz [19]. Designers utilize these high-speed SRAM blocks

to design SRAM-based TCAMs on FPGA. In existing SRAM-based solutions,

the storage capacity of a BRAM for TCAM bits is limited by its higher

SRAM/TCAM ratio 29

9 , because of its minimum depth limitation of 512× 72

when configured in simple dual-port mode on FPGA [18]. For example, the

design methodologies proposed in [20], [21], and [22], require a total of 56, 40,

and 40 BRAMs of size 36 Kb, respectively, to implement an 18 Kb TCAM.

Excessive usage of BRAMs in the design of TCAM can result in a lack of

BRAMs for other parts of the system on FPGA. Furthermore, the limited amount

of BRAM resources on FPGA can compel designers to implement TCAMs in

distributed RAM using SLICEM, resulting in the consumption of many slices,

and a limitation on the maximum clock frequency of the design. This problem

becomes more severe for the design of large storage capacity TCAMs. The

efficient utilization of SRAM memory is imperative for the design of TCAMs

on FPGAs.

Existing SRAM-based TCAMs on FPGAs suffer from higher energy

consumption as they consume excessive power to energize the entire SRAM

memory used per lookup. For example, the SRAM-based TCAM design

4

methodologies presented in recent works [23, 24] consumed 2.5 W and 3.2 W to

implement 89 kb and 150 kb TCAM tables using BRAMs on FPGA, respectively.

The higher power consumption of SRAM-based TCAM designs becomes more

severe for larger capacities.

A single update in SRAM-based TCAM requires rewriting all of the SRAM

blocks configured by the design, owing to TCAM’s support for wild card entries.

The update process for a TCAM word in an SRAM-based TCAM architecture

includes writing the update word and erasing the old TCAM word from SRAM

blocks. This process involves the indexing of all the words of an SRAM block

for writing. Such TCAMs implement dedicated update engines for writing the

SRAM blocks in parallel, which introduces an excessive additional hardware

overhead. Hence, the minimum number of cycles required for an update process

is proportionate to the depth of the utilized SRAM blocks [17, 25].

In addition, during the update process in SRAM-based TCAM search

operations remain suspended. Therefore, such TCAMs dedicate a substantial

amount of clock cycles to supporting high-latency blocking updates in frequent

update environments, thereby substantially lowering the arrival rate of input

words for lookup [26]. Because lookup operations are locked during high latency

updates, SRAM-based TCAMs require a large buffer space to store input words,

in order to avoid the loss of these words [27, 28]. As such, despite the search

performance of one search per cycle, these TCAMs are infeasible for use in

high-churn-rate environments, where frequent TCAM updates are required. This

critical TCAM table update issue in SRAM-based TCAM architectures has not so

far been addressed. Therefore, further research on implementing dynamic updates

in the FPGA-based TCAM architectures is required.

A TLB cache is an integral part of any processor architecture and is

5

implemented using CAM [29, 5, 7]. Soft-core processors implemented in

reconfigurable hardware such as FPGAs are widely employed in embedded

system applications [30]. A low response time (single cycle) dynamically

updateable CAM architecture is required in the design of a non-blocking TLB

cache for soft-core processors [31, 32, 33]. However, existing RAM-based

TCAM architectures on FPGAs suffer from high search latencies (high response

times) and update operations during which searches are suspended.

C. Motivations

The significant advancement in CMOS technology has made modern FPGAs

an attractive choice for implementing emerging systems because of their

offered massive parallelism with flexibility through on-the-fly reconfiguration.

Contemporary SRAM-based FPGA device such as the 40-nm Xilinx Virtex-6

FPGA consists of a large amount of embedded memory that operates at high

speed with low power consumption.

The demand for a high-speed flexible (re-configurable) and adaptable (easy

for integration) TCAM configurations renders the embedded memories (BRAMs

and distributed RAM) on modern SRAM-based FPGAs attractive for the

design of TCAMs. Configurable CAM architectures are desirable in embedded

hardware, in order to be able to adapt to the requirements of the intended

application to strike an optimal balance between the area, power, and speed

[34, 35, 4].

6

D. Thesis Contributions

This thesis proposed three different approaches for designing memory-efficient,

energy-efficient and dynamically updateable TCAM architectures for FPGAs.

The contributions of this thesis are summarized as follows:

• A novel multipumping-enabled multiported SRAM-

based TCAM architecture, which achieves efficient memory utilization, is

proposed. Compared to existing FPGA-based TCAM architectures, Our

proposed design achieves a performance that is up to 2.85 times higher

performance per memory.

• A pre-classifier-based architecture for SRAM-based TCAM design is

proposed, which achieves a considerable reduction in energy consumption.

Compared to prior work, our architecture exhibits at least 3 times lower

power consumption per performance

• A dynamically updatable FPGA-based TCAM architecture using

LUTRAM FPGA primitives is proposed. The proposed architecture targets

TCAM applications where high-frequency updates are required. The main

challenge in the efficient use of FPGA-based TCAM is the high latency

blocking update operation, which is resolved by the proposed solution.

• The proposed dynamically updatable FPGA-based TCAM architecture is

both energy and resource efficient. Compared with the existing state-of-

the-art TCAM solutions, it achieves up to 67% more performance per area

and at least 2.5 times better energy-delay product efficiency.

7

E. Related Work

Existing FPGA-based TCAM architectures are mostly RAM-based solutions

employing block-RAM (BRAM) or distributed RAM resources for implementing

TCAM. The BRAM-based TCAM solutions presented in previous work [20, 21,

22] store the knowledge about the presence of TCAM words and their address

information in separate sets of BRAM units and thus suffer from inefficient

memory usage. These works suffer from higher power consumption as the

entire used excessive SRAM memory is activated for the incoming TCAM word

lookup. The update process for such TCAMs includes updating a copy of the

TCAM table, which is then remapped to the BRAM configured by the design

on the FPGA. As such, all the BRAMs configured by the TCAM are rewritten,

which is time-consuming and expensive in terms of the additional logic overhead.

The BRAM-based TCAM solutions presented in [16, 17, 25, 26, 36, 37]

store the knowledge about the presence of the TCAM word and their address

information in the same BRAM block. These approaches suffer from reduced

memory efficiency because of the limited storage capacity of BRAM for storing

the TCAM bits, owing to a higher SRAM/TCAM ratio of 29/9 [17]. However,

these works [16, 17, 25, 26, 36, 37] energize all used SRAM memory blocks

in the design for each incoming TCAM word’s lookup, and thus, consumes

higher power consumption. The update process in the SRAM-based TCAMs

from [16, 17, 20, 21, 22, 26, 36, 37] requires dedicated update engines to write all

of the SRAM blocks used by the design in parallel, which results in an additional

logic overhead. In this manner, the write cycle in the update process becomes

proportional to the depth of the design-configured BRAMs, which requires 513

clock cycles [17, 25].

8

The distributed RAM-based TCAM solutions presented in previous work

[17, 26, 36] achieve a higher memory efficiency, because of increased storage

capacity for TCAM bits in distributed RAM with an SRAM/TCAM ratio of

25/5. However, when implementing a large TCAM table, the bitwise-ANDing

of a large number of wide bit vectors becomes time-critical, resulting in a

reduced achievable throughput. Although these designs have a relatively small

update latency of 33 cycles, they suffer from an expensive rewriting of the entire

configured SRAM memory, on account of supporting wild card entries.

Xilinx has presented several implementation techniques for binary CAM

using BRAM and for TCAM using the shift register (SRLE16) on FPGAs in

its application note [37]. The BRAM-based binary CAM technique is storage-

inefficient. The TCAM implementation technique, which employs LUT resources

as shift registers, has reduced resource efficiency, as only two TCAM bits are

encoded and are mapped on a single 16-bit shift register LUT primitive SRLE16.

For larger TCAM table implementations, this technique suffers from timing

problems arising because of routing congestion.

A fast content updating mechanism for SRAM-based TCAM is presented in

[38]. Its update latency depends on the number of “don’t care” bits in the sub-

words of an update word. However, this TCAM approach, which is implemented

using Xilinx BRAM resources, has the worst case update latency, being 513

cycles.

The multiplexer-based TCAM design presented in the patent [39] suffers

from a degraded system throughput owing to the sequential searching of the

TCAM data for the input word, i.e., a single TCAM word is searched per cycle.

This technique stores the contents of the TCAM table in the LUTRAMs from

the SLICEM resources, while the comparison circuitry is implemented using

9

programmable FPGA interconnects. The outputs of the comparison circuits are

further AND cascaded to implement multiple bits of the TCAM word.

RAM-based associative CAM was presented in a U.S. patent [40]. Its memory

requirement increases exponentially with the increase in the pattern bits of CAM.

For large bit patterns, it does not scale well in terms of the memory requirement,

power consumption, and cost. Thus, it is not feasible to implement it on ASIC or

FPGA platforms.

A set-associative memory architecture implemented in hardware using the

well-known hashing method was presented in [41]. It used RAM memory

to implement CAM. However, in order to support TCAM functionality, the

architecture suffered from inefficient memory utilization as it required two bits to

encode ternary bits.

In contrast to the existing SRAM-based TCAMs,

our proposed multipumping-enabled multiported SRAM-based TCAM design

exploits the efficient utilization of SRAM memory by mapping TCAM divisions

to shallow sub-blocks of BRAMs on FPGA. It operates high-speed BRAMs in the

design as multipumping-enabled multiported SRAM, maintaining a high system

throughput.

In this thesis, we present a pre-classifier-based architecture for an energy-

efficient SRAM-based TCAM design (EE-TCAM). We first classify a TCAM

table into several TCAM sub-tables, which are further partitioned vertically. Each

partitioned TCAM sub-table is implemented as a row of cascaded SRAM blocks

in the proposed architecture. For each input TCAM word, at most one row of

SRAM blocks is activated in the proposed design, significantly reducing the

dynamic power consumption compared with the existing SRAM-based TCAMs.

In contrast to previous related SRAM-based TCAM designs, this thesis

10

presents a dynamically updateable energy- and resource-efficient TCAM design

(DURE). DURE maps the contents of a TCAM table onto the LUTRAMs

available in SLICEM resources, which together with the available fast carry

chains implements the desired TCAM functionality, achieving a single cycle

search latency. DURE dynamically reconfigures only the LUTRAMs associated

with the word being updated, without suspending search operations.

Table 1: List of basic notations used.

Notations Description

D Depth of traditional TCAM

W Width of traditional TCAM

RD Depth of the configured SRAM blocks

RW Width of the configured SRAM blocks

log2(RD) Address bits of the SRAM block

P
Number of sub-blocks in an SRAM block /

Multipumping factor

RD/P Depth of the sub-blocks in an SRAM block

M
Rows of the TCAM divisions /

Rows of the TCAM memory units

N
Columns of the TCAM divisions /

Columns of the TCAM memory units

F. Thesis Organization

This thesis is organized as follows. Chapter II describes multipumping-enabled

multiported SRAM-based TCAM architecture, its FPGA implementation results

11

and comparison with existing FPGA-based TCAM architectures. Chapter III

details the pre-classification based energy efficient TCAM architecture and

evaluates its performance based on its comparison with other existing TCAM

solutions on FPGAs. Chapter IV explains the dynamically re-configurable

LUTRAM-based energy- and resource- efficient TCAM architecture and its

performance evaluation is detailed. Finally, Chapter V concludes this work. Table

1 lists the description of the basic notations used in the thesis.

12

II. MULTIPUMPING ENABLED

MULTIPORTED SRAM-BASED TCAM

ARCHITECTURE

A. Multipumping-Enabled Multiported SRAM

The multipumping technique multiplies the ports of a dual ported SRAM block

by internally clocking it at an integral multiple of the external system clock

[42, 43, 44, 45]. The addresses and data are registered and provided access to

the SRAM block in a circular order by using mod P counter bits as shown in

Figure 3. Several designs utilize multipumping for the implementation of efficient

multiported memory [46, 47].

Write
0

Write
1

Write
P

Read
0

Read
1

Read
P

+

1

Mod P Counter

R

R

R

R

R

R

Dual port

SRAM block

Figure 3: Multipumping-based multiported memory: the SRAM block is clocked at an

integral multiple of P, allowing P access during one external clock cycle.

13

0 * 1 0

0

0

1

0

1

1

0

0

0000

0001

0010

0011

0100

0101

0110

0111

0 * 1 0
0

0

1

0

1

1

0

0

1000

1001

1010

1011

1100

1101

1110

1111

0

0

1

0

0

0

1

0

0000

0001

0010

0011

0100

0101

0110

0111

0

0

0

0

1

0

0

0

1000

1001

1010

1011

1100

1101

1110

1111

0

0

1

0

0

0

1

0

0000

0001

0010

0011

0100

0101

0110

0111

0

0

0

0

0

0

0

0

1000

1001

1010

1011

1100

1101

1110

1111

(b) (c) (d)

16x1 SRAM

1x8 TCAM

(a)

Figure 4: (a) A conventional TCAM of 1 × 8; (b) An 16 × 1 SRAM without

multipumping emulating 1×4 TCAM; (c) An 16×1 SRAM with a multipumping factor

of P = 2 emulating 1× 6 TCAM; (d) An 16× 1 SRAM with a multipumping factor of

P = 4 emulating 1×8 TCAM.

1. Basic Idea

In the SRAM-based implementation of TCAM, the depth of the traditional

TCAM determines the width of SRAM memory, and the width of the traditional

TCAM is encoded as the address of the SRAM memory. The basic concept

of the proposed multipumped SRAM-based TCAM implementation achieving

increased memory efficiency is shown in Figure 4. Figure 4(a) shows a 1× 8

traditional TCAM table, and Figure 4(b) shows the implementation of the four

TCAM bits (0*10) by using a 16× 1 SRAM block. Figure 4(c) shows the

implementation of six TCAM bits (100*10) by using 16×1 SRAM block, which

14

has been multipumped two times, each SRAM sub-block of size 8×1 emulating

three TCAM bits. Figure 4(d) shows the implementation of eight TCAM bits

(0*1000*10) by using 16× 1 SRAM block, which has been multipumped four

times, each SRAM sub-block of size 4× 1 emulating two TCAM bits. Thus,

designing TCAM using multipumping-enabled multiported SRAM in Figure 4(c)

and (d) achieved a higher SRAM memory efficiency (i.e. fewer SRAM bits are

utilized per TCAM bit) when compared with that of multipumping-less SRAM-

based TCAM design in Figure 4(b). The TCAM bits storage capacity of the

SRAM block increases with multipumping.

A multiported SRAM block of size RD×RW with a multipumping factor of P

implements a traditional TCAM table of size Plog2(RD/P)×RW , each SRAM

sub-block of size (RD/P)× RW emulating log2(RD/P)× RW TCAM data, as

shown in Figure 5 and 6. Our proposed design achieves increased TCAM bits

storage capacity with an increase in multipumping factor P.

15

2. Proposed Partitioning of Traditional TCAM Table

P
2,2

P
2,N

P
M,2

P
M,N

P
2,1

P
M,1

P
1,2

P
1,N

P
1,1

SP
P

W

D

P(log
2
(R

D
/P))

R
W

log
2
(R

D
/P) log

2
(R

D
/P) log

2
(R

D
/P)

SP
2

SP
1

Figure 5: Proposed partitioning of the traditional TCAM table.

We partition the traditional TCAM table of size D×W into M×N partitions

such that each partition consists of P parts of log2(RD/P)×RW size as shown in

Figure 5. Our proposed TCAM design uses its configured SRAM blocks of RD×

RW size as multiported SRAM, constituting P sub-blocks of size (RD/P)×RW

as shown in Figure 6.

Each sub-block of the SRAM stores log2(RD/P)×RW size divisions of the

traditional TCAM. Consequently the P sub-blocks of the multiported SRAM

memory in our proposed design stores a traditional TCAM division of size

Plog2(RD/P)×RW as shown in the Figures 5 and 6. Similarly, the M×N TCAM

divisions of size Plog2(RD/P)× RW are mapped to the SRAM blocks of the

M×N TCAM memory units in the proposed design, as shown in Figures 5 and 7.

16

Block 1

Block 2

Block P

W

clk
P

R
D
/P

R
D
/P

Match

R
W

Input word

W

log
2
P

1

R
W

R
W

clk
P

SRAM Unit

&

>>log
2
(R

D
/P)

log
2
(R

D
/P)

log
2
P

log
2
R

D

Proposed TCAM memory unit

log
2
P

word .

.

.

clk
P

Figure 6: Basic architecture of the proposed TCAM memory.

3. Basic Architecture of the Proposed TCAM Memory

The basic architecture of our proposed TCAM memory design is shown in

Figure 6. It is operated by two fully synchronized clocks, a system clock clkS

and internal clock clkP, such that clkP is P times faster than clkS. An incoming

TCAM word is registered in a W -bit shift register using the system clock clkS.

The log2P-bit counter generates a sequence of log2P-bit numbers in P internal

clock cycles. It is initialized to zero upon reset and it rolls over after every P

internal clock cycles. The log2P-bits from the counter are concatenated with the

log2(RD/P) bits from the shift register to make the log2RD-bit address space of

the SRAM. At the positive edge of the internal clock clkP, the SRAM address is

executed such that log2P-bits from the counter constitute its most significant bits,

and points to the start of the corresponding sub-block in SRAM and the lower

17

log2(RD/P) bits from the shift register selects an SRAM word in the sub-block.

The read SRAM words are AND-accumulated for each cycle in an RW -bit

register using clkP. Similarly, the look-up is completed for a W -bit input word

by reading and AND-accumulating SRAM words from each sub-block of the

SRAM in P internal clock cycles or one system cycle. Consequently, the P AND-

accumulated SRAM words are produced as match word using clkS. The timing

diagram in Figure 8 elaborates the search operation of the proposed TCAM

memory architecture shown in Figure 6 with a multipumping factor of P = 2.

UNIT
0,1

UNIT
0,2

UNIT
0,N

&

Figure 7: Organization of the proposed TCAM memory units for a large storage capacity:

(IW : input word, PE: priority encoder, OPE: overall priority encoder)

18

clkS

clkp

IW
Input word1 Input word2 Input word3

RW
RW11 RW12 RW21 RW22 RW31

MW
MW1 MW2

Figure 8: Timing diagram for the search operation in our proposed TCAM with a

multipumping factor P = 2: (IW : input word, RW : SRAM word read, MW : match word)

4. Modular Architecture

TCAM design of large storage capacity is implemented as a cascade of M×N

proposed design TCAM memory units as shown in Figure 7. An incoming W -bit

TCAM word is divided into N sub-words of Plog2(RD/P)-bits with the bit ranges

shown in Figure 7. The resultant sub-words are stored in N shift registers of size

Plog2(RD/P)-bits on clkS. The log2RD-bit indexes from the N shift registers are

provided to the corresponding M TCAM memory units of the N columns of the

proposed design in parallel using clkP, as shown in Figure 7. All TCAM memory

units of the design operate in parallel using clkP. The RW -bit match words from

each row of the TCAM memory units are bit-wise ANDed on clkS, and the results

are provided to the associated priority encoder (PE) units. The log2D-bit match

address and the match information from each PE unit are provided to the overall

priority encoder unit, which eventually forwards a match address based on the

priority. The proposed TCAM design registers an input word and produces a

match word as output on clkS.

The update of a TCAM word is performed in each TCAM memory unit of

19

the design in parallel. The worst-case update latency of the proposed design

comprises RD/P system cycles.

5. Effect of Multipumping SRAM on the Memory Usage and

Throughput

Multipumping results in a useful reduction in SRAM memory usage for the

design of TCAM on FPGA. The configured SRAM memory blocks in our

proposed design with the multipumping factor of P implements traditional

TCAM divisions of size Plog2(RD/P)×RW as shown in Figure 6. The TCAM

bits storage capacity of SRAM blocks in the proposed design increases with an

increase in P. The upper bound on the multipumping factor P is RD/2, i.e. RD/2

sub-blocks in the SRAM and each sub-block consists of two SRAM words.

Multipumping divides the achievable internal clock frequency of the design

by the multipumping factor, to obtain the operating frequency of the overall

system [42, 43, 44, 48]. Although an increase in the multipumping factor P

results in a higher memory efficiency for the design of TCAM, only the use

of small multipumping factors is practical in order to avoid a significant drop

in the operating frequency of the overall system. Overall multipumping factor

P controls a tradeoff between the SRAM memory efficiency and speed of the

proposed design.

B. Implementation Setup and Results

To verify our proposed design we implemented it on a Xilinx Virtex-6 FPGA

device (xc6vlx760). The proposed design was implemented using the Xilinx ISE

14.7 design tool, and verified through behavioral and post-route simulations using

20

an ISim simulator.

We implemented our proposed design cases I and II on the Xilinx Virtex-6

FPGA device for 512× 28 (14 Kb) and 512× 32 (16 Kb) TCAM tables, with

multipumping factors of P = 4 and P = 2, respectively. Our proposed design

CASE-III implements a large TCAM table of size 1024× 140 (140 Kb), with

a multipumping factor of P = 4. We have selected small multipumping factors

of P = 4, 2, and 4, in our proposed design cases I, II, and III, to avoid lower

operating frequencies of the overall system.

Table 2 lists the FPGA resource utilization slice registers (SRs), look-up

tables, and BRAMs for the implementation of our proposed design cases I, II,

and III. The post place & route results show that the proposed design cases I,

II, and III could achieve internal clock frequencies of 475 MHz, 475 MHz, and

349 MHz and multipumping factors of P = 4, 2, and 4, giving the system clock

frequencies of 119 MHz, 237 MHz, and 87 MHz, respectively.

Table 2: FPGA resource utilization of the proposed design.

Proposed design
TCAM size Slice

LUTs
BRAMs

(D×W) registers (36 Kb)

CASE-I (P = 4) 512×28 536 968 8

CASE-II (P = 2) 512×32 1593 1515 16

CASE-III (P = 4) 1024×140 6287 7516 80

C. Performance Evaluation & Comparison

The performance of our proposed design is evaluated based on its comparison

with the existing SRAM-based TCAM solutions on FPGAs.

21

1. SRAM Memory Utilization

SRAM-based TCAM solutions implement a traditional TCAM of depth D

and width W by cascading SRAM blocks of size RD × RW on FPGAs. The

minimum overall SRAM memory requirement of the existing SRAM-based

TCAM solutions on FPGAs can be formulated as (6) shown below:

D
RW

∑
M=1

W
log2RD

∑
N=1

(RD×RW) =

(
D

RW

)(
W

log2RD

)
(RD×RW)

= DW
(

RD

log2RD

)
(1)

The overall memory requirement of the proposed design for the implementation

of a D×W size traditional TCAM using RD×RW size SRAM blocks is devised

as (7) shown below:

D
RW

∑
M=1

W
Plog2(RD/P)

∑
N=1

(RD×RW)

=

(
D

RW

)(
W

Plog2(RD/P)

)
(RD×RW)

= DW
(

RD

Plog2(RD/P)

)
(2)

Equation (7) describes that the SRAM memory usage of our proposed design is
RD

Plog2(RD/P) times that of the corresponding traditional TCAM table of size D×W .

Our proposed design achieves a considerable reduction in the SRAM memory

usage by a factor of 1
P[1−log2P/log2RD]

, when compared with that of the existing

22

approaches as described using (3) as follows:

DW
(

RD
Plog2(RD/P)

)
DW

(
RD

log2RD

) =
log2RD

Plog2(RD/P)

=
log2RD

P[log2RD− log2P]
=

1
P[1− log2P/log2RD]

(3)

The usage of BRAMs in our proposed design is compared with those of previous

approaches in Column 5 of Table 3. Our proposed TCAM design CASE-I

emulates a 14 Kb traditional TCAM, achieving a lower BRAMs utilization of 8

BRAMs compared with the usage of 56, 40, 40, 32, and 64 BRAMs for previous

approaches in [20], [21], [22], [37], and [25], respectively for an 18 Kb traditional

TCAM emulation. The proposed design CASE-III emulates a large TCAM of size

1024× 140 using 80 BRAMs. It achieves a lower BRAMs utilization compared

with the large TCAM implementations of size 1024× 150 and 504× 180 in the

previous approaches [17] and [36], using 272 and 140 BRAMs, respectively.

2. Throughput

The operational speed of our proposed design is compared with those of previous

approaches in column 4 of Table 3. Our proposed design cases I and II emulates

traditional TCAM of size 14 Kb and 16 Kb achieving operating frequencies of

119 MHz and 237 MHz with multipumping factors of P = 4 and 2 respectively.

The operating frequency of our proposed design CASE-II is higher than previous

works in [20, 21, 22, 25, 37] for an 18 Kb traditional TCAM emulation.

Our proposed design methodology is more useful for the design of large

storage capacity TCAMs. The TCAM memory units of our proposed design

AND-accumulate SRAM words from the sub-blocks of the SRAM blocks in

23

each system cycle, reducing the complexity of the AND operation units of the

overall architecture, as shown in Figures 6 and 7. This further prevents the AND

operation units from limiting the operating frequency of wide pattern TCAMs

designs on FPGA. Our proposed design uses fewer BRAMs, thus alleviating the

overall routing complexity of the design on FPGA. The divided AND operation

complexity and reduced routing complexity makes our proposed design more

practical for large storage capacity TCAMs.

The system frequency of our proposed design CASE-III emulating a large

capacity TCAM of 140 Kb is 87 MHz, which is comparable with the maximum

achievable frequency 97 MHz in previous work [17] implementing a large size

TCAM of 150 Kb. While the SRAM memory usage of our proposed design

CASE-III is 70% lower than that of [17].

Our proposed design provides increased design flexibility in terms of the

speed vs memory usage tradeoff. The designer must consider the important

design factors such as the required storage capacity, relative availability of

BRAMs on the target FPGA, and required throughput for the selection of the

multipumping factor in our proposed design.

3. Performance per Memory

Considering the time-space tradeoff, we used the performance evaluation metric

performance per memory from [49], given by (8).

T hroughput(Gb/s)
Normalized Memory [Memory(Kb)/TCAM Depth]

(4)

Table 3 compares the performance per memory of our design with previous

FPGA-based TCAMs. The depth and pattern width of traditional TCAMs

implemented in previous studies are listed in the third column. For a fair

24

comparison, the speed results of the compared works with technology differences

are normalized to 40 nm, using (9) from [50]. The speed results in parenthesis

represent the original data reported in the respective papers.

T ∗ = T ×
[

40(nm)

Technology(nm)

]
×
[

V DD
1.0

]
(5)

where T represents the original delay time, and T ∗ denotes the normalized

delay time for 40 nm CMOS technology with a supply voltage of 1.0 V. The

proposed design cases I and II implemented 14 Kb and 16 Kb traditional

TCAMs using 288 Kb and 576 Kb SRAM memory with operating frequencies

of 119 MHz and 237 MHz, respectively. The proposed design cases I and II

achieved a performance per memory of 5.78 ((Gb/s× TCAMDepth)/Kb) and

6.58 ((Gb/s×TCAMDepth)/Kb), respectively.

Table 3: Performance per memory comparison of the proposed TCAM with previous approaches.

Architecture FPGA
TCAM size Speed BRAMs Memory Throughput P/M(a)

(D×W) (MHz) (36 Kb) usage (Kb) (Gb/s)

Locke-[37] Virtex-6 512×36 166 64 2304 5.84 1.3

Jiang-[17] Virtex-7 1024×150 97 (139) 272 9792 14.26 1.49

Qian-[36] Virtex-6 504×180 133 140 5040 23.38 2.34

REST-[25] Kintex-7 72×28 35 (50) 1 36 0.96 1.92

HP-TCAM-[20] Virtex-6 512×36 118 56 2016 4.15 1.05

Z-TCAM-[21] Virtex-6 512×36 159 40 1440 5.59 1.99

E-TCAM-[22] Virtex-6 512×36 164 40 1440 5.77 2.05

UE-TCAM-[16] Virtex-6 512×36 202 32 1152 7.1 3.16

Proposed CASE-I Virtex-6 512×28 119 8 288 3.25 5.78

Proposed CASE-II Virtex-6 512×32 237 16 576 7.41 6.59

Proposed CASE-III Virtex-6 1024×140 87 80 2880 11.90 4.25

(a) P/M: Performance per memory ((Gb/s×TCAM Depth)/Kb)

Table 3 shows that the performance per memory of the proposed design

cases I and II are 1.83 times higher than that of UE-TCAM [16], which was the

highest among the existing methods. Our proposed design CASE-III emulates a

large TCAM of size 1024×140, achieving the performance per memory of 4.25

((Gb/s×TCAMDepth)/Kb), which is 2.85 times higher than for large TCAM

of size 1024×150 in the existing study [17].

Our proposed design scales well in terms of the performance when evaluated

for the design of a large storage capacity. Table 3 shows that the performance per

memory of our proposed design CASE-III is slightly lower than the proposed

design CASE-I (with the same multipumping factor of P = 4) while the

implemented TCAM size of CASE-III is ten times greater than that of CASE-

I.

27

III. PRE-CLASSIFICATION- BASED

ENERGY-EFFICIENT SRAM-BASED

TCAM ARCHITECTURE

A. Proposed Classification Scheme
The proposed design uses the bits extracted from specific bit positions of the

TCAM words to classify the TCAM table words into groups called as TCAM

sub-tables. In the proposed partitioning scheme we extract log2M classification

bits from the specified bit positions of the TCAM words to produce M sub-tables.

For example, suppose two bits are used for the classification of a sample TCAM

table of size 6×6 is presented in Table 4. The TCAM table presented in Table 4 is

classified using two different set of bit positions S1 = {b0,b1} and S2 = {b1,b3}

as shown in Figure 9a,b, respectively. The sub-tables constructed based on the

bit values (00, 01, 10, and 11) of bit positions {b0,b1} are shown in Figure 9a.

The number of TCAM words in the constructed sub-tables ST0, ST1, ST2 and ST3

varies based on the pattern of bits in the bit positions {b0,b1} selected for the

classification of Table 4. TCAM words with ‘x’ as bit value in the classification

bit positions are stored in more than one sub-table. For example, the TCAM word

at address 2 has the bit values of ‘x1’ at {b0,b1}, and is thus stored in both sub-

tables ST1 and ST3. This redundancy expands the resultant TCAM sub-tables.

The classification of any realistic dataset based on a specific set of bit positions

may not necessarily produce sub-tables of the same size.

28

Table 4: A TCAM table of size 6 × 6.

Address TCAM Words

0 001001

1 11x100

2 x10010

3 100x11

4 0x01x1

5 x10001

b
0

b
1

b
2

b
3

b
4

b
5

0 0 1 0 0 1

0 0 0 1 x 1

0 1 0 0 1 0

0 1 0 1 x 1

0 1 0 0 0 1

1 0 0 x 1 1

TCAM words

0

2

4

5

3

4

1 1 0 0 0 15

1 1 x 1 0 0

1 1 0 0 1 0

1

2

ST
0

ST
2

ST
1

ST
3

Addresses

(a)

b
0

b
1

b
2

b
3

b
4

b
5

0 0 1 0 0 1

1 0 0 0 1 1

TCAM words

0

3
ST

0

1 0 0 1 1 1

0 0 0 1 x 1

3

4
ST

1

x 1 0 0 1 0

x 1 0 0 0 1

2

5
ST

2

1 1 x 1 0 0

0 1 0 1 x 1

1

4
ST

3

Addresses

(b)

Figure 9: Example of the proposed classification algorithm: (a) Description of

Classification based on set of bit positions S1 = {b0,b1}. (b) Description of Classification

based on set of bit positions S2 = {b1,b3}.

The proposed solution is based on the concept that the classification

effectiveness of a set of bit positions varies from that of other bit positions for

29

a specific dataset when the target of the classification is to construct balanced-

size sub-tables. The classification example of the TCAM table in Table 4 using

two different sets of bit positions is illustrated in Figure 9. It shows that the

classification using S2 = {b1,b3} is more effective for the TCAM table presented

in Table 4, as the constructed sub-tables are of balanced size (2), when compared

with the unbalanced size sub-tables constructed for bit positions S1 = {b0,b1} (2,

3, 1, and 3) as explained above.

The constructed TCAM sub-tables are further mapped to the distinct rows

of SRAM blocks in the proposed design. Figure 10 shows the mapping of the

proposed classification scheme constructed sub-tables to SRAM memory. The

contents of the four bit places S2 = {b2,b3,b4,b5} of the unbalanced size sub-

tables shown in Figure 9a and that of bit places S2 = {b0,b2,b4,b5} of the

balanced size sub-tables shown in Figure 9b are vertically partitioned into width

of two, further mapped to the SRAMs with depth D = 4 shown in Figure 10a,b,

respectively. It clearly illustrates that the SRAM memory requirement for storing

balanced size TCAM sub-tables constructed for bit positions S2 = {b1,b3} is

lower than that of unbalanced size sub-tables constructed for bit positions S1 =

{b0,b1}. The SRAM memory utilization overhead for pre-classifying the TCAM

table contents in the proposed approach is minimal as balanced size sub-tables

are constructed based on effective classification bits.

30

Figure 10: Example of mapping proposed classiifcation scheme constructed TCAM-

subtables to SRAM: (a) Mapping TCAM sub-tables contents to SRAM constructed based

on set of bit positions S1 = {b0,b1}. (b) Mapping TCAM sub-tables contents to SRAM

constructed based on set of bit positions S2 = {b1,b3}.

Algorithm 1 describes the proposed classification scheme. It classifies the

TCAM words of the D ×W TCAM table into M sub-tables based on the

comparison with the log2M-bit values extracted from specific bit positions. The

resultant sub-tables formed are tested for the maximum depth bound (MDB) of

31

(
⌊

D
MRW

⌋
+α)RW , where RW is the width of the configured SRAM blocks of the

design on FPGA and α is a scaling factor with integer values of α ≥ 1. If the

number of TCAM words in the resultant sub-tables exceeds MDB, a subsequent

set of bit positions is used for the classification of the TCAM table. In the worst-

case scenario, all subsets of log2M bit positions from W bit positions are used

to classify the TCAM table. The worst-case classification complexity of the

proposed Algorithm 1 is reduced by using a relaxed MDB for the construction

of sub-tables. An increase in the value of α by one increases the MDB of the

sub-tables by RW . A relaxed MDB of the sub-tables results in an increased RAM

memory usage, as the resultant sub-tables are mapped to the SRAM blocks of the

proposed design. The value of α provides a trade-off between the time complexity

of the proposed classification algorithm and the overall RAM memory usage of

the proposed design.

The words of the M TCAM sub-tables are mapped to the M rows of

the SRAM blocks of the architecture and the corresponding classification bit

positions are used to configure the pre-classifier bit positions in the proposed

architecture.

32

Algorithm 1 Algorithm for the classification of the TCAM table into M sub-

tables.
INPUT: D ternary words of W bits: Ti, j, where Ti, j ∈ {0,1, x}W , i =

0,1, . . . ,D−1, All possible subsets of log2M bit positions from W bit positions:

Su,v, where u = 1,2, . . . ,
(W

log2M

)
, v = 0,1, . . . , log2M−1.

OUTPUT: M sub-tables (STs) with identification addresses of AM =

0,1,2, . . . ,M− 1, and each ST of (
⌊

D
MRW

⌋
+α)RW ternary words of W bits:

STi, j, where STi, j ∈ {0,1, x}W , i = 0,1, . . . ,(
⌊

D
MRW

⌋
+α)RW −1.

for u = 1,2, . . . ,
(W

log2M

)
do

for i = 0,1, . . . ,D−1 do

// Check for the maximum depth bound

if (SizeAM == (
⌊

D
MRW

⌋
+α)RW) then

break

else

// Extraction of classification bits & construction of sub-tables

Cbits← Extract(Su,v,Ti, j)

if (AM ==Cbits) then

Add ST (AM,Ti, j)

SizeAM ← SizeAM +1

end if

end if

end for

end for

Cbits: Extracted classification bits

SizeAM : Size of constructed sub-tables

33

B. EE-TCAM Proposed Architecture

The TCAM table of D×W size is classified into M sub-tables using the proposed

classification scheme in Algorithm 1. The W -bit TCAM words of M sub-tables

constructed are further divided into V sub-words of log2RD-bits. The resultant

M×V sub-partitions of the TCAM table are mapped to the M rows of the V

SRAM blocks in the proposed architecture as shown in Figure 12. Each TCAM

table sub-partition of size (
⌊

D
MRW

⌋
+α)RW × log2RD is implemented using an

SRAM block. The SRAM block is a cascade of (
⌊

D
MRW

⌋
+α) number of RD×RW

size SRAM blocks.

The proposed architecture comprises a pre-classifier unit and an SRAM-based

TCAM. The pre-classifier unit of the proposed architecture is shown in Figure

11. The bit positions of the pre-classifier bits are specified using Algorithm 1

provided log2M number of pre-classification bit positions. The pre-classifier bits

are extracted from the log2M bit positions of the incoming TCAM words using

the log2M number of select lines of W -to-1 multiplexers as shown in Figure

11. The extracted log2M bits are further decoded to get an M-bit control signal

that selectively activates at most one row of SRAM blocks of the proposed

architecture.

The proposed SRAM-based TCAM architecture is shown in Figure 12. The

incoming W-bit TCAM word is divided into V sub-words of log2RD-bits. The

V sub-words are provided as addresses to the selected row of V SRAM blocks

in parallel and V SRAM words are read. The V SRAM words read undergo

a bit-wise AND operation and the resultant matching information bit vector is

provided to the associated PE. The PE unit encodes the highest-priority matching

bit position with the level high as the matching address.

34

Input word

W

1

S2

Slog M

M
1

1

1

2

log2M x M
decoderlog2W

og2W

log2W

Figure 11: Architecture of the pre-classifier unit: (S: Select lines for extracting the pre-

classification bits, log2W : Number of bits in the , log2M: Number of pre-classifier bits,

M: Number of enable control bits for the M rows of SRAM blocks).

PE0

M
U

X

W log2RD log2RD log2RD

Input word

W

M

PEM

MA

SRAM
block0,1

SRAM
block0,2

SRAM
block0,V

SRAM
block1,V

SRAM
blockM,V

SRAM
blockM,2

SRAM
block1,2

SRAM
blockM,1

SRAM
block1,1

Pre-
classi�ca�on

unit

(D/MRW +�)R W

(D/MRW +�)R W

(D/MRW +�)R W

Clock

Figure 12: Proposed overall architecture: (M: Number of rows of SRAM blocks, V:

Number of SRAM blocks in a row, PE: priority encoder unit, MA: matching address,

log2RD: Address bits of the configured SRAM blocks, (
⌊

D
MRW

⌋
+ α)RW : Configured

SRAM blocks words width).

35

The proposed TCAM design maps a new TCAM table dataset of the same size

to the SRAM blocks of the configured architecture on FPGA. The SRAM blocks

of the architecture has storage space for (
⌊

D
MRW

⌋
+α)RW number of log2RD-

bit TCAM sub-words. Algorithm 1 finds the set of classification bit positions,

which makes TCAM sub-tables considering the maximum depth limitation of the

configured architecture SRAM blocks on FPGA. The updated TCAM sub-tables

are mapped to the SRAM blocks of the design on FPGA. The corresponding

classification bit positions from Algorithm 1 configure the pre-classifier unit. The

classification bits are now extracted from the updated set of bit positions for the

incoming TCAM words. The proposed solution performs reconfiguration of the

hardware design on FPGA in two cases: first, when the number of TCAM words

in the Algorithm 1 constructed TCAM sub-tables exceeds the storage space of the

configured architecture SRAM blocks, resulting in a relaxed MDB on the updated

TCAM sub-tables. Second, when a TCAM table of different size is implemented

in the proposed design.

During run-time, an update process of a TCAM word in proposed design

includes the writing of the update word to the respective TCAM sub-table first,

and the updated sub-table is then written to the corresponding row of SRAM

blocks in the proposed architecture. The number of TCAM words in updated sub-

tables is tested for the MDB of (
⌊

D
MRW

⌋
+α)RW as this is the storage capacity of a

row of configured SRAM blocks in proposed architecture. Owing to the presence

of the don’t-care bits (x) in the TCAM words, EE-TCAM in the worst case writes

the entire used SRAM memory to complete the update process of a TCAM word.

The partitioned sub-tables are written in parallel to the corresponding SRAM

blocks in the proposed architecture, and the depth RD of the configured BRAMs

determines the update latency of EE-TCAM design. The update latency of EE-

36

TCAM is 513 cycles. While native TCAMs have also comparable worst case

TCAM write time of O(N) for updating a TCAM word, where N is the number

of words in the TCAM table [27, 38, 51, 52].

C. EE-TCAM FPGA Implementation & Results

We used a Xilinx Virtex-6 XC6VLX760-2FF1760 FPGA device for the proposed

EE-TCAM design of a 512×36 TCAM. Three design cases of 512×36 TCAM

were implemented with the following design parameters: [M = 4,V = 4] denoted

EE-TCAM-I and [M = 8,V = 4] denoted EE-TCAM-II using 36 kb BRAMs and

[M = 16,V = 4] denoted EE-TCAM-III using 18 kb BRAMs. Algorithm 1 was

used to classify 512 TCAM words into M = 4, 8, and 16 TCAM sub-tables.

The minimum depth limitation on the configuration of BRAM is 512 = 29.

The storage capacity of BRAMs is maximum when used in minimum depth

configurations of 512× 36 for 18 kb size and 512× 72 for 36 kb size [23].

Thus, the contents of the TCAM sub-tables formed were further divided into

V = 4 sub-words of width= 9, which addresses the configured BRAMs of depth

29 = 512. The resultant M×V sub-partitions were mapped to the configured

BRAMs of the EE-TCAM designs on FPGA. The proposed EE-TCAM designs

were implemented using Xilinx ISE 14.7 and were verified via behavioural and

post-route simulations using the Xilinx ISim simulator. The Xilinx Place and

Route report was used to evaluate the FPGA resource utilization and speed. The

Xilinx Xpower Analyzer tool [53] was used for the estimation of the dynamic

power consumption of the design. Table 5 lists the FPGA resource utilization

parameters such as slice registers, LUTs, and BRAMs of the EE-TCAM I, II, and

III designs for implementing a 512×36 TCAM table.

37

Table 5: FPGA resource utilization of EE-TCAM on Xilinx Virtex-6.

Proposed Design Cases Slice Registers LUTs BRAMs

EE-TCAM-I [M = 4] 652 1535 32

EE-TCAM-II [M = 8] 687 1455 32

EE-TCAM-III [M = 16] 712 1419 32

D. EE-TCAM Performance Evaluation & Comparison

1. Scalability of EE-TCAM

We have evaluated the scalability of EE-TCAM using important performance

evaluation metrics, like memory utilization, clock rate, and power consumption

implementing various sizes of TCAM tables. Table 6 lists the memory utilization,

clock rate, and power consumption for the TCAM tables of width W = 36, 54,

and 72 for depth D = 256, 512, and 1024 with TCAM sub-tables of M = 4, 8,

and 16 configurations implemented using EE-TCAM.

Table 6 shows that the memory usage of EE-TCAM grows proportionally

with an increase in the width or depth of the implemented TCAM table size. The

memory usage of EE-TCAM remains same with an increase in the number of

TCAM sub-tables M.

Table 6 shows that EE-TCAM achieves high clock rates of (233 MHz–

346 MHz) for the specified sizes of TCAM tables. EE-TCAM achieve a linear

decrease in the clock rate with a linear increase in the depth or width of

the implemented TCAM tables when M is constant. The delay in EE-TCAM

increases because of the increase in the number of wide bit-wise ANDing

operations and associated routing delay. The EE-TCAM showed an increase in

38

the clock rate with an increase in the number of TCAM sub-tables M owing to

the reduced bit-wise ANDing complexity of a row of SRAM blocks.

Table 6 illustrates that the dynamic power consumption of EE-TCAM

increases linearly with an increase in the width and depth of the implemented

TCAM table when M is constant. The memory usage of a row of SRAM memory

blocks increases with an increase in the size of the implemented TCAM table,

which results in an increase in the power consumption of EE-TCAM. The

dynamic power consumption of EE-TCAM decreases with an increase in the

number of TCAM sub-tables M owing to the activation of reduced size SRAM

memory of a row of SRAM blocks.

The EE-TCAM design implementations for depth D= 256 and width W = 36,

54, 72 with M = 16 does not follow the same performance trend in memory usage

and power consumption as shown in Table 6. The memory usage of EE-TCAM

implementations for the specified sizes with M = 16 gets double from that of the

same sizes implementations with M = 8. This is because the memory size of a

row of SRAM blocks for M = 16 remains the same (72 kb) as that of M = 8 and

the number of rows of SRAM-blocks gets double (16 from 8). This is due to the

minimum 36 bit width configuration for depth = 512 of 18 kb BRAM on Xilinx

FPGAs [18]. This increase in the memory usage of a row of SRAM-blocks results

in the increased power consumption of proposed EE-TCAM implementations for

specified sizes with M = 16 as illustrated in the Table 6.

Table 6: Performance trend for increasing EE-TCAM depth (D), width (W) in various configurations.

No. of TCAM TCAM Depth 256 512 1024

Sub-Tables TCAM Width 36 54 72 36 54 72 36 54 72

Memory utilization (kb)

M = 4 576 864 1152 1152 1728 2304 2304 3456 4608

M = 8 576 864 1152 1152 1728 2304 2304 3456 4608

M = 16 1152 1728 2304 1152 1728 2304 2304 3456 4608

Clock rate (MHz)

M = 4 326 313 299 276 260 243 264 252 233

M = 8 338 323 308 321 306 261 297 272 246

M = 16 346 335 317 336 316 270 310 293 251

Power consumption (mW)

M = 4 26.3 37.3 55.2 33.7 52.9 70 62 89.1 134

M = 8 23.6 36.8 51.3 27.7 50.3 64.5 36.1 59.1 80

M = 16 32.1 54.2 72.7 27.7 47.9 61.4 30.9 55.5 72.1

2. Performance Trade-Off with Increase in the Number of TCAM Sub-

Tables (M)

The number of TCAM sub-tables M determines the depth of the sub-tables

formed, and when mapped to the SRAM memory determines the RAM memory

usage of each row of SRAM blocks in the EE-TCAM design. An increase in

M reduces the RAM memory usage of each row of SRAM blocks in the EE-

TCAM design. This leads to a reduction in the overall power consumption of the

proposed design with an increase in M as the reduced memory of at most one row

of SRAM blocks is energized per lookup for incoming words.

To evaluate the impact of the change in M on the performance of the proposed

EE-TCAM design, we implemented three EE-TCAM design cases I, II, and III,

with M = 4, 8, and 16, respectively, using Xilinx BRAM resource for a 512×36

TCAM table. The RAM memory usage of a row of SRAM blocks in the EE-

TCAM design shows a decreasing trend with the increase in the value of M.

The proposed design cases EE-TCAM I, II, and III, activate at most one row

of SRAM blocks per lookup i.e., 288 kb (8 BRAMs of size 36 kb), 144 kb

(4 BRAMs of size 36 kb), and 72 kb (4 BRAMs of size 18 kb), respectively.

The individual BRAM resource power consumption of the EE-TCAM design

cases I, II, and III shows a decreasing trend 18.41 mW, 9.03 mW, and 4.16 mW,

respectively, as shown in Figure 13. The increase in the number of TCAM sub-

tables M has a decreasing impact on the size of the activated BRAM resource

in the proposed EE-TCAM design. Thus, the individual power consumption of

the BRAM resource in proposed EE-TCAM shows a decreasing trend with an

increasing value of M.

The overall power consumption of the EE-TCAM design III does not show

41

an exactly decreasing trend. This is because of the increased individual clock

and signal resource power consumption as shown in Figure 13. Compared to EE-

TCAM I with M = 4, the number of design units in EE-TCAM II (M = 8) and

EE-TCAM III (M = 16) doubles and quadruples, respectively. Thus, EE-TCAM

II and EE-TCAM III show an increased clock distribution and interconnect power

consumption as shown in Figure 13.

18.41

9.03
4.16

3.62

4.24

6.13

10.19

13.42
16.12

4 8 16
0

5

10

15

20

25

30

35

27.6827.7

33.72

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Number of TCAM sub-tables (M)

 Clocks
 Signals
 Logic
 BRAMs

Figure 13: Trade-Off between the Number of TCAM Sub-Tables (M) and Power

Consumption Performance

The operational frequencies of the EE-TCAM design listed in Table 6 shows

an increasing trend with the increase in the number of TCAM sub-tables M,

owing to the reduced complexity of bit-wise AND operation and PE units, as

the size of the SRAM words decreases with the increase in the value of M.

Overall, the trade-off between the number of TCAM sub-tables M and the

42

power consumption and throughput performance of the proposed EE-TCAM

design showed that considerable improvement in performance is achieved with

an increase in M.

3. Power Consumption

RAM memory accounts for a major proportion of the power consumption in

the design of SRAM-based TCAMs. In the SRAM-based solutions of TCAM,

the depth of TCAM table determines the width of the SRAM memory and is

implemented as a cascade of D
RW

number of SRAM blocks. The width of TCAM

table is encoded as the address of the SRAM memory and implemented as

a cascade of W
log2RD

number of SRAM blocks. The minimum achieved power

consumption of the existing SRAM-based TCAM design methodologies on

FPGAs in terms of the SRAM blocks used can be formulated using Equation

(6) as follows:

PE =

[
D

RW

][
W

log2(RD)

]
×PSU (6)

where PSU denotes the power consumption of an SRAM block. The proposed

design activates at most 1/M number of entire used SRAM blocks to complete

the lookup operation for an incoming TCAM word. Thus, achieves a considerable

reduction in the power consumption by a factor of M as expressed using

Equation (7).

PP =
1
M

[
D

RW

][
W

log2(RD)

]
×PSU (7)

Column 7 of Table 7 shows the power consumption comparison of our

proposed EE-TCAM design with previous works. It shows that the power

consumption of the proposed EE-TCAM design is at least two times lower than

that of [22, 54, 55, 56, 57] for implementing a 18 kb size 512×36 TCAM table.

43

4. Power Consumption Per Performance Comparison

Table 7 presents a comparison of the proposed EE-TCAM designs with

the existing state-of-the-art FPGA-based TCAMs with respect to the power

consumption per performance from [49] given by Equation (8).

Normalized power consumption [µW/ TCAM Depth]
Performance [Gb/s]

(8)

For a fair comparison with [25] and [23], we normalized their reported

frequency and power consumption results to 40-nm CMOS technology using

Equation (9), modified from previous study in [58].

F∗ = F×
(

Technolgy(nm)

40(nm)

)
×
(

1.0
V DD

)
P∗ = P×

(
40(nm)

Technology(nm)

)
×
(

1.0
V DD

)2 (9)

The normalized frequency and power consumption factors are denoted as F∗

and P∗, respectively, when considering 40-nm CMOS technology and a supply

voltage of 1.0 V. The original results of the respective works are reported in

parentheses.

EE-TCAM designs I, II, and III implemented a 512× 36 (18 kb) TCAM

table consuming 33.72 mW, 27.70 mW, and 27.68 mW, respectively, and

achieved the speed of 276 MHz, 321 MHz, and 336 MHz, respectively.

Thus, the power consumption per performance of EE-TCAM I, II, and

III was 6.8 µW/(TCAMDepth.Gb/s), 4.8 µW/(TCAMDepth.Gb/s), and

4.6 µW/(TCAMDepth.Gb/s), respectively. Table 7 shows that the power

consumption per performance of the proposed EE-TCAM designs is at least three

times lower than that of UE-TCAM [54], which is the lowest among the existing

FPGA implementations of SRAM-based TCAMs.

44

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,

vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida

mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna.

Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus

et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus

rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus

sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra

ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi

dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper

nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend,

sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi

auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et,

tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna,

vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse

ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et

magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.

Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at,

tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy

pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac

quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas

lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi

blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla

vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent

euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar

45

Table 7: Comparison of the power consumption per performance with previous works.

Architecture FPGA
TCAM Size Speed

AM/L (a)
Throughput Power

PC/P (b)

[D ×W] [MHz] [Gb/s] [mW]

Locke [57] Virtex-6 512 × 36 166 2304 5.8 253 85

Qian [24] Virtex-6 504 × 180 133 5040 23.4 2548 216

REST [25] Kintex-7 72 × 28 35 (50) 36 1.4 161 (113) 2329

HP-TCAM [55] Virtex-6 512 × 36 118 2016 4.2 188 89

Z-TCAM [56] Virtex-6 512 × 36 159 1440 5.6 109 38

E-TCAM [22] Virtex-6 512 × 36 164 1440 5.8 91 31

UE-TCAM [54] Virtex-6 512 × 36 202 1152 7.1 78 21

Jiang [23] Virtex-7 1024 × 150 97 (139) 9792 20.4 4587 (3211) 315

EE-TCAM-I Virtex-6 512 × 36 276 288 9.7 33.72 6.8

EE-TCAM-II Virtex-6 512 × 36 321 144 11.3 27.7 4.8

EE-TCAM-III Virtex-6 512 × 36 336 72 11.8 27.68 4.6

(a) AM/L: Activated memory/lookup [kb]; (b) PC/P: Power

consumption/performance µW/(TCAMDepth.Gb/s).

46

lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis

eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus

tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac

habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc

elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida

sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc

vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta

vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a

faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl.

Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis

lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in

sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus

commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus

sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis

cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo.

Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet

vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie

non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu,

sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies

auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus.

Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra

in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed

47

vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget

odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu

urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat.

Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis

purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti

sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent

sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames

ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed,

leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum

fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac,

lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In

hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet,

placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada

ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

48

IV. DYNAMICALLY RE-CONFIGURABLE

ENERGY- AND RESOURCE- EFFICIENT

TCAM ARCHITECTURE FOR FPGAS

A. Hardware Architecture of Proposed TCAM: DURE

1. Basic Idea

Table 8: A 3×4 TCAM table

Address TCAM words

0 1001

1 x100

2 01xx

The basic design of the DURE TCAM implementation technique is illustrated

in Fig. 14, which shows a simplified implementation of the 3× 4 TCAM table

presented in Table 8. The TCAM bits of each word are mapped to a specific

row of AND-cascaded RAM. When an input word is applied to the rows of RAM

blocks, the match/mismatch information read is AND-cascaded to obtain the final

match result.

2. Building Blocks of DURE on FPGA

DURE utilizes the on-chip distributed RAM available in state-of-the-art Xilinx

FPGAs. The SLICEM resources of a Xilinx FPGA comprise four LUTRAM

49

Figure 14: A simplified implementation of DURE.

cells, which are configured as quad-port RAM (three read/one write) in DURE.

The four LUTRAM cells are called LUTA, LUTB, LUTC, and LUTD in Xilinx

terminology, as shown in Figure 15. The LUTRAM cells from the same SLICEM

share a common write address port. Four distinct bits are written to these

LUTRAM cells using data from the ports DIA, DIB, DIC, and DID, while the

write address is applied to LUTD. At the same time, the address ports of the

three LUTRAM cells LUTA, LUTB, and LUTC are available for reading. In this

manner, the structure creates quad-port RAM (three read/one write) with three

read ports (read addresses are applied in parallel to LUTA, LUTB, and LUTC)

and one write port (the write address is applied to LUTD).

50

Figure 15: Architecture of the basic memory block of DURE for implementing an 1×18

TCAM on FPGA.

The quad-port RAM structure illustrated in Figure 15 implements an 1× 18

TCAM using the LUTA, LUTB, and LUTC LUTRAM cells. Each of these 64

bit LUTs implements six bits of the TCAM. The input words are applied to the

address ports of the LUTRAMs LUTA, LUTB, and LUTC in parallel, and match

information bits are read at their outputs. The hardwired fast carry chain structure

present in the slice is then used for ANDing match bits to yield the final match

result. This SLICEM configuration constitutes a basic memory (BM) block in

DURE. The architecture of the BM block dictates that LUTD cannot be used

for storing TCAM bits, as the address port of LUTD acts as the common write

address port. To implement wide TCAM words, this implementation scheme

51

Figure 16: Partitioning TCAM table contents into 6-bit chunks.

must transfer the partial match results from the carry chain in the current slice

to the carry chain in the next one. To forward the match result to the carry chain

structure of the next slice, the output of the LUTD DOD must be permanently set

to logic-1. For this purpose, all the bits of the LUTD are initialized to “1,” and a

logic-high is connected to its DID input.

52

3. Architecture of the Proposed DURE

Figure 17: Architecture of the proposed DURE.

53

A TCAM table of word width W and depth D is illustrated in Figure 16, where

it is partitioned into chunks of equal size. The D words of this TCAM table are

divided into chunks of six bits, denoted by C0, C1, ..., CN−1, where N = W/6.

Each three successive chunks of the TCAM table are annotated as basic blocks.

Therefore, each basic block consists of D sub-words with a word width of 18 bits.

The architecture of the proposed DURE is illustrated in Figure 17. This

primarily includes a cascaded array of the proposed BM blocks implementing

the TCAM and a separate update logic. The entire contents of the D×W TCAM

table are mapped onto the array of BM blocks on the FPGA. The sub-words of

the basic blocks are mapped onto the LUTRAMs of the BM blocks, with each

six-bit chunk of the TCAM mapped onto a 64-bit LUTRAM cell. For example,

the three chunks of the first basic TCAM block, C0, C1, and C2, are implemented

using LUTA, LUTB, and LUTC from the BM block, as shown in Figures 16 and

17.

The input word bits are applied in parallel to the D rows of the N/3

BM blocks. The match bits from the LUTRAMs LUTA, LUTB, and LUTC

of each BM block are AND-cascaded through the dedicated hardwired carry

chain structures, which extend into multiple slices [59, 60]. This implementation

technique cascades the BM blocks of each row, BM Block0, BM Block1, ...,

BM BlockN/3, through carry chains. Consequently, the match bits from the

LUTRAMs, which each implement a TCAM word, are AND-cascaded to obtain

the final match result. The use of these extended fast computation structures

allows the cascading operations the be performed without consuming additional

logic, thus also saving any associated routing resources.

54

4. Dynamic Update

Algorithm 2 Update operation in DURE.
INPUT: A W-bit update TCAM word: U0, U1, ..., UW−1.

INPUT: A log2D-bit update address A.

INPUT: Update operation: Add or Delete.

OUTPUT: Updated D × W/k, 2k bit arrays, where k=6: Mi, j =

bi, j,0, bi, j,1, ..., bi, j,2k−1 , i = 0, 1, ..., D−1, j = 0, 1, ..., W/k−1

1: for i = 0, 1, ..., D−1 do

2: for j = 0, 1, ..., W/k−1 do

3: for l = 0, 1, ‘..., 2k−1 do

4: if (Operation==Add) then

5: if (U [j ∗ k : (j+1)∗ k] matches l) then

6: MA, j,l ←′ 1′

7: else

8: MA, j,l ←′ 0′

9: end if

10: else if (Operation==Delete) then

11: MA, j,l ←′ 0′

12: end if

13: end for

14: end for

15: end for

The procedure for updating a TCAM word in DURE is presented in Algorithm

2. The update logic in DURE includes a MOD-64 counter, decoder logic, and

N=W/6 number of six-bit comparison modules, as shown in Figure 17. The

55

update address A of the log2D-bits is decoded to give the write enable signals,

which select the LUTRAM cells of the rows of the intended BM blocks for

writing. This writing operation takes 65 cycles. The MOD-64 counter generates

a new sequence of six bits for every cycle, which is matched with the six-bit

chunks of the update word. If the match result is “TRUE,” then a bit value of

“1” is stored in the corresponding LUTRAM on the index specified by the six-

bit sequence from the MOD-64 counter. The write address is applied using the

common write address port of the LUTRAMs (the address port of LUTD) in each

BM block, as explained above.

During the update process, the BM blocks are available for search operations,

thereby allowing dynamic updates in DURE. The DURE TCAM implementation

technique is highly efficient because all the LUTs from an occupied SLICEM

are utilized and connected to the available three read/one write ports. Thus, the

existing interconnections are exploited for the search and update processes with

very little overhead for update logic in the proposed DURE architecture.

DURE modifies all the LUTRAMs from the BM blocks corresponding to

the update word in parallel, thus taking 65 cycles. Moreover, DURE is able to

support the longest prefix matching through a dynamic update of the priority

encoder, when the priority of the update word is different from that of the old

TCAM word.

B. FPGA Implementation and Results

DURE was implemented in a Xilinx Virtex-6 FPGA device (XC6VLX760).

This FPGA has 33,120 SLICEMs each of which contains four six-input LUTs,

constituting a total of 132,480 six-input LUTRAM cells. The LUTRAM cells

56

and the carry chain structure available in the SLICEM resources are configured

using DURE’s BM blocks, as described in Figure 15. This BM block structure

cannot be inferred using synthesis and implementation tools. We implemented the

proposed BM blocks by instantiating the LUTRAM cells as RAM64M primitives

and initialized them with the appropriate bits by defining their INIT attributes.

The DOA, DOB, DOC, and DOD outputs of the LUTRAMs were connected

as select inputs to the carry chains by defining the CARRY4 primitives. For

example, the implementation of an 1× 18 TCAM data (00000x11111100xxxx),

shown in Figure 15, requires the instantiation of the LUT64M primitives with

(64’h0000000000000003) for LUTA, (64’h8000000000000000) for LUTB, and

(64’h000000000000ffff) for LUTC.

We employed the Xilinx ISE 14.7 synthesis and implementation tool to design

and evaluate our proposed architecture. The Xilinx post-place-and-route results

were used to report the maximum achievable clock rate and resource consumption

of DURE. The power consumption for this implementation was estimated using

the XPower Analyzer tool.

Table 9 lists the FPGA resource utilization for two different TCAM table

sizes (case I: 512 × 36, case II: 1024 × 144) using the DURE technique.

This implementation of DURE does not contain a priority encoder. The

DURE implementation cases I and II utilize 4096 and 32768 LUTRAM cells,

respectively, for storing the contents of the respective TCAM tables, with 624 and

1220 LUTs, respectively, for implementing the update logic. As can be observed,

the resource utilization overhead for implementing the update logic using the

proposed DURE is considerably small.

57

Table 9: FPGA resource utilization for proposed DURE

TCAM size TCAM Update logic

(D×W) LUTRAMs SLICEM FFs LUTs SLICEL

512 × 36 4096 1024 1165 624 210

1024 × 144 32768 8192 2690 1220 582

C. DURE Performance Evaluation and Comparison

The performance of DURE is evaluated for TCAM table implementations of

different sizes to perform its scalability study. We compared the proposed DURE

architecture with existing TCAM architectures for FPGAs in terms of the search

latency, update rate, FPGA resource utilization, performance per area, and energy

efficiency. We implemented two TCAM sizes of 18 kbit (case I: 512× 36) and

144 kbit (case II: 1024×144) in DURE for the sake of appropriate comparisons

with the related works.

1. Scalability of DURE

The scalability of DURE is evaluated through important metrics, such as the

FPGA resource utilization, clock rate, power consumption, and update rate for

TCAM table implementations of different sizes. To this end, TCAM tables of

width W = 36, 72, 108, and 144 against depths of D = 64, 128, 256, and 512 are

compared in Figures 18,19,20,21, and 22.

The utilization of FPGA resources such as LUTRAM and slice registers for

different TCAM sizes implemented using DURE are shown in Figures 18 and

58

19 using a logarithmic scale. It is clear from these figures that the hardware

consumption of DURE increases proportionally with an increase in the width or

depth of the TCAM table size. DURE efficiently utilizes the LUTRAM resources

for storing TCAM bits by implementing 18 TCAM bits in the four LUTRAM

cells of a SLICEM. The LUTRAM consumed in the implementation of a TCAM

table of depth D and width W using DURE can be calculated from equation 10.

No. o f LUT RAMs used = D× [(W/18)×4] (10)

256

512

1024

2048

4096

8192

16384

12864

 W=36 bits W=72 bits W=108 bits W=144 bits

N
o

of
 L

U
TR

AM
s

us
ed

Emulated TCAM Depth (D)

256 512

Figure 18: LUTRAM utilization trend for increasing TCAM depth (D) and width (W).

59

128

256

512

1024

N
o

of
 s

lic
e

re
gi

st
er

s
us

ed

Emulated TCAM Depth (D)

 W=36 bits W=72 bits W=108 bits W=144 bits

12864 256 512

Figure 19: Slice registers usage trend for increasing TCAM depth (D) and width (W).

The clock rates achieved by DURE for different TCAM sizes are shown in

Figure 20. DURE is able to achieve a linear decrease in clock frequency with a

linear increase in the depth or width of the implemented TCAM. The critical path

delay in DURE increases owing to an increase in the lengths of the longest wires

connecting the LUTRAM cells. Figure 20 also shows that DURE can achieve

considerably high operating speeds from 221 MHz up to 475 MHz for the given

TCAM sizes.

60

200

300

400

500
 W=36 bits W=72 bits W=108 bits W=144 bits

C
lo

ck
 ra

te
 (M

H
z)

Emulated TCAM Depth (D)

64 128 256 512

Figure 20: Clock rate trend for increasing TCAM depth (D) and width (W).

Figure 21 shows that the dynamic power consumption of DURE increases

linearly with an increase in the TCAM table width or depth. In SRAM-based

TCAM implementations, the primary source of power consumption is the

SRAM memory, which stores the TCAM contents. As previously mentioned,

DURE efficiently utilizes the LUTRAM resources to store the TCAM contents.

Moreover, avoiding the use of LUTs and their associated programmable

interconnects for AND cascading the potential match bits and instead using the

carry chains for this purpose leads to minimal power consumption in DURE.

61

0

50

100

150

200

250
 W=36 bits W=72 bits W=108 bits W=144 bits

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

Emulated TCAM Depth (D)

12864 256 512

Figure 21: Power consumption trend for increasing TCAM depth (D) and width (W).

The update rate performance achieved in DURE is illustrated in Figure 22,

and is calculated according to equation 11.

U pdate rate =
Clock rate (MHz)

o f cycles consumed per update
(11)

The update operation takes 65 clock cycles. The update rate also decreases

linearly with an increase in the width or depth of the implemented TCAM tables.

DURE can achieve high update rates of 7.3∼3.4 million updates per second.

62

3

4

5

6

7

8
 W=36 bits W=72 bits W=108 bits W=144 bits

U
pd

at
e

ra
te

 (m
illi

on
 u

pd
at

es
/s

ec
)

Emulated TCAM Depth (D)

64 128 256 512

Figure 22: Update rate trend for increasing TCAM depth (D) and width (W).

63

2. Search Latency

[10] [11] [12] [24] [25] [27] [28] [29] [32]
0

2

4

6

8

10

512x36

 Latency (Clock cycles) Latency (ns)

TCAM Architectures

La
te

nc
y

(C
lo

ck
 c

yc
le

s)

256x32504x180512x12872x281024x150 512x36512x36512x36
DURE IDURE II

0

20

40

60

80

100

120

140

160

 L
at

en
cy

 (n
s)

Figure 23: Search latency comparison.

The comparison of DURE with other FPGA-based TCAM architectures in

terms of the search latency is shown in Figure 23. The FPGA-based TCAM

architectures in [17], [25], [26], [20], [21], [16], [36], [37], and [38] achieved

search latencies of 6, 5, 8, 5, 4, 2, 9, 1, and 3 clock cycles, respectively, and

thus the match results against input words are processed in 43 ns, 143 ns, 67

ns, 42 ns, 25 ns, 10 ns, 68 ns, 6 ns, and 29.7 ns respectively. DURE is able to

achieve a search latency of a single clock cycle. For the two cases implemented

in DURE, the delay time achieved in case I is 2.987 ns, and that in case II is

5.723 ns. Thus, the time required by the search operation for DURE is the lowest

64

among the existing FPGA-based TCAM approaches. Thus, the single cycle low

access time search makes the proposed DURE method a promising architecture

for implementing applications for which low response times are desired, such as

TLB caches.

3. Update Rate

4.21

0.07

3.64

0.23 0.31 0.4

3.3

9.6

0.2

5.15

2.7

[10] [11] [12] [24] [25] [27] [28] [29] [32]
0

5

10

 Update rate (Million updates per second)

512x36
DURE IIDURE I

U
pd

at
e

ra
te

 (M
illi

on
 u

pd
at

es
 p

er
 s

ec
)

TCAM Architectures
1024x150 72x28 512x128 512x36 512x36 512x36 504x180 256x32

Figure 24: Update rate comparison.

DURE is compared in terms of the update rate with the related TCAM

architectures in Figure 24. DURE cases I and II, implementing 512× 36 and

1024× 144 sizes of TCAM tables respectively, achieve clock rates of 335 MHz

and 175 MHz. The update operation in DURE is performed in 65 clock cycles.

65

Thus, the update rates achieved in DURE cases I and case II are 5.15 million

updates per second and 2.7 million updates per second respectively.

The BRAM-based TCAM architectures presented in previous works [25],

[20], [21], [16], and [38] achieve clock rates of 35, 118, 159, 202, and 109 MHz,

respectively, while the high update latency of 513 cycles in BRAM-based TCAM

architectures, results in lower update rates of 0.07, 0.23, 0.31, 0.4, and 0.2 million

updates per second, respectively. The TCAM architectures [17], [26], and [36],

implemented in distributed RAM with an update latency of 33 cycles achieve

update rates of 4.21, 3.64, and 3.3 million updates per second, respectively. The

512× 32 size TCAM table implemented in [37] with an update latency of 17

cycles, achieves an update rate of 9.6 million updates per second. It should be

noted that the non-blocking update operation implemented in DURE does not

affect the search rate of the system since the search operations can be performed

simultaneous to the update operations in DURE. However, the blocking update

operations in existing FPGA-based TCAMs lower the effective search rates as

search operations remain suspended during the update operations.

4. FPGA Resource Utilization

Table 10 compares the FPGA resource utilization in terms of LUTRAMS,

LUTLs, slice registers, and BRAMs along with the corresponding percentage

utilization for the various TCAM architectures. Column 2 lists the FPGA

device used for implementing the TCAM table sizes listed in column 3. The

LUTRAM utilization of architectures implemented in distributed RAM is listed

in Column 4 while the BRAM utilization of BRAM-based architectures is

given in Column 7. The maximum TCAM bit storage capacity of the TCAM

architectures [17, 26, 36] implemented in distributed RAM is higher because

it configures the LUTRAMs of a SLICEM as a 32×6 simple dual port RAM,

thereby implementing 30 TCAM bits per SLICEM compared with 18 TCAM

bits per SLICEM in the case of DURE. However, the given architectures achieve

this higher TCAM bit storage capacity at the cost of higher logic consumption in

bitwise ANDing of a large number of wide bit vectors as shown in Column 5. On

the other hand, the proposed DURE uses the carry chain structures available in

FPGA slices for AND-cascading the match bits from the LUTRAMs thereby

saving the extra logic and associated routing resources consumed in bitwise

ANDing.

Table 10: FPGA resource utilization for implementing various TCAM architectures

Architecture FPGA

TCAM

size
LUTRAMs LUTLs

Slice

registers

BRAMs

(36 kbit)
FPGA Slices

(D×W) usage (%) usage (%) usage (%) usage (%) usage(%)

Jiang[17] XC7V2000T 1024×150 20480 (5.94%) 61624 (7%) 37556 (1.54%) 0 20526 (6.72%)

REST[25] XC7K70T 72×28 8 (0.06%) 130 (0.47%) 390 (0.48%) 1 (0.74%) 77 (0.75%)

Xilinx 2017[26] XC7V2000T 512×128 8875 (2.58%) 27559 (3.14%) 35068 (1.44%) 3 (0.23%) 12011 (3.93%)

HP-TCAM[20] XC6VLX760 512×36 0 6546 (1.92%) 2670 (0.28%) 56 (7.78%) 1637 (1.38%)

Z-TCAM[21] XC6VLX760 512×36 0 4462 (1.30%) 2178 (0.23%) 40 (5.56%) 1116 (0.94%)

UE-TCAM[16] XC6VLX760 512×36 0 3652 (1.07%) 1758 (0.19%) 32 (4.44%) 913 (0.77%)

Qian[36] XC6VLX75T 504×180 15552 (93%) 24715 (83%) 35342 (38%) 0 10067 (86%)

Locke[37] XC5VLX220 256×32 4096 (11.23%) 1527 (1.50%) 341 (0.25%) 0 1406 (4.07%)

Syed[38] XC6VLX760 512×36 – 3013 (0.88%) 552 (0.06%) 32 (4.44%) 754 (0.64%)

DURE case I XC6VLX760 512×36 4096 (3%) 1605 (0.47%) 1174 (0.13%) 0 1668 (1.40%)

DURE case II XC6VLX760 1024×144 32768 (24%) 3039 (0.89%) 2700 (0.28%) 0 9654 (8.14%)

5. Performance per Area

The performance of the TCAM architectures is metricised in terms of processing

throughput Mbit/s and area which is measured as the number of FPGA

slices required per word for the implemented TCAM table. Since the FPGA-

based TCAM architectures under consideration were implemented in different

embedded memory resources such as BRAM or distributed RAM, in order to

fairly compare the given TCAM architectures, we measured their normalized area

based on the observation that 384 bits of BRAM bits correspond to one 6-input

LUT, while 1536 BRAM bits are similar to one slice comprising four 6-input

LUTs on a Virtex-6 FPGA. This is described using equation 12 which has been

adapted and modified from [49, 61, 62].

Normalized Area(slices) = # o f FPGA slices

+ [# o f BRAMs (36 kbit) × 24] (12)

Table 11 presents the comparison of DURE in terms of performance per area

metric which is calculated according to equation 13 modified from [49, 61, 62].

Per f ormance
Area

=
T hroughput (Mbit/s)

Normalized Area (Slices)
Number o f TCAM words

(13)

The clock rates of the TCAM designs implemented in different CMOS

technologies are normalized using equation 14 which has been modified from

[50, 58].

F∗ = F×
[

Technology (nm)

40 (nm)

]
×
[

1.0
V DD

]
(14)

where F represents the clock rate, and F∗ denotes the normalized clock rate for

40 nm CMOS technology (Virtex-6) and a supply voltage of 1.0 V.

69

Case I, where a 512× 36 size TCAM table is implemented in 1668 FPGA

slices achieves a throughput of 12.06 Gbit/s. Therefore, the performance per area

achieved in case I is 3.7 Mbit/s/Slice. Thus, DURE case I is able to achieve a

67% higher performance per area than [16], which was already the highest among

the related TCAM architectures.

Case II implements a larger TCAM table of size 144 kbit (1024× 144)

in 9654 FPGA slices and achieves a throughput of 25.2 Gbit/s. Therefore, it

achieves a performance per area of 2.67 Mbit/s/slice. The similar similar sized

TCAM design in [17] achieve a performance per area of 1.04 Mbit/s/slice.

Table 11 illustrates that DURE case II is able to achieve about 2.5 times higher

performance per area than [17], which was already the highest among other

large sized TCAM architectures [17, 26, 36]. Thus, the whole DURE provides

a high-speed and resource- efficient TCAM architecture. Lorem ipsum dolor

sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,

nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu

neque. Pellentesque habitant morbi tristique senectus et netus et malesuada

fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla

et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor

gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc.

Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec

varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,

diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi

auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et,

70

tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna,

vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse

ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et

magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.

Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at,

tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy

pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac

quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas

lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi

blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla

vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent

euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar

lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis

eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus

tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac

habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc

elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida

sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc

vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta

vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a

faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl.

Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis

lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in

71

Table 11: Performance per area comparison with existing FPGA-based TCAM architectures

Architecture
TCAM size FPGA Device BRAMs Slices Normalized Speed Normalized Throughput

P/A(a)

(D×W) (Technology) (36 kbit) usage Area (slices) (MHz) speed (MHz) (Gbit/s)

Jiang[17] 1024×150 Virtex-7 (28 nm) 0 20526 – 199 139 20.9 1.04

REST[25] 72×28
Kintex-

7 (28 nm)
1 77 101 50 35 0.98 0.7

Xilinx

2017[26]
512×128 Virtex-7 (28 nm) 3 12011 12083 171 120 15.36 0.65

HP-

TCAM[20]
512×36 Virtex-6 (40 nm) 56 1637 2981 118 – 4.25 0.73

Z-TCAM[21] 512×36 Virtex-6 (40 nm) 40 1116 2076 159 – 5.72 1.41

UE-

TCAM[16]
512×36 Virtex-6 (40 nm) 32 913 1681 202 – 7.26 2.21

Qian[36] 504×180 Virtex-6 (40 nm) 0 10067 – 109 – 19.26 0.98

Locke[37] 256×32 Virtex-5 (65 nm) 0 1406 – 100 163 5.2 1.13

Syed[38] 512×36 Virtex-6 (40 nm) 32 754 1522 101 – 3.64 1.22

DURE case I 512×36 Virtex-6 (40 nm) 0 1668 – 335 – 12.06 3.7

DURE case II 1024×144 Virtex-6 (40 nm) 0 9654 – 175 – 25.2 2.67

(a) P/A: Performance per Area ((Mbit/s)/Slice)

sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus

commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus

sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis

cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo.

Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet

vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie

non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu,

sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies

auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus.

Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra

in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed

vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget

odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu

urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat.

Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis

purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti

sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent

sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames

ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed,

leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum

fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac,

lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In

hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet,

73

placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada

ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

6. Energy-Delay Product

Table 12 compares the performances of the two cases implemented with DURE

with other FPGA-based TCAM solutions in terms of the energy-delay product

(EDP). The power consumption results of previous methods for implementing

the TCAM architectures in different CMOS technologies are normalized using

equation 15, which has been taken from [58] and modified.

P∗ = P×
[

40 (nm)

Technology (nm)

]
×
[

1.0
V DD

]2

(15)

where P represents the dynamic power consumption, while P∗ represents the

normalized dynamic power consumption for 40 nm CMOS technology (Virtex-6)

and a supply voltage of 1.0 V.

Case I consumes a dynamic power of 52 mW. Thus, the energy consumption

in DURE is 28 fJ/bit/search and the EDP is 84 ns.fJ/bit/search. The EDP

achieved in case I is 2.5 times lower than that of UE-TCAM [16], which is

the lowest among the other FPGA-based TCAM architectures. Case II, which

implements a larger TCAM, consumes a dynamic power of 483 mW and has

a delay time of 5.72 ns. Thus, its EDP is 187 ns.fJ/bit/search, which is about

seven times lower than that of [17], which is 150 kbit size. Thus, DURE is

also a highly energy-delay product efficient TCAM architecture. Lorem ipsum

dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,

nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu

neque. Pellentesque habitant morbi tristique senectus et netus et malesuada

74

fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla

et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor

gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc.

Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec

varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,

diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi

auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et,

tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna,

vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse

ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et

magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.

Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at,

tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy

pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac

quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas

lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi

blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla

vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent

euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar

lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis

eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus

tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac

75

Table 12: Energy-delay product (EDP) comparison for various FPGA-based TCAM solutions

Architecture
TCAM size FPGA Delay Search Power Normalized Energy EDP (ns.fJ/

(D ×W) (Technology) (ns) cycles (W) delay T∗(ns) (fJ/bit/search) bit/search)

Jiang[17] 1024×144 Virtex-7 (28 nm) 5.03 6 1.9(2.7) 7.18 125.8 1290

REST[25] 72×28 Kintex-7(28 nm) 20 5 0.11(0.16) 28.57 559.7 22817

Xilinx 2017[26] 512×128 Virtex-7 (28 nm) 5.85 8 1.01(1.442) 8.34 220 1834

HP-TCAM[20] 512×36 Virtex-6 (40 nm) 8.47 5 0.19 – 102.2 865

Z-TCAM[21] 512×36 Virtex-6 (40 nm) 6.29 4 0.11 – 58.9 371

UE-TCAM[16] 512×36 Virtex-6 (40 nm) 4.95 2 0.08 – 42.3 210

Qian[36] 504×180 Virtex-6 (40 nm) 7.52 9 2.5 – 280.9 2111

Locke[37] 256×32 Virtex-5 (65 nm) 10 1 0.09(0.055) 6.15 68 416

Syed[38] 512×36 Virtex-6 (40 nm) 9.9 3 0.043 – 23.3 231

DURE case I 512×36 Virtex-6 (40 nm) 2.99 1 0.05 – 28 84

DURE case II 1024×144 Virtex-6 (40 nm) 5.72 1 0.48 – 32.8 187

habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc

elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida

sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc

vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta

vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a

faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl.

Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis

lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in

sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus

commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus

sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis

cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo.

Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet

vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie

non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu,

sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies

auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus.

Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra

in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed

vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget

odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu

urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat.

Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis

77

purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti

sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent

sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames

ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed,

leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum

fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac,

lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In

hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet,

placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada

ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

78

V. CONCLUSIONS & FUTURE WORK

In this thesis, we have presented three different high-performance TCAM

architectures for FPGAs.

• A memory-efficient TCAM design, based on multipumping-enabled

multiported SRAM, that operates the SRAM blocks in the design at a

frequency that is multiple times higher than that of the overall system

frequency. This allows reading from the sub-blocks of the SRAM to take

place within one system cycle. The FPGA implementation results show

that the performance per memory of the proposed design is up to 2.85 times

higher than the existing SRAM-based TCAM solutions on FPGA.

• A pre-classifier-based architecture for an energy-efficient SRAM-based

TCAM, which selectively activates at most one row of SRAM blocks for

lookup rather than activating the entire SRAM memory as in the existing

architectures. The experimental results showed that the proposed design

exhibits at least three times lower power consumption per performance than

the existing FPGA realizations of TCAM.

• A technique for implementing a dynamically reconfigurable TCAM in

SRAM-based FPGAs with a higher energy consumption and resource

utilization efficiency. The proposed TCAM design methodology employs

an FPGA’s distributed RAM resources and configures the LUTRAMs

of a SLICEM as quad-port RAM in its implementation. It dynamically

reconfigures only the LUTRAMs associated with the word being updated,

and at the same time allows lookup operations to be performed. DURE

achieved a better performance than other methods in terms of the lookup

79

and update operations when tested on a Virtex-6 FPGA device. It achieved

an energy-delay product efficiency and performance per area that were at

least 2.5 times and 67% better, than those of the other FPGA-based TCAM

solutions.

In the future, we have the plan to implement soft-error protection for SRAM-

based TCAMs. Additionally, we have also the plan to use our proposed high-

performance CAM architectures for implementing efficient translation look-aside

buffer (TLB) cache for soft-core processors.

80

REFERENCES

[1] K. Etzel, “Answering ipv6 lookup challenges,” Technical Article, Cypress

Semiconductor Corporation, 2004.

[2] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”

ACM Computing Surveys (CSUR), vol. 37, no. 3, pp. 238–275, 2005.

[3] J.-Y. Huang and P.-C. Wang, “TCAM-Based IP Address Lookup Using

Longest Suffix Split,” IEEE/ACM Transactions on Networking, vol. 26,

no. 2, pp. 976–989, 2018.

[4] G. Brebner and W. Jiang, “High-speed packet processing using

reconfigurable computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, 2014.

[5] J. R. Haigh and L. T. Clark, “High performance set associative translation

lookaside buffers for low power microprocessors,” Integration, the VLSI

Journal, vol. 41, no. 4, pp. 509–523, 2008.

[6] R. Karam, R. Puri, S. Ghosh, and S. Bhunia, “Emerging trends in design

and applications of memory-based computing and content-addressable

memories,” Proceedings of the IEEE, vol. 103, no. 8, pp. 1311–1330, 2015.

[7] I. Arsovski, A. Patil, R. M. Houle, M. T. Fragano, R. Rodriguez, R. Kim,

and V. Butler, “1.4 Gsearch/s 2-Mb/mm 2 TCAM Using Two-Phase-Pre-

Charge ML Sensing and Power-Grid Pre-Conditioning to Reduce Ldi/dt

Power-Supply Noise by 50%,” IEEE Journal of Solid-State Circuits, vol. 53,

no. 1, pp. 155–163, 2018.

81

[8] I. Arsovski, R. M. Houle, M. T. Fragano, A. Patil, and V. D. Butler, “Ternary

content addressable memory (TCAM) for multi bit miss detect circuit,”

Mar. 13 2018, uS Patent 9,916,896.

[9] L.-Y. Huang, M.-F. Chang, C.-H. Chuang, C.-C. Kuo, C.-F. Chen, G.-

H. Yang, H.-J. Tsai, T.-F. Chen, S.-S. Sheu, K.-L. Su et al., “ReRAM-

based 4T2R nonvolatile TCAM with 7x NVM-stress reduction, and 4x

improvement in speed-wordlength-capacity for normally-off instant-on

filter-based search engines used in big-data processing,” in VLSI Circuits

Digest of Technical Papers, 2014 Symposium on. IEEE, 2014, pp. 1–2.

[10] X.-T. Nguyen, T.-T. Hoang, H.-T. Nguyen, K. Inoue, and C.-K. Pham,

“An FPGA-Based Hardware Accelerator for Energy-Efficient Bitmap Index

Creation,” IEEE Access, vol. 6, pp. 16 046–16 059, 2018.

[11] O. Mujahid, Z. Ullah, H. Mahmood, and A. Hafeez, “Fast pattern

recognition through an lbp driven cam on fpga,” IEEE Access, vol. 6, pp.

39 525–39 531, 2018.

[12] K.-J. Lin and C.-W. Wu, “A low-power cam design for lz data compression,”

IEEE Transactions on Computers, vol. 49, no. 10, pp. 1139–1145, 2000.

[13] M. Imani, A. Rahimi, and T. S. Rosing, “Resistive configurable associative

memory for approximate computing,” in Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2016. IEEE, 2016, pp. 1327–

1332.

[14] H.-J. Tsai, K.-H. Yang, Y.-C. Peng, C.-C. Lin, Y.-H. Tsao, M.-F. Chang, and

T.-F. Chen, “Energy-efficient TCAM search engine design using priority-

82

decision in memory technology,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 25, no. 3, pp. 962–973, 2017.

[15] M.-F. Chang, C.-C. Lin, A. Lee, Y.-N. Chiang, C.-C. Kuo, G.-H. Yang, H.-

J. Tsai, T.-F. Chen, and S.-S. Sheu, “A 3T1R Nonvolatile TCAM Using

MLC ReRAM for Frequent-Off Instant-On Filters in IoT and Big-Data

Processing,” IEEE Journal of Solid-State Circuits, 2017.

[16] Z. Ullah, M. K. Jaiswal, R. C. C. Cheung, and H. K. H. So, “UE-TCAM:

An ultra efficient SRAM-based TCAM,” in TENCON 2015 - 2015 IEEE

Region 10 Conference, Nov 2015, pp. 1–6.

[17] W. Jiang, “Scalable ternary content addressable memory implementation

using FPGAs,” in Proc. of the ninth ACM/IEEE symposium on Architectures

for networking and communications systems, 2013, pp. 71–82.

[18] Xilinx, “Virtex-6 FPGA memory resources user guide,” [Online].

Available: http://www.xilinx.com, 2014.

[19] “Xilinx WP335 Creative Uses of Block RAM, author=Alfke, Peter,

journal=White Paper: Virtex and Spartan FPGA Families, Xilinx,

year=2008.”

[20] Z. Ullah, K. Ilgon, and S. Baeg, “Hybrid Partitioned SRAM-Based Ternary

Content Addressable Memory,” Circuits and Systems I: Regular Papers,

IEEE Transactions on, vol. 59, no. 12, pp. 2969–2979, 2012.

[21] Z. Ullah, M. Jaiswal, and R. Cheung, “Z-TCAM: An SRAM-based

architecture for TCAM,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 23, no. 2, pp. 402–406, Feb 2015.

83

[22] Z. Ullah, M. K. Jaiswal, and R. C. Cheung, “E-TCAM: An efficient SRAM-

based architecture for TCAM,” Circuits, Systems, and Signal Processing,

vol. 33, no. 10, pp. 3123–3144, 2014.

[23] W. Jiang, “Scalable ternary content addressable memory implementation

using FPGAs,” in Proc. of the ninth ACM/IEEE symposium on Architectures

for networking and communications systems, 2013, pp. 71–82.

[24] Z. Qian and M. Margala, “Low power RAM-based hierarchical CAM

on FPGA,” in ReConFigurable Computing and FPGAs (ReConFig), 2014

International Conference on. IEEE, 2014, pp. 1–4.

[25] A. Ahmed, K. Park, and S. Baeg, “Resource-Efficient SRAM-Based

Ternary Content Addressable Memory,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1583–1587, 2017.

[26] Xilinx, “Ternary Content Addressable Memory (TCAM) Search IP for

SDNet v1.0; Xilinx Product Guide PG190,” November, 2017.

[27] Z. Wang, H. Che, M. Kumar, and S. K. Das, “CoPTUA: Consistent policy

table update algorithm for TCAM without locking,” IEEE Transactions on

Computers, vol. 53, no. 12, pp. 1602–1614, 2004.

[28] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial Order Theory

for Fast TCAM Updates,” IEEE/ACM Transactions on Networking (TON),

vol. 26, no. 1, pp. 217–230, 2018.

[29] S. Mittal, “A survey of techniques for architecting TLBs,” Concurrency and

Computation: Practice and Experience, vol. 29, no. 10, p. e4061, 2017.

84

[30] S. Tamimi, Z. Ebrahimi, B. Khaleghi, and H. Asadi, “An Efficient

SRAM-based Reconfigurable Architecture for Embedded Processors,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 2018.

[31] K. Aasaraai and A. Moshovos, “NCOR: An FPGA-friendly nonblocking

data cache for soft processors with runahead execution,” International

Journal of Reconfigurable Computing, vol. 2012, p. 6, 2012.

[32] M. Biglari, K. M. Barijough, M. Goudarzi, and B. Pourmohseni, “A fine-

grained configurable cache architecture for soft processors,” in Computer

Architecture and Digital Systems (CADS), 2015 18th CSI International

Symposium on. IEEE, 2015, pp. 1–6.

[33] H. Park, H. So, and H. Lee, “Application specific cache design using

STT-RAM based block-RAM for FPGA-based soft processors,” IEICE

Electronics Express, vol. 15, no. 10, pp. 20 180 330–20 180 330, 2018.

[34] T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross, “Microprocessor

optimizations for the Internet of Things: a survey,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 1,

pp. 7–20, 2018.

[35] A. Gordon-Ross, F. Vahid, and N. D. Dutt, “Fast configurable-cache tuning

with a unified second-level cache,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 17, no. 1, pp. 80–91, 2009.

85

[36] Z. Qian and M. Margala, “Low power RAM-based hierarchical CAM

on FPGA,” in ReConFigurable Computing and FPGAs (ReConFig), 2014

International Conference on. IEEE, 2014, pp. 1–4.

[37] K. Locke, “Xilinx Application Note: XAPP1151 - Parameterizable Content-

Addressable Memory,” http://www.xilinx.com, 2011.

[38] F. Syed, Z. Ullah, and M. K. Jaiswal, “Fast Content Updating Algorithm for

an SRAM based TCAM on FPGA,” IEEE Embedded Systems Letters, 2017.

[39] P. Maidee, “Multiplexer-based ternary content addressable memory,”

May 16 2017, uS Patent 9,653,165.

[40] M. Somasundaram, “Circuits to generate a sequential index for an input

number in a pre-defined list of numbers,” Patent, Dec. 26, 2006, US Patent

7,155,563.

[41] S. Cho, J. Martin, R. Xu, M. Hammoud, and R. Melhem, “CA-RAM:

A high-performance memory substrate for search-intensive applications,”

in Performance Analysis of Systems Software, 2007. ISPASS 2007. IEEE

International Symposium on, 2007, pp. 230–241.

[42] C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories for

FPGAs,” in Proceedings of the 18th annual ACM/SIGDA int. symposium

on Field programmable gate arrays. ACM, 2010, pp. 41–50.

[43] H. E. Yantir, S. Bayar, and A. Yurdakul, “Efficient implementations of

multi-pumped multi-port register files in FPGAs,” in Digital System Design

(DSD), 2013 Euromicro Conf. on. IEEE, 2013, pp. 185–192.

86

[44] C. E. LaForest, “Multi-Ported Memories for FPGAs, Accessed on Nov. 13,

2017,” [Online]. Available: http://fpgacpu.ca/multiport/index.html.

[45] N. Manjikian, “Design issues for prototype implementation of a pipelined

superscalar processor in programmable logic,” in Communications,

Computers and signal Processing, 2003. PACRIM. 2003 IEEE Pacific Rim

Conference on, vol. 1. IEEE, 2003, pp. 155–158.

[46] H. Yokota, “Multiport memory system,” May 29 1990, uS Patent 4,930,066.

[47] B. A. Chappell, T. I. Chappell, M. K. Ebcioglu, and S. E. Schuster, “Virtual

multi-port ram employing multiple accesses during single machine cycle,”

Jul. 30 1996, uS Patent 5,542,067.

[48] A. Abdelhadi and G. G. Lemieux, “Modular Switched Multiported SRAM-

Based Memories,” p. 22, 2016.

[49] H. Nakahara, T. Sasao, H. Iwamoto, and M. Matsuura, “LUT Cascades

Based on Edge-Valued Multi-Valued Decision Diagrams: Application to

Packet Classification,” IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 6, no. 1, pp. 73–86, 2016.

[50] P.-T. Huang and W. Hwang, “A 65 nm 0.165 fJ/Bit/Search 256 x 144

TCAM Macro Design for IPv6 Lookup Tables,” IEEE Journal of Solid-

State Circuits, vol. 46, no. 2, pp. 507–519, 2011.

[51] D. Shah and P. Gupta, “Fast incremental updates on ternary-cams for routing

lookups and packet classification,” in Proceedings of Hot Interconnects,

2000.

87

[52] ——, “Fast updating algorithms for tcam,” IEEE Micro, vol. 21, no. 1, pp.

36–47, 2001.

[53] Xilinx, “Xilinx Xpower Analyzer,” [Online]. Available:

http://www.xilinx.com.

[54] Z. Ullah, M. K. Jaiswal, R. C. C. Cheung, and H. K. H. So, “UE-TCAM:

An ultra efficient SRAM-based TCAM,” in TENCON 2015 - 2015 IEEE

Region 10 Conference, Nov 2015, pp. 1–6.

[55] Z. Ullah, K. Ilgon, and S. Baeg, “Hybrid partitioned SRAM-based ternary

content addressable memory,” IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 59, no. 12, pp. 2969–2979, 2012.

[56] Z. Ullah, M. K. Jaiswal, and R. C. Cheung, “Z-TCAM: an SRAM-

based architecture for TCAM,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 23, no. 2, pp. 402–406, 2015.

[57] K. Locke, “Parameterizable content-addressable memory,” Xilinx

Application Note XAPP1151, 2011.

[58] O.-C. Chen and R.-B. Sheen, “A power-efficient wide-range phase-locked

loop,” IEEE Journal of Solid-State Circuits, vol. 37, no. 1, pp. 51–62, 2002.

[59] Xilinx, “Virtex-6 FPGA Configurable Logic Block User Guide UG364

(v1.2),” [Online]. Available: http://www.xilinx.com, 2012.

[60] H. Parandeh-Afshar, G. Zgheib, P. Brisk, and P. Ienne, “Routing wire

optimization through generic synthesis on FPGA carry chains,” in

Proceedings of the 20th International Workshop on Logic and Synthesis,

San Diego, Calif, 2011.

88

[61] H. Nakahara, T. Sasao, and M. Matsuura, “An update method for a cam

emulator using an lut cascade based on an evmdd (k),” in Multiple-Valued

Logic (ISMVL), 2014 IEEE 44th International Symposium on. IEEE, 2014,

pp. 1–6.

[62] I. Sourdis, D. N. Pnevmatikatos, and S. Vassiliadis, “Scalable multigigabit

pattern matching for packet inspection,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 16, no. 2, pp. 156–166, 2008.

89

ACKNOWLEDGEMENTS

Praise be to Allah, the Cherisher and Sustainer of the Worlds.

I would like to express my sincere gratitude to my advisor Professor Jeong-

A Lee for exceptional guidance and support during my doctoral study and

research. Besides my advisor, my sincere thanks also go to Professor Zahid

Ullah for sharing his expertise, sincere and valuable guidance and encouragement

throughout my research period, which steered me in the right direction. I am

thankful to my thesis evaluation committee members Prof. Sangman Moh, Prof.

Choi Goang Seog, Prof. Seokjoo Shin and Prof. Cheol Hong Kim for their

insightful comments and critical review.

I would like to thanks department of computer engineering, college of

engineering, Chosun University for the research facilities and funding. I must

pay my esteem regards to National Research Foundation of Korea for its financial

support during the period of my doctoral studies.

I am thankful to Mr Umar Afzaal for providing me with personal and professional

help. I am grateful to my lab members: Sami Hassan, Tooba Arifeen, and

Sana Ullah with whom I have had the pleasure to work during this project. I

am extremely thankful to Mr Ijaz Ahmed, Without your precious support and

friendship, my stay at Korea won’t be this smooth.

I must express my very profound gratitude to my beloved daughter and my wife

Sehrish Jalal for providing me unconditional love with unfailing support and

continuous encouragement throughout my years of study. This accomplishment

would not have been possible without them. Thank you.

I dedicate this thesis with love and eternal appreciation to my great parents,

Nasreen Bibi and my Late father Mahmood Khan, who never stop giving of

90

themselves in countless ways. I dedicate this thesis to my beloved brothers and

sisters who always stand by with me when things look bleak.

And finally, to all my teacher at Pakistan who enabled me to stand in place.

Thanks for all your encouragement!

Inayat Ullah

February, 2019

Chosun University

91

	I. INTRODUCTION
	A. Background
	B. Problem Statement
	C. Motivations
	D. Thesis Contributions
	E. Related Work
	F. Thesis Organization

	II. MULTIPUMPING ENABLED MULTIPORTED SRAM-BASED TCAM ARCHITECTURE
	A. Multipumping-Enabled Multiported SRAM
	B. Implementation Setup and Results
	C. Performance Evaluation & Comparison

	III.PRE-CLASSIFICATION- BASED ENERGY-EFFICIENT SRAMBASED TCAM ARCHITECTURE
	A. Proposed Classification Scheme
	B. EE-TCAM Proposed Architecture
	C. EE-TCAM FPGA Implementation & Results
	D. EE-TCAM Performance Evaluation & Comparison

	IV. DYNAMICALLY RE-CONFIGURABLE ENERGY- AND RESOURCE- EFFICIENT TCAM ARCHITECTURE FOR FPGAS
	A. Hardware Architecture of Proposed TCAM: DURE
	B. FPGA Implementation and Results
	C. DURE Performance Evaluation and Comparison

	V. CONCLUSIONS & FUTURE WORK
	REFERENCES
	ACKNOWLEDGEMENTS

<startpage>20
I. INTRODUCTION 1
 A. Background 1
 B. Problem Statement 3
 C. Motivations 6
 D. Thesis Contributions 7
 E. Related Work 8
 F. Thesis Organization 11
II. MULTIPUMPING ENABLED MULTIPORTED SRAM-BASED TCAM ARCHITECTURE 13
 A. Multipumping-Enabled Multiported SRAM 13
 B. Implementation Setup and Results 20
 C. Performance Evaluation & Comparison 21
III.PRE-CLASSIFICATION- BASED ENERGY-EFFICIENT SRAMBASED TCAM ARCHITECTURE 28
 A. Proposed Classification Scheme 28
 B. EE-TCAM Proposed Architecture 34
 C. EE-TCAM FPGA Implementation & Results 37
 D. EE-TCAM Performance Evaluation & Comparison 38
IV. DYNAMICALLY RE-CONFIGURABLE ENERGY- AND RESOURCE- EFFICIENT TCAM ARCHITECTURE FOR FPGAS 49
 A. Hardware Architecture of Proposed TCAM: DURE 49
 B. FPGA Implementation and Results 56
 C. DURE Performance Evaluation and Comparison 58
V. CONCLUSIONS & FUTURE WORK 79
REFERENCES 81
ACKNOWLEDGEMENTS 90
</body>

