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Abstract

Design of Geomagnetic Field Based 
Indoor Landmark Classifier using a 

Deep Learning

Bimal Bhattarai

Advisor: Prof. Jae-Young Pyun

Department of Information and 

Communication Engineering

Graduate School of Chosun University

The unstable nature of RF signals and the need for external infrastructure 

inside buildings have limited the use of positioning techniques, such as Wi-

Fi and Bluetooth fingerprinting. Compared to these techniques, the 

geomagnetic field exhibits a stable signal strength in the time domain. 

However, existing magnetic positioning methods cannot perform well in a 

wide space because the magnetic signal is not always discernible. In this 

thesis, deep recurrent neural networks (DRNNs) is proposed to build a model 

that is capable of capturing long-range dependencies in variable-length input 

sequences. The used of DRNNs is brought from the idea that the 

spatial/temporal sequence of magnetic field values around a given area will 

create a unique pattern over time; despite multiple locations having the same 

magnetic field value. Therefore, the indoor space can be divided into 

landmarks with magnetic field values and find the position of the user in a 
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particular area inside the building. A long short-term memory (LSTM) 

DRNNs is presented for spatial/temporal sequence learning of magnetic 

patterns and evaluate their positioning performance on our testbed datasets. 

Experimental results show that our proposed models outperform other 

traditional positioning approaches with machine learning methods, such as 

k-nearest neighbors (KNNs) and support vector machine (SVM).
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한글요약

딥 러닝을 활용한 지자기장 기반

실내 랜드마크 분류기 설계
비말 바하타라이

지도교수 :변재영

조선대학교대학원,

정보통신공학과

GPS 신호의 수신이 제한되는 실내 환경에서 위치 기반 서비스 제공을

위해 Wi-Fi 및 블루투스와 같은 무선 기술 기반의 핑거프린팅 방식이

사용되고 있지만, 이러한 기술들은 실내 환경에 인프라를 구축해야

한다는 점과 실내 환경에 따라 무선 신호의 세기가 불안정하게

관측된다는 한계가 있다. 이러한 무선 기술과 달리, 지자기장은 시간

도메인 상에서 비교적 안정적인 자기장 세기를 보여주고 있어

지자기장 기반 측위 기술에 대한 연구 및 활용 사례가 증가하고 있다.

그러나, 자기장 세기가 언제 어디서나 식별 가능한 고유한 값을

나타내지는 않기 때문에 기존의 지자기장 기반 측위 방식은 넓은
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공간에서 활용하기에 무리가 있다. 본 논문에서는 가변 길이 입력

시퀀스에서 긴 범위의 종속성을 획득할 수 있는 모델을 구축하기 위한

Deep Recurrent Neural Networks (DRNN)을 제안한다. DRNN 의

사용은 동일한 세기의 자기장 값이 여러 장소에서 관측될 수 있지만

주어진 영역 주위의 자기장 값의 공간적/시간적 시퀀스는 시간의

흐름에 따라 고유한 패턴을 생성한다는 점에 착안하여 제안되었다.

따라서, 실내 공간은 자기장 값을 가진 랜드마크로 나뉘어질 수

있으며 이를 통해 건물 내 특정 영역에서 사용자의 위치를 찾을 수

있다. 본 논문에서는 자기장 패턴의 공간적/시간적 시퀀스 학습을

위해 장단기 메모리 (LSTM) DRNN 을 제시하고 본 연구에서 사용된

테스트 환경에 대한 데이터세트에서 측위 성능을 평가하였다.

마지막으로, 본 논문의 실험 결과를 통해 제안 모델이 Support Vector 

Machine (SVM) 및 K-nearest Neighbors (KNN)과 같은 기존의

머신러닝 기반 측위 방식들보다 우수한 성능을 제공함을 확인하였다.
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Chapter 1: Introduction

1.1 Motivation

The demand for indoor location-based service (LBS) is fueling the decade-

long research into indoor positioning technology. In an outdoor environment, 

the global navigation satellite system (GNSS) uses line-of-sight (LOS) 

transmission to position the user [1]. However, it cannot be applied in an 

indoor environment due to multipath effect, signal fading, shadowing, and 

delay distortion in a radio propagation environment [2]. With the proliferation

of smartphones and other mobile devices, an array of embedded sensors can 

be used for the indoor positioning system. Many studies have been performed

on Wi-Fi or Bluetooth based fingerprinting indoor localization using received 

signal strength (RSS) and channel state information (CSI) 

[3][4][5][6][7][8][9]. Although these methods can achieve the desired 

accuracy at an acceptable cost, they cannot work effectively when a radio 

frequency (RF) signal is weak. Also, these methods need an expensive 

external device such as wireless access points (WAP) or Bluetooth beacon all 

over the building to transmit the RF signal.

In contrast, the geomagnetic field is ubiquitous and does not need any 

additional infrastructure. The magnetic field strength (MFS) is non-uniform 

inside a building due to building materials such as steels, iron, and reinforced 

concrete [10][11]. Due to these anomalies in the MFS, it can be used by an

indoor positioning system. Magnetic signatures have previously been used for 

robot tracking and navigation [12][13]. Specifically, the fingerprint-based 

approach is widely accepted for magnetic signature recognition due to low 
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complexity and a real-time testing process [14][15]. This fingerprint method 

is usually divided into two phases: the training and the testing. In the training

phase, the dataset is prepared by collecting the MFS data at all reference points

and stored in the positioning server. Then, the proper deep learning model is 

used to train those data. In the testing phase, the real-time MFS data are 

collected and given to the trained model to find out the current location. The 

performance can be evaluated by performance metrics like accuracy, precision, 

recall, and F1 score.

Although many other magnetic-based positioning methods have been 

proposed, the ambiguity of magnetic data in a wide space may converge a 

positioning result in the wrong way at some cases. Here, a deep learning model, 

which can perform effectively to classify landmarks based on the magnetic 

signal variations is adopted. In the area of deep learning, there is an increasing

interest in the recurrent neural network (RNN), which has been used for many 

sequence modeling tasks. RNN has been used in many technical applications, 

such as language modeling, speech recognition, video processing, and many 

other sequence labeling tasks [16][17][18][19]. The reason behind its 

promising performance is its ability to learn the temporal dependencies by

exploiting the contextual information and in variable-length data.

1.2 Objectives

This research introduces an indoor classification system based on a deep 

learning models and compare its effectiveness with other state-of-art machine 

learning methods. We also aim to suggest and evaluate other deep learning 
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techniques that can increase the overall accuracy and performance of indoor 

positioning system using landmarks classification.

1.3 Contributions

In this thesis, we utilize the unique signal features of the magnetic field 

gathered from a smartphone for fingerprinting based classification. We use 

long short-term memory (LSTM)-based deep RNNs (DRNNs) for classifying

the location mapped from variable-length input sequences of MFS, and we 

develop a positioning estimation architecture based on deep layers of 

unidirectional and bidirectional RNNs, as well as a cascaded architecture [20]. 

Moreover, we test these deep learning models with different testbeds to 

validate their performance at classifying various landmarks. The major 

contributions of our research work are as follows:

1. We experimentally validate the feasibility of using MFS for landmark 

classification. In addition, we show that the MFS data is stable over a 

period of time.

2. We show the success of using unidirectional and bidirectional DRNNs 

for landmark classification without any additional data preprocessing 

and validate its performance in two typical indoor environments.

3. We introduce the implementation of bidirectional DRNNs for 

magnetic landmark classification. As far as we know, this is the first 

work to do so.

1.4 Thesis Layout

The structure of this thesis is organized as follows. After the Introduction in 

Chapter 1, we provide a background overview of the Indoor positioning 
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system (IPS), Magnetic field preliminaries, RNN, LSTM, and performance 

metrics commonly used for performance evaluation in Chapter 2. Chapter 3 

discusses relevant previous works in the field of IPS. The architectural 

structure of our proposed system and the three DRNN models are described in 

Chapter 4. Chapter 5 provides an overview of the experimental methodology

and setup, which is used to train and evaluate our models. Experimental results

are discussed and analyzed in Chapter 6. Finally, chapter 7 concludes the 

thesis and explore suggestions for further research based on the presented 

work.
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Chapter 2: Background

2.1 Indoor Positioning System (IPS)

In an indoor environment, due to signal attenuation and multipath fading, 

GNSS cannot be used to track user location. An IPS is a system to locate a 

user or an object inside a building. An IPS is implemented based on 

environment and technologies available. Several non-radio and wireless 

technologies have been studied in the last decades. Most of the studies use Wi-

Fi or Bluetooth low energy (BLE) signals, taking advantages of existing 

infrastructures deployed inside the building. However, non-radio technology 

such as geomagnetic field does not require any additional infrastructure. 

2.1.1 Radio technologies

Most of the research in positioning system has been focused on using radio 

frequency (RF) signals in an indoor environment. The technologies generally 

used are Wi-Fi and Bluetooth, which utilizes Received signal strength (RSS) 

to determine the user’s location inside a building. Since the inverse-square law 

applies to radio wave propagation, the determination of distance is possible 

based on RSS. 

Radio-Frequency Identification (RFID) tags are also used for indoor 

positioning systems [21]. The location is estimated using fixed RFID readers 

placed in the building. The RFID tag or a smartphone attached to user is 

scanned by RFID readers to give the positon of a user inside a building. 

However, the limitation is that the user should be close enough to the RFID 

reader for scanning the tag.  
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The operation principle for wireless indoor positioning technologies using Wi-

Fi or Bluetooth is similar. The RF signal is received using a different RF 

receiver in a smartphone. The signal received provides an information on 

Angle of Arrival (AoA), Time of Arrival (ToA) or RSS. The RSS and ToA

can be used for distance estimation, which can be deployed in different 

location estimating algorithms. The most commonly used technique is the 

fingerprinting technique.  It requires the collection of RSS at many reference 

points to build a “radio map”. The radio map is stored in a database and it is 

used to position the user by matching the RSS in real time. The fingerprinting 

process can be divided into an offline phase and an online phase as shown in 

Figure 1.

2.1.2 Non-radio technologies

The technologies using infrared signals, geomagnetic field, acoustic/sound 

signals, inertial measurement, vision-based data etc. do not require RF signal 

to position a user. Moreover, the technologies such as the geomagnetic field 

and inertial measurement do not even need any expensive external 

infrastructure inside a building for positioning task. The infrared signals are

the active badge system introduced by R. Want et al. in 1992 [22]. In this 

system, the receivers are placed inside the specific places in the building.

The user with a wearable badge, which emits an infrared signal, can know its 

position using receivers. However, the system is not efficient because infrared 

signals need to be in line-of-sight and have a short-range transmission. 

Similarly, acoustic signal based positioning is based on sound signal 

transmission by a beacon. 
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Obtain RSS
(RSS)

Divide testbed into 
k grids
(x,y)k

Database

Store data
[(x,y)k, RSS] 

Fingerprinting 
algorithm

OFFLINE PHASE ONLINE PHASE

Output coordinate
(x,y)

Figure 1. Fingerprinting based wireless indoor positioning system using RSS.

The inertial measurement unit (IMU) is used to track the object or person and 

it is mostly applied in pedestrian dead reckoning system [23][24][25]. The 

sensor data from the modern smartphones can be given to proper algorithms 

to track the movement of a person. The user can be localized based on step 

detection, step length and heading angle in an indoor environment using the 

IMU unit of the smartphone, assuming that the starting position of the user is 

already known. 

In recent years, many researches have been done in geomagnetic filed based 

positioning system [26][27]. The dedicated chips inside smartphone called as 

magnetometer can sense the magnetic field variations in the Earth’s magnetic 

field. These variations can be used to build a radio map and provide 

localization [28]. Magnetic based positioning system is further discussed in 

other chapters.

2.2 Magnetic Field Preliminaries

The geomagnetic field is present on the surface of the earth with a magnitude

from 0.22 to 0.65 Gauss (25 to 65 �� ). By using a magnetometer, a

smartphone can measure the magnetic field in the form of a vector with three 
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components (�� ,�� ,��). The geomagnetic field is found to be stable in the 

absence of any interference from other external magnetic elements. We 

conducted an experiment to find the stability of the magnetic field in a corridor 

located on the eighth floor of an IT department building, Chosun university. 

Magnetic field data were collected along the corridor of length 100	�	at 

different times for a day, a week, and a month as shown in Figure 2. Later, the 

data were analyzed to see a statistical significance of magnetic field over a 

period of time.

There were no statistically significant differences between magnetic field data 

from different time of day (� = 0.29, � = 0.74), week (� = 0.90,� = 0.41), 

and month (� = 0.96, � = 0.39) as determined by a one-way analysis of 

variance (ANOVA) [29]. Here, � is the ratio of variation between MFS 

sample means to variation within the samples and � is the probability to 

determine how common or rare an �-value is on the presumption that the null 

hypothesis is true. The null hypothesis is usually rejected if �< 0.05. Therefore, 

we used the magnetic field, which is stable over a period of time for the indoor 

landmark classification.
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Figure 2. Stability of magnetic field value over time: (a) variation in a day; (b) 

variation over a week; (c) variation over a month.

2.2.1 Magnetic Data Acquisition 

The magnetic data for a landmark or reference location is obtained from the 

magnetic sensor of a smartphone. The data structure can be formed as � =

[�� ,��, �� ,��, �����,����� ,�����] , where �� , ��, and �� represent 

magnetic field intensity from the three-axis magnetic sensor of a smartphone 

in space relative to the orientation of the phone, �� represents average 

magnetic field intensity, and �����,����� , and ����� represent the magnetic 

field intensity after it has been converted to global frame system. Since the 

orientation of the smartphone plays an important role in positioning, we had

also gathered magnetic field data with a quaternion-derived rotation matrix. 

Thus, we have to obtain the 3×3 rotation matrix �, which is the change from 

the device coordinate system to global coordinate system. Given any vector �
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in the device coordinate system, the corresponding vector ���� in global

coordinate system can be obtained by multiplying � with	�.

The first feature �����	in (2) is a very small value close to zero, thus	�����

and ����� usually retain the variation of magnetic field at different location 
points. 

2.3 Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a class of deep neural network that 

contains cyclic connections that allow it to learn the temporal changes of a 

sequential data. Unlike traditional feed-forward neural networks (FNNs), a 

RNN has the characteristics of memorizing the previous information and 

applying it to the current input. RNNs have been successfully applied to

sequential nature datasets such as natural language processing, due to their 

capability to model highly non-linear features. As shown in Figure 3, each 

RNN node generates the output �� and current hidden state ℎ� by using the 

current input �� and previous hidden state 	ℎ��� based on the following 

equations:

ℎ� = ��(���ℎ��� +����� + ��) (3)

�� = ������ℎ� + ���, (4)

where �� and �� are the hidden layer and output layer activation functions, 

respectively. ��� ,	��� , and ��� are the weights for the hidden-to-hidden 

recurrent connection, hidden-to-output recurrent connection, and input-to-

hidden connection, respectively.	�� and �� are the  bias terms for the output 

�� =	���
� +��

� +��
�	

(1)

������, ����� ,������ = � × ��� ,�� ,���
�
. (2)
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and hidden states, respectively. The activation functions are element-wise and 

non-linear and are commonly selected from various existing functions such as 

sigmoid, hyperbolic tangent, or rectified linear unit (ReLU).

Figure 3. Schematic diagram of an RNN node.

2.4 Long Short-Term Memory (LSTM) based RNN

The traditional RNN is unable to handle long sequences of data. In addition, 

training RNN can be challenging due to vanishing and exploding gradient, 

which creates a problem when backpropagating through long-range temporal 

intervals [29]. In order to handle the long-range dependencies of learning data, 

a new class of network architecture with learnable gates has been used which 

is known as LSTM. LSTM contains memory blocks with memory cells called 

gates in the recurrent hidden layer as shown in Figure 4.

These learnable gates modulate the flow of information and control when to 

forget previous hidden states. Also, the new information is updates by the 

gates. The function of each memory cell is as follows:

· Input gate	�� controls input activation into the memory cell

· Output gate �� controls memory cell outflow of activation to output
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· Forget gate �� 	determines when to forget memory cell content in the 

internal state

· Input modulation gate ��	provides the input to the memory cell

· Internal state �� controls cell internal recurrence

· Hidden state ℎ� controls information from previous samples within the 

context window

Figure 4. Schematic diagram of LSTM memory cell structure with an inner

recurrence �� and outer recurrence	ℎ�.

�� = �(�� +���� +��ℎ���	) (5)

�� = ���� +���� +��ℎ���� (6)

�� = �(�� + ���� +��ℎ���) (7)

�� = ���� + ���� +��ℎ���� (8)
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�� = ������ + ���� (9)

ℎ� = ���ℎ(��)��, (10)

where � is the activation function, the � and � terms represent weight 

matrices (e.g., �� is the weight matrix for the input data �� given to input gate 

��	and �� is the weight matrix for ℎ���	data given to input gate ��), and the �

term denotes the bias vector (e.g., �� is the input gate bias vector). The training 

process of LSTM-RNNs is mostly centered on learning when to let an 

activation into the internal states of its cell and when to let an activation of the 

outputs. In addition, the network needs to learn the parameters �,�,	and � of 

the memory cell, as shown in Equations (5) – (10).

2.5 Performance Metrics

The performance of the proposed model is verified using the following 

evaluation metrics [30]:

a) Precision: Measuring the number of true landmarks out of those classified 

as positive. The overall precision is calculated by averaging the precision 

of each individual class:

��� − �����	���������� = 	
���

��� +	���

(11)

�������	��������� =
�

�
	�∑

���

���
�	���

�
��� �, (12)

where ��� is the true positive rate of landmark � , ��� is the false 

positive rate, and � is the number of landmarks in the dataset.

b) Recall (Sensitivity): Measuring the number of landmarks that are correctly 

classified out of the total samples in a class. The overall recall can be 

obtained by averaging of the recalls for each individual class:
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��� − �����	������� =	
���

��� +	���

(13)

�������	������ =
�

�
	�∑

���

���
�	���

�
��� �, (14)

where ��� is the false negative rate of a class �.

c) Accuracy: Measuring the proportion of correctly predicted classes over all 

predictions:

�������	�������� = 	
�����

�����������
, (15)

where �� = ∑ ���
�
��� is the overall true positive for a classifier on all 

classes, �� = ∑ ���
�
��� is the overall true negative rate, �� = ∑ 	���

�
��� is 

the overall false positive rate, and �� = ∑ ���
�
��� is the overall false 

negative rate.

d) F1-score: The weighted mean of precision and recall:

																		�1	����� =� �2�
��
�
� ∗

���������� ∗ �������
���������� + ������� 	

�
�

���
, (16)

where �� is the number of samples in a class � and � = ∑ ��
�
��� is the 

total number of individual examples in a set of �	classes. The F1 Score 

provides a measure of a test accuracy. 
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Chapter 3: Related Works

3.1 Traditional Approaches

Many approaches have been used to obtain the desired accuracy in indoor 

positioning. Most studies use Wi-Fi signal strength or radio frequency 

identification (RFID) to measure the user position [19][31]. Recent literature 

has reported that the MFS can be used instead of RF signal. Some studies have 

shown a navigation system for robots using a magnetic field. [32] and [33]

showed simultaneous localization and mapping (SLAM) for geomagnetic 

field based robot positioning. They used a particle filter, which utilizes 

odometers to achieve a maximum positioning error of 10 cm. The odometer 

gave accurate distance and rotation information, and thus re-sampling particles 

based on rotation and moving distance was precise.

Haverinen et al. in [26] implemented the same SLAM with a person by 

switching the odometers with pedestrian dead-reckoning (PDR). However, 

due to lack of proper odometric information, the performance was not as good 

as when using of odometers. 

In another work, Navarro and Benet in [34] used a two-dimensional magnetic 

map to determine the local heading of the robot. They considered the magnetic

field as a continuous function and used bilinear interpolation to determine the 

MFS at un-sampled points. In [35] mobile phones were used to measure MFS 

and used it as magnetic signatures for identifying rooms. Since this system 

depends heavily on pillars in the building, it only achieved room-level 

accuracy.
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Gozick et al. in [26][27] attempted magnetic landmark localization with the 

MFS created from pillars of a building. They measured the sequence of 

magnetic field values and matched these values to pre-recorded landmark’s 

MFS. However, in their research, the magnetic landmarks are defined with 

prior knowledge that columns are ferromagnetic objects.

3.2 Machine Learning Approaches

3.2.1 K-nearest Neighbor (KNN)

The KNN is a non-parametric algorithm, which assumes that the similar inputs 

give similar outputs. It has a minimal training phase and is used for both 

classification and regression [36]. The user location at every instance is

predicted using test data by matching the features to find the closest locations 

in the radio map. To find the � closest points to the target, KNN match the 

signal vector measured by the target device against � location fingerprints 

saved in the database. We use Euclidean distance �	(�, �) between the target 

and the pre-stored location points in the database as shown in Equation 17.

�	(�, �) = 	�� (�� 	− ��)�
�

���
, (17)

where �� and �� are the pre-stored signal value and obtained signal value in 

the ��� location point. The final location is determined by averaging the � and 

� coordinates of the � closest fingerprints obtained.
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3.2.2 Support Vector Machines (SVM)

The SVM, introduced in 1995 by Cortes and Vapnik [37] is a machine learning 

algorithm used for classification. It is used in many different tasks including 

pattern recognition and face detection [38][39]. An SVM generally works by 

finding a separating hyperplane between data of two different classes. The 

algorithm searches the optimal hyperplane, which maximizes the minimum 

distance from the plane to the nearest data point of each class. The hyperplane 

is called optimal when the distance from the nearest data point, known as the 

margin, to the hyperplane is maximized.

3.2.3 Decision Trees

The algorithm separates the data set based on criterion resulting in a tree-like 

structure [40]. It breaks down a data set into smaller subsets, also increasing 

the associated decision tree. The decision tree outputs decision nodes and leaf 

nodes. A decision node has more than two branches while a leaf node 

represents a classification. The criterion mostly used is information gain, 

which means that at each split, there is maximization of the decrease in entropy 

due to the split. The ratio of � class elements over all elements of the leaf node 

containing data item � is given as	�	(� �⁄ ). 

3.2.4 Naïve Bayes (NB)

The NB classifier is based on the Bayes Theorem [41] that examines the 

maximum likelihood of features present in the predicted class. It assumes that 

the presence of particular feature in a class is not dependent to any other 

features. The Bayes’s rule of conditional probability is given as:



- 19 -

�(�� �⁄ ) = 	
�(��).�(� ��⁄ )

∑ �����.��� ��⁄ ��
���

, (18)

where �� denotes the classes, � denotes a set of conditions on the features and 

� denotes the total number of classes. In above equation, the denominator can 

be regarded as a constant. Since the features are considered to be independent

with each other, the probability that an observation is of class �� , given feature 

values ��, is

�(�� �⁄ ) =
1

�
. �(��)	����� ��⁄ �.

�

���

(19)

With the help of the log-likelihood ratio, we can determine the class, where 

the observed features belong.

3.2.5 Logistic Regression 

Logistic regression (LR) analyzes the relation between multiple independent 

variables and the dependent variables. The output of LR is the probability that

the given input feature belongs to a certain class. The parameters to estimate 

the probability of classes can be found using different optimization methods. 

The optimization method is selected based on the data set’s size and a number

of input features. Most commonly used methods are coordinate descent and 

stochastic average gradient (SAG).

The LR models are probability based so it does not have requirements on the 

distribution of the input feature variables [42][43]. If � is the probability that 

a binary output variable � = 1 when input feature variable � = � then the 

logistic response function can be shown as:
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�(� = 1 � = �⁄ ) = 	
����	���

1 +	����	��� 	
, (20)

where � is the coefficient of the input feature � used in the above equation. 

For multiple input features i.e.,	� = (��, … , ��), where � is total number of 

input features, the logistic regression function can be written as:

�(� = 1 � = ��, … , �� = ��⁄ ) = 	
����	����⋯�	����

1 +	����	����⋯�	���� 	
. (21)

This equation calculates the probability of the output variable to be one, given 

many input features.
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Chapter 4: Proposed System

The architecture of the proposed DRNN based landmark classification system 

is shown in Figure 5. It does not require any additional infrastructure except a

smartphone device with a magnetic sensor to classify the landmark locations. 

The system consists of two steps: an offline training phase and an online

testing phase. First, the raw magnetic data are collected at various reference 

locations known as landmarks. Then, in the preprocessing procedure, the data 

are divided into different segments according to the length of our DRNN input. 

Acquisition of magnetic field data 

Data preprocessing

Landmark 1 
training data

Landmark N 
training data

Fingerprint database

Deep recurrent neural network

Obtain test data

Make prediction

Estimate 
landmark

Training phase Testing phase

Figure 5. Architecture of the proposed LSTM-DRNN positioning system 

representing training and testing phase.

Finally, the preprocessed data from the landmarks are combined to generate a 

fingerprint database corresponding to each location, which consists of training 

and testing sets.
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The training set is used to train our proposed LSTM-DRNN, whereas the 

testing set is used to validate the model. In the testing phase, the trained model 

uses the test data to classify the estimated landmark. The accuracy for 

landmark’s classification can be dependent on the training model of the 

proposed LSTM-DRNN.

4.1 DRNN Architecture

Figure 6 presents a schematic diagram of the proposed DRNN indoor 

positioning system. It performs the direct mapping from magnetometer inputs 

to different landmarks. A specific time window is used to classify the 

landmark position. The input contains a discrete sequence of equally spaced 

samples 	(��, ��, … , ��), where each data �� is a vector of individual data 

examples � observed by the magnetic sensor at time	�. These samples are 

passed to an LSTM-based DRNN model after being segmented into windows 

of maximum time index � . For the output, we get a sequence of scores 

denoting the landmark label prediction for each time step (��
�, ��

�, …	, ��
�),

where ��
� 	 ∈ �� is a vector of prediction scores for given input sample ��, �	is 

the number of DRNN layers or top layer and � is the number of landmark 

positions. The score is assigned at each time-step for the label of landmark 

occurring at time	�. Later, the prediction for the window length � is obtained 

by combining the scores into single prediction. Equation (22) shows the “sum 

rule” that is used as the fusion scheme for better results, which is theoretically 

superior to other schemes used in [44]. We applied softmax layer over � to 

convert predictions into probabilities:

� = 	
�

�
∑ ��

��
��� . (22)
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Figure 6. Proposed DRNN indoor positioning architecture. The inputs are raw signals 

collected from magnetometer, segmented them with windows of length T given to 

LSTM-based DRNN model. The output is class membership probability obtained 

from output prediction score for each timestamp, merged via late-fusion.

4.2 Unidirectional LSTM-Based DRNN Model

Figure 7 shows a unidirectional LSTM-based DRNN, which is used in the

proposed system. A higher number of DRNN layers can help to transform raw 

data into a more abstract representation for learning temporal dependencies 

[16]. The input is the MFS, which is a discrete sequence of samples 

(��, ��, … , ��) that are passed into the first layer at time �	(� = 1, 2,… , �).
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Figure 7. Unidirectional LSTM-based DRNN model.

Initially, the internal state ��
� and the hidden state ℎ�

� are both set to zeros. The 

first layer output ��
� is obtained using the input sample �� at time �, previous 

internal hidden state ����
� and previous hidden state ℎ���

� given its parameter 

�� as follows:

��
�, ℎ�

�, ��
� = �����(����

� , ℎ���
� , ��; 	�

�), (23)

The lower layers ��
��� is used as input by any upper layer �. If �� represents 

the parameter (�, �,�) of the LSTM cells for layer �, then (12) can be written 

as:

��
�, ℎ�

� , ��
� = �����(����

� , ℎ���
� , ��

���; 	��). (24)

The prediction at every time step in the window � is given by the outputs 

(��
�, ��

�, … , ��
�) from the top layer �.

4.3 Bidirectional LSTM-Based DRNN Model

This architecture uses a bidirectional LSTM-based DRNN, as shown in Figure 

8. It includes two parallel LSTM tracks: forward and backward loops to 

exploit context from past and future to predict its label [20][45]. In the first 
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layer, the forward track (������) and backward track (������) reads input 

window �	from left to right, and right to left respectively:

��
��
, ℎ�

��
, ��
��
= ������(����

��
, ℎ���

��
, ��	;�

��) (25)

��
��, ℎ�

��, ��
�� = ������(����

�� , ℎ���
�� , ��	;�

��). (26)

At each time step, the top layer � outputs a sequence of scores from both 

forward LSTM(��
��
, ��

��
, … , ��

��
)and backward LSTM (��

��, ��
��, … , ��

��).

Figure 8. Bidirectional LSTM-based DRNN model with forward ������ and 

backward ������ track.

The combined scores � ∈ �� represents landmark labels prediction for the 

window segment	�	. The late-fusion is the resulting results from both forward 

and backward tracks, which are merged together as follows:

� = 	
�

�
∑ ���

��
+ ��

����
��� . (27)
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4.4 Cascaded Bidirectional and Unidirectional LSTM-based 

DRNN Model

The model architecture, shown in Figure 9, is inspired from [30][20]. In this 

architecture, the first layer is designed with a bidirectional RNN, whereas the 

upper layers are unidirectional.

Figure 9. Cascaded unidirectional and bidirectional LSTM-based DRNN. The upper 

unidirectional layer is concatenated with the bidirectional first layer.

The first layer with a forward LSTM track ������ generates an output 

(��
��
, ��

��
, … , ��

��
) and a backward track ������ generates an 

output	(��
��, ��

��, … , ��
��). The two types of outputs are combined and fed into 

the second unidirectional layer to form a new output (��
�, ��

�, … , ��
�):

��
� = ��

��
+ ������

�� . (28)
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The operation of the upper layers is with the unidirectional model explained

in Section 5.2.1.

Chapter 5: Experimental Procedure

5.1 Setup and Methodology

The experiments were conducted in a corridor and a lab on the eighth floor of 

an IT department building, Chosun university in Korea with dimensions of 

100m×2.5m and 7m×	7m, respectively. The corridor contains magnetic 
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elements like iron doors, bearing column, and other building materials, which 

creates fluctuation to the MFS.

On the other hand, the lab has other factors such as computers, microwaves, 

and lab equipment that cause further significant magnetic field fluctuation. A

pictorial representation of the test environment is shown in Figure 10.

The proposed model was evaluated through experiments. The layouts of the 

testbeds are shown in Figures 11 (c) and (d). The magnetic field data were 

collected by using an android smartphone, which has a Yamaha MS-3E 

magnetometer sensor. To make this process convenient, we developed an 

android application for the smartphone that sensed geomagnetic field.

In the corridor, we marked 25 landmarks and measured magnetic signals by 

moving around the point in all possible directions as shown by the red eclipse 

dots in Figure 11 (d). While recording the data in the corridor, the orientation 

of the phone was held by a walking user as shown in Figure 11 (a) to avoid 

errors due to soft iron distortion.
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Figure 10. Experiment environment: (a) first testbed in the lab; (b) second testbed in the corrido

(a)

(b)
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Figure 11. Data gathering methods: (a) orientation of smartphone while collecting 

data in corridor at each grid; (b) stand used in lab to gather data at each landmark; (c) 

layout of lab containing working desks surrounded with landmark denoted as red dots, 

where data are taken; (d) layout of corridor with landmarks denoted with red eclipse, 

where data are gathered.

(a) (b)

(c)

8210 8211 8212 8213 8221 8225 8226

8103 8105 8106 8108 8109 8117 8119 8120 8122

(d)
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However, in the lab, due to limited space, we used a movable stand as shown 

in Figure 11 (b). Also in the lab, we marked 17 landmarks and gathered 

magnetic field data at each point denoted by a red circular dot in Figure 11 (c). 

Finally, our dataset consisted of 25 landmark positions in the corridor and 17 

landmark positions inside the lab. The size of training data in the corridor is 

about 71,300 MFS samples for the 25 landmarks and in the lab, it was about 

19,500 MFS samples for 17 landmarks

5.2 Evaluation

We used Google TensorFlow as a deep learning framework, as it allowed us 

to design more detailed neural network model. Also, NVIDIA cuDNN and 

CUDA Toolkit, which provide parallel processing were used to drastically 

improve our training performance [31]. 

The proposed LSTM-DRNN positioning system uses the configuration and 

framework shown in Table 1.

Table 1. System configuration and framework for deep learning network

Category Tools

CPU Intel i5-7600 @3.50 GHz

GPU
NVIDEA GeForce GTX 1050 @ 

2GB

RAM DDR4 @8GB

Operating System Windows 10 Enterprise

Language Python 3.6

Library
Google Tensorflow 1.2, CUDA 

Toolkit 9.0, NVIDEA cuDNN v7.0



- 32 -

5.2.1 Network Training and Testing

We trained our DRNN model with the preprocessed geomagnetic data stored 

in a fingerprinting database or dataset. The dataset was divided such that 80% 

of the total data is used for training a model and the rest 20% is for testing

process. The hyperparameters such as the number of hidden nodes, mini-batch 

size, number of iterations, learning rate etc. were chosen for the optimized 

model. Also, the biases and weights were initialized by using a standard 

normal distribution. The cost function ℒ in (18) was obtained by using the 

mean cross-entropy between the true landmark labels and the predicted output 

labels. The ground truth labels indicate the true landmark labels for the 

segmented windows and were given in the dataset. They are arranged as a one-

hot vector � ∈ �� with a value �� associated with each landmark label �. The 

predicted classes �� ∈ �� contains the probability of each individual class ��

generated by our model:

ℒ��,��� = −∑ �� log��
�
��� . (29)

The Adam optimization algorithm was used to minimize the cost 

functionℒ(�,��)by backpropagating its gradient and updating the model 

parameters [46]. The weight and other parameters were optimized with 

forward and backpropagation. In our work, we provide parameters for forward 

propagation and Google TensorFlow calculated all required back propagation 

steps. We used dropout technique as regularization to avoid overfitting in our 

model [44]. During a training iteration, the node is dropped out based on the 

dropout probability �, which represents the percentage of units to drop. The 

output of the final layer’s hidden state is passed as an input to a fully connected 

layer, which uses a simplified hidden layer neural network to train the output 
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data using a softmax classifier. Also, the datasets were divided with different 

window lengths, as shown in Table 2. The optimal window length was selected 

based on their performance results by a “trial-and-error” method. The fixed 

length windows were used for training and testing, but during real-time data 

acquisition scenarios, we were able to use variable-length windows.

Table 2. Summary of DRNN input data to evaluate the proposed models. Training 

window length denotes the number of data samples in a window that was found to 

give the best results for each testbed. 

Testbed
No. of 

Landmarks
Sensor

No. of 

samples per 

second

Training 

window 

length

No. of 

training 

samples

No. of 

testing 

samples

Corridor 25 Magnetometer 25 16 56982 14246

Lab 17 Magnetometer 25 4 15636 3909

We used two separate sets of hyperparameters due to a different number of 

data samples in the different testbeds, i.e., the corridor and lab. Figure 12

shows the training and testing accuracy along with a cost for the unidirectional 

DRNN model on our testbed. The training and testing accuracies increases

with training epoch as the model generalizes to new data. Similarly, the 

training and testing cost decreases with each epoch as the model learns the 

data and reach an optimal value. In addition, the testing accuracy and cost 

follows the training accuracy and cost graph closely, which indicates the

effectiveness of the dropout technique in the model for avoiding overfitting. 
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(a) (b)

(c) (d)

Figure 12. The accuracy and cost of our DRNN model for the testbed dataset over 

training iterations: (a) training and testing accuracies in lab; (b) cross-entropy cost 

between true landmarks and predicted landmarks for both training and testing in lab; 

(c) training and testing accuracy in corridor; (d) cross-entropy cost in corridor.

We divided our dataset into mini-batch for efficient memory usage and the 

problem of gradient explosion caused when the dataset is used as a single batch. 

When we used the small batch size, the training time was generally increased. 

This could be due to smaller step-sizes taken by the smaller mini-batch to 
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reduce the variances of gradient updates. For example, a batch size of 128 or 

256 can process more data per mini-batch than that of 16 or 32. However, 

using a small mini-batch helped us to increase the accuracy. The configuration 

of the proposed DRNN system the was found to be best for our testbeds is 

listed in Table 3.

Table 3. Summary of hyperparameters used in two different testbeds

Parameters Corridor Lab

Neural Model DRNN DRNN

Loss Function Cross Entropy Cross Entropy

Optimizer Adam Adam

Learning Rate 0.001 0.001

No. of hidden node 256 128

Mini-batch size 100 50

No. of Landmark 25 17

The trained DRNN models were evaluated with test dataset. We found that the 

testing accuracy was greatly affected by a number of hidden nodes per layer 

and the mini-batch size. It was observed that the accuracy increased as the 

number of hidden nodes per layer increases. However, if we increased the 

number of hidden layers, the performance of the model was not necessarily 

good. This might be due to the difficulty in gradient propagation when we 

increase the number of layers. Figure 13 shows the test accuracy when we 
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changed the number of hidden nodes in each layer using a “trial-and-error” 

method. It can be seen that the best test accuracies for the lab and corridor 

were obtained with hidden units of 128 and 256, respectively.
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Figure 13. Accuracy measurement with increasing number of hidden units per layer: 

(a) test accuracy for a different number of hidden units per layer in the lab; (b) test 

accuracy for a different number of hidden units per layer in the corridor.
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The flow chart for the implementation of the training phase is shown in Figure 14.

Figure 14. Flowchart representation for the training of DRNN model using mini-batch from dataset.

START
Load datasets and 
create n mini-batch

Create DRNN model
Train DRNN model with 

current mini-batch

Calculate the average 
accuracy from all mini-

batch

Calculate the accuracy 
from current mini-batch

END

Initialize DRNN model

All mini-batch 
Have been 

used for
training?

No

Yes
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Chapter 6: Experimental Results and Discussion

Our proposed LSTM-DRNN based positioning system was compared with 

other previously introduced machine learning methods tested on both testbeds. 

In the lab, a bidirectional DRNN model with three-layers yielded the best 

performance results with an overall classification accuracy of 97.20 %. The 

confusion matrix in Figure 15 (a) gives an overview of the classification 

results for the proposed model including the per-class precision and recall 

results in the test set. Figure 15 (b) and 15 (c) show a performance comparison 

of the proposed system with other machine learning methods such as k-nearest 

neighbor (KNN) [45], support vector machine (SVM), logistic regression, 

decision tree and Gaussian Naïve Bayes (GNB). However, in the corridor, we 

found that four layers of a unidirectional DRNN yields the best performance 

results including per-class precision and recall, as shown by the confusion

matrix in Figure 16 (a). Here, the overall classification accuracy is 91.1 %. 

Also, we compared the performances with other machine learning algorithms. 

A comparison of accuracy and F1-score between our model and these 

algorithms can be seen in Figure 16 (b) and 16 (c) respectively.

The performance results clearly shows that all of the architectures performed 

very well with a dataset on both testbeds. The corridor is a wide space with 

MFS fluctuations mostly due to pillars and columns. However, the lab is a 

small space with a cluttered environment that has MFS fluctuations due to 

equipment, such as computers, microwave ovens, printers etc. Therefore, we 

included more landmarks in the lab compared to the corridor in terms of space 

density. 
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Proposed model

KNN
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Gaussian NB
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(c)

Figure 15. Performance results of the proposed bidirectional DRNN model in lab (a) 

confusion matrix for the landmark classification in the lab with per-class precision 

and recall; (b) Accuracy comparison of the proposed model with other methods; (c) 

F1-score comparison of the proposed model with other methods.
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It proves that our models can be effective for a broad range of landmark 

classification in various indoor environments. Table 4 contains a performance 

summary of our models in the two test environments.

Table 4. Performance summary of our model on dataset of two testbeds

Model Dataset
Overall 

Accuracy

Average 

Precision

Average 

Recall
F1 Score

Unidirectional DRNN Corridor 91.1 90.6 91.1 0.90

Bidirectional DRNN Corridor 88.5 88.3 87.7 0.88

Cascaded DRNN Corridor 90.1 89.5 89.6 0.89

Unidirectional DRNN Lab 95.6 95.6 95.8 0.95

Bidirectional DRNN Lab 97.2 97 97.1 0.97

Cascaded DRNN Lab 96 96.2 96.1 0.96

As the sample size grew, the conventional shallow-structured methods like 

KNN, SVM, and logistic regression have limited modeling capability and 

cannot extract reliable features from a large dataset of fluctuating MFS. 

However, including more layers in the DRNN helped the model to extract 

discriminative features. These features were exploited for effective learning 

and distinguishing more complex pattern formed by MFS at landmarks. In 

addition, using DRNNs to capture sequential and temporal dependencies 

provided a significant improvement in performance.
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Figure 16. Performance results of the proposed unidirectional DRNN model in 

corridor (a) confusion matrix for the test in a corridor along with per-class precision 

and recall; (b) Comparison of accuracy among proposed model and other methods; 

(c) Comparison of F1-score among proposed model and other methods.
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Chapter 7: Conclusion

In this thesis, we have implemented three unique LSTM-based DRNN 

architectures for indoor landmark classification using MFS. The performance 

of three LSTM-based DRNN models: unidirectional, bidirectional and 

cascaded, was evaluated on two testbed’s data set. The use of DRNN based 

architectures allows us to classify variable-length window.

Moreover, we first verified experimentally the feasibility of using MFS for 

landmark classification and empirically evaluated our models using 

experiments on datasets from two testbeds. Although the training phase was 

computationally demanding, the test phase is fast and suitable for real-time 

indoor landmark classification. Experimental results show that the proposed 

models outperform other state-of-the-art methods. The performance 

improvement was mainly due to the ability of our models to extract more 

discriminative features by using deep layers in various landmark positions. 

Furthermore, by the functionality of DRNNs, our models were able to capture 

temporal dependencies between input magnetic field data. 

In the future, researchers can extend our work by including odometry and 

Radio field (RF) data for a large-scale commercial indoor environment. The 

big improvement would be to develop a way to calibrate the magnetic sensor 

and to predict its rotation matrix accurately with respect to the smartphone 

rotation. More work can be done to develop an efficient way to collect training

data in an offline phase and build greater training set.
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