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ABSTRACT

Study on edge detection with color-to-grayscale algorithms

Ijaz Ahmad 

Advisor: Prof. Seokjoo Shin , PhD 

Department of Computer Engineering, 

Graduate School of Chosun University 

In image processing, color-to-grayscale conversion techniques are used to 

simplify the algorithms and to reduce the computational cost for several tasks. 

Edge detection is one of the widely studied areas in image processing, however, 

the evaluation of edge detectors with color-to-grayscale conversion algorithms 

have not been considered. In this study, I have evaluated the effect of various 

color-to-grayscale conversion algorithms on the performance of edge detection 

process. Experimental results show that edge detection is not only dependent on 

the detector used but also on the color-to-grayscale conversion algorithms. The 

Lightness grayscale representation performed better for first order derivative 

edge detectors. For edge detectors (e.g, Canny or Laplacian of Gaussian edge 

detection), involving de-noising step, the Gleam conversion algorithm performed 

better. Overall, the gamma corrected grayscale representations results in better 

edge maps. The results are confirmed with different reference-based objective 

measures including probabilistic measures and figure of merits for edge 

detection evaluation. 
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요약

컬러-회색 스케일 알고리즘의 에지 검출에 대한 연구

Ijaz Ahmad 

Advisor: Prof. Seokjoo Shin , PhD 

Department of Computer Engineering, 

Graduate School of Chosun University 

이미지 처리 기술에서 색상 대 그레이 스케일 변환 기술은 알고리즘을 단순화하고 여

러 작업의 계산 비용을 줄이기 위해 사용됩니다. 엣지 검출은 이미지 처리 분야에서 널

리 연구되고 있는 분야 중 하나이지만, 컬러 대 그레이 스케일 변환 알고리즘을 사용하

는 엣지 검출 기술은 고려되지 않았습니다. 본 연구에서는 다양한 색상 대 그레이 스케

일 변환 알고리즘이 에지 감지 프로세스의 성능에 미치는 영향을 평가했습니다. 실험 결

과는 에지 검출이 사용된 검출기의 방식뿐만 아니라 컬러-그레이 스케일 변환 알고리즘

에도 의존함을 보여줍니다. 밝기(Lightness) 그레이 스케일 표현은 1 차 미분 에지 검출

기에서 더 잘 수행됩니다. 잡음 제거 단계를 포함하는 에지 검출기 (예를 들어, Canny 

또는 Laplacian of Gaussian edge detection)의 경우, Gleam 변환 알고리즘이 더 잘 

수행됩니다. 전반적으로 감마 보정 된 그레이 스케일 표현은 더 우수한 엣지 맵을 생성

합니다. 또한 성능 평가 결과는 확률론적 측정 및 경계 검출 평가를 위한 figure of 

merits를 포함하는 다양한 참조 기반 오브젝티브 측정으로 확인되었습니다.
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I. Introduction

Partitioning an image into regions representing different objects is the 

first step in the analysis and understanding of image [3]. It prepares an image 

as an input to an automatic visual system [1]. It aids image processing tasks by 

substantially reducing the amount of information to be processed [15]. The 

reduction is done by extracting information from an input in such a way that the 

resultant image contains much fewer information than the original image [1][16]. 

And the extracted information is much more relevant to the other modules of an 

automatic vision system [1]. The partitioning may be done by grouping pixels 

that have some common characteristics. For example, pixels having similarity in 

brightness, or color, may indicate that they are part of the same object or 

facet of an object [1].

There are two approaches to partition an image into regions: Segmentation 

and Edge detection [1][3]. In segmentation, those pixels are grouped together 

which correspond to an object. Further, they are marked to indicate that these 

pixels belong to the same region. Some criterion that distinguishes pixels from 

the rest of the image is used, to assign pixels to regions. Two very important 

principles in segmentation are value similarity and spatial proximity. Two 

pixels having similar intensity characteristics or if they are close to one 

another may be assigned to the same region. In edge detection, pixels that lie 

on a region boundary are found in order to perform image partitioning. These 

pixels are called edges and can be found by looking at neighboring pixels. Since 

edge pixels lies on the boundary, gray values may vary in the regions on either 
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side of the boundary, the difference between neighboring pixels may be measured 

to find a region boundary. Intensity characteristics is widely used by edge 

detectors as the basis for edge detection, although derived characteristics, 

such as texture and motion, may also be used [3].

The history of computational edge detection is extremely rich [10]. A 

variety of edge detection algorithms have been proposed since the beginning of 

60's for both color and grayscale or monochromatic images [4]. However, most of 

the algorithms refer to grayscale images. One reason is that for many years 

color digital cameras and internal storage of large arrays associated with 

multi-spectral data were expensive [1][2]. A lot of image processing techniques 

were developed around the type of image that was available [1]. Therefore, edge 

detection in gray-level or monochromatic images received more attention and is 

well-established than edge detection in color images. Another reason is the 

conventional edge detection algorithms for grayscale images can be extended for 

color image edge detection either by applying them to each band separately [1] 

or by converting the color images to grayscale in advance [9]. However, 

information loss will occur during the process [9][19]. Finally, the challenge 

of extracting additional color information without incurring large complexity in 

the system [7]. 

The extension of conventional edge detection algorithms for color images; 

by applying them to each band separately (monochromatic-based techniques), or by 

treating the channels of color images holistically (vector-valued techniques), 

leads to high computational complexity or complicates the algorithm, 
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respectively [6][19]. To minimize the computational cost and simplify the 

complexity of edge detection algorithms on color images, instead of full color 

images, grayscale images are used for edge detection [19]. The grayscale 

representations are obtained by using weighted sum methods. However, it is 

assumed that color-to-grayscale algorithms are of little importance when using a 

robust edge detector. Therefore, grayscale conversion methods other than 

weighted sum methods have not been considered.

1.1. Motivation

The impact of color-to-grayscale conversion algorithms is first studied by 

Kanan and Cottrell [38]. They have shown that efficiency of image recognition 

system is also dependent on grayscale representations of input color image. They 

conducted experiments on four different descriptors across four different 

datasets. Their results have shown that Gleam is almost always the best 

performer for object and face recognition, while for texture recognition, 

Luminance’ and Luminance are good choices. Further, they have shown that 

methods that incorporate gamma correction usually performed better than purely 

linear methods. In addition, they also proposed to evaluate edge-based and 

gradient-based descriptors as a future work.

Many conversion methods have been proposed in computer vision. Every 

method results in different grayscale representations. In addition, conversion 

methods map a three-dimensional color pixel value to a single value, the 

information loss is also different [9][19]. Therefore, it is necessary to 
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evaluate these methods for edge detection. 

The grayscale conversion methods that incorporate gamma correction 

techniques introduces non-linearity to grayscale representation and roughly 

distributes the tones across the entire range in a uniform way. Since, edge 

detection is the process of finding sharp change in intensity of image, gamma 

corrected conversion methods may result in efficient edge detection.

1.2. Thesis Contribution

In color image edge detection, grayscale representation as the first step 

of the process simplifies the algorithm and reduces computational requirements. 

I have reviewed grayscale conversion algorithms, paying special attention to 

color image edge detection techniques that involve color-to-grayscale conversion 

algorithms, and edge detection evaluators; both subjective and objective edge 

measures. Moreover, I have reviewed the studies evaluating performance of edge 

detectors in the presence of noise.

Evaluating the performance of an edge detector is a non-trivial task. In 

this work, I have evaluated edge detectors in terms of detected edge and 

non-edge elements, comparing the output of an edge detector with that generated 

by human, which is considered as ground truth. In this way confusion matrices; 

assessment based on the common edge/non-edge points presence, and assessment 

involving distance between actual and ideal edge pixels. To measure the 

performance of an edge detector is an open problem. In the literature many 

performance measures have been proposed. However, there seems to be no agreement 
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on the best option. In the thesis, a chapter is dedicated to the edge 

evaluators, in which I reviewed the proposed evaluation measures and pointed out 

their features. Moreover, a best edge detector, based on how close its result is 

to human evaluation, is selected.

In the experiments, I have used 40 natural images from the Berkeley 

Segmentation Dataset (BSDS) [39]. These images have a resolution of 481x321 

pixels. In addition, each of them comes together with 5-10 hand-made 

segmentations. Since those segmentations are provided in the shape of region 

boundaries, they can be used as ground truth for the quality assessment of the 

edge detection results. Out of 5-10 segmentation images I have chosen the one 

with many segments in-order to test the performance of methods to their best.
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II. Background

2.1. Edge

Edge detection is one of the crucial components image recognition systems, 

object detectors, image segmentation algorithms and image analysis operations. 

Both in biological vision and in computer vision, edges are often essential 

clues toward the interpretation and analysis of image information [19].

Usually, an edge is interpreted as a physical one, caused either as a 

result of difference in the inherent material properties of the objects or by 

the shapes of physical objects in three dimensions. Physical edges can be 

divided into two types and can be described in geometric terms as: (1) an abrupt 

change in local orientation along a set of points of a physical surface and (2)  

a boundary between two or more materially different regions of a physical 

surface defined by a set of points [19].

Image edges have a different notion than physical edges, because an image 

is a projection of an imaging device from a 3D scene to a two dimensional 

representation, with respect to the viewpoint of the imaging device.  The 

precise definition of an edge is application domain specific. Generally, an edge 

can be defined as a set of points along a boundary or contour that separates 

adjacent regions in an image which have relatively distinct attributes according 

to some feature of interest. The most common feature for edge detection is gray 

level or luminance. However, sometimes, other features like reflectance, color, 

or texture are used. In most applications, where luminance is of prime 
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importance, then locations of abrupt gray level change are the edge pixels [19]. 

2.1.1. Gray Edge

In grayscale images, pixel locations of abrupt gray-level change are 

considered as edges. A gradient can describe change in the image function, that 

points in the direction of the largest growth of the image function. Therefore, 

one approach to edge detection is to find the gradient vector magnitude at pixel 

locations. This method performs better (e.g. for a step function), when the 

gray-level transition is quite abrupt. However, when the transition region gets 

wider then second-order derivatives like the Laplacian is more advantageous to 

utilize. In such case, zero-crossings in the results can define the potential 

edge pixel locations [6].

In gray-level images, typically brightness discontinuities have been used 

to model edges. Therefore, it can be said that for two regions which are 

significantly different in brightness values, an edge is the apparent boundary. 

The significant difference between two regions may depend, for example on local 

pixel brightness statistics. This variation occurs due to the fact that an edge, 

between two objects having different intensities, usually represents a physical 

boundary. The word edge is used to refer to a location on the  image where the 

brightness value appears to change abruptly. These abrupt changes are associated 

with high values of the first derivative [12].

2.1.2. Color Edge

The core difference between gray-level images and color images is that, in 



- 8 -

a gray-level images a scalar value is assigned to a pixel, while a color vector 

(which consists of three components/channels) is assigned to a pixel in color 

images. Thus, in color image processing, instead of scalar image functions (like 

in grayscale image processing), vector-valued image functions are treated [6].

While in gray-level images an edge is indicated as a discontinuity in the 

gray-level function, the term "color edge" has not been clearly described for 

color images. Several different color edges definitions have been proposed. A 

very old definition states that in the color image an edge exists precisely if 

the intensity image contains an edge. However, possible discontinuities in the 

hue or saturation values have been overlooked in this definition. For example, 

in a color image, if two objects of various colors but equally lighted are 

arranged in juxtaposition, then this technique cannot be used to find the edge 

that determines the object geometry [6].

Another definition for a color edge states that if at least one of the 

color components have an edge then in the color image an edge exists. However, 

merging the edge detection results from the color components may cause problems 

because of edges localization inaccuracies in the individual color channels. A 

third monochromatic-based definition for color edges is based on the calculation 

of the sum of absolute values of the gradients for three color components [6].

The notion of an edge for color images is much more complex than in 

grayscale images. In color images, intensity, hue and saturation of a color all 

play a part in determining object boundaries. A physical boundary produces an 
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edge which needs to be determined using a measure in an appropriate color space 

that would capture these different color characteristics. The concept of color 

similarity within the context of a color space becomes important since intensity 

of pixels alone cannot be used to determine the occurrence of an edge. [12]

2.1.3. Edge Detection

The process of determining which points in the image are the edge pixels 

is called edge detection. The edge detection process results in a new image 

called edge map, which has much lesser information as compared to the original 

image. The edge map describes each original pixel’s edge classification and 

some additional attributes, such as edge magnitude and edge orientation [19]. 

One of the reasons to show importance of edge detection is that the 

success of higher level image processing tasks is heavily dependent on good 

edges. An image contains enormous amount of data, much of which is irrelevant to 

some applicaitons, e.g., the background of the scene. So at the initial stage, 

the effort is made to reduce some of the data; the objects are separated from 

the background and entities such as edges which are physically  significant are 

identified [20].

In the stereo techniques, for instance, images taken from two different 

locations are utilized to get the depth information. All stereo techniques deal 

with the "correspondence", where the tokens from the right and left image are 

matched in order to get the disparity of two images. The edge information has a 

key role in the tokens selection. In motion, moving objects are detected by 
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identifying the time varying edges and corners. The approaches to structure from 

motion, through which the three dimensional structure of objects is computed, 

also require correspondence of tokens. Object recognition methods based on only 

the two dimensional shape use the edge information. Most algorithms for 

recognizing the partially occluded objects assume the presence of good edges 

[20].

Most edge detection schemes consist of three stages (and in the given 

order): filtering, differentiation, and detection. In the filtering stage, noise 

is removed by passing the image through a filter. Noise can be due to the 

undesirable effects introduced in the sampling, quantization, blurring and 

defocusing of the camera, and irregularities of the surface structure of the 

objects. In the differentiation stage, the image locations with significant 

intensity changes are highlighted. Finally, in the detection stage, those points 

are localized where the intensity changes are significant [20].

2.2. Color-to-Grayscale Conversion

Grayscale representation of a color image simplifies the image processing 

algorithms and reduces computational requirements [38]. Color-to-grayscale 

conversion is one of the image processing applications used in different fields 

effectively. In publication organizations’ printing, a color image is expensive 

compared to a grayscale image. Thus, color images have to be converted to 

grayscale image in-order to reduce the printing cost for low priced edition 

books. The monochrome devices that receive color imagery must perform a 
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conversion from color to grayscale. Similarly, color deficient viewer requires 

good quality of grayscale image to perceive the information, as the normal 

people perceive the color picture. Likewise, various image processing 

applications e.g. edge detection, require conversion of color image to grayscale 

image for reducing the computational complexity.

Conversion of a color image to grayscale image requires more knowledge 

about the color image. In color image, a pixel is combination of three colors 

Red, Green, and Blue (RGB). The RGB color values are represented in three 

dimensions, given by the attributes of lightness, chroma, and hue. The quality 

of a color image depends on the color represented by the number of bits. The 

basic color image is represented by 8 bits, the high color image is represented 

by 16 bits, the true color image is represented by 24 bits, and the deep color 

image is represented by 32 bits. The number of bits decides the maximum number 

of different colors supported by a digital device. For example, if each Red, 

Green, and Blue occupies 8 bits then the combination of RGB will represent 

16,777,216 different colors. The grayscale image is represented by 8 bits value 

and ranges from 0 to 255. The conversion of a color image into a grayscale image 

is mapping the RGB intensities to a single value of grayscale.

2.2.1. Color-to-Grayscale Conversion Algorithms

The simplest color-to-grayscale algorithm is Intensity. It is the mean of 

the RGB channels.
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Although linear channels are used in Intensity grayscale representation, 

in practice, when using datasets containing gamma corrected images, gamma 

correction is correction is incorporated in the method. The method is called 

Gleam.

  ′′′

Luminance is designed to match human brightness perception using a 

weighted combination of the RGB channels. Luminance is the standard algorithm 

for gray-level representation. It is used by image processing software like, 

GIMP. It is implemented in “rgb2gray” color-to-grayscale conversion function 

of MATLAB.

      

Luma is similar weighted sum method to Luminance and include gamma 

corrected form used in high-definition televisions.

  ′   ′ ′

Lightness is perceptually uniform gray-level representation used in the 

CIELAB and CIELUV color spaces. This means an increment in Lightness should more 

closely correspond to human perception. This is achieved via a nonlinear 

transformation of the RGB color space.

   

      and

  
 i f   

    

Value is the decomposition method. It is the achromatic channel in Hue, 

Saturation, and Value (HSV) color space. Value provides absolute brightness 

information. It is calculated by finding the maximum of the RGB channels,

m ax    max

or by calculating the minimum value of the RGB channels.

m in    min 

Luster is the desaturation method. It is the L channel from the HLS (Hue, 

Lightness, and Saturation) color space. It is the average of the maximum and 
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minimum RGB values. The sensitive of Luster to changes in brightness is lesser 

than Value, because Value is maximized with any fully saturated primary color, 

but to maximize Luster, all three channels must be fully saturated.

  max  min 

Three additional conversion techniques, i.e. the pure color channels (R,G 

and B). The idea is to use a grayscale that is an actual output of the camera 

and not a function of the values given by the camera.
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III. Edge Detectors Evaluation

In computer science, all systems, especially automated information 

processing structures, must be evaluated before being developed, for several 

applications [18]. Edge detection is no exception to this rule. One evaluation 

of edge detection is to analyze the performance of existing edge detectors 

solely.  However, edge detection in color images, the image is processed by a 

color-to-grayscale conversion algorithm before input to an edge detector. 

Therefore, it is necessary to study the impact of color-to-grayscale conversion 

algorithms along with edge detectors on edge detection.

In image processing, the evaluation methods can usually be categorized 

into subjective and objective evaluation [7]. Subjective evaluation is the 

quantitative comparisons made by experts in that area using subjective ratings 

[14]. This approach avoids the issue of pixel-level ground truth. Thus, it does 

not give any statement about the frequency of false positive and false negative 

errors at the pixel level. In addition, this method cannot be automated for 

human vision systems [15]. However, in most image processing applications human 

evaluation is the final step [7]. Objective evaluation is the qualitative 

comparisons obtained from probabilistic measures and figure of merits [16]. 

Objective edge map evaluation measures have many important uses. Obviously, 

after the development of so many edge detection algorithms over the years, there 

should be an objective way of determining which edge detection algorithm 

generally works best or which edge detection algorithm should be used for a 

certain application [14][15][16]. Secondly, an objective edge map evaluation 
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measure can select the tuneable parameters that exist in many edge detection 

algorithms. Assessing the performance of edge detection algorithms is difficult 

because the performance depends on several factors [14][15][16]. Objective 

measures are classified as non-reference and reference measures based on the use 

of ground truth image.

3.1. Non-Reference Objective Measures

A non-reference edge map evaluation measures does not require a reference 

image as the ground truth [14][15]. It only utilizes the information from the 

obtained edge map and the original image itself to make the evaluation. However, 

in their current stage, the use of non-reference edge measures is still 

restricted because edge quality evaluation is very subjective and difficult to 

quantify without a ground truth [14]. Example of non-reference-based edge map 

evaluation measures include probabilistic measures, and edge connectivity and 

width uniformity measures [15][16]. The obvious advantage of non-reference-based 

edge map evaluation is that no ground truth is necessary. Therefore, they can be 

used to evaluate the performance of edge detectors on non-synthetic images [16]. 

However, in their current stage, such non-reference-based edge map evaluation 

measures suffer from many biases and are therefore highly unreliable [15][16]. 

They cannot effectively incorporate the original image data [14]. 

Probabilistic measures using receiver operating characteristics attempt to 

estimate an ideal edge map, or ground truth, from multiple edge detector outputs 

[15][16]. These measures suffers from its bias regarding how the estimated 



- 16 -

ground truth image is generated, as the candidate edge maps used directly affect 

the estimated ground truth which is determined [16]. Therefore, if the quality 

of majority edge maps being used is not adequate or fail to extract certain edge 

structures, this will be reflected in the resultant estimated ground truth [16]. 

Edge connectivity and width uniformity measures assess the quality of edge 

detector outputs in terms of the formation of proper edge lines [16]. However, 

it does not take the original data into account [15][16].

3.2. Reference-Based Objective Measures

Reference-based edge map evaluation measures require an ideal edge map of 

an image known as the ground truth in addition to the resultant edge map to make 

their assessment [15][16]. The comparison is made numerically using either of 

two techniques: counting the number of pixels incorrectly detected (assessment 

based on confusion matrix) and measuring the localization of these errors 

(assessment involving distance of misplaced pixels) [37].  A reference-based 

edge map quality measure requires that a displaced edge should be penalized in 

function not only of FPs and/or FNs but also of the distance from the position 

where it should be located [18]. The main advantage of these measures is that 

they can be used to determine edge detector performance within a controlled 

environment where edge pixel locations are known [15][16]. Their main 

disadvantage is that since ground truth must be known, there are a little use 

for evaluating edge detector performance on natural images. This is because for 

natural images, determining the ground truth is non-trivial as ideal edge 

locations are unknown. Therefore, reference-based edge map evaluation measures 
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are used predominantly for evaluating edge maps of synthetic images with derived 

ground truths. Moreover, the performance of edge detectors on synthetic images 

do not necessarily correlate to their performance on natural images, as edge 

detection kernels are constructed to detect "real-world" edges taking into 

consideration noise and deviation from edge models. Reference-based objective 

edge map evaluation measures include probabilistic measures and figure of merit 

[16].

3.2.1. Assessment based-on Confusion Matrix

To assess an edge detection algorithm, the confusion matrix remains a 

cornerstone. Let Gt and Dc be the reference ground truth and Dc the detected 

contour map of an image I, respectively. Comparing pixel per pixel Gt and Dc, 

the first criterion to be assessed is the common presence of edge/non-edge 

points. A basic evaluation is compounded from statistics resulting from a 

confusion matrix. To that effect, Gt, and Dc are combined. |.| denoting the 

cardinality of a set. All points are divided into four sets [13][18]:

l True Positive points (TPs), points decided as ‘edges’ in both Gt and Dc : TP 

= |Gt ∩ Dc|,

l False Positive points (FPs), edge points in Dc, which do not coincide with 

edge points in Gt: FP = |Dc ∩ ￢Gt|

l False Negative points (FNs), missing boundary points of Dc i.e. holes in the 

contour: FN = |￢Dc ∩ Gt|

l True Negative points (TNs), common non-edge points of Gt and Dc: TN = |￢Dc ∩ 

￢Gt|.
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(a) Gt (b) Dc     (c) Gt∪Dc

False positive points appear in the presence of noise, texture or other 

contours influencing the filter used by the edge detection operator. And False 

Negative points represent holes in a contour of Dc (generally, caused by blurred 

edges in the original image I. For example, an incorrect threshold of the 

segmentation could generate both FPs and FNs.

Figure 1. Illustration of true positives, false negatives and false 

positives points. (a) Ground Truth, (b) Detected contour map, Dc has 4 FNs and 2 

FPs points, illustrated with color in (c).

In Figure 1. TPs, FNs, and FPs are represented in blue, yellow and red, 

respectively. Computing only FPs and FNs enables a segmentation assessment to be 

performed. While, combining at least these two quantities enables a segmented 

image to be assessed more precisely [18]. A list of these measures is presented 

in Table 4, Table 5 and Table 6.

The mean square error [34], root mean square error [35] and mean absolute 

error [36] decreases with the improved quality of detection and vice versa. The 
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larger peak signal-to-noise ratio and structure similarity index measure [33] 

value the better detection quality is. Also, a good-quality edge detection 

method should obtain the smallest response for over-detection error, 

under-detection error and localization error [31]. The over-detection error 

increases with increase in number of FPs while under-detection increases with 

increase in FNs points [55].

The Binary Signal-to-Noise Ratio [37] is inspired by Signal-to-Noise 

Ration. It corresponds to a measure comparing the level of signal in a reference 

signal to the level of the noise in a desired signal. Thus BSNR　computes a 

global error in function of the FPs and FNs; the fewer the numbers of FPs and 

FNs, the more the score increases and tends to infinity when Gt = Dc. The 

complemented Performance Measure [27] considers directly and simultaneously the 

three entities TP, FP and FN to assess a binary image. The measure is normalized 

and decreases with improved quality of detection, with Pm = 0 qualifying perfect 

segmentation [18]. The Segmented Success Ratio [28] is obtained by the 

combination of the over-segmented success ratio and under-segmented success 

ratio. This measure is normalized in funciton of |Gt|.|Dc| and decreases with 

improved quality of detection, with SSR = 0 qualifying the perfect segmentation 

[18].

The Φ measure [29] and Fα measure [30]  are frequently used in edge 

detection assessment. The complement of these measures resulting a score to 1 

indicating a good segmentation and a score to 0 indicating poor segmentation. 

The Fα remains the most stable because it does not consider the TNs, which are 
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dominant in edge maps [18]. These two measures are based on True Positive Rate 

(TPR) and False Positive Rates (FPR), given by:









   



   


These measures evaluate the comparison of two edge images, pixel per 

pixel, tending to severely penalize even a slightly misplaced contour. These 

methods suffer greatly when there is a small variations of the binary edge pixel 

locations, thus resulting large differences in the final ratios [14][18].

3.2.2 Assessment involving Distance of Misplaced Pixels

First, to achieve a quantitative index of edge detector performance, one 

of the most popular descriptors is the Pratt’s Figure of Merit ()[21]. 

This measure provides a single quantitative index of edge detector performance 

by comparing the distance between the actual and ideal edge pixels. Pratt’s FOM 

ranges from 0 to 1, where 1 is a perfect match between the edge map being 

evaluated and the reference ground truth image. The drawback of Pratt’s FOM is 

that it does not record the distance of FNs [14][18]. Pinho’s FOM

(pin )[22] suggested an improvement to Pratt’s FOM by considering the 

closest distance between each pixel of detected edge map with the ground truth 

image. The second term penalizes false edge pixels. Panetta’s edge map quality 

measure ( )[14] is the average combination of false positive term and false 

negative term. The false positive term is similar to Pratt’s FOM and is the 
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distance between the false positive edge pixels of detected edge map and its 

closest ideal edge pixels in the ground truth edge map. The false negative term 

measures the false negative edge pixels and their distances from the closest 

correctly detected edge map. The smaller the Dp, the better is the edge pixel 

detection/localization performance. 

A second measure widely used in matching techniques is represented by the 

Hausdorff distance (), which measures the mismatch of two sets of points [24]. 

The algorithm aims to minimize H. A slight variation in the position of a pixel 

highly effects the score of H [18]. The propositions of this measure are 

Distance to Gt (
)[25] and Yasnoff measure ()[23] which represent an error 

distance only in function of dGt. The Yasnoff measure is similar to D
k
except k = 

2, using a different coefficient 100/|I|. Both measures estimate the divergence 

of FPs; in other words, they correspond to a measure of over-segmentation [18].  

Finally, a complete and optimum edge detection evaluation measure should 

combine assessments of both over- and under-segmentation [18], as Maximum 

distance measure ( ) [26] and Symmetric distance measure (  ) [25]. The 

score of maximum distance measure represents the maximum between the over- and 

under-segmentation. The value of symmetric distance measure corresponds to their 

means. Symmetric distance measure takes small values in the presence of low 

level of outliers whereas the score becomes large as the level of mistaken 

points increases. The Magnier symmetric distance measure () [18] takes into 

account the distance of all the misplaced pixels: false positives and false 

negatives. The score is close to 0 concerning good segmentation.
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Table 1. Color-to-grayscale conversion algorithms

Name Equation

Gred   

Ggreen   

Gblue   

Gintensity 

Ggleam ′′′

Gluminance      

Gmax-value max

Gmin-value min

Gluster max  min 

Gluma ′   ′ ′

Glightness

 

       and

  
 i f   

    

IV. Experimental Results and Analysis

All the experiments are performed in the following environment:

l Processor: IntelⓇ Core(TM) i5-2500 CPU @ 3.30GHｚ

l RAM: 4.00 GB

l OS: Windows 7, 64-bit

l MATLAB R2016a

For analysis purpose, I have used eleven color-to-grayscale conversion 

methods listed in Table 1. However, mainly focusing on gamma corrected methods.
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Table 2. Parameters used in the edge detection of synthetic images

Edge Detector Parameter settings

Sobel threshold = 0.05

Roberts threshold = 0.05

Prewitt threshold = 0.05

LoG
Gaussian standard deviation = 2,

threshold = 0.003

Canny
Gaussian standard deviation = 1,

threshold = [0.005, 0.01]

Table 3. Parameters used in the edge detection of natural images

Edge Detector Parameter settings

Sobel threshold = 0.1246

Roberts threshold = 0.1246

Prewitt threshold = 0.1246

LoG
Gaussian standard deviation = 2,

threshold = 0.0047

Canny
Gaussian standard deviation = 2,

threshold = [0.16, 0.4]

I have used three first order derivative edge detectors; Sobel, Roberts 

and Prewitt. And two second order derivative edge detectors; Laplacian of 

Gaussian and Canny edge detector. I have used the parameters for these edge 

detectors suggested in [14]. The edge detectors and the their parameters are 

listed in Table 2 and Table 3.

I have used reference-based objective measures for evaluation of edge 

detectors. Table 4. and Table 5. lists probabilistic performance measurement 

metrics.
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Table 4. Performance measurement metrics (A)
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Table 5. Performance measurement metrics (B)
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Table 6. lists performance measures involving distance of misplaced 

pixels. The distance   represents the minimal distance between  and 
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Table 6. Performance Measurement Metrics (C)
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 , for a pixel belonging to the desired contour   . While, the  

represents the minimal distance between  and  , for a pixel belonging to the 

ground truth   . These distances are given by:

    In fxp xt 
  yp yt 

  pD cand 

   In fxp xt 
  yp yt 

  tD cand 

The distances refer to Euclidean distance and    and   

the pixel coordinates of two points  and  .
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To evaluate the effect of color to grayscale conversion algorithms on the 

performance of edge detection, experiments are conducted on both synthetic and 

natural images. Some of the experimental results are shown here. First the 

images are converted to grayscale representations by using the methods listed in 

Table 1. Figure 3 and Figure 10 shows the grayscale images of synthetic and 

natural color image, respectively. The edge maps of these images are obtained by 

using Sobel, Roberts, Prewitt, Laplacian of Gaussian and Canny edge detectors. 

Figure 4-8 and Figure 11-15 shows the edge maps of the synthetic grayscale image 

and natural grayscale image, respectively. The edge detectors, parameters are 

given in Table 2 and Table 3, applied to synthetic and natural images, 

repectively. This work focuses on the effect of color to grayscale conversion 

algorithms on edge detectors, therefore only comparisons between color to 

grayscale conversion are carried out and therefore, the parameters used for edge 

detection algorithms are fixed. The comparison between color-to-gryascale 

algorithms is carried out by evaluating the performance of edge detectors when 

applied to different grayscale representations. I have used multiple evaluators 

to get the performance score. The methods are described in chapter III and are 

listed in Table 4,5, and 6. 

For synthetic image, the edge maps obtained from Sobel, Roberts and 

Prewitt methods, the Lightness grayscale representation out performs the other 

grayscale conversion methods. For the Laplacian edge maps, Intensity grayscale 

image performs better. The Luminance grayscale representation of the synthetic 

color image performs better for Canny edge detector. Figure 9 is the commulative 
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ranking of the number of tests a method qualifies for all edge detectors. The 

Lightness color-to-grayscale conversion method has the highest rank, followed by 

Intensity and Luminance conversion methods. However, the Lightness method does 

not qualify any test for the Laplacian and Canny edge maps, the Intensity method 

only qualify one test for Roberts method and Luminance method qualifies one test 

for Roberts and Prewitt edge detectors. The commulative ranking shows that the 

max-value performs most poorly, followed by min-value and pure RGB channel 

representation. 

For natural images, experiments are carried out on 40 images from Berkley 

dataset [39]. These images are mixture of people's portraits, animals, 

landscapes and objects. The results of one natural image (The bridge) is shown 

in Table 7-26. For complete dataset the results are summarized in Figure 2. 

Figure 2 is the mean accuracy of each method based on the Panetta et al. 

reference based edge detection evaluator presented in [14]. I chose this measure 

because the results obtained from this method is similar to human subjective 

evaluation. 

The experimental results in Figure 2. shows the improved performance of an 

edge detector when a suitable grayscale representation is considered. The first 

order derivative edge detectors performed better on Lightness equation of CIE 

LAB. The Sobel and Roberts edge detectors gained 5% efficiency while Prewitt 

achieved 6% increase in the performance. However, edge detectors (Laplacian of 

Gaussian (LoG) and Canny) that incorporate de-noising step, result a better edge 

map on Gleam grayscale representation. The LoG method achieved 2% accuracy while 
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Canny edge detector achieved 4% efficiency on Gleam representation. 

4.1 Discussion

Pure RGB channel grayscale representation methods choose one channel out 

of three, therefore resulting in loss of edges that occurs because of the 

intensity difference in the other two channels. The Intensity method is based on 

averaging, which is simple and fast. However, averaging result is distorted by 

very small and very large values. Intensity representation smooths out the 

variance of pixels intensities, thus resulting in edges loss. Luster is a 

desaturation method which finds the midpoint between the maximum and the minimum 

of RGB. This method also results in a flatter and softer grayscale image. The 

Max-Value and Min-Value are decomposition methods, which forces each pixel to 

highest or lowest of RGB value, respectively. A maximum decomposition losses 

darker tones while minimum decomposition losses brighter tones thus results in 

the corresponding edges loss. None of the aforementioned methods includes 

parameters to adjust shades of gray relative to the way humans perceive 

luminosity. 

Humans do not perceive all colors equally. Alternative method is to weight 

each color based on how human eye perceives it. Luminance method have three 

coefficients that represent the intensity perception of humans. However, this 

method does not adopt the non-linear behavior of human perception. Therefore, 

this method is less sensitive to darker tones. Gamma corrected methods are 

proposed to overcome this problem. Gleam, Luma and Lightness are based on gamma 
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correction. The Lightness method distributes the tones roughly evenly across the 

entire range. Thus, resulting in good edge map for first order derivative edge 

detectors. However, the methods, which have de-noising step smooths out this 

wide range of intensity distribution and results in poor edge map. On the other 

hand, Gleam performed better for such type of edge detectors because the gamma 

correction in the equation introduces the non-linearity but preserved the 

distribution of intensity in a moderate way, thus de-noising could not 

smoothened them out. Finally, the Luma method includes the gamma correction 

parameter but still the resultant variance is high enough that de-noising step 

toned it out.

Figure 2. Performance measure of color-to-grayscale algorithms on edge 

detectors for Berkely natural images dataset. The y-axis is the mean accuracy 

for each color-to-grayscale algorithm across each edge detector. The conversion 

methods are given on x-axis.
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Figure 3. Grayscale representations of 

synthetic image (a) Original color 

image. (b)-(l) Grayscale images obtained 

from methods listed in Table 1.

I have used a synthetic color image of check pattern Figure 3. (a). The 

grayscale representations Figure 3. (b)-(l) of the original image are obtained 

using the color-to-grayscale algorithms listed in Table 1.
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Figure 4. Resultant Sobel edge maps (a) 

Ground Truth. (b)-(l) Edge maps obtained 

using Sobel edge detection on grayscale 

images in Figure 3. (b)-(l).

Figure 4. (a) is the ground truth edge map and (b)-(l) are the 

corresponding obtained edge maps of Figure 3. (b)-(l), using Sobel edge 

detection.
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Table 7. Evaluation of Sobel edge maps using Table 5 measures.

Figure 4 BSNR PM SSR Φ Fα OVER UNDER LOC

b 1.8379 0.2284 0.2284 0.2284 0.2104 0 0.2284 0.0123

c 1.8771 0.2211 0.2211 0.2211 0.2035 0 0.2211 0.0119

d 1.9307 0.2115 0.2115 0.2115 0.1945 0 0.2115 0.0114

e 1.4343 0.3271 0.3271 0.3271 0.3043 0 0.3271 0.0176

f 1.1629 0.4251 0.4251 0.4251 0.3996 0 0.4251 0.0229

g 1.8294 0.2301 0.2301 0.2301 0.2119 0 0.2301 0.0124

h 1.3782 0.3449 0.3449 0.3449 0.3215 0 0.3449 0.0186

i 1.1835 0.4165 0.4165 0.4165 0.3912 0 0.4165 0.0225

j 1.4318 0.3279 0.3279 0.3279 0.3051 0 0.3279 0.0177

k 1.8778 0.2209 0.2209 0.2209 0.2033 0 0.2209 0.0119

l 2.2994 0.1591 0.1591 0.1591 0.1455 0 0.1591 0.0086

Table 8. Evaluation of Sobel edge maps using Table 
4 measures.

Figure 4 MSE RMSE PSNR MAE SSIM

b 0.0123 0.1110 67.2242 0.0123 0.9363

c 0.0119 0.1092 67.3663 0.0119 0.9380

d 0.0114 0.1068 67.5580 0.0114 0.9407

e 0.0176 0.1328 65.6651 0.0176 0.9091

f 0.0229 0.1514 64.5267 0.0229 0.8815

g 0.0124 0.1114 67.1934 0.0124 0.9356

h 0.0186 0.1364 65.4347 0.0186 0.9039

i 0.0225 0.1499 64.6150 0.0225 0.8835

j 0.0177 0.1330 65.6548 0.0177 0.9087

k 0.0119 0.1092 67.3691 0.0119 0.9381

l 0.0086 0.0926 68.7963 0.0086 0.9554
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Table 9. Evaluation of Sobel edge maps using Figure of 
Merits given in Table 6.

Figure 4  pin 

b 0.7716 0.8008 0.9004

c 0.7789 0.8033 0.9017

d 0.7885 0.8133 0.9067

e 0.6729 0.7048 0.8524

f 0.5749 0.6176 0.8088

g 0.7699 0.7962 0.8981

h 0.6551 0.6918 0.8459

i 0.5835 0.6206 0.8103

j 0.6721 0.7059 0.8530

k 0.7791 0.8046 0.9023

l 0.8409 0.8596 0.9298

Table 10. Evaluation of Sobel edge maps using Table 6 measures.

Figure 4        

b 0 63.0000 0 3.9384 3.9384 0.0187

c 0 63.0000 0 4.6739 4.6739 0.0225

d 0 63.0000 0 4.2370 4.2370 0.0199

e 0 63.0079 0 8.3051 8.3051 0.0489

f 0 64.0000 0 0.0339 10.0339 0.0673

g 0 63.0079 0 4.6743 4.6743 0.0230

h 0 64.0000 0 7.9091 7.9091 0.0486

i 0 90.5207 0 1.7999 11.7999 0.0792

j 0 64.0000 0 7.5114 7.5114 0.0445

k 0 63.0000 0 4.5235 4.5235 0.0218

l 0 63.0000 0 3.2506 3.2506 0.0133
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Figure 5. Resultant Roberts edge maps (a) 

Ground Truth. (b)-(l) Edge maps obtained 

using Roberts edge detection on 

grayscale images in Figure 3. (b)-(l).

Figure 5. (a) is the ground truth edge map and (b)-(l) are the 

corresponding obtained edge maps of Figure 3. (b)-(l), using Roberts edge 

detection.
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Table 11. Evaluation of Roberts edge maps using Table 5 measures.

Figure 5 BSNR PM SSR Φ Fα OVER UNDER LOC

b 0.8333 0.5902 0.5902 0.5902 0.5645 0 0.5902 0.0318

c 0.8252 0.5949 0.5949 0.5949 0.5693 0 0.5949 0.0321

d 0.8640 0.5762 0.5762 0.5762 0.5466 0 0.5766 0.0309

e 0.8021 0.6085 0.6085 0.6085 0.5831 0 0.6085 0.0328

f 0.7502 0.6399 0.6399 0.6399 0.6153 0 0.6399 0.0345

g 0.8408 0.5859 0.5859 0.5859 0.5601 0 0.5859 0.0316

h 0.7289 0.6530 0.6530 0.6530 0.6288 0 0.6530 0.0352

i 0.7212 0.6579 0.6579 0.6579 0.6338 0 0.6579 0.0355

j 0.7797 0.6219 0.6219 0.6219 0.5969 0 0.6219 0.0335

k 0.8719 0.5681 0.5681 0.5681 0.5421 0 0.5681 0.0306

l 0.8880 0.5591 0.5591 0.5591 0.5330 0 0.5591 0.0302

Table 12. Evaluation of Roberts edge maps using 
Table 4 measures.

Figure 5 MSE RMSE PSNR MAE SSIM

b 0.0318 0.1784 63.1019 0.0318 0.8347

c 0.0321 0.1791 63.0672 0.0321 0.8332

d 0.0309 0.1757 63.2335 0.0309 0.8394

e 0.0328 0.1812 62.9692 0.0328 0.8298

f 0.0345 0.1858 62.7507 0.0345 0.8211

g 0.0316 0.1778 63.1338 0.0316 0.8357

h 0.0352 0.1877 62.6623 0.0352 0.8173

i 0.0355 0.1884 62.6304 0.0355 0.8158

j 0.0335 0.1832 62.8743 0.0335 0.8260

k 0.0306 0.1751 63.2674 0.0306 0.8406

l 0.0302 0.1737 63.3366 0.0302 0.8430
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Table 13. Evaluation of Roberts edge maps using FoMs 
given in Table 6.

Figure 5  pin 

b 0.4098 0.7998 0.8999

c 0.4051 0.7887 0.8944

d 0.4274 0.8276 0.9138

e 0.3915 0.7648 0.8824

f 0.3601 0.7097 0.8549

g 0.4141 0.8048 0.9024

h 0.3470 0.6880 0.8440

i 0.3421 0.6754 0.8377

j 0.3781 0.7407 0.8704

k 0.4319 0.8344 0.9172

l 0.4409 0.8491 0.9246

Table 14. Evaluation of Roberts edge maps using Table 6 measures.

Figure 5        

b 0 64.0000 0 3.5948 3.5948 0.0429

c 0 64.0000 0 4.5952 4.5952 0.0577

d 0 64.0000 0 3.4624 3.4624 0.0457

e 0 64.0000 0 5.5694 5.5694 0.0693

f 0 64.0000 0 7.3954 7.3954 0.0866

g 0 64.0000 0 4.0157 4.0157 0.0511

h 0 64.0000 0 7.8428 7.8428 0.0912

i 0 89.8053 0 9.7018 9.7018 0.1125

j 0 64.0000 0 6.4299 6.4299 0.0777

k 0 64.0000 0 3.4538 3.4538 0.0467

l 0 64.0000 0 3.1728 3.1728 0.0444
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Figure 6. Resultant Prewitt edge maps (a) 

Ground Truth. (b)-(l) Edge maps obtained 

using Prewitt edge detection on 

grayscale images in Figure 3. (b)-(l).

Figure 6. (a) is the ground truth edge map and (b)-(l) are the 

corresponding obtained edge maps of Figure 3. (b)-(l), using Prewitt edge 

detection.
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Table 15. Evaluation of Prewitt edge maps using Table 5 measures.

Figure 6 BSNR PM SSR Φ Fα OVER UNDER LOC

b 1.8364 0.2287 0.2287 0.2287 0.2107 0 0.2287 0.0123

c 1.8751 0.2214 0.2214 0.2214 0.2038 0 0.2214 0.0119

d 1.9307 0.2115 0.2115 0.2115 0.1945 0 0.2115 0.0114

e 1.4339 0.3272 0.3272 0.3272 0.3045 0 0.3272 0.0177

f 1.1619 0.4255 0.4255 0.4255 0.4000 0 0.4255 0.0230

g 1.8280 0.2303 0.2303 0.2303 0.2122 0 0.2303 0.0124

h 1.3773 0.3452 0.3452 0.3452 0.3218 0 0.3452 0.0186

i 1.1833 0.4166 0.4166 0.4166 0.3913 0 0.4166 0.0225

j 1.4332 0.3274 0.3274 0.3274 0.3047 0 0.3274 0.0177

k 1.8767 0.2211 0.2211 0.2211 0.2035 0 0.2211 0.0119

l 2.2976 0.1593 0.1593 0.1593 0.1457 0 0.1593 0.0086

Table 16. Evaluation of Prewitt edge maps using 
Table 4 measures.

Figure 6 MSE RMSE PSNR MAE SSIM

b 0.0123 0.1111 67.2188 0.0123 0.9363

c 0.0119 0.1093 67.3594 0.0119 0.9379

d 0.0114 0.1068 67.5580 0.0114 0.9407

e 0.0177 0.1329 65.6632 0.0177 0.9091

f 0.0230 0.1515 64.5224 0.0230 0.8814

g 0.0124 0.1115 67.1880 0.0124 0.9356

h 0.0186 0.1365 65.4311 0.0186 0.9038

i 0.0225 0.1499 64.6143 0.0225 0.8835

j 0.0177 0.1329 65.6604 0.0177 0.9087

k 0.0119 0.1092 67.3649 0.0119 0.9381

l 0.0086 0.0927 68.7905 0.0086 0.9554
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Table 17. Evaluation of Prewitt edge maps using FoMs 
given in Table 6.

Figure 6  pin 

b 0.7713 0.8008 0.9004

c 0.7786 0.8031 0.9015

d 0.7885 0.8134 0.9067

e 0.6728 0.7050 0.8525

f 0.5745 0.6175 0.8088

g 0.7697 0.7942 0.8971

h 0.6548 0.6916 0.8458

i 0.5834 0.6205 0.8103

j 0.6726 0.7066 0.8533

k 0.7789 0.8047 0.9024

l 0.8407 0.8596 0.9298

Table 18. Evaluation of Prewitt edge maps using Table 6 measures.

Figure 6        

b 0 63.0000 0 3.9387 3.9387 0.0187

c 0 63.0000 0 4.6795 4.6795 0.0226

d 0 63.0000 0 4.2368 4.2368 0.0199

e 0 63.0079 0 8.3047 8.3047 0.0490

f 0 64.0000 0 10.0438 10.0438 0.0674

g 0 63.0000 0 5.2267 5.2267 0.0257

h 0 64.0000 0 7.9146 7.9146 0.0486

i 0 90.5207 0 11.8132 11.8132 0.0793

j 0 64.0000 0 7.5055 7.5055 0.0444

k 0 63.0000 0 4.5234 4.5234 0.0218

l 0 63.0000 0 3.2508 3.2508 0.0133
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Figure 7. Resultant LoG edge maps (a) 

Ground Truth. (b)-(l) Edge maps obtained 

using Laplacian of Gaussian edge 

detection on grayscale images in Figure 

3. (b)-(l).

Figure 7. (a) is the ground truth edge map and (b)-(l) are the 

corresponding obtained edge maps of Figure 3. (b)-(l), using LoG edge detection.
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Table 19. Evaluation of LoG edge maps using Table 5 measures.

Figure 7 BSNR PM SSR Φ Fα OVER UNDER LOC

b 0.8487 0.6274 0.6664 0.5972 0.5736 0.0049 0.5953 0.0368

c 0.8649 0.6242 0.6672 0.5888 0.5654 0.0057 0.5865 0.0370

d 0.8860 0.6257 0.6770 0.5792 0.5565 0.0075 0.5762 0.0382

e 0.9071 0.5919 0.6288 0.5590 0.5350 0.0049 0.5569 0.0347

f 0.9154 0.5969 0.6402 0.5562 0.5327 0.0061 0.5535 0.0357

g 0.8982 0.6033 0.6447 0.5664 0.5428 0.0056 0.5641 0.0358

h 0.8700 0.6331 0.6836 0.5896 0.5668 0.0072 0.5867 0.0385

i 0.8500 0.6279 0.6676 0.5968 0.5732 0.0051 0.5948 0.0369

j 0.8721 0.6203 0.6634 0.5842 0.5607 0.0058 0.5818 0.0369

k 0.9306 0.6074 0.6618 0.5508 0.5284 0.0088 0.5470 0.0378

l 0.8994 0.6019 0.6427 0.5654 0.5417 0.0056 0.5631 0.0356

Table 20. Evaluation of LoG edge maps using Table 4 
measures.

Figure 7 MSE RMSE PSNR MAE SSIM

b 0.0368 0.1917 62.4772 0.0368 0.8055

c 0.0370 0.1925 62.4440 0.0370 0.8018

d 0.0382 0.1955 62.3084 0.0382 0.7945

e 0.0347 0.1862 62.7320 0.0347 0.8178

f 0.0357 0.1888 62.6090 0.0357 0.8113

g 0.0358 0.1891 62.5965 0.0358 0.8112

h 0.0385 0.1961 62.2794 0.0385 0.7956

i 0.0369 0.1920 62.4637 0.0369 0.8052

j 0.0369 0.1920 62.4660 0.0369 0.8048

k 0.0378 0.1944 62.3555 0.0378 0.7953

l 0.0356 0.1887 62.6132 0.0356 0.8119
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Table 21. Evaluation of LoG edge maps using FoMs given in 
Table 6.

Figure 7  pin 

b 0.4381 0.8955 0.9088

c 0.4497 0.9185 0.9139

d 0.4680 0.9689 0.9240

e 0.4768 0.9660 0.9427

f 0.4858 0.9925 0.9449

g 0.4718 0.9622 0.9347

h 0.4576 0.9484 0.9168

i 0.4372 0.8907 0.9061

j 0.4561 0.9289 0.9184

k 0.5052 1.0449 0.9492

l 0.4715 0.9614 0.9351

Table 22. Evaluation of LoG edge maps using Table 6 measures.

Figure 7        

b 2.2907 57.0088 0.7588 2.6557 2.7880 0.0396

c 2.4380 64.0000 0.8816 2.9439 3.0874 0.0491

d 2.7377 64.0000 1.1424 2.4175 2.6961 0.0450

e 2.1477 32.0000 0.7036 1.5346 1.7561 0.0258

f 2.3902 61.1310 0.8860 1.5041 1.8012 0.0293

g 2.4005 64.0000 0.8526 1.9881 2.2241 0.0367

h 2.7177 59.0085 1.0993 2.5555 2.7953 0.0443

i 2.4409 64.0312 0.8247 3.7794 3.8455 0.0613

j 2.4323 64.0000 0.8745 3.7124 3.7831 0.0663

k 2.6441 58.4209 1.1934 1.3116 1.7644 0.0287

l 2.4356 59.0085 0.8584 2.1088 2.3396 0.0393
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Figure 8. Resultant Canny edge maps (a) 

Ground Truth. (b)-(l) Edge maps obtained 

using Canny edge detection on grayscale 

images in Figure 3. (b)-(l).

Figure 8. (a) is the ground truth edge map and (b)-(l) are the 

corresponding obtained edge maps of Figure 3. (b)-(l), using Canny edge 

detection.



- 44 -

Table 23. Evaluation of Canny edge maps using Table 5 measures.

Figure 8 BSNR PM SSR Φ Fα OVER*10-5 UNDER LOC

b 2.7265 0.1186 0.1187 0.1183 0.1077 2.41 0.1182 0.0064

c 2.7896 0.1139 0.1140 0.1135 0.1033 3.22 0.1134 0.0061

d 3.0140 0.0992 0.0992 0.9900 0.0900 1.61 0.0989 0.0054

e 2.7400 0.1176 0.1176 0.1173 0.1069 1.61 0.1173 0.0063

f 2.7816 0.1145 0.1146 0.1141 0.1039 2.82 0.1141 0.0062

g 3.1086 0.0938 0.0938 0.0935 0.0850 2.01 0.0935 0.0051

h 2.5290 0.1353 0.1353 0.1350 0.1232 1.61 0.1350 0.0073

i 2.7318 0.1182 0.1182 0.1179 0.1074 2.01 0.1179 0.0064

j 3.0562 0.0967 0.0967 0.0965 0.0877 1.20 0.0965 0.0052

k 2.6923 0.1213 0.1214 0.1209 0.1102 2.82 0.1209 0.0065

l 2.9806 0.1012 0.1013 0.1008 0.0917 2.82 0.1008 0.0055

Table 24. Evaluation of Canny edge maps using Table 
4 measures.

Figure 8 MSE RMSE PSNR MAE SSIM

b 0.0064 0.0800 70.0683 0.0064 0.9741

c 0.0061 0.0784 70.2426 0.0061 0.9754

d 0.0054 0.0732 70.8456 0.0054 0.9798

e 0.0063 0.0796 70.1073 0.0063 0.9744

f 0.0062 0.0786 70.2211 0.0062 0.9752

g 0.0051 0.0711 71.0875 0.0051 0.9813

h 0.0073 0.0854 69.4991 0.0073 0.9693

i 0.0064 0.0799 70.0838 0.0064 0.9741

j 0.0052 0.0722 70.9553 0.0052 0.9802

k 0.0065 0.0809 69.9710 0.0065 0.9731

l 0.0055 0.0739 70.756 0.0055 0.9790



- 45 -

Table 25. Evaluation of Canny edge maps using FoMs given 
in Table 6.

Figure 8  pin 

b 0.8821 0.9652 0.9824

c 0.8871 0.9667 0.9831

d 0.9013 0.9743 0.9870

e 0.8829 0.9599 0.9798

f 0.8864 0.9738 0.9866

g 0.9068 0.9822 0.9909

h 0.8653 0.9562 0.9780

i 0.8824 0.9570 0.9783

j 0.9037 0.9888 0.9943

k 0.8796 0.9666 0.9831

l 0.8997 0.9747 0.9871

Table 26. Evaluation of Canny edge maps using Table 6 measures.

Figure 8        

b 0.0196 63.0079 0.4810 0.6805 0.6807 0.0043

c 0.0225 31.2570 0.6378 0.5321 0.5323 0.0029

d 0.0157 31.2570 0.3138 0.3829 0.3831 0.0021

e 0.0160 31.2570 0.3204 0.6402 0.6403 0.0033

f 0.0211 63.1269 0.5585 0.5089 0.5092 0.0037

g 0.0174 31.2570 0.3899 0.2387 0.2390 0.0014

h 0.0163 63.1269 0.3269 0.8346 0.8346 0.0053

i 0.0179 63.1269 0.4007 1.1031 1.1031 0.0063

j 0.0136 2.2361 0.2348 0.1051 0.1053 0.0003

k 0.0213 31.2570 0.5628 0.5109 0.5111 0.0030

l 0.0208 31.4006 0.5502 0.3836 0.3839 0.0021
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Figure 9. Performance measure of color-to-grayscale algorithms for synthetic 

image

Each edge map figure is followed by four performance measurement tables. 

The first two tables are the statistical measures while the other two are the 

figure of merits based edge measures.
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Figure 10. Grayscale representations of 

natural image (a) Original color image. 

(b)-(l) Grayscale images obtained from 

methods listed in Table 1.
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Figure 11. Resultant Sobel edge maps (a) 

Ground Truth. (b)-(l) Edge maps obtained 

using Sobel edge detection on grayscale 

images in Figure 10. (b)-(l).
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Table 27. Evaluation of Sobel edge maps using Table 5 measures.

Figure 11 BSNR PM SSR Φ Fα OVER UNDER LOC

b 0.7002 0.9071 0.9701 0.861 0.8521 0.0324 0.8567 0.0788

c 0.6956 0.9068 0.9698 0.8618 0.8528 0.0315 0.8576 0.078

d 0.6882 0.9083 0.9704 0.8652 0.8563 0.0305 0.8613 0.0773

e 0.6938 0.9077 0.9702 0.8632 0.8543 0.0314 0.8591 0.0779

f 0.6567 0.9286 0.981 0.8964 0.8891 0.0293 0.8936 0.0779

g 0.696 0.907 0.9699 0.8619 0.8529 0.0316 0.8578 0.0781

h 0.7010 0.9066 0.9698 0.8601 0.8511 0.0324 0.8558 0.0787

i 0.6874 0.9092 0.971 0.8666 0.8577 0.0306 0.8627 0.0774

j 0.6939 0.9077 0.9703 0.8632 0.8543 0.0314 0.8591 0.078

k 0.6960 0.9073 0.9701 0.8622 0.8533 0.0317 0.8581 0.0782

l 0.7419 0.9055 0.9700 0.8474 0.8389 0.0404 0.8415 0.0855

Table 29. Evaluation of Sobel edge maps using FoMs given 

Table 28. Evaluation of Sobel edge maps using Table 
4 measures.

Figure 11 MSE RMSE PSNR MAE SSIM

b 0.0788 0.2806 59.1705 0.0788 0.5723

c 0.078 0.2792 59.2129 0.078 0.572

d 0.0773 0.2779 59.2539 0.0773 0.5762

e 0.0779 0.2791 59.2165 0.0779 0.5739

f 0.0779 0.279 59.219 0.0779 0.5466

g 0.0781 0.2794 59.2068 0.0781 0.5731

h 0.0787 0.2806 59.1716 0.0787 0.5716

i 0.0774 0.2782 59.2462 0.0774 0.5757

j 0.078 0.2792 59.2151 0.078 0.5746

k 0.0782 0.2796 59.2032 0.0782 0.5725

l 0.0855 0.2924 58.8142 0.0855 0.5346
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in Table 6.

Figure 11  pin 

b 0.4689 0.9897 0.7139

c 0.4596 0.9688 0.7118

d 0.4469 0.9409 0.7099

e 0.4571 0.9643 0.7109

f 0.3423 0.8184 0.6783

g 0.4609 0.9713 0.7119

h 0.47 0.996 0.7161

i 0.4453 0.9366 0.7081

j 0.4573 0.9652 0.7111

k 0.4606 0.9708 0.712

l 0.528 1.136 0.726

Table 30. Evaluation of Sobel edge maps using Table 6 measures.

Figure 11        

b 19.3099 106.527 5.6828 5.6828 4.3935 0.1975

c 20.3719 112.0045 5.8706 5.8706 4.4858 0.201

d 20.4565 103.0777 5.7839 5.7839 4.5352 0.196

e 19.8389 106.527 5.7038 5.7038 4.4237 0.1955

f 42.8325 161.1987 14.4956 14.4956 8.5482 0.3664

g 19.8704 111.2116 5.7458 5.7458 4.4195 0.1971

h 20.1126 112.0045 5.8611 5.8611 4.4414 0.2046

i 20.0797 103.0777 5.7385 5.7385 4.5302 0.1933

j 19.9076 107.2987 5.7182 5.7182 4.4411 0.1965

k 20.1275 112.0045 5.8138 5.8138 4.4595 0.1998

l 20.9746 113.6002 7.4039 7.4039 5.1565 0.2738
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Figure 12. Resultant Roberts edge maps 

(a) Ground Truth. (b)-(l) Edge maps 

obtained using Roberts edge detection on 

grayscale images in Figure 10. (b)-(l).
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Table 31. Evaluation of Roberts edge maps using Table 5 measures.

Figure 12 BSNR PM SSR Φ Fα OVER UNDER LOC

b 0.7603 0.86 0.9387 0.7889 0.7772 0.0331 0.7822 0.0753

c 0.7516 0.8636 0.9412 0.796 0.7844 0.0323 0.7897 0.0749

d 0.7444 0.867 0.9436 0.8022 0.7906 0.0318 0.7962 0.0748

e 0.7514 0.863 0.9407 0.7954 0.7837 0.0322 0.7891 0.0748

f 0.7049 0.8902 0.9592 0.8401 0.8298 0.0297 0.8355 0.0751

g 0.7536 0.862 0.94 0.7935 0.7818 0.0323 0.7872 0.0748

h 0.761 0.8594 0.9382 0.788 0.7762 0.0331 0.7813 0.0752

i 0.7438 0.8675 0.944 0.8029 0.7914 0.0318 0.797 0.0748

j 0.7509 0.864 0.9415 0.7967 0.785 0.0323 0.7904 0.0749

k 0.7524 0.8626 0.9404 0.7946 0.7829 0.0323 0.7883 0.0748

l 0.8049 0.8602 0.9398 0.7694 0.759 0.0427 0.7600 0.0831

Table 32. Evaluation of Roberts edge maps using 
Table 4 measures.

Figure 12 MSE RMSE PSNR MAE SSIM

b 0.0753 0.2743 59.3664 0.0753 0.5697

c 0.0749 0.2737 59.3866 0.0749 0.5702

d 0.0748 0.2734 59.3964 0.0748 0.5697

e 0.0748 0.2734 59.3976 0.0748 0.5707

f 0.0751 0.2739 59.3791 0.0751 0.5495

g 0.0748 0.2734 59.3949 0.0748 0.5707

h 0.0752 0.2742 59.3702 0.0752 0.5718

i 0.0748 0.2735 59.3934 0.0748 0.5678

j 0.0749 0.2737 59.3863 0.0749 0.5697

k 0.0748 0.2734 59.3953 0.0748 0.5711

l 0.0831 0.2882 58.9378 0.0831 0.5316
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Table 34. Evaluation of Roberts edge maps using Table 6 measures.

Figure 12        

b 19.1243 122.2989 6.2508 6.2508 4.8691 0.2087

c 19.6985 125.2997 6.3794 6.3794 4.9655 0.2088

d 19.7581 122.2989 6.3623 6.3623 4.9201 0.2048

e 19.6716 122.2989 6.3764 6.3764 4.9323 0.207

f 41.613 160.4307 15.2336 15.2336 9.3719 0.3794

g 19.5064 122.2989 6.3336 6.3336 4.9368 0.207

h 18.9650 122.2989 6.2205 6.2205 4.8416 0.2069

i 19.9674 122.2989 6.4118 6.4118 4.9627 0.207

j 19.5222 122.2989 6.3541 6.3541 4.9077 0.2062

k 19.5857 122.2989 6.3452 6.3452 4.9385 0.2071

l 20.3054 146 7.9977 7.9977 5.7066 0.2925

Table 33. Evaluation of Roberts edge maps using FoMs 
given in Table 6.

Figure 12  pin 

b 0.5207 1.0471 0.752

c 0.5059 1.0231 0.7475

d 0.4955 1.0116 0.746

e 0.505 1.0234 0.748

f 0.3751 0.8738 0.7136

g 0.508 1.0254 0.7487

h 0.5216 1.0489 0.7522

i 0.4943 1.0093 0.747

j 0.5044 1.0255 0.7476

k 0.5066 1.0233 0.7484

l 0.5957 1.2408 0.7725
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Figure 13. Resultant Prewitt edge maps 

(a) Ground Truth. (b)-(l) Edge maps 

obtained using Prewitt edge detection on 

grayscale images in Figure 10. (b)-(l).
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Table 35. Evaluation of Prewitt edge maps using Table 5 measures.

Figure 13 BSNR PM SSR Φ Fα OVER UNDER LOC

b 0.6892 0.9076 0.9701 0.8642 0.8552 0.0306 0.8603 0.0772

c 0.6822 0.9082 0.9702 0.8666 0.8576 0.0295 0.8628 0.0764

d 0.6736 0.9105 0.9713 0.8711 0.8623 0.0286 0.8677 0.0758

e 0.6826 0.9073 0.9697 0.8654 0.8564 0.0294 0.8617 0.0762

f 0.6407 0.9315 0.9821 0.9026 0.8955 0.0273 0.9001 0.0764

g 0.6836 0.908 0.9702 0.866 0.857 0.0297 0.8622 0.0765

h 0.6899 0.9071 0.9698 0.8634 0.8544 0.0306 0.8595 0.0772

i 0.6729 0.911 0.9716 0.8719 0.8631 0.0285 0.8685 0.0758

j 0.6819 0.908 0.9701 0.8664 0.8574 0.0294 0.8627 0.0763

k 0.6830 0.9081 0.9702 0.8662 0.8572 0.0296 0.8625 0.0765

l 0.7320 0.9066 0.9704 0.8517 0.8431 0.0385 0.8462 0.084

Table 36. Evaluation of Prewitt edge maps using 
Table 4 measures.

Figure 13 MSE RMSE PSNR MAE SSIM

b 0.0772 0.2779 59.2557 0.0772 0.5837

c 0.0764 0.2764 59.303 0.0764 0.5832

d 0.0758 0.2752 59.3396 0.0758 0.5876

e 0.0762 0.276 59.3129 0.0762 0.5858

f 0.0764 0.2764 59.3026 0.0764 0.5525

g 0.0765 0.2766 59.2945 0.0765 0.5848

h 0.0772 0.2778 59.2564 0.0772 0.5827

i 0.0758 0.2752 59.3381 0.0758 0.5869

j 0.0763 0.2762 59.3081 0.0763 0.5849

k 0.0765 0.2765 59.2985 0.0765 0.5846

l 0.084 0.2897 58.893 0.084 0.5443
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Table 37. Evaluation of Prewitt edge maps using FoMs 
given in Table 6.

Figure 13  pin 

b 0.452 0.9515 0.7089

c 0.4399 0.9272 0.7069

d 0.4259 0.896 0.7039

e 0.4401 0.9249 0.7074

f 0.3196 0.7758 0.668

g 0.442 0.9301 0.7068

h 0.4533 0.9534 0.7104

i 0.4245 0.895 0.7032

j 0.4393 0.9269 0.7067

k 0.4408 0.9288 0.7066

l 0.5122 1.0972 0.7195

Table 38. Evaluation of Prewitt edge maps using Table 6 measures.

Figure 13        

b 19.1833 106.527 5.3744 5.3744 4.3117 0.1852

c 20.5803 112.8008 5.6176 5.6176 4.4467 0.1899

d 20.7056 102.3035 5.5757 5.5757 4.5252 0.1855

e 19.6992 106.527 5.3869 5.3869 4.3594 0.1824

f 45.2437 161.1987 14.8633 14.8633 8.6126 0.3556

g 19.8549 111.2116 5.4656 5.4656 4.3826 0.1854

h 20.133 112.0045 5.5891 5.5891 4.4041 0.1934

i 20.2218 102.3035 5.4802 5.4802 4.478 0.1815

j 19.746 106.527 5.4058 5.4058 4.3533 0.1828

k 20.1239 112.0045 5.5242 5.5242 4.4052 0.1869

l 21.4265 113.6002 7.2613 7.2613 5.0858 0.2634
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Figure 14. Resultant LoG edge maps (a) 

Ground Truth. (b)-(l) Edge maps obtained 

using Laplacian of Gaussian edge 

detection on grayscale images in Figure 

10. (b)-(l).



- 58 -

Table 39. Evaluation of LoG edge maps using Table 5 measures.

Figure 14 BSNR PM SSR Φ Fα OVER UNDER LOC

b 0.8148 0.9194 0.9774 0.8389 0.8336 0.0672 0.8286 0.11

c 0.8241 0.9225 0.9788 0.8393 0.8346 0.0726 0.8282 0.1151

d 0.8354 0.9245 0.9795 0.8369 0.8329 0.079 0.8246 0.1209

e 0.8266 0.9215 0.9782 0.8365 0.8318 0.0732 0.8251 0.1155

f 0.8274 0.9259 0.9804 0.8431 0.8388 0.0758 0.8317 0.1184

g 0.8241 0.9212 0.9781 0.8372 0.8325 0.0719 0.8261 0.1144

h 0.8129 0.9194 0.9774 0.8398 0.8344 0.0664 0.8297 0.1093

i 0.8377 0.9244 0.9794 0.8354 0.8316 0.08 0.8229 0.1218

j 0.8269 0.9212 0.9781 0.8359 0.8313 0.0732 0.8245 0.1154

k 0.8399 0.9239 0.9791 0.8335 0.8298 0.0808 0.8207 0.1225

l 0.8252 0.9211 0.978 0.8366 0.8318 0.0723 0.8253 0.1147

Table 40. Evaluation of LoG edge maps using Table 4 
measures.

Figure 14 MSE RMSE PSNR MAE SSIM

b 0.11 0.3317 57.718 0.11 0.4052

c 0.1151 0.3392 57.5227 0.1151 0.394

d 0.1209 0.3477 57.308 0.1209 0.378

e 0.1155 0.3398 57.5071 0.1155 0.3935

f 0.1184 0.344 57.4009 0.1184 0.3809

g 0.1144 0.3382 57.5499 0.1144 0.3968

h 0.1093 0.3306 57.7452 0.1093 0.4122

i 0.1218 0.3489 57.2769 0.1218 0.3744

j 0.1154 0.3397 57.5093 0.1154 0.3936

k 0.1225 0.3499 57.2525 0.1225 0.3704

l 0.1147 0.3387 57.5369 0.1147 0.395
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Table 41. Evaluation of LoG edge maps using FoMs given in 
Table 6.

Figure 14  pin 

b 0.4884 1.5902 0.7418

c 0.4802 1.683 0.7405

d 0.4772 1.8007 0.7453

e 0.48 1.6938 0.7428

f 0.4473 1.7059 0.7353

g 0.4821 1.673 0.7422

h 0.4977 1.5927 0.7408

i 0.469 1.8049 0.7472

j 0.4821 1.6954 0.7433

k 0.4586 1.8229 0.7445

l 0.4807 1.6801 0.7426

Table 42. Evaluation of LoG edge maps using Table 6 measures.

Figure 14        

b 23.6406 16.6434 12.6281 1.7534 0.8247 0.0553

c 22.3377 16.9706 12.3364 2.0725 2.0494 0.0815

d 20.2098 13.6015 11.6473 1.6918 1.7495 0.0727

e 22.0553 16.9706 12.2558 2.0724 2.0494 0.082

f 24.6368 16.9706 14.3443 1.7112 1.4987 0.0675

g 22.5826 16.9706 12.407 2.0642 2.0492 0.081

h 22.1644 14.8661 11.6687 2.0218 2.0225 0.0747

i 21.3488 16.6434 12.4414 1.6975 1.7785 0.0767

j 21.8819 16.9706 12.1514 2.0684 2.0464 0.082

k 21.4256 14.8661 12.7632 1.5347 1.4164 0.0626

l 22.5368 16.6434 12.414 2.0681 2.049 0.0812



- 60 -

a b c

d e f

g h i

j k l

Figure 15. Resultant Canny edge maps (a) 

Ground Truth. (b)-(l) Edge maps obtained 

using Canny edge detection on grayscale 

images in Figure 10. (b)-(l).
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Table 43. Evaluation of Canny edge maps using Table 5 measures.

Figure 15 BSNR PM SSR Φ Fα OVER UNDER LOC

b 0.6612 0.9012 0.9649 0.8631 0.8534 0.025 0.8598 0.072

c 0.6556 0.905 0.9672 0.8686 0.8591 0.0249 0.8655 0.0722

d 0.6495 0.9117 0.9712 0.8775 0.8686 0.0251 0.8746 0.0729

e 0.6518 0.9054 0.9672 0.8697 0.8603 0.0244 0.8667 0.0718

f 0.6652 0.927 0.9804 0.893 0.8855 0.0304 0.8899 0.0787

g 0.6558 0.9047 0.9669 0.8681 0.8587 0.0248 0.865 0.0721

h 0.6596 0.9013 0.9648 0.8635 0.8538 0.0248 0.8603 0.0718

i 0.652 0.9102 0.9704 0.8752 0.8662 0.0252 0.8723 0.0729

j 0.6543 0.9044 0.9667 0.8681 0.8586 0.0246 0.865 0.0719

k 0.6572 0.9041 0.9666 0.8672 0.8577 0.0249 0.8641 0.0721

l 0.6764 0.9009 0.9654 0.8594 0.8498 0.0272 0.8558 0.0738

Table 44. Evaluation of Canny edge maps using Table 
4 measures.

Figure 15 MSE RMSE PSNR MAE SSIM

b 0.072 0.2682 59.563 0.072 0.643

c 0.0722 0.2686 59.5512 0.0722 0.6427

d 0.0729 0.27 59.5047 0.0729 0.6294

e 0.0718 0.2679 59.5743 0.0718 0.6428

f 0.0787 0.2805 59.1734 0.0787 0.5963

g 0.0721 0.2685 59.5551 0.0721 0.6429

h 0.0718 0.2679 59.5739 0.0718 0.6455

i 0.0729 0.2699 59.5074 0.0729 0.637

j 0.0719 0.268 59.5696 0.0719 0.6429

k 0.0721 0.2685 59.5524 0.0721 0.6428

l 0.0738 0.2717 59.4521 0.0738 0.6403
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Table 46. Evaluation of Canny edge maps using Table 6 measures.

Figure 15        

b 4.6874 72.5604 1.88 5.9988 4.9695 0.1485

c 3.7605 44.1022 1.7028 5.7188 4.7002 0.1307

d 15.4101 62.8013 3.9297 6.3354 5.9697 0.1789

e 3.9148 44.1022 1.7580 6.0085 4.9428 0.1363

f 26.3854 115.3777 7.5780 9.1298 9.1603 0.335

g 3.8133 44.1022 1.7219 5.5455 4.5872 0.1259

h 3.7717 35.0000 1.7031 5.4156 4.4954 0.1229

i 4.2518 41.0000 1.9337 5.7909 4.8189 0.1333

j 3.9004 39.0000 1.7622 5.639 4.6776 0.1268

k 3.8052 44.1022 1.7199 5.5305 4.5735 0.1259

l 3.8939 41.0000 1.8133 4.6757 3.9596 0.1128

Table 45. Evaluation of Canny edge maps using FoMs given 
in Table 6.

Figure 15  pin 

b 0.4191 0.736 0.6768

c 0.4188 0.7382 0.6757

d 0.3907 0.7004 0.6704

e 0.4082 0.7202 0.6749

f 0.3875 0.7211 0.648

g 0.4173 0.7382 0.6763

h 0.4225 0.7462 0.6814

i 0.4029 0.7192 0.6711

j 0.4112 0.7274 0.677

k 0.4197 0.7412 0.677

l 0.4500 0.8100 0.6869
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V. Conclusion

Edge detection is a widely studied area in image processing. Edge 

detectors have been evaluated on their own and in the presence of noise for 

better performance. Also, analysis of edge detection evaluators have been done. 

However, assessment of edge detectors with color-to-grayscale conversion 

algorithms have not been considered. In this work, I have evaluated the effect 

of various color-to-grayscale conversion algorithms on the performance of edge 

detection process. The experimental results show a performance gap between the 

edge detectors, when a suitable grayscale representation is considered. The 

first order derivative edge detectors (Sobel, Roberts and Prewitt) performed 

better on Lightness grayscale representation. While, edge detectors (Laplacian 

of Gaussian (LoG) and Canny) that incorporate de-noising step, result a better 

edge map on Gleam grayscale representation. In both cases the gamma corrected 

grayscale representations performed better than other methods. The results 

indicate that edge detection is not only dependent on the detector used but also 

on the color-to-grayscale conversion algorithms.
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