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I. Introduction

Nuclear power plants (NPPs) are composed of various facilities and equipment for the
safety and power generation. The NPPs operating in Republic of Korea are mostly
pressurized water reactor (PWR). The PWR types are largely classified into the primary
system (or reactor coolant system (RCS)), which typically contains the reactor coolant
passing through the reactor core, and the secondary system which is not directly exposed
to these reactor coolant with radioactivity. In addition, the design lifetime for most of the
NPPs with the above characteristics is generally more than 40 years. For these reasons,
therefore, it is obvious that maintaining the integrity of diverse facilities and systems is
essential for safe long-term operation (LTO) for the NPPs. The operators keep the safety
by monitoring and diagnosing the NPPs based on a variety of instrumentation signals from

the NPPs.

Srutdown Cootrg
Conarmert Pl Eschangsr
Plawmes st om Fressurs Cokd Lagn
Sme fBatory Irgecion rm-g
e A
Yk Temn & T—‘T
| S vt g
— a0 & -y
Contwrment
Seray

Fig. 1. OPR 1000 schematic diagram [1]
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Accordingly, acquiring the various instrumentation signals arisen from the NPP systems
is critical to guarantee the safety of the NPPs under the normal operation condition or the
accident circumstances. Among the systems in the NPPs, keeping the safety of the primary
system is the traditionally main concern owing to the characteristics of the NPPs. Thus,
many instrumentation signals such as water level, pressure, temperature, flow rate, and
hydrogen concentration from the reactor vessel (RV), pressurizer, steam generator (S/G),
pipes, containment, and so on are considered as safety-critical major factors for the NPPs
(refer to Fig. 1). That is, it is possible to properly control and take necessary actions
depending on the situations by diagnosing the NPP states employing these monitoring
variables of the NPPs by the operators.

However, the integrity of these safety-related instrumentation signals can not be secured
due to instrument inability and its unreliability under the severe accident circumstances. For
instance, the RV water level can not be accurately measured by heated junction
thermocouple (HJTC) in the severe accidents. Eventually, the abnormal NPP states can be
worse by the improper decision by the operators under such circumstances. In this study,
therefore, in an effort to provide supporting information to the operators, a part of major
factors of the NPPs were predicted applying other signals of the NPPs to a deep learning
method under the severe accident circumstances when the integrity of instruments can not
be ensured.

Deep neural networks (DNNs) [2,3], as a deep learning method used in this thesis, are
defined as multi-layer neural networks with effective techniques. Additionally, since the
training of the DNNs is commonly performed using the supervised learning algorithm, the
data known as actual or desired result are necessary. However, there are rarely the actual
NPP accident data. Therefore, the modular accident analysis program (MAAP) [4], which is
the severe accident analysis code for the PWR and the boiling water reactor (BWR), was
used to gain the accident simulation data applied to the DNN model. These accident data
from the MAAP code are comprised of the behaviors of the simulated instrumentation
signals for the NPP parameters, which are numerically expressed.

In this thesis, these two or three simulated signal data including the estimated signal
data were applied to the DNN model to check its prediction performance for the major

factors of the NPPs. In addition, the prediction result of the proposed DNN model was

_2_
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compared with that of the machine learning model for predicting the NPP factors of the
previous studies [5]-[7] to check the applicability of the DNNs to the NPP fields.
Consequently, the result of this thesis can be a case study trying to apply a deep learning
to the NPP fields in the future.
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II. Artificial Intelligence Methods with Neural Network

Framework

The deep learning used for predicting the major factors of the NPPs is the subset of
the machine learning which is a subset of artificial intelligence (Al) (refer to Fig. 2).
Briefly, the concept of Al is one of the technologies that is able to carry out specific
tasks such as classification or prediction by the computers as much as or better than
humans can. Although the Al in this level is called “Narrow AI” [8], various Al methods
applied to a wide range of the industrial fields have shown their good performances in the

domains of voice recognition, visual object recognition, regression analysis, and so on [2].

ARTIFICIAL
INTELLIGENCE

MACHINE
LEARNING
flourish. DEER

N | NN

1950 1960°'s 1970°s 1980's 1990°s 2000's 2010%s

Fig. 2. Machine learning and deep learning of Al [§]

The interesting performance of the AI methods in such domains was able to be made
by development of the machine learning algorithms such as representative support vector
machines [9,10] (SVMs) and several methods based on artificial neural networks (ANNS),
and by constantly upgraded computer hardware and some proposed techniques for effective

calculation. In the nuclear fields, accordingly, many studies on NPP state monitoring and
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diagnosis [11]-[13], prognostics and health management (PHM) [14] for the equipment,
sensor signal validation [15], smart sensing [16], and so on have been carried out using
the Al methods.

In a part of an effort to apply the Al methods to the NPPs, in this thesis, the DNN
model was used to predict the major factors of the NPPs and its results were compared
with the results using the cascaded fuzzy neural network (CFNN) model of the previous
studies [17]-[19]. As all the Al models utilized for NPP factor prediction in this thesis are
on the basis of the neural network structures which are inspired by interconnections
between the neurons of the human brain, the DNNs and fuzzy neural networks (FNNs),
which are single module of the CFNNs, have a system that the data are continuously
transferred from its first layer to the next layer, and finally the outputs are computed in
the last layer. That is, these methods are trained and optimized through the networks using
the data and the learning algorithm.

However, the efficacy of each Al method with a neural network framework differs
depending on the feature inherent in the method [20]. For instance, shortly, the DNNs
consist of multiple hidden layers between the input layer and the output layer to learn
representations using the outputs from every single node [2] while the basic idea of the
FNNs is a fuzzy inference system (FIS) embodied in the neural networks. In other words,

the FNNs are comprised of the specific processing layers [18,21].

A. DNN of Deep Learning Methods

1. Deep Neural Networks

The DNNs used in this thesis can be defined as the neural networks which consist of
the deep hidden layers and nodes with the effective computational techniques. Moreover,
the DNNs can be considered as a simpler method than other well-known deep learning
methods such as recurrent neural networks (RNNs) and long-short term memory (LSTM)

[2,3] owing to its straightforward weight propagation from activation functions of the
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nodes. In the DNNs, specifically, the calculated weights of each node in the first layer

using the inputs z;, as expressed in Fig. 3, are repeatedly transferred forward into the

nodes in the next layer and updated. After then, the predicted values y are finally
calculated in the output layer (described in Fig. 4). The DNNs are usually called as deep
feedforward networks (DFNs) or feedforward neural networks (FFNNs) [3] by its specific
weight flow through the networks. The hypothesis of the DNNs is generally defined as

follows:
H(z)= wyx; = Wz (1)
xl Activation
function
fr Omp"td
x, 7w
'x3
Fig. 3. Single artificial neuron of the DNNs
O & O ) ‘ . —— Weight
e YAATAY Y,
Vo BV, O, 9 9. Y/ \ ;
77 e S BN SNy S
MO SNy
ol N W el e N
. AT VT M)N' Ao
o I IR i
: L ‘{"V["‘\V ‘V,“\r ‘VI,“\V V[,“\V. / Vi
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Fig. 4. Deep neural networks
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It is noted that the main aspect of the DNNs is that the model is trained via a basic
ANN framework using the general-purpose learning algorithms with the data, not by
specific processing layers designed by users [2]. Training and optimization of the DNNs
are commonly made by the supervised learning algorithms such as back-propagation [22,23]
and gradient descent [2,23], which are the most common form of a machine learning
algorithm [2]. Concretely, the cost function that measures the error between the predicted
output by feedforward training and the target value is calculated first, and then the value
of the cost function is propagated backward from the output layer to the initial hidden
layer, as indicated in Fig. 5. The gradient is computed to update the weight w;;. The
training and optimization process by forward- and back- propagation and calculating the
gradient at each current point is usually iterated until the optimal w;; at the global minima,
as the lowest point of the cost function, is found out (refer to Fig. 6). In this thesis, root
mean square (RMS) error was used as the cost function for the bowl-shaped convex

function defined as Eq. (2). Eq. (3) denotes the revised weight after back-propagation.

2
where N is the number of the sample data.
new dE
w;ljcu, _ wj)Jld —a T (3)

ij

where the learning rate « (0<a<l) has a role to control a step size of the gradient
descent (described in Fig. 6).

In this thesis, training of the DNN model stopped when the Cost(W) of Eq. (2) was
converged at the global minima or the maximum number of epochs was reached. An epoch
denotes the number of a single DNN training process through the networks using the

learning data set and the validation data set.
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Fig. 5. An learning and optimization procedure by forward- and back- propagation
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Cost(W)

A

Step size
(24

Global
minima

Fig. 6. Global minima in the cost function

2. Hyper-parameters of the DNNs

Since there are specific hyper-parameters influential in the performance of the machine
learning including the deep learning, it is essential to find the optimal ones to establish a
powerful model. To reach the global minima, namely, the Al methods are able to be
optimized using these key parameters. The hyper-parameters for the DNNs are the number
of hidden layers and nodes, activation functions, generalization techniques, cost functions,
learning rate «, weight initialization, batch normalization, and so on, which are also usually
considered in other deep learning methods.

Among them, increasing the number of its hidden layers and nodes and applying more
data are a well-known basic way to improve the performance of the DNNs (refer to Fig.
7). However, the DNNs with excessively deep hidden layers can be vulnerable to the
vanishing gradient or the overfitting problem which is caused by increase in the complexity

of the DNNs [24].
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Fig. 7. Comparison of performance according to the neural network scale and

the amount of data [25]
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Fig. 8. Vanishing gradient problem in the DNNs
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The vanishing gradient problem, indicated in Fig. 8, means that the error can not be
well propagated backward from the output layer to the hidden layers. Basically, this
phenomenon is caused since most of the ANNs are based on the multiplying operation.
Concretely, Fig. 9 shows that sigmoid, one of the activation functions, is repeatedly
multiplied. The output becomes considerably flattened when the sigmoid function is
multiplied more than three or four times. Therefore, the DNNs can be hard to be trained

by excessively reduced gradient which is nearly zero.

Single
— Double
Triple
Quadruple
— Quintuple

0.0
-10 -5 0 5 10

Fig. 9. Multiplication of the sigmoid function

Therefore, a variety of the activation functions such as rectified linear unit (ReLU), leaky
ReLU, tanh, maxout, bipolar sigmoid, and so on are proposed to avoid the vanishing
gradient problem (refer to Fig. 10). Each activation function with different specific output
can not be vulnerable to the vanishing gradient or even can propagate the gradient through

deeper neural networks.

_11_

Collection @ chosun



The overfitting problem, another consideration by complicated networks, denotes that the
DNNs are over-trained using the learning data. With the introduction of the dropout method
[26], recently, this problem related to generalization for the deep learning methods is able
to be easily solved. The idea of the dropout method is a reduction of the complexity of
the DNN by deactivating the arbitrary nodes selected according to the user-specified

droprate in a single training procedure (refer to Fig. 11). In other words, the DNNs are

1.0
0.5
0.0

5 o 5

— Sigmoid
i 7 Bipolar sigmoid
’ Tanh
Z ReLU
-10[ e Leaky ReLU

Fig. 10. Outputs of the activation functions

trained by only activated nodes.
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Furthermore, cross validation is another method to prevent the DNN from the overfitting
problem by usually dividing the data into the learning data set, the validation data set, and
the test data set according to a specific proportion by users. The learning data set is used
for the DNN training and the validation data set is used to check whether the overfitting
occurs or not, which are directly related to the development of the DNN model. The test
data set is literally used to independently test the extent to which the developed DNN
model fits separate samples well. Fig. 12 indicates the development process of the model
using the learning and validation data sets. In each epoch, the validation data are utilized
to compute an error after the DNN model is trained using the learning data set. When the
model is optimally trained, the error on the validation data is generally minimum. If the
DNN model is over-trained (too much accurate for only the learning data) beyond this
point, it can be regarded that the overfitting happens at the point that the error on the

validation data starts to increase.

Error

Error on
validation data set

Model R
optimally trained -

Error on
learning data set

-

Epoch

Fig. 12. Cross validation process for the model using the validation data set

The hyper-parameters correlative to the local minima which is a common problem for
the optimizing using back-propagation are the cost function, learning rate «, weight

initialization, and so on. As aforesaid, the convex function is generally used as the cost

_14_
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function to easily approach to the global minima. Plus, the weight initialization technique is
utilized not to be stuck in the false minima by changing a starting point of the gradient
descent (refer to Fig. 13). Moreover, selecting a proper learning rate is crucial since it may
fail to converge at the global minima on account of a local minima or divergence

depending on the value of « in the convex function (refer to Fig. 14).

4 Local Global False
Error .. .. ..
minima minima minima

|

Weight

Fig. 13. Local minima and global minima in a non-convex function

Cost(W)

A

Step size
(43

Global
minima

|

Fig. 14. Step size of gradient descent depending on an alpha value

P
Lo

W
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In addition to the aforementioned hyper-parameters, there are several parameters and
techniques to enhance the performance of the DNNs. However, the optimal setting for the
hyper-parameters of the deep learning methods, called as a golden rule, has yet to be
established. Although several searching methods for the hyper-parameters were proposed in
the previous studies [27]-[29], the initial setting for these design parameters can be variable
depending on the domains. Thus, it is obvious that a lot of efforts to guarantee powerful
performance of the DNN model are required due to the fact that the deep learning methods

have generally more design parameters than the traditional machine learning methods.

3. Genetic Algorithm for the Hyper-parameters

In an attempt to find out the optimal hyper-parameters of the DNN model, the genetic
algorithm (GA) [30,31] was used in this study. Briefly, the GA is a technique artificially
modelling an evolutionary process of living organisms by natural evolution mechanisms
such as selection, crossover, and mutation [32]. As the generation proceeds in the GA, the
populations of chromosomes are arbitrarily generated, and then iteratively replaced with
another population of chromosomes newly generated by natural evolution [19]. A
chromosome means a candidate solution to a problem. Finally, the fittest chromosome in
the populations is selected as an appropriate solution to the optimization for the
hyper-parameters [32]. The GA employs the fitness function of Eq. (4) evaluating how well
a chromosome in a population fits a desired objective by assigning a score to each
chromosome in the corresponding population as follows:

F=exp(\ME,+\E,+\E,

max

. Z+)‘2Emax . 'u) (4)

where )\, and )\, are the coefficients for the RMS errors (RMSE), E;, and E,, and the

maximum errors, F.,..; and E_.. for the learning data and the validation data,

respectively.
In this thesis, the number of the hidden layers and nodes was configured by the GA. As

aforementioned above, altering the hidden layers is a primary way to determine the

_16_
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performance of the DNN model, and moreover a variation of the performance is
remarkably checked depending on this parameter option. Setting the proper number of the
hidden layers is usually performed by a conventional method manually changing the
number of the hidden layers after finding the point where the accuracy on the learning
data set becomes too much increasing (overfitting). However, it seems to be a quite limited
method to be applied to each different subject since the options for the hyper-parameters
can be variable. For this reason, the GA was used to get closer to the global minima by
automatically finding the optimized number of the hidden layers and nodes although the
GA is likely to be computationally expensive [19]. Fig. 15 shows the flowchart of the
DNN model employing the GA in this thesis.

_17_
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G=G+1

A

G-th iteration

\
Generate i-th chromosomes
i=1

X

Evaluate j-th chromosomes

\ J

Meet stopping criteria?

Genetic operations such as
selection, crossover, and mutation

\ J

DNN training and optimization
using backprop and gradient descent

X

DNN model identification

A

Reproduction (generate new chromosomes)
i=i+1

Fig. 15. Flowchart of the DNN model with the genetic algorithm
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4. Employed DNN model

A part of the employed hyper-parameters of the DNN model utilized for the prediction
of the major factors of the NPPs in this thesis are shown in Table 1. Notwithstanding
there are several well-known activation functions and techniques such as the ReLU function
and the dropout, the bipolar sigmoid function and the cross validation were employed for
the DNN model in this thesis since the better performance of the DNN model was shown.
Additionally, it is noted that the number of hidden layers and nodes, selected by the GA,
is changeable depending on the range of the its maximum or minimum, and the GA

options such as the probability of genetic operations.

Table 1. Initial settings applied to the DNN model

Hyper-parameter Application setting

. Randomly selected by the genetic algorithm
No. of hidden layers ; ] )
(variable depending on the option)

. Randomly selected by the genetic algorithm
No. of hidden nodes ; ] )
(variable depending on the option)

Activation function Bipolar sigmoid
Cost function Root mean square
Learning rate (alpha) 0.1
— 1 9 —

Collection @ chosun



B. FNN of Machine Learning Methods

Machine learning methods as a subset of the AI have been successfully applied to
various fields and known for their good performances. In addition to the SVMs [9,10]
which is one of the representative machine learning methods, there are several algorithms
based on the neural networks such as the FNNs. It is noted that there is a main difference
on the basic idea between the methods with a neural network structure. The FNN model is

trained from the data through the specific processing layers.
1. Fuzzy Neural Networks

The conditional rule, described in a fuzzy if-then rule comprised of an antecedent and a
consequent, is generally used in the FIS [5,6]. In the Mamdani-type FIS [33], the
defuzzification is needed since its if and then parts are fuzzy linguistic while in the
Takagi-Sugeno-type FIS [34], the inputs and outputs are usually real-valued variables, and
its if part is fuzzy linguistic and its then part is crisp [21]. Therefore, the

Takagi-Sugeno-type FIS was used for the FNN model in this thesis as follows:

If z,(k)is p;; AND --- AND z,, (k) is p,, ©)

then y'(k) is f'(z,(k), -, z,, (k))

where z;(k) is the input to the FNN model (j=1,2,---,m), p,; is the membership
function of the i-th fuzzy rule (i=1,2,---,n) and the j-th input variable, and
fi(x, (k), zy(k), -+, 2, (k)) is the output of the i-th fuzzy rule and is expressed as a

first-order polynomial of the input variables as shown in Eq. (6):

X m
~1

y (k)= f'(z, (k), 2y (k), -, z,, (k) = f(x(k) = ’_Zzlqijxj(k)+7ni (6)
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where ¢;; is the weight at the i-th fuzzy rule and the j-th variable, and r; is the bias at

the i-th fuzzy rule.

j.\'r 2:1-:.!' 3 rd 4!."! 5”'.' 6!.‘1
layer layer laver layer layer layer

fl(xl‘” '..?1:”])

Ham

Fig. 16. Takagi-Sugeno type FIS in a neural network framework

Fig. 16 shows the FNN model using the Takagi-Sugeno-type FIS embodied in the neural
network framework. The first layer consists of the nodes which transfer the input z, (k) to
the next layer. The second layer is a fuzzification layer using a membership function.
There are a variety of membership functions, which have no restriction of the shape.
Among them, the symmetric bell-shaped Gaussian function was used as the membership

function of each input at the i-th fuzzy rule for the FNN model expressed as Eq. (7):

™)
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where c¢;; and o,;; are the center position of a peak and the sharpness of the Gaussian

i
function at the i-th rule and the j-th input, respectively. These are the antecedent
parameters for the FNN model as well as key parameters for the symmetric Gaussian
membership function.

In the third layer, a product operator for the membership function is performed using Eq.
(8) in order to calculate the membership values for each fuzzy rule. This membership value
for rule i, w'(k), denotes a compatibility grade between the antecedent parts of a fuzzy
if-then rule [21]. Normalization of the membership values for each fuzzy rule is carried out
in the fourth layer using Eq. (9). In the fifth layer, the outputs for the i-th fuzzy rule are
multiplied by the normalized values. In the sixth layer, all the calculated values from the
fifth layer are summed up as expressed in Eq. (10). The output of a FIS with n fuzzy
rules, y(k), is a weighted sum of the consequents of all the fuzzy rules [21]. Therefore,

the predicted output using the FNN model is expressed by the vector product defined as

Eq. (11).

mm—m (2, (1) ®)

() = e ) ©)
:le(x (k))

)= D35 05 () = Y (0 (@lk) (10)

y(k)=w"(k)g (1)

where w(k) and q are defined as
wk) = |0z, (k) - w'z (k) e w'a, (k) - w'z, (k) w (k) - w'k)],

q: [qll Tt qnl ...... qlm Tt qnm 7"1 Tt 7""] .
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2. Optimization of the FNN

The FNN model for predicting the major factors was optimized using the GA combined
with the least square algorithm [32]. The GA was used to find the optimal antecedent
parameters (c;; and o;;) of the FNN model. Additionally, it is generally known that the
GA is less vulnerable to convergence at the local minima than the traditional techniques
and is a useful and effective method to solve the optimization problems with multiple
objectives [32]. The least square algorithm was used to easily compute the consequent
parameter g of Eq. (11). The squared error between the target value and the predicted

value of Eq. (12) is used as the objective function.

N, N,

3 ) =5k = 3 (k) —w(k)g)* = Ly, -9 ) (12)

k=1 =1 2

J

where y, = [y(1)y(2) - y(N,)]" is a target value vector, y, = [g;(l)y(Q) g;(NZ)] is a

predicted value vector from the FNN model, and A, is the number of the learning data.
Eq. (13) is a solution to minimize the objective function of Eq. (12).

v, = Wy (13)

where the matrix W, = [w(l) w(2) -~ w(N,)]" has N, (m+1)n-dimensional and the

vector q has (m+1)n-dimensional. The parameter q can be solved using the

pseudo-inverse of the matrix W as follows:

q= (WtTWt)*thTyt (14)
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3. Fuzzy Neural Networks in a Cascade Structure

To improve the performance of the FNNs, the CFNNs [35] that consist of
multi-connected FNN modules were proposed. The CFNN model used for the major factor
prediction has a serially connected cascade structure and more than two FNN modules
expressed as Fig. 17 [5]-[7]. The key aspect of the CFNNs is based on the syllogistic
fuzzy inference where a calculated output from the previous FNN module is transferred to
the next module, of which the calculation process is the same as all of the modules, as a
fact. This is important to effectively establish a large-scale system with high-level
intelligence [35]. The CFNNs perform the prediction process by iteratively adding the FNN
modules. Eq. (15) is the random i-th fuzzy rule at the /-th FNN module of the CFNNs.

If x,(k)is put, AND -~ AND z,(k) is pl (15)
ANQ ?;l(k) ZS /’Lf(m+1)(k) AND Tt AND :';(Z*l) (k) ZS Mf(m+l*1)(k)’

then yi(k) is fi(xy(k), -,z (k), yy (&), -, yo_1) (k)

Continuous training by adding the FNN modules can make the CFNNs powerful, but
simultaneously it can be susceptive to the overfitting problem. Therefore, the cross
validation was used to prevent this problem. The overfitting of the CFNN model was able

to be checked by the fractional error for the validation data in Eq. (16).

E(yn(k)_?;n(k))Q
B/ (G) == (16)

kzl(ya (k))?

where N, is the number of the validation data.

When the condition Ef(G+ 1))>Ef(G) is satisfied, it is regarded that the overfitting
begins at the (G+1)-th module if an FNN module is continuously added. The process of
adding an FNN module stops at this point. Additionally, if an error at L-th module FE; (L)

is less than the specific minimum fractional error, the training and validation of the CFNN
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model will be stopped. The CFNN model with the minimum fractional error in L-th

module consists of the number of L FNN modules [6].

xl —hh ———————— e — = ———— -
x“r — - ——— ————— P — —— —————— o
- 5t - 4 -
. I module . 2" module | -+ &
o ’ i P omodule [—w3
rm—luh ————————————————— S
¥ - >
| % ...
- b
Vi
' ' f
; st 2.lrn" ;Nf 4.'!.' j’m 6.'!.'
layer laver layer laver layer layer

X)) Same inputs x

0

X)) Added input 7,
\, J \.
First module of Second module of
I-th CFNN I-th CFNN

Fig. 17. Cascaded Fuzzy Neural Networks
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III. Applied Data to Predict the Major Factors of NPPs

A. Simulation Data on the Postulated LOCAs

The data are required to train and verify the presented Al methods employing the
supervised learning algorithms. However, since the data on the real NPP accident rarely
exist, the MAAP [4] was used for acquisition of the accident simulation data for the NPPs.
The MAAP code, as a severe accident analysis program for the PWR and BWR, is
generally used to gain the data showing the behaviors of the major factors of the NPPs
under the accident circumstances. In this thesis, the Hanul units 3 and 4, as a PWR type
plant, were selected as the plant models. Some of the assumed loss of coolant accidents
(LOCAs), which may occur in the NPPs, were simulated using the MAAP code in order
to obtain the data applied to the mentioned Al models.

The postulated LOCAs were assumed to occur at three break positions such as hot-leg,
cold-leg, and steam generator tube (SGT), and were classified into the small break LOCAs
(SBLOCAs) and the large break LOCAs (LBLOCAs) depending on the break sizes. In
addition, the accident scenario that several safety systems of the NPPs did not properly
work under the LOCA circumstances was assumed.

To predict the major factors of the NPPs, a total number of 600 simulation data on
these postulated LOCAs, obtained by simulating 200 different break sizes in each break
position, respectively, were applied to the Al methods. In case of the hot-leg and cold-leg
LOCAs, the 170 LOCA simulation data were for the larger break sizes and the remaining
data were for the smaller break sizes, respectively. For the LOCAs at SGT (or steam
generator tube rupture (SGTR)), the 100 LOCA simulation data were prepared for the
smaller break sizes and the same amount of the LOCA data were prepared for the larger
break sizes.

Moreover, these data were separated into three data sets for the cross validation. First,
the test data were selected at fixed intervals and comprised of the number of 100 or 200

data points in each break position. After the test data points were removed, the validation
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data points were selected in a similar way as the test data points. Among the rest of the

data points, lastly, the learning data points were chosen at another fixed intervals.

B. Simulated Signals for Predicting the Major Factors

The accident simulation data from the MAAP code consist of various simulated
instrumentation signals of the NPPs, which are numerically expressed. In this thesis, the
postulated LOCA simulation data consist of the time-integrated values of 15 simulated

instrumentation signals as follows:
t,+ At

x‘j:/‘ g;(t)dt, j=1,2, -, 15 (17
ts

where ¢, is the eclapsed time after the rector trip, At means a short integrating time
interval after the reactor trip, and g,(t) denotes a specified signal.

Table 2 shows the signals of the postulated LOCA simulation data used in this thesis.
Several simulated signals, which are considered as the monitoring parameters, such as
containment pressure, RCS pressure, sump water level, and hydrogen concentration can be
used to predict the major factor of the NPPs. It is noted that although the LOCA break
size can not be measured in the actual accidents, it was considered as a parameter
applicable to the prediction of the NPP factors in this thesis since it was quite accurately
estimated in the previous studies using several Al methods [11]-[13], [36]. In this thesis,
some of the NPP major factors were predicted applying a few signal data among the
simulated signals to the proposed DNN model under the assumption that the NPP
information was not ensured due to instrument unreliability by inability or malfunction in

the severe accidents, which is the same as the previous studies [5]-[7].
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Table 2. Simulated instrumentation signals from the MAAP

No. Signal

1 Elapsed time after reactor trip
2 LOCA break size

3 Containment pressure

4 RCS pressure

5 Sump water level

6 Collapsed RV water level

7 Boiled-up RV water level

8 Hydrogen concentration in containment
9 Leak flow

10 Maximum leak flow

11 SG leak flow

12 Maximum SG leak flow

13 Maximum hydrogen concentration
14 Full RV water level

15 Maximum containment pressure
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IV. Prediction of Major Factors Using Deep Learning

In this section, the prediction performance on the major factors using the proposed DNN
model can be checked and are compared with the performance of the CFNN model of the
previous studies [5]-[7]. In addition, a cause of the performance difference between the

DNN and CFNN models is analyzed.

A. Prediction of RV Water Level

First, the RV water level, selected as a target factor in this thesis, was predicted using
the DNN model under the assumed severe accident circumstances. The RV water level is a
safety-critical factor directly related to determining the cooling capability for the nuclear
fuels and the reactor core, and preventing the core from uncovery. Thus, it is obvious that
the RV water level has to be accurately measured and monitored under the accident
circumstances or normal operation condition. Three simulated signals (the elapsed time after
the reactor trip, the estimated LOCA size, and the containment pressure) were applied to
the DNN model to predict the RV water level. The containment pressure was used since
the internal environment of the containment can be easier to be recognized than that of the
RV or reactor coolant boundary [5].

Tables 3 shows the prediction performance of the DNN model and the number of hidden
layers and nodes selected using the GA according to the LOCA cases. Table 4 shows the
comparison of the prediction performance of the DNN and CFNN models [5] for the test
data, respectively. According to Table 4, the proposed DNN model shows its more accurate
prediction performance than the CFNN model in most of the LOCA cases except for the
LBLOCAs at the hot-leg and the cold-leg.
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Table 3. Prediction performance for the RV water level using the DNN model

LOCA | LOCA Learning data Test data .
Hidden layers
break break
) B RMSE | Max. E | RMSE | Max. E (nodes)
size position
(m) (m) (m) (m)
Hotleg | 007 | 062 | 011 | 049 (19_10_206_20_6_20)
Small | Cold-leg | 005 | 049 | 007 | 028 (17_19‘_‘17_12)
SGT | 004 | 038 | 003 | 0.10 (10_15_5§13_19_5)
Hotleg | 003 | 041 | 008 | 0.6l (7_18_10_12_95_18_10_9_5)
Large | Coldleg | 007 | 116 | 037 | 171 | 4_12_12_59_18_10_10_18)
9
SGT | 004 | 039 | 009 | 026 | (71415 1551810-10-18)

Table 4. Comparison of prediction performance of the DNN and CFNN models

for the RV water level

Collection @ chosun

Test data
LOCA LOCA DNN model CFNN model
break size break position RMSE Max. E RMSE Max. E
(m) (m) (m) (m)
Hot-leg 0.11 0.49 0.32 1.76
Small Cold-leg 0.07 0.28 0.20 0.79
SGT 0.03 0.10 0.22 0.82
Hot-leg 0.08 0.61 0.07 0.64
Large Cold-leg 0.37 1.71 0.15 0.60
SGT 0.09 0.26 0.50 3.24
- 30 -




Figs. 18-20 indicate the prediction results of the RV water level according to the elapsed
time after the reactor trip, the estimated LOCA break size, and the containment pressure
for the test data using the DNN model in case of the SBLOCAs at each break position.
Figs. 21-23 indicate the prediction results of the RV water level according to the elapsed
time, estimated LOCA break size, and containment pressure for the test data using the
DNN model under the LBLOCAs at each break position.

According to Figs. 20-25, the results with better prediction performance for the test data
are made for the SBLOCAs and LBLOCAs at SGT. In these cases, the predicted values
from the DNN model (‘+’ symbol) catch up with the target values (‘O’ symbol) relatively
well. Some undesirable prediction results are caused by a rapid change of the RV water
level in a short time in all the LOCAs.

In result, although the CFNN model in the previous study [5] has also good accuracy
for the RV water level prediction, the DNN model is regarded as a better method since its
RMSE and maximum error for the test data are lower than the CFNN model in most

cases.
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Fig. 18. Performance of the DNN model for the test data under SBLOCAs at hot-leg
(RV water level)
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Fig. 19. Performance of the DNN model for the test data under SBLOCAs at cold-leg
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Fig. 20. Performance of the DNN model for the test data under SBLOCAs at SGT
(RV water level)

_37_

Collection @ chosun



6.5

6.0
E
g 5.5
Q
—
—
o]
=
= 5.0
>
&~
451 O Desired RV Water Level
+ Predicted RV Water Level
(D
40 1 " 1 " 1 L 1 L 1 " 1 L 1
0 40000 80000 120000 160000 200000 240000

Time (sec)

(a) Prediction of RV water level according to elapsed time

6.5
O Desired RV Water Level
+ Predicted RV Water Level
6.0
E
E 55
Q
]
—
o]
=
= 5.0
>
&~
45+
CEEEED (€222
40 1 N 1 " 1 X 1
0.2 0.4 0.6 0.8

LOCA Break Size (m®)

(b) Prediction of RV water level according to estimated LOCA break size

_38_

Collection @ chosun



6.5

;g

-}.},.
@jj@@j M
@

=) O
55| g
% +
— +
= X
o]
=
= 5.0 -
>
&~
45 :
O Desired RV Water Level
QB + Predicted RV Water Level

200000 400000 600000 800000 1000000 1200000

Containment Pressure (Pa)
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Fig. 21. Performance of the DNN model for the test data under LBLOCAs at hot-leg
(RV water level)

_39_

Collection @ chosun



6.5

O Desired RV Water Level

e + Predicted RV Water Level
OB 4 P

6.0 +P
_ éQccco ooco@%%wéﬁ & T HS
g Oarso e3¢
E 5.5 (A
i:
§ 5.0
>
a4

45

4.0 L : I . 1 A 1 . 1 A 1
0 50000 100000 150000 200000 250000

Time (sec)

(a) RV water level prediction according to elapsed time

6.5

e«
G Mﬁ@ N D -
G s
(e © O
g =9 oo + 5
SRR R A

o
o
T

RV Water Level (m)
S
— .
% |
+
_!._
e
O
% @D

»
(]
T

O Desired RV Water Level
+ Predicted RV Water Level

0.07 0.14 0.21 0.28 0.35 0.42
LOCA Break Size (m®)

4.0

(b) Prediction of RV water level according to estimated LOCA break size

_40_

Collection @ chosun



6.5

+ I
%@
8 aC
IS
J
o
Cif
+
ot
O+
+
T
gt
O+

o
1)

RV Water Level (m)
[$)]
o

»
(]

O Desired RV Water Level
+ Predicted RV Water Level

200000 400000 600000 800000 1000000 1200000

Containment Pressure (Pa)

(c) Prediction of RV water level according to containment pressure
Fig. 22. Performance of the DNN model for the test data under LBLOCAs at cold-leg
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Fig. 23. Performance of the DNN model for the test data under LBLOCAs at SGT
(RV water level)

_43_

Collection @ chosun



B. Prediction of Hydrogen Concentration

As another target factor in this thesis, an increase in the hydrogen concentration in the
containment is mainly caused by metallic material oxidation during the progress of the
severe accident phenomena [6], [37,38]. Specifically, the hydrogen gas is generated from
metal oxidation such as zirconium (Zr) cladding by the water (or steam) during the
in-vessel phenomena. Especially, the Zr cladding rapidly reacts with the water (or steam) at
high temperature environment which is originated from the LOCAs, and accordingly the
hydrogen generation is accelerated and the hydrogen concentration is considerably increased.
Ex-vessel oxidation of the metallic material during direct containment heating (DCH) and
molten core-concrete interaction (MCCI) makes also the hydrogen concentration in the
containment higher. For these reasons, the containment failure can occur by explosion of
the mixture of a increasingly higher hydrogen with air oxygen. Thus, the hydrogen
concentration in the containment must be maintained below 4% by accurately measuring the
hydrogen gas to prevent detonation and progression to the major accident circumstance. To
predict the hydrogen concentration in the containment, two simulated signals (the elapsed
time after the reactor trip and the estimated LOCA break size) were applied to the DNN
model.

Table 5 indicates the number of each hidden layer and node and prediction performance
of the DNN model for the hydrogen concentration in the containment. As listed in Table
6, the DNN model shows around 1% RMSE and considerably reduced maximum error for
the test data than the CFNN model. For these reasons, therefore, the DNN model is a

more reliable method for the hydrogen concentration prediction.
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Table 5. Prediction performance for the hydrogen concentration in the containment

using the DNN model

LOCA | LOCA Learning data Test data .
Hidden layers
break break
) B RMSE | Max. E | RMSE | Max. E (nodes)
size position
(%0) (%0) (%0) (%0)
4
6
Small | Cold-leg 0.21 5.13 0.43 1.91 (10-16-6-13-19-11)
3
SGT 0.71 7.06 1.33 6.56 (19-20-8)
4
4
Large | Cold-leg 0.39 4.78 0.77 2.61 (5-12-8-17)
9
SGT 0.71 10.41 1.64 6.24 (20-5-17-20-6-15-10-10-5)

Table 6. Comparison of prediction performance of the DNN and CFNN models

for the hydrogen concentration in the containment

Collection @ chosun

Test data
LOCA LOCA DNN model CFNN model
break size break position RMSE Max. E RMSE Max. E
(%0) (%0) (%0) (%0)
Hot-leg 0.86 4.54 2.10 13.09
Small Cold-leg 0.43 1.91 5.38 48.84
SGT 1.33 6.56 6.70 44.01
Hot-leg 0.87 6.72 0.54 2.17
Large Cold-leg 0.77 2.61 1.69 10.15
SGT 1.64 6.24 7.21 44.66
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Figs. 24-26 indicate the graphs showing the prediction results of the hydrogen
concentration in the containment according to the elapsed time after the reactor trip and the
estimated LOCA break size for the test data using the DNN model under the SBLOCAs at
each break position. Figs. 27-29 show the graphs showing the prediction results of the
hydrogen concentration in the containment according to the eclapsed time after the reactor
trip and the estimated LOCA break size for the test data using the DNN model under the
LBLOCAs at each break position.

In case of the small and large SGTRs, there are predicted values relatively fitted away
from the target values. These phenomena arise from the hydrogen concentration which is
not affected in the initial severe accident phases, especially in the SGTRs [5,6].
Notwithstanding, the predicted values using the DNN model track a downward trend after
the specific time. Hence, the proposed DNN model with an advanced performance is
considered as a appropriate model to predict the hydrogen concentration in the containment

under the severe accident circumstances.
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C. Prediction of Containment Pressure

The containment pressure can rapidly increase due to several reasons such as coolant
leak, hydrogen gas generation, and so on under the severe accident phenomena [37,38] in
which the integrity of the reactor is not maintained. As expressed in Fig. 1, since the
containment surrounding the RCS and safety systems is a final barrier of the NPPs to
prevent the release of radioactive materials outside and protect inner structures against
external factors, accurately measuring the containment pressure is critical to avoid the
containment failure by overpressure. As a parameter determining the containment
environment, therefore, the containment pressure was selected as the third target factor of
the NPPs in this thesis and was predicted applying the elapsed time after the reactor trip
and the estimated LOCA break size to the DNN model under the severe accident
circumstances.

Table 7 shows the prediction performance of the DNN model for the containment
pressure according to the number of hidden layers and nodes, selected by the GA. As
shown in Table 8, the performance of the DNN model is much better than that of the
CFNN model [7] for the test data. Especially, the maximum error of the DNN model for
the SGTR cases is notably reduced around 1%.
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Table 7. Prediction performance for the containment pressure using the DNN model

LOCA | LOCA Learning data Test data .
Hidden layers
break break
) B RMSE | Max. E | RMSE | Max. E (nodes)
size position
(%) (%) (%) (%)
Hotleg = 005 | 062 | 010 | 023 a 52072061 "
Small | Cold-leg | 0.06 0.63 0.10 0.33 (19_19_157_19_19)
SGT 0.13 1.19 0.19 0.91 (8-19-18-615-17-11)
Hotleg | 004 | 061 | 008 | 026 | 01410 ?_5_18_5_6_8)
10
Large | Cold-leg | 0.06 0.38 0.12 0.51 (16-13-13-10-11-11-15-10-16-8)
9
SGT 0.13 1.32 0.26 1.14 (20-10-20-18-17-14-18-13-20)

Table 8. Comparison of prediction performance of the DNN and CFNN models

for the containment pressure

Collection @ chosun

Test data
LOCA LOCA DNN model CFNN model
break size break position RMSE Max. E RMSE Max. E
(70) (%0) (%0) (%0)
Hot-leg 0.10 0.23 0.13 0.73
Small Cold-leg 0.10 0.33 0.24 0.77
SGT 0.19 0.91 0.94 4.64
Hot-leg 0.08 0.26 0.06 0.52
Large Cold-leg 0.12 0.51 0.26 0.83
SGT 0.26 1.14 1.41 7.22
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Figs. 30-32 show the prediction results of the containment pressure according to the
elapsed time and the estimated LOCA break size for the test data using the DNN model
under the SBLOCAs at each break position. Figs. 33-35 show the prediction results of the
containment pressure according to the elapsed time and the estimated LOCA break size for
the test data using the DNN model under the LBLOCAs at each break position.

Among the Figs. 30-35, the containment pressure is precisely predicted using the DNN
model especially in case of the hot-leg and cold-leg LOCAs. The reason why some of the
inaccurate prediction values are shown in the SGTRs is that the containment pressure is
not almost affected in the initial phases of these accidents. However, since the maximum
error for the SGTR cases are approximately 1% (refer to Table 6), it is regarded that the
proposed DNN model has more reliable prediction performance. Moreover, if the
containment pressure signal, which was used for other factor prediction in this thesis, is
not ensured in the severe accidents, its accurately predicted values from the DNN model

can be used to predict other major factors.
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D. Comparison of Performance between the Al Methods

According to Andrew Ng [39], the deep learning methods can become more powerful
than the traditional machine learning algorithms by applying the larger amount of data.
Therefore, the traditional machine learning methods are generally superior to the deep

learning methods in the smaller amount of data.

Deep learning algorithms

Traditional machine
learning algorithms

Pertormance

Y

Amount of data

Fig. 36. Comparison of performance between deep learning and machine learning [39]

Nevertheless, the performance of the proposed DNN model, as a deep learning method
used for predicting the major factors of the NPPs, is better than the CFNN model. It is
supposed that one of the main reasons why these phenomena occur is due to the GA
technique for hyper-parameter optimization. That is, the optimized performance of the DNN
model is obtained by automatically finding the optimal number of hidden layers and nodes,
using the GA in this thesis. Although the amount of applied accident simulation data can

not be precisely pointed at Fig. 36, a performance gap between the DNN model and the
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CFNN model was able to be reduced using the hyper-parameter optimization technique
even in the small amount or the limited data in this thesis. Therefore, it is considered that

the proposed DNN model becomes more competitive in NPP factor prediction.
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V. Summary and Conclusions

In an effort to provide the supporting information to the operators, some of the major
factors of the nuclear power plants (NPPs) were predicted applying other NPP information
to the deep learning in the severe accidents. Specifically, the NPP factors such as the
reactor vessel (RV) water level, the containment pressure, and the hydrogen concentration
in the containment were predicted employing a few signals data under the severe accident
circumstances originated in the postulated loss of coolant accidents (LOCAs) which may
occur in NPPs.

Since the proposed deep neural network (DNN) model is generally with the supervised
learning algorithms such as back-propagation and gradient descent, the data for training and
verification are needed. Therefore, the data for predicting the major factors were obtained
by simulating some of the various postulated LOCAs using the modular accident analysis
program (MAAP) code. These LOCA simulation data consist of the behaviors of the
various simulated signals for NPP parameters, which are numerically expressed. In this
thesis, the NPP critical factors were predicted employing two or three simulated signals
such as the elapsed time after the reactor trip, the estimated LOCA break size, and the
containment pressure. Although the LOCA break size is not easily recognizable in the
actual accidents, since the high estimation accuracy for the LOCA break size of the Al
methods was shown in the previous studies, the LOCA break size was used as an
accurately estimated signal data applicable to the major factor prediction.

To check the applicability of the DNN model used to predict the NPP factors using a
few simulated signals, it was compared with the performance of the cascaded fuzzy neural
network (CFNN) model of the previous studies. The DNN model is superior to the CFNN
model in most cases, whereas its root mean square error (RMSE) and maximum error are
relatively higher than those of the CFNN model in a few cases. Even though it is
generally known that the performance of the traditional machine learning method is better
than the deep learning in the smaller amount of the data set, that of the proposed DNN
model was able to be more accurate than the CFNN model in this thesis. This is because

the hyper-parameters of the DNN were optimized using the genetic algorithm (GA). It was
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possible to obtain the better performance of the proposed DNN model in most cases even
in the small data set by using the GA automatically optimizing the magnitude of hidden
layers and nodes, which can be variable depending on the target factors and the LOCA
cases.

Consequently, it is known that the DNN model with the GA is a more proper method to
predict the major factors of the NPPs under the severe accident circumstances than the
CFNN method. Furthermore, if a study to check the prediction performance of the DNN
model by using other signals or considering the instrumentation error is carried out based
on this thesis, the applicability of the DNN model to the NPP fields will be more
improved in several aspects, and eventually it is expected that the proposed DNN model
can be used for monitoring, diagnosis, and prediction of the NPP states or NPP equipment

in the future.
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